1
|
Öztürk G, Yeşilipek MA, Akçay A, Uygun V, Özek G, Karasu G, Yılmaz E, Demir Yenigürbüz F, Öztürkmen S, Aksoylar S, Ok Bozkaya İ, Yalçın K, Adaklı Aksoy B, Ünal E, Akıncı B, Daloğlu H, Karagün BŞ, Kansoy S, Özbek N, İnce E, Demir HA, Gündoğdu M, Malbora B, Karakükçü M, Elli M, Akyay A, Güneş AM, Akbayram S, Sarper N, Del Castello BE, Hazar V, Antmen B. Effect of genetic mutations on outcomes of stem cell transplantation in children with hemophagocytic lymphohistiocytosis. Bone Marrow Transplant 2025:10.1038/s41409-025-02592-4. [PMID: 40263637 DOI: 10.1038/s41409-025-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Primary hemophagocytic lymphohistiocytosis (p-HLH) can be cured with allogeneic haematopoietic stem cell transplantation (allo-HSCT). It remains unclear whether HSCT outcomes are affected by the presence of different genetic mutations. We used data obtained from children who underwent allo-HSCT for HLH to examine the effects of genetic mutations on HSCT outcomes. Data from 153 paediatric patients in 18 paediatric stem cell centres were retrospectively evaluated. Patients were divided into four groups: 1) with PRF1 mutation (n = 46), 2) with UNC13D mutation (n = 38), 3) with STX11/STXBP2 mutation (n = 25) and 4) with Griscelli syndrome type 2/ Chediak-Higashi syndrome (GS2/CHS) diagnosis (n = 44). Statistical analysis showed no difference between the subgroups in terms of engraftment, VOD, acute GVHD, chronic GVHD, TRM, OS and EFS rates. The most important factor affecting OS and EFS in all genetic subgroups was remission status before HSCT. The 5-year EFS values for children with mutations in PRF1, UNC13D, STX11/STXBP2 and GS2/CHS were 71%, 66.6%, 74% and 66.7, respectively (log-rank >0.05). However, with prospective studies covering more patients, and creating different genetic subgroups by performing more detailed genetic analyses, special approaches for different genetic subgroups can be revealed in the future.
Collapse
Affiliation(s)
- Gülyüz Öztürk
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | | | - Arzu Akçay
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey.
| | - Vedat Uygun
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Gülcihan Özek
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Gülsün Karasu
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Ebru Yılmaz
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Fatma Demir Yenigürbüz
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Seda Öztürkmen
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Serap Aksoylar
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - İkbal Ok Bozkaya
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Koray Yalçın
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Başak Adaklı Aksoy
- Pediatric BMT Unit, Bahçelievler Medical Park Hospital, Altınbaş University Faculty of Medicine, İstanbul, Turkey
| | - Ekrem Ünal
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
- Pediatric Hematology and Oncology Clinic, Medical Point Hospital, School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Burcu Akıncı
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Hayriye Daloğlu
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
- Faculty of Health Sciences, Antalya Bilim Univercity, Antalya, Turkey
| | | | - Savaş Kansoy
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Namık Özbek
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif İnce
- Pediatric BMT Unit, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Müge Gündoğdu
- Pediatric BMT Unit, Memorial Bahçelievler Hospital, Istanbul, Turkey
| | - Barış Malbora
- Pediatric BMT Unit, GOP Hospital, Yüzüncü Yıl University Faculty of Medicine, Istanbul, Turkey
| | - Musa Karakükçü
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Murat Elli
- Pediatric BMT Unit, İstanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Arzu Akyay
- Pediatric BMT Unit, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Adalet Meral Güneş
- Pediatric BMT Unit, Uludağ University Faculty of Medicine, Bursa, Turkey
| | - Sinan Akbayram
- Pediatric BMT Unit, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Nazan Sarper
- Pediatric BMT Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | | | - Volkan Hazar
- Pediatric Pediatric Hematology and Oncology Clinic, Medstar Yıldız Hospital, Antalya, Turkey
| | - Bülent Antmen
- Pediatric BMT Unit, Acibadem Adana Hospital, Adana, Turkey
| |
Collapse
|
2
|
Zhang K, Meyer LK, Machowicz R, Coniglio ML, Sieni E, Nichols KE. Genetics of Familial Hemophagocytic Lymphohistiocytosis (HLH). Hematol Oncol Clin North Am 2025:S0889-8588(25)00017-6. [PMID: 40199664 DOI: 10.1016/j.hoc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) represents a group of rare, inherited immune system disorders characterized by uncontrolled inflammatory responses. fHLH results from genetic mutations that impair CD8 T cell and natural killer cell cytotoxicity. Without treatment, fHLH is commonly fatal, but early diagnosis and treatment, including immunosuppressive therapy, and in many cases, an allogeneic hematopoietic stem cell transplant (HSCT), can improve overall outcomes. Genetic testing is critical for confirming the diagnosis, identifying specific gene mutations, assessing family members for carrier status or disease risk, and informing donor selection for HSCT.
Collapse
Affiliation(s)
- Kejian Zhang
- GoBroad Hospital, GoBroad Healthcare Group, Beijing, China.
| | - Lauren K Meyer
- Department of Pediatric Hematology-Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Rafal Machowicz
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Kim E Nichols
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Iosim S, Henderson LA. Macrophage Activation Syndrome: Not Just for Rheumatologists Anymore. Hematol Oncol Clin North Am 2025:S0889-8588(25)00019-X. [PMID: 40133144 DOI: 10.1016/j.hoc.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
SYNOPSIS Macrophage activation syndrome (MAS) is a term that was originally used to describe a hyperinflammatory syndrome that developed in some patients with rheumatologic diseases. It is now clear that MAS and hemophagocytic lymphohistiocytosis (HLH) are defined by the same core pattern of clinical symptoms and share an underlying pathophysiology of impaired cytolytic activity and IFNγ-driven cytokine storm. Given that these disorders are highly related, lessons learned from the management of MAS can provide insights into effective approaches for HLH, particularly the strategy to employ anti-cytokine therapies early in the disease course.
Collapse
Affiliation(s)
- Sonia Iosim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Mann J, Runge S, Schell C, Gräwe K, Thoulass G, Lao J, Ammann S, Grün S, König C, Berger SA, Hild B, Aichele P, Rosshart SP, Ehl S. The Microbiome Modifies Manifestations of Hemophagocytic Lymphohistiocytosis in Perforin-Deficient Mice. Eur J Immunol 2025; 55:e202451061. [PMID: 39548906 PMCID: PMC11739664 DOI: 10.1002/eji.202451061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome caused by inborn errors of cytotoxicity. Patients with biallelic PRF1 null mutations (encoding perforin) usually develop excessive immune cell activation, hypercytokinemia, and life-threatening immunopathology in the first 6 months of life, often without an apparent infectious trigger. In contrast, perforin-deficient (PKO) mice only develop HLH after systemic infection with lymphocytic choriomeningitis virus (LCMV). We hypothesized that restricted microbe-immune cell interactions due to specific pathogen-free (SPF) housing might explain the need for this specific viral trigger in PKO mice. To investigate the influence of a "wild" microbiome in PKO mice, we fostered PKO newborns with Wildling microbiota ('PKO-Wildlings') and monitored them for signs of HLH. PKO-Wildlings survived long-term without spontaneous disease. Also, systemic infection with vaccinia virus did not reach the threshold of immune activation required to trigger HLH in PKO-Wildlings. Interestingly, after infection with LCMV, PKO-Wildlings developed an altered HLH pattern. This included lower IFN-γ serum levels along with improved IFN-γ-driven anemia, but more elevated levels of IL-17 and increased liver inflammation compared with PKO-SPF mice. Thus, wild microbiota alone is not sufficient to trigger HLH in PKO mice, but host-microbe interactions shape inflammatory cytokine patterns, thereby influencing manifestations of HLH immunopathology.
Collapse
Affiliation(s)
- Jasmin Mann
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Solveig Runge
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Department of Medicine II, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Department of Microbiome Research, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Christoph Schell
- Institute for Surgical Pathology, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Katja Gräwe
- Institute for Surgical Pathology, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Gudrun Thoulass
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jessica Lao
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sarah Grün
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Christoph König
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Sarah A. Berger
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Benedikt Hild
- Department of Gastroenterology, Hepatology and Transplantation MedicineMedical Faculty University of Duisburg‐EssenEssenGermany
| | - Peter Aichele
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Stephan P. Rosshart
- Department of Medicine II, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Department of Microbiome Research, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Stephan Ehl
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
5
|
Henter JI, Sieni E, Eriksson J, Bergsten E, Hed Myrberg I, Canna SW, Coniglio ML, Cron RQ, Kernan KF, Kumar AR, Lehmberg K, Minoia F, Naqvi A, Ravelli A, Tang YM, Bottai M, Bryceson YT, Horne A, Jordan MB. Diagnostic guidelines for familial hemophagocytic lymphohistiocytosis revisited. Blood 2024; 144:2308-2318. [PMID: 39046779 PMCID: PMC11619794 DOI: 10.1182/blood.2024025077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT Current hemophagocytic lymphohistiocytosis 2004 (HLH-2004)-based diagnostic criteria for familial hemophagocytic lymphohistiocytosis (FHL) are based on expert opinion. Here, we performed a case-control study to test and possibly improve these criteria. We also developed 2 complementary expert opinion-based diagnostic strategies for FHL in patients with signs/symptoms suggestive of HLH, based on genetic and cellular cytotoxicity assays. The cases (N = 366) were children aged <16 years with verified familial and/or genetic FHL (n = 341) or Griscelli syndrome type 2 (n = 25); 276 from the HLH-94/HLH-2004 databases and 90 from the Italian HLH Registry. All fulfilled the HLH-94/HLH-2004 patient inclusion criteria. Controls were 374 children with systemic-onset juvenile idiopathic arthritis (sJIA) and 329 + 361 children in 2 cohorts with febrile infections that could be confused with HLH and sepsis, respectively. To provide complete data sets, multiple imputations were performed. The optimal model, based on 17 variables studied, revealed almost similar diagnostic thresholds as the existing criteria, with accuracy 99.1% (sensitivity 97.1%; specificity 99.5%); the original HLH-2004 criteria had accuracy 97.4% (sensitivity 99.0%; specificity 97.1%). Because cellular cytotoxicity assays here constitute a separate diagnostic strategy, HLH-2004 criteria without natural killer (NK)-cell function was also studied, which showed accuracy 99.0% (sensitivity, 96.2%; specificity, 99.5%). Thus, we conclude that the HLH-2004 criteria (without NK-cell function) have significant validity in their current form when tested against severe infections or sJIA. It is important to exclude underlying malignancies and atypical infections. In addition, complementary cellular and genetic diagnostic guidelines can facilitate necessary confirmation of clinical diagnosis.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Sieni
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Julia Eriksson
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Bergsten
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ida Hed Myrberg
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Scott W. Canna
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maria Luisa Coniglio
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Randy Q. Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham Heersink School of Medicine, Children's of Alabama, Birmingham, AL
| | - Kate F. Kernan
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Ashish R. Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, Germany
| | - Francesca Minoia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ahmed Naqvi
- Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Angelo Ravelli
- IRCCS Istituto Giannina Gaslini, Genoa, and Università degli Studi di Genova, Genoa, Italy
| | - Yong-Min Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Michael B. Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Histiocyte Society
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham Heersink School of Medicine, Children's of Alabama, Birmingham, AL
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, Germany
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- IRCCS Istituto Giannina Gaslini, Genoa, and Università degli Studi di Genova, Genoa, Italy
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Kögl T, Chang HF, Staniek J, Chiang SC, Thoulass G, Lao J, Weißert K, Dettmer-Monaco V, Geiger K, Manna PT, Beziat V, Momenilandi M, Tu SM, Keppler SJ, Pattu V, Wolf P, Kupferschmid L, Tholen S, Covill LE, Ebert K, Straub T, Groß M, Gather R, Engel H, Salzer U, Schell C, Maier S, Lehmberg K, Cornu TI, Pircher H, Shahrooei M, Parvaneh N, Elling R, Rizzi M, Bryceson YT, Ehl S, Aichele P, Ammann S. Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect. J Exp Med 2024; 221:e20221122. [PMID: 38722309 PMCID: PMC11082451 DOI: 10.1084/jem.20221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Collapse
Affiliation(s)
- Tamara Kögl
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Julian Staniek
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Samuel C.C. Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudrun Thoulass
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Kerstin Geiger
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Paul T. Manna
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Vivien Beziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Selina J. Keppler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Philipp Wolf
- Department of Urology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Stefan Tholen
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karolina Ebert
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ruth Gather
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana I. Cornu
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Roland Elling
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty for Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinical Immunology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Stephan Ehl
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Zhao M, Guan Y, Lin J, Qiu Y, Zhao S, Duan M. Acute kidney injury in critical care: complications of hemophagocytic lymphohistiocytosis. Front Immunol 2024; 15:1396124. [PMID: 38957461 PMCID: PMC11217173 DOI: 10.3389/fimmu.2024.1396124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is an immune dysfunction characterized by an exaggerated and pathological inflammatory response, potentially leading to systemic inflammatory reactions and multiple-organ failure, including renal involvement. HLH can be classified as primary or secondary, with primary HLH associated with genetic mutations affecting cell degranulation capacity, and secondary HLH often linked to infections, tumors, and autoimmune diseases. The pathogenesis of HLH is not fully understood, but primary HLH is typically driven by genetic defects, whereas secondary HLH involves the activation of CD8+ T cells and macrophages, leading to the release of inflammatory cytokines and systemic inflammatory response syndrome (SIRS). The clinical presentation of HLH includes non-specific manifestations, making it challenging to differentiate from severe sepsis, particularly secondary HLH due to infections. Shared features include prolonged fever, hepatosplenomegaly, hematopenia, hepatic dysfunction, hypertriglyceridemia, and hypofibrinogenemia, along with histiocytosis and hemophagocytosis. However, distinctive markers like dual hemocytopenia, hypertriglyceridemia, hypofibrinogenemia, and elevated sCD25 levels may aid in differentiating HLH from sepsis. Indeed, no singular biomarker effectively distinguishes between hemophagocytic lymphohistiocytosis and infection. However, research on combined biomarkers provides insights into the differential diagnosis. Renal impairment is frequently encountered in both HLH and sepsis. It can result from a systemic inflammatory response triggered by an influx of inflammatory mediators, from direct damage caused by these factors, or as a consequence of the primary disease process. For instance, macrophage infiltration of the kidney can lead to structural damage affecting various renal components, precipitating disease. Presently, tubular necrosis remains the predominant form of renal involvement in HLH-associated acute kidney injury (HLH-AKI). However, histopathological changes may also encompass interstitial inflammation, glomerular abnormalities, microscopic lesions, and thrombotic microangiopathy. Treatment approaches for HLH and sepsis diverge significantly. HLH is primarily managed with repeated chemotherapy to eliminate immune-activating stimuli and suppress hypercellularity. The treatment approach for sepsis primarily focuses on anti-infective therapy and intensive symptomatic supportive care. Renal function significantly influences clinical decision-making, particularly regarding the selection of chemotherapy and antibiotic dosages, which can profoundly impact patient prognosis. Conversely, renal function recovery is a complex process influenced by factors such as disease severity, timely diagnosis, and the intensity of treatment. A crucial aspect in managing HLH-AKI is the timely diagnosis, which plays a pivotal role in reversing renal impairment and creating a therapeutic window for intervention, may have opportunity to improve patient prognosis. Understanding the clinical characteristics, underlying causes, biomarkers, immunopathogenesis, and treatment options for hemophagocytic lymphohistiocytosis associated with acute kidney injury (HLH-AKI) is crucial for improving patient prognosis.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Guan
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Qiu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shen Zhao
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Alradhi SI, Almanjomi F, Alamr F, Alwakid I, Alrashidi M, Alkhelaif M. Clinical Presentations, Diagnosis, and Genetic Features of Hemophagocytic Lymphohistiocytosis: A Single Institutional Experience With the Saudi Population. Cureus 2024; 16:e61879. [PMID: 38978926 PMCID: PMC11228410 DOI: 10.7759/cureus.61879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is an uncommon, potentially fatal condition caused by high immune activation. The present study aimed to identify the clinical manifestations, geographic distribution, and associated pathogenic genetic mutations of HLH in Saudi Arabia. Method A retrospective cross-sectional study was conducted at King Fahad Medical City (KFMC), with a total of 59 patients diagnosed with HLH in the period between 2006 and 2018. All genetic results and clinical and biochemical data were retrieved and statistically analyzed using IBM SPSS Statistics for Windows, Version 25 (Released 2017; IBM Corp., Armonk, New York, United States). Results The results revealed that 48 patients (81.4%) had 15 pathogenic mutations of primary HLH whereas 8 (13.6%) patients had no genetic mutation. The most common variant mutation identified was c.1430C>T of the STXBP2 gene (42.4% of total patients), followed by c.1122G>A of the PRF1 gene (10.2% of patients), which demonstrated a distinctive geographic and tribal association. Patients with RAB27A mutation tend to present at an older age than the others with a median age of presentation of 5.5 months vs 2 months for patients with PRF1 mutations. No significant differences in clinical features were observed among the various groups. Conclusion This study highlights the incidence of genetic mutations among the Saudi population with HLH. The STXBP2 is the most common mutation followed by PRF1 mutations, many mutation variants are associated with a distinctive tribal and geographic association.
Collapse
Affiliation(s)
- Sami I Alradhi
- Pediatric Hematology and Oncology, Maternity and Children Hospital, Dammam, SAU
| | | | - Fahad Alamr
- College of Medicine, Al-Baha University, Al-Baha, SAU
| | | | | | | |
Collapse
|
11
|
Wang J, Li DL, Zheng LF, Ren S, Huang ZQ, Tao Y, Liu Z, Shang Y, Pang D, Guo H, Zeng T, Wang HR, Huang H, Du X, Ye H, Zhou HM, Li P, Zhao TJ. Dynamic palmitoylation of STX11 controls injury-induced fatty acid uptake to promote muscle regeneration. Dev Cell 2024; 59:384-399.e5. [PMID: 38198890 DOI: 10.1016/j.devcel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zi-Qin Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ying Tao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ziyu Liu
- Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 220005, Jiangsu, China
| | - Yanxia Shang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Dejian Pang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - He Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Xingrong Du
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Haobin Ye
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
12
|
Nagaraj CB, Brightman DS, Rea H, Wakefield E, Harkavy NVG, Dyer L, Zhang W. Detection of a novel gross deletion in the UNC13D gene ends the diagnostic odyssey for a family with familial hemophagocytic lymphohistiocytosis 3. BMC Pediatr 2024; 24:34. [PMID: 38212754 PMCID: PMC10782673 DOI: 10.1186/s12887-023-04510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Familial hemophagocytic lymphohistiocytosis (FHL) is an immunological disorder characterized by overactivation of macrophages and T lymphocytes. This autosomal recessive condition has been characterized into multiple types depending on the genetic etiology. FHL type 3 is associated with bi-allelic pathogenic variants in the UNC13D gene. CASE PRESENTATION We present a 12-year diagnostic odyssey for a family with FHL that signifies the advances of FHL genetic testing in a clinical genetic diagnostic laboratory setting. We describe the first case of a large UNC13D gross deletion in trans to a nonsense variant in a family with FHL3, which may have been mediated by Alu elements within introns 12 and 25 of the UNC13D gene. CONCLUSIONS This case highlights the importance of re-evaluating past genetic testing for a patient and family as test technology evolves in order to end a diagnostic odyssey.
Collapse
Affiliation(s)
- Chinmayee B Nagaraj
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Diana S Brightman
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA
| | - Hannah Rea
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA
| | - Emily Wakefield
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA
| | - Nina V G Harkavy
- Department of OB/GYN, Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
| | - Lisa Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Marsh RA. Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for the Severe Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:611-622. [PMID: 39117843 DOI: 10.1007/978-3-031-59815-9_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) can be considered as a severe cytokine storm syndrome disorder. HLH typically manifests as a life-threatening inflammatory syndrome characterized by fevers, cytopenias, hepatosplenomegaly, and various other accompanying manifestations such as coagulopathy, hepatitis or liver failure, seizures or altered mental status, and even multi-organ failure. Standard up-front treatments do not always bring HLH into remission or maintain adequate response, and salvage or alternative therapies are often needed. For patients with genetic diseases that cause HLH, curative allogeneic hematopoietic cell transplantation is usually offered to prevent future episodes of life-threatening HLH. Here, we will discuss the options and approaches for salvage therapy and hematopoietic cell transplantation for patients with HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Rosado FG, Gopal P. Laboratory Features and Pathology of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:43-58. [PMID: 39117807 DOI: 10.1007/978-3-031-59815-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The laboratory diagnosis of cytokine storm syndromes (CSSs), i.e., hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS), is often challenging. The laboratory features using routinely available tests lack specificity, whereas confirmatory testing is available in only few laboratories in the United States. The disease mechanisms are still largely unclear, particularly in adults. In this chapter, the pathogenesis of CSSs, their associated laboratory findings, and recommended diagnostic strategies are reviewed.
Collapse
Affiliation(s)
- Flavia G Rosado
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Benavides N, Giraudo CG. Extended-Synaptotagmin-1 and -2 control T cell signaling and function. EMBO Rep 2024; 25:286-303. [PMID: 38177911 PMCID: PMC10897422 DOI: 10.1038/s44319-023-00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.
Collapse
Affiliation(s)
- Nathalia Benavides
- Department of Microbiology and Immunology-Sidney Kimmel Medical College-Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology-Sidney Kimmel Medical College-Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Grom AA. Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:121-126. [PMID: 39117811 DOI: 10.1007/978-3-031-59815-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.
Collapse
Affiliation(s)
- Alexei A Grom
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Henter JI, von Bahr Greenwood T. Etoposide Therapy of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:525-551. [PMID: 39117837 DOI: 10.1007/978-3-031-59815-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Etoposide has revolutionized the treatment of primary as well as secondary hemophagocytic lymphohistiocytosis (HLH), and it is, together with corticosteroids, the most widely used therapy for HLH. In the early 1980s, long-term survival in primary HLH was <5% but with the etoposide-/dexamethasone-based protocols HLH-94 and HLH-2004, in combination with stem cell transplantation, 5-year survival increased dramatically to around 60% in primary HLH, and based on analyses from the HLH-2004 study, there is likely room for further improvement. Biologically, etoposide administration results in potent selective deletion of activated T cells as well as efficient suppression of inflammatory cytokine production. Moreover, etoposide has also been reported to promote programmed cell death (apoptosis) rather than proinflammatory lytic cell death (pyroptosis), conceivably ameliorating subsequent systemic inflammation, i.e., a treatment very suitable for cytokine storm syndromes (CSS). The combination of etoposide and corticosteroids may also be beneficial in cases of severe or refractory secondary HLH (sHLH) with imminent organ failure, such as infection-associated HLH caused by Epstein-Barr virus (EBV) or malignancy-triggered HLH. In CSS associated with rheumatic diseases (macrophage activation syndrome, MAS or MAS-HLH), etoposide is currently used as second- or third-line therapy. Recent studies suggest that etoposide perhaps should be part of an aggressive therapeutic intervention for patients with severe refractory or relapsing MAS, in particular if there is CNS involvement. Importantly, awareness of sHLH must be further increased since treatment of sHLH is often delayed, thereby missing the window of opportunity for a timely, effective, and potentially life-saving HLH-directed treatment.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
21
|
Janka GE. History of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:9-19. [PMID: 39117804 DOI: 10.1007/978-3-031-59815-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe cytokine storm syndrome (CSS), which until the turn of the century, was barely known but is now receiving increased attention. The history of HLH dates back to 1939 when it was first described in adults, to be followed in 1952 by the first description of its primary, familial form in children. Secondary forms of HLH are far more frequent and occur with infections, malignancies, metabolic diseases, iatrogenic immune suppression, and autoinflammatory/autoimmune diseases. Identification of the genetic defects leading to the defective function of natural killer (NK) cells and cytotoxic T cells as well as the corresponding mouse models have revolutionized our understanding of HLH and of immune function. Diagnosis relies on clinical and laboratory criteria; functional and genetic tests can help separate primary from secondary forms. Treatment with immunochemotherapy and hematopoietic stem cell transplantation has considerably improved survival in children with primary HLH, a formerly uniformly fatal disease.
Collapse
Affiliation(s)
- Gritta E Janka
- University Medical Center Hamburg, Department of Pediatric Hematology and Oncology, Hamburg, Germany.
| |
Collapse
|
22
|
Eloseily EM, Cron RQ. Bacteria-Associated Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:275-283. [PMID: 39117821 DOI: 10.1007/978-3-031-59815-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
While viruses are considered the most common infectious triggers for cytokine storm syndromes (CSS), a growing list of bacterial pathogens, particularly intracellular organisms, have been frequently reported to be associated with this syndrome. Both familial and sporadic cases of CSS are often precipitated by acute infections. It is also important to note that an underlying precipitating infection might not be clinically obvious as the CSS clinical picture can mimic an infectious process or an overwhelming septicemia. It is important to detect such an underlying treatable condition. In addition, infections can also be acquired during the course of CSS due to the concurrent immune suppression with treatment. Optimal CSS outcomes require treating bacterial infections when recognized.CSS should always be suspected in patients presenting with a sepsis-like or multi-organ dysfunction picture. There are many criteria proposed to diagnose CSS in general, with HLH-2004 being the most commonly used. Alternatively, criteria have been proposed for CSS occurring in specific underlying conditions such as systemic lupus erythematosus (SLE) or systemic juvenile idiopathic arthritis (sJIA). However, waiting for many of these criteria to be fulfilled could lead to significant delay in diagnosis, and the physician needs a high index of suspicion for CSS in critically ill febrile hospitalized patients in order to properly recognize the condition. Thus, there should be diagnostic equipoise between CSS and infections, including bacterial, in this population. In this chapter, we discuss the more common bacterial precipitants of CSS with many of the cases being discussed in the pediatric age group.
Collapse
Affiliation(s)
| | - Randy Q Cron
- University of Alabama at Birmingham, Department of Pediatrics, Birmingham, AL, USA.
| |
Collapse
|
23
|
Bloch C, Jais JP, Gil M, Boubaya M, Lepelletier Y, Bader-Meunier B, Mahlaoui N, Garcelon N, Lambotte O, Launay D, Larroche C, Lazaro E, Liffermann F, Lortholary O, Michel M, Michot JM, Morel P, Cheminant M, Suarez F, Terriou L, Urbanski G, Viallard JF, Alcais A, Fischer A, de Saint Basile G, Hermine O. Severe adult hemophagocytic lymphohistiocytosis (HLHa) correlates with HLH-related gene variants. J Allergy Clin Immunol 2024; 153:256-264. [PMID: 37678575 DOI: 10.1016/j.jaci.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS HLH-related gene variants may be key components to the severity and refractoriness of HLHa.
Collapse
Affiliation(s)
- Coralie Bloch
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France; Paris 13 University, Sorbonne Paris Cité, Paris, France; Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France.
| | - Jean Philippe Jais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Marine Gil
- Imagine Institute, Université Paris Cité, Paris, France
| | - Marouane Boubaya
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France
| | - Yves Lepelletier
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; Imagine Institute, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | - Nizar Mahlaoui
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Hôpital Bicêtre, IMVAHB UMR1184, INSERM, CEA, Le Kremlin Bicêtre, France
| | - David Launay
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Claire Larroche
- Internal Medicine Unit, Avicenne Hospital, AP-HP, Bobigny, France
| | - Estibaliz Lazaro
- Internal Medicine Department, Bordeaux Hospital University, Bordeaux, France; CNRS-UMR 5164 Immuno ConcEpT, Bordeaux, France
| | - Francois Liffermann
- Service de medecine interne-hematologie, Centre hospitalier de Dax, Dax, France
| | - Olivier Lortholary
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Service de Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker Pasteur, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Marc Michel
- Department of Internal Medicine, Centre de Référence maladies rares sur les Cytopénies Auto-Immunes de l'adulte, Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris-Est Créteil, Créteil, France
| | - Jean-Marie Michot
- Gustave Roussy, University Paris Saclay, Drug Development Department, Villejuif, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Hôpital Schaffner de Lens, Lens Cedex, France
| | - Morgane Cheminant
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Louis Terriou
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France; MitoLab Team, MITOVASC Institute, UMR CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | | | - Alexandre Alcais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Alain Fischer
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France; Necker University Hospital, AP-HP, Paris, France; College de France, Paris, France
| | - Geneviève de Saint Basile
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France.
| |
Collapse
|
24
|
Schulert GS, Zhang K. Genetics of Acquired Cytokine Storm Syndromes : Secondary HLH Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:103-119. [PMID: 39117810 DOI: 10.1007/978-3-031-59815-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Secondary hemophagocytic lymphohistiocytosis (sHLH) has historically been defined as a cytokine storm syndrome (CSS) occurring in the setting of triggers leading to strong and dysregulated immunological activation, without known genetic predilection. However, recent studies have suggested that existing underlying genetic factors may synergize with particular diseases and/or environmental triggers (including infection, autoimmune/autoinflammatory disorder, certain biologic therapies, or malignant transformation), leading to sHLH. With the recent advances in genetic testing technology, more patients are examined for genetic variations in primary HLH (pHLH)-associated genes, including through whole exome and whole genome sequencing. This expanding genetic and genomic evidence has revealed HLH as a more complex phenomenon, resulting from specific immune challenges in patients with a susceptible genetic background. Rather than a simple, binary definition of pHLH and sHLH, HLH represents a spectrum of diseases, from a severe complication of common infections (EBV, influenza) to early onset familial diseases that can only be cured by transplantation.
Collapse
Affiliation(s)
- Grant S Schulert
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Kejian Zhang
- Sema4 and Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Mansour R, El-Hassan R, El-Orfali Y, Saidu A, Al-Kalamouni H, Chen Q, Benamar M, Dbaibo G, Hanna-Wakim R, Chatila TA, Massaad MJ. The opposing effects of two gene defects in STX11 and SLP76 on the disease in a patient with an inborn error of immunity. J Allergy Clin Immunol 2023; 152:1597-1606. [PMID: 37595757 DOI: 10.1016/j.jaci.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ghassan Dbaibo
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
26
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Xin X, Wang N, Zhang Y. Hemophagocytic lymphohistiocytosis with a hemizygous PRF1 c.674G>A mutation. Am J Med Sci 2023; 366:387-394. [PMID: 37467895 DOI: 10.1016/j.amjms.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Hemophagocytic lymphohistiocytosis(HLH) is a rare highly-fatal disease presenting with fever, hepatosplenomegaly, and pancytopenia and has a poor prognosis. Homozygous or semi-zygous or complex heterozygous variants can cause familial HLH and heterozygous carriers are frequently seen in secondary HLH. A 42-year-old male patient was admitted to the hospital for persistent fever, fatigue, and splenomegaly. Investigations revealed hypertriglyceridemia, hyperlactatemia dehydrogenaseemia, hyperferritinemia, and elevated levels of soluble cluster of differentiation 25. We found a heterozygous mutation of PRF1: c.674G>A (p.R225Q) through next-generation sequencing technology of hemophagocytic-lymphohistiocytosis-related genes. After a brief remission with dexamethasone and etoposide-based therapy, the disease relapsed quickly, and an allogeneic hematopoietic stem cell transplant was performed to achieve complete remission. To date, the patient's condition was in complete remission. Our study detected a rare missense mutation in the PRF1 gene in a patient with HLH disease and the c.674G>A mutation may be rated as a possible pathogenic variant.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
29
|
Ganesan S, Alvarez NN, Steiner S, Fowler KM, Corona AK, Roy CR. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. mBio 2023; 14:e0354522. [PMID: 36728431 PMCID: PMC9972978 DOI: 10.1128/mbio.03545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
There is a limited understanding of host defense mechanisms targeting intracellular pathogens that proliferate in a lysosome. Coxiella burnetii is a model bacterial pathogen capable of replicating in the hydrolytic and acidic environment of the lysosome. It has been shown that gamma interferon (IFNγ)-stimulated host cells restrict C. burnetii replication by a mechanism that involves host IDO1 depletion of tryptophan. Host cells deficient in IDO1 activity, however, retain the ability to restrict C. burnetii replication when stimulated with IFNγ, which suggests additional mechanisms of host defense. This study identified syntaxin 11 (STX11) as a host protein that contributes to IFNγ-mediated suppression of C. burnetii replication. STX11 is a SNARE protein; SNARE proteins are proteins that mediate fusion of host vesicles with specific subcellular organelles. Depletion of STX11 using either small interfering RNA (siRNA)- or CRISPR-based approaches enhanced C. burnetii replication intracellularly. Stable expression of STX11 reduced C. burnetii replication in epithelial cells and macrophages, which indicates that this STX11-dependent cell-autonomous response is operational in multiple cell types and can function independently of other IFNγ-induced factors. Fluorescently tagged STX11 localized to the Coxiella-containing vacuole (CCV), and STX11 restriction was found to involve an interaction with STX8. Thus, STX11 regulates a vesicle fusion pathway that limits replication of this intracellular pathogen in a lysosome-derived organelle. IMPORTANCE Cell intrinsic defense mechanisms are used by eukaryotic cells to restrict the replication and dissemination of pathogens. This study identified a human protein called syntaxin 11 (STX11) as a host restriction factor that inhibits the intracellular replication of Coxiella burnetii. Syntaxins regulate the delivery of cargo inside vesicles by promoting specific membrane fusion events between donor and acceptor vesicles. Data presented here demonstrate that STX11 regulates an immunological defense pathway that controls replication of pathogens in lysosome-derived organelles, which provides new insight into the function of this SNARE protein.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalie N. Alvarez
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen M. Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abigail K. Corona
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Paolino J, Berliner N, Degar B. Hemophagocytic lymphohistiocytosis as an etiology of bone marrow failure. Front Oncol 2022; 12:1016318. [PMID: 36387094 PMCID: PMC9647152 DOI: 10.3389/fonc.2022.1016318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of multiorgan system dysfunction that is caused by hypercytokinemia and persistent activation of cytotoxic T lymphocytes and macrophages. A nearly ubiquitous finding and a diagnostic criterion of HLH is the presence of cytopenias in ≥ 2 cell lines. The mechanism of cytopenias in HLH is multifactorial but appears to be predominantly driven by suppression of hematopoiesis by pro-inflammatory cytokines and, to some extent, by consumptive hemophagocytosis. Recognition of cytopenias as a manifestation of HLH is an important consideration for patients with bone marrow failure of unclear etiology.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,*Correspondence: Barbara Degar,
| |
Collapse
|
31
|
Taylor ML, Hoyt KJ, Han J, Benson L, Case S, Chandler MT, Chang MH, Platt C, Cohen EM, Day-Lewis M, Dedeoglu F, Gorman M, Hausmann JS, Janssen E, Lee PY, Lo J, Priebe GP, Lo MS, Meidan E, Nigrovic PA, Roberts JE, Son MBF, Sundel RP, Alfieri M, Yeun JC, Shobiye DM, Degar B, Chang JC, Halyabar O, Hazen MM, Henderson LA. An Evidence-Based Guideline Improves Outcomes for Patients With Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome. J Rheumatol 2022; 49:1042-1051. [PMID: 35840156 PMCID: PMC9588491 DOI: 10.3899/jrheum.211219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare clinical outcomes in children with hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) who were managed before and after implementation of an evidence-based guideline (EBG). METHODS A management algorithm for MAS-HLH was developed at our institution based on literature review, expert opinion, and consensus building across multiple pediatric subspecialties. An electronic medical record search retrospectively identified hospitalized patients with MAS-HLH in the pre-EBG (October 15, 2015, to December 4, 2017) and post-EBG (January 1, 2018, to January 21, 2020) time periods. Predetermined outcome metrics were evaluated in the 2 cohorts. RESULTS After the EBG launch, 57 children were identified by house staff as potential patients with MAS-HLH, and rheumatology was consulted for management. Ultimately, 17 patients were diagnosed with MAS-HLH by the treating team. Of these, 59% met HLH 2004 criteria, and 94% met 2016 classification criteria for MAS complicating systemic juvenile idiopathic arthritis. There was a statistically significant reduction in mortality from 50% before implementation of the EBG to 6% in the post-EBG cohort (P = 0.02). There was a significant improvement in time to 50% reduction in C-reactive protein level in the post-EBG vs pre-EBG cohorts (log-rank P < 0.01). There were trends toward faster time to MAS-HLH diagnosis, faster initiation of immunosuppressive therapy, shorter length of hospital stay, and more rapid normalization of MAS-HLH-related biomarkers in the patients post-EBG. CONCLUSION While the observed improvements may be partially attributed to advances in treatment of MAS-HLH that have accumulated over time, this analysis also suggests that a multidisciplinary treatment pathway for MAS-HLH contributed meaningfully to favorable patient outcomes.
Collapse
Affiliation(s)
- Maria L Taylor
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Kacie J Hoyt
- K.J. Hoyt, MSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Joseph Han
- J. Han, BS, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leslie Benson
- L. Benson, MD, M. Gorman, MD, Division of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Siobhan Case
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mia T Chandler
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Margaret H Chang
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Craig Platt
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Ezra M Cohen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Megan Day-Lewis
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Fatma Dedeoglu
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Mark Gorman
- L. Benson, MD, M. Gorman, MD, Division of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Jonathan S Hausmann
- J.S. Hausmann, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Erin Janssen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Pui Y Lee
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeffrey Lo
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Gregory P Priebe
- G.P. Priebe, MD, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Mindy S Lo
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Esra Meidan
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Peter A Nigrovic
- S. Case, MD, M.H. Chang, MD, PhD, P.A. Nigrovic, MD, Division of Immunology, Boston Children's Hospital, and Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jordan E Roberts
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Mary Beth F Son
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Robert P Sundel
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria Alfieri
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Jenny Chan Yeun
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Damilola M Shobiye
- M. Alfieri, MPH, J. Chan Yeun, MSPH, D.M. Shobiye, MPH, Department of Pediatric Quality Program, Boston Children's Hospital, Boston, Massachusetts
| | - Barbara Degar
- B. Degar, MD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joyce C Chang
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Olha Halyabar
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Melissa M Hazen
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts
| | - Lauren A Henderson
- M.L. Taylor, BS, M.T. Chandler, MD, C. Platt, MD, PhD, E.M. Cohen, MD, M. Day-Lewis, RN, MSN, CPNP, F. Dedeoglu, MD, E. Janssen, MD, PhD, P.Y. Lee, MD, PhD, J. Lo, MD, M.S. Lo, MD, PhD, E. Meidan, MD, J.E. Roberts, MD, M.B.F. Son, MD, R.P. Sundel, MD, J.C. Chang, MD, MSCE, O. Halyabar, MD, M.M. Hazen, MD, L.A. Henderson, MD, MMSc, Division of Immunology, Boston Children's Hospital, Boston, Massachusetts;
| |
Collapse
|
32
|
Ren W, Yang S, Liu H, Pan Z, Li Z, Qiao P, Ma H. Case report and literature review: Hemophagocytic lymphohistiocytosis in a pregnant woman with systemic lupus erythematosus with Syntaxin 11 gene defect. Front Oncol 2022; 12:937494. [PMID: 35965579 PMCID: PMC9367683 DOI: 10.3389/fonc.2022.937494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis is an extremely rare occurrence during pregnancy. Early recognition of its signs and symptoms is critical for early intervention, and delays in diagnosis may be life-threatening. A 23-year-old nulliparous woman presented with a persistent fever as high as 39°C with bilateral edema of the lower limbs at 24 weeks of gestation. Typical laboratory findings included pancytopenia, high triglycerides, ferritin, transaminases, bilirubin, and hypoproteinemia. Active systemic lupus erythematosus was diagnosed using an autoimmune work-up and a Systemic Lupus Erythematosus Disease Activity Index 2000 score of 17 points. Her bone marrow aspirate revealed prominent hemophagocytosis; hence, HLH was confirmed. Genetic tests showed mutations in Syntaxin 11 mutations. Considering the potential impact of drugs on the fetus, the patient and her family members chose to terminate the pregnancy through medical induction of labor. Afterwards, her condition improved with immunosuppressive therapy.
Collapse
Affiliation(s)
- Wei Ren
- Department of Gynaecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Siyuan Yang
- College of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Haiying Liu
- Department of Gynaecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhenglun Pan
- Department of Rheumatism and Immunology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhao Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Peng Qiao
- Department of Gynaecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Peng Qiao, ; Hui Ma,
| | - Hui Ma
- Department of Gynaecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Peng Qiao, ; Hui Ma,
| |
Collapse
|
33
|
Núñez-Torrón C, Ferrer-Gómez A, Moreno Moreno E, Pérez-Mies B, Villarrubia J, Chamorro S, López-Jiménez J, Palacios J, Piris-Villaespesa M, García-Cosío M. Secondary haemophagocytic lymphohistiocytosis in COVID-19: correlation of the autopsy findings of bone marrow haemophagocytosis with HScore. J Clin Pathol 2022; 75:383-389. [PMID: 33722841 PMCID: PMC7970658 DOI: 10.1136/jclinpath-2020-207337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Secondary haemophagocytic lymphohistiocytosis (sHLH) is characterised by a hyper activation of immune system that leads to multiorgan failure. It is suggested that excessive immune response in patients with COVID-19 could mimic this syndrome. Some COVID-19 autopsy studies have revealed the presence of haemophagocytosis images in bone marrow, raising the possibility, along with HScore parameters, of sHLH. AIM Our objective is to ascertain the existence of sHLH in some patients with severe COVID-19. METHODS We report the autopsy histological findings of 16 patients with COVID-19, focusing on the presence of haemophagocytosis in bone marrow, obtained from rib squeeze and integrating these findings with HScore parameters. CD68 immunohistochemical stains were used to highlight histiocytes and haemophagocytic cells. Clinical evolution and laboratory parameters of patients were collected from electronic clinical records. RESULTS Eleven patients (68.7%) displayed moderate histiocytic hyperplasia with haemophagocytosis (HHH) in bone marrow, three patients (18.7%) displayed severe HHH and the remainder were mild. All HScore parameters were collected in 10 patients (62.5%). Among the patients in which all parameters were evaluable, eight patients (80%) had an HScore >169. sHLH was not clinically suspected in any case. CONCLUSIONS Our results support the recommendation of some authors to use the HScore in patients with severe COVID-19 in order to identify those who could benefit from immunosuppressive therapies. The presence of haemophagocytosis in bone marrow tissue, despite not being a specific finding, has proved to be a very useful tool in our study to identify these patients.
Collapse
Affiliation(s)
| | | | | | - Belen Pérez-Mies
- Pathology, Hospital Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Javier López-Jiménez
- Hematology, Hospital Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Madrid, Spain
| | - J Palacios
- Pathology, Hospital Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Mónica García-Cosío
- Pathology, Hospital Ramón y Cajal, Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
36
|
Harel M, Fauteux-Daniel S, Girard-Guyonvarc'h C, Gabay C. Balance between Interleukin-18 and Interleukin-18 binding protein in auto-inflammatory diseases. Cytokine 2022; 150:155781. [DOI: 10.1016/j.cyto.2021.155781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
|
37
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
38
|
Harnchoowong S, Soponkanaporn S, Vilaiyuk S, Lerkvaleekul B, Pakakasama S. Central nervous system involvement and thrombocytopenia as predictors of mortality in children with hemophagocytic lymphohistiocytosis. Front Pediatr 2022; 10:941318. [PMID: 36147804 PMCID: PMC9485874 DOI: 10.3389/fped.2022.941318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Hemophagocytic lymphohistiocytosis (HLH) is a potentially life-threatening condition. This study aimed to evaluate treatment outcomes and identify prognostic-related factors in Thai children with HLH. MATERIALS AND METHODS We retrospectively reviewed the medical records of 76 pediatric patients with HLH who were treated at Ramathibodi Hospital between January 2004 and December 2019. Treatment outcomes were defined as early mortality (death within 30 days after diagnosis) and early treatment response (resolution of all clinical features and normalization of at least one HLH-related laboratory parameter within 4 weeks). RESULTS The overall mortality rate was 38% (29/76), with an early mortality rate of 45% (13/29). Malignancy-associated HLH had the highest mortality rate (88%), followed by primary HLH (56%). The predictors of early mortality were central nervous system (CNS) involvement [OR 13 (95%CI 2-83), p = 0.007] and platelet counts <44 × 106/mm3 [OR 8 (95%CI 1.3-49), p = 0.024]. The predictors of early treatment response were no CNS involvement [OR 6.6 (95%CI 1.5-28.8), p = 0.011], platelet counts more than 44 × 106/mm3 [OR 8 (95%CI 2.1-30.9), p = 0.003], and total bilirubin levels <1.8 mg/dL [OR 4 (95%CI 1.1-14.8), p = 0.036]. In the mixed-model analysis, platelet counts in non-survivors increased significantly less than those in survivors, with a mean difference in platelet changes between the two groups of 94.6 × 106/mm3 (p = 0.003). CONCLUSION The independent predictors of early mortality in children with HLH were CNS involvement and low baseline platelet counts. A slow rate of platelet increases during the first week after diagnosis was also associated with mortality.
Collapse
Affiliation(s)
- Saralee Harnchoowong
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirisucha Soponkanaporn
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Soamarat Vilaiyuk
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Butsabong Lerkvaleekul
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Samart Pakakasama
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Steen EA, Hermiston ML, Nichols KE, Meyer LK. Digenic Inheritance: Evidence and Gaps in Hemophagocytic Lymphohistiocytosis. Front Immunol 2021; 12:777851. [PMID: 34868048 PMCID: PMC8635482 DOI: 10.3389/fimmu.2021.777851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by the inability to properly terminate an immune response. Familial HLH (FHLH) and related immune dysregulation syndromes are associated with mutations in the genes PRF1, UNC13D, STX11, STXBP2, LYST, AP3B1, and RAB27A, all of which are required for the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. Loss-of-function mutations in these genes render the cytotoxicity pathway ineffective, thereby failing to eradicate immune stimuli, such as infectious pathogens or malignant cells. The resulting persistent immune system stimulation drives hypercytokinemia, ultimately leading to severe tissue inflammation and end-organ damage. Traditionally, a diagnosis of FHLH requires the identification of biallelic loss-of-function mutations in one of these degranulation pathway genes. However, this narrow definition fails to encompass patients with other genetic mechanisms underlying degranulation pathway dysfunction. In particular, mounting clinical evidence supports a potential digenic mode of inheritance of FHLH in which single loss-of-function mutations in two different degranulation pathway genes cooperate to impair pathway activity. Here, we review the functions of the FHLH-associated genes within the degranulation pathway and summarize clinical evidence supporting a model in which cumulative defects along this mechanistic pathway may underlie HLH.
Collapse
Affiliation(s)
- Erica A Steen
- University of California, San Diego, San Diego, CA, United States
| | - Michelle L Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lauren K Meyer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Harada T, Tsuboi I, Hino H, Yuda M, Hirabayashi Y, Hirai S, Aizawa S. Age-related exacerbation of hematopoietic organ damage induced by systemic hyper-inflammation in senescence-accelerated mice. Sci Rep 2021; 11:23250. [PMID: 34853370 PMCID: PMC8636590 DOI: 10.1038/s41598-021-02621-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of β-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.
Collapse
Affiliation(s)
- Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Miyuki Yuda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, 210-9501, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
41
|
Escaron C, Ralph E, Bibi S, Visser J, Aricò M, Rao K, Veys P, Gilmour K. Diagnosis of HLH: two siblings, two distinct genetic causes. Clin Exp Immunol 2021; 207:205-207. [PMID: 35020838 PMCID: PMC8982960 DOI: 10.1093/cei/uxab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023] Open
Abstract
This report highlights case of two siblings who developed haemophagocytic lymphohystiocytosis due to distinct genetic abnormalities. Though their presentation was clinically similar, the cases demonstrate that a shared genetic diagnosis among siblings cannot be assumed.
Collapse
Affiliation(s)
- Claire Escaron
- Immunology Laboratory, Great Ormond Street Hospital, London, UK
| | - Elizabeth Ralph
- Immunology Laboratory, Great Ormond Street Hospital, London, UK,Correspondence: Elizabeth Ralph, Immunology Laboratory, Great Ormond Street Hospital, London, UK.
| | - Shahnaz Bibi
- Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Johannes Visser
- Department of Paediatric Oncology, Addenbrookes Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Maurizio Aricò
- Azienda Ospedaliero-Universitaria Consorziale Policlinico Bari, Children Hospital 13 Giovanni XXIII, Bari, Italy
| | - Kanchan Rao
- Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, UK
| | - Paul Veys
- Department of Bone Marrow Transplant, Great Ormond Street Hospital for Children, London, UK
| | | |
Collapse
|
42
|
Lawal RA, Arora UP, Dumont BL. Selection shapes the landscape of functional variation in wild house mice. BMC Biol 2021; 19:239. [PMID: 34794440 PMCID: PMC8603481 DOI: 10.1186/s12915-021-01165-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Through human-aided dispersal over the last ~ 10,000 years, house mice (Mus musculus) have recently colonized diverse habitats across the globe, promoting the emergence of new traits that confer adaptive advantages in distinct environments. Despite their status as the premier mammalian model system, the impact of this demographic and selective history on the global patterning of disease-relevant trait variation in wild mouse populations is poorly understood. RESULTS Here, we leveraged 154 whole-genome sequences from diverse wild house mouse populations to survey the geographic organization of functional variation and systematically identify signals of positive selection. We show that a significant proportion of wild mouse variation is private to single populations, including numerous predicted functional alleles. In addition, we report strong signals of positive selection at many genes associated with both complex and Mendelian diseases in humans. Notably, we detect a significant excess of selection signals at disease-associated genes relative to null expectations, pointing to the important role of adaptation in shaping the landscape of functional variation in wild mouse populations. We also uncover strong signals of selection at multiple genes involved in starch digestion, including Mgam and Amy1. We speculate that the successful emergence of the human-mouse commensalism may have been facilitated, in part, by dietary adaptations at these loci. Finally, our work uncovers multiple cryptic structural variants that manifest as putative signals of positive selection, highlighting an important and under-appreciated source of false-positive signals in genome-wide selection scans. CONCLUSIONS Overall, our findings highlight the role of adaptation in shaping wild mouse genetic variation at human disease-associated genes. Our work also highlights the biomedical relevance of wild mouse genetic diversity and underscores the potential for targeted sampling of mice from specific populations as a strategy for developing effective new mouse models of both rare and common human diseases.
Collapse
Affiliation(s)
| | - Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
43
|
Meeths M, Bryceson YT. Genetics and pathophysiology of haemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2903-2911. [PMID: 34192386 DOI: 10.1111/apa.16013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) represents a life-threatening hyperinflammatory syndrome. Familial studies have established autosomal and X-linked recessive causes of HLH, highlighting a pivotal role for lymphocyte cytotoxicity in the control of certain virus infections and immunoregulation. Recently, a more complex etiological framework has emerged, linking HLH predisposition to variants in genes required for metabolism or immunity to intracellular pathogens. We review genetic predisposition to HLH and discuss how molecular insights have provided fundamental knowledge of the immune system as well as detailed pathophysiological understanding of hyperinflammatory diseases, highlighting new treatment strategies.
Collapse
Affiliation(s)
- Marie Meeths
- Childhood Cancer Research Unit Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
- Theme of Children’s Health Karolinska University Hospital Stockholm Sweden
| | - Yenan T. Bryceson
- Centre for Hematology and Regenerative Medicine Department of Medicine Karolinska Institute Stockholm Sweden
- Division of Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
- Broegelmann Research Laboratory Department of Clinical Sciences University of Bergen Bergen Norway
| |
Collapse
|
44
|
Bąbol-Pokora K, Wołowiec M, Popko K, Jaworowska A, Bryceson YT, Tesi B, Henter JI, Młynarski W, Badowska W, Balwierz W, Drabko K, Kałwak K, Maciejka-Kembłowska L, Pieczonka A, Sobol-Milejska G, Kołtan S, Malinowska I. Molecular Genetics Diversity of Primary Hemophagocytic Lymphohistiocytosis among Polish Pediatric Patients. Arch Immunol Ther Exp (Warsz) 2021; 69:31. [PMID: 34677667 PMCID: PMC8536594 DOI: 10.1007/s00005-021-00635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/10/2021] [Indexed: 06/12/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a clinical syndrome of life-threatening inflammation caused by an excessive, prolonged and ineffective immune response. An increasing number of HLH cases is recognized in Poland, but the genetic causes of familial HLH (FHL) have not been reported. We investigated the molecular genetics and associated outcomes of pediatric patients who met HLH criteria. We studied 54 patients with HLH, 36 of whom received genetic studies. Twenty-five patients were subjected to direct sequencing of the PRF1, UNC13D, STX11, XIAP and SH2D1A genes. Additionally, 11 patients were subjected to targeted next-generation sequencing. In our study group, 17 patients (31%) were diagnosed with primary HLH, with bi-allelic FHL variants identified in 13 (36%) patients whereas hemizygous changes were identified in 4 patients with X-linked lymphoproliferative diseases. In addition, one patient was diagnosed with X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection and neoplasia due to a hemizygous MAGT1 variant; another newborn was diagnosed with auto-inflammatory syndrome caused by MVK variants. The majority (65%) of FHL patients carried UNC13D pathogenic variants, whereas PRF1 variants occurred in two patients. Novel variants in UNC13D, PRF1 and XIAP were detected. Epstein–Barr virus was the most common trigger noted in 23 (65%) of the patients with secondary HLH. In three patients with secondary HLH, heterozygous variants of FHL genes were found. Overall survival for the entire study group was 74% with a median of 3.6 years of follow-up. Our results highlight the diversity of molecular causes of primary HLH in Poland.
Collapse
Affiliation(s)
- Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wołowiec
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jaworowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Yenan T Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Inge Henter
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wanda Badowska
- Division of Pediatric Hematology and Oncology, Children Hospital, Olsztyn, Poland
| | - Walentyna Balwierz
- Department of Pediatrics Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | | | - Anna Pieczonka
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Grażyna Sobol-Milejska
- Department of Pediatrics, Hematology and Oncology, Medical University of Silesia, Silesia, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland.
| | | |
Collapse
|
45
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Greental Ness Y, Kuperman AA, Stein J, Yacobovich J, Even-Or E, Zaidman I, Gefen A, Nevo N, Oberman B, Toren A, Stepensky P, Bielorai B, Jacoby E. Improved transplant outcomes with myeloablative conditioning for hemophagocytic lymphohistiocytosis in HLA-matched and mismatched donors: a national multicenter retrospective study. Bone Marrow Transplant 2021; 56:2088-2096. [PMID: 33846559 DOI: 10.1038/s41409-021-01290-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
We report the results of national retrospective study of 45 children with hemophagocytic lymphohistiocytosis (HLH) who underwent allogeneic hematopoietic stem-cell transplantation (HSCT) in Israel between the years 2000-2018. Donors were either HLA-matched (n = 26), partially mismatched (n = 7), haploidentical (n = 8), or cord-blood (n = 4). Myeloablative conditioning (MAC) was used in 20 procedures, and reduced-intensity conditioning (RIC) in 25. Forty-two patients engrafted, two had primary graft failure (one successfully retransplanted), one died prior to engraftment, and two developed secondary graft failure. Of the eight patients who had mixed donor chimerism at day 30 (5-95%), five achieved stable mixed or full donor chimerism. The 5-year probabilities of overall survival and event-free survival (EFS) were 86% and 82%, respectively. Five-year EFS was lower for patients receiving RIC compared to MAC (72% vs. 100%, p = 0.018) and following alternative-donor transplant (68% vs. 92% for HLA-matched donors, p = 0.034), mostly due to increased transplant-related mortality (TRM). Thus, both HLA-matched and alternative donor transplant procedures may benefit form a myeloablative conditioning regimen.
Collapse
Affiliation(s)
| | - Amir A Kuperman
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.,Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Jerry Stein
- Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Hematology-Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Even-Or
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Aharon Gefen
- Division of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Neta Nevo
- Division of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Bernice Oberman
- Biostatistics & Biomathematics, The Gertner Institute for Epidemiology and Health Policy Research, Tel Aviv, Israel
| | - Amos Toren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Bella Bielorai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Elad Jacoby
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
47
|
Bendari M, Delsa H, Bouanani N, Jabouri R, Darouich S, Nejjari S, Guessous F, Doghmi K. Hemophagocytic lymphohistiocytosis associated with HBV-HCV coinfection in adult: Case report. Clin Case Rep 2021; 9:e04328. [PMID: 34401150 PMCID: PMC8346598 DOI: 10.1002/ccr3.4328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 11/12/2022] Open
Abstract
The case reported is the first case in Morocco to our knowledge. The reason for sharing this case is to facilitate knowledge transfer between physicians, caring for adult patients with HLH, with the aim to improve the outcome of these patients.
Collapse
Affiliation(s)
- Mounia Bendari
- Hematology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
- Mohammed VI University of Health SciencesCasablancaMorocco
| | - Hanane Delsa
- Mohammed VI University of Health SciencesCasablancaMorocco
- Gastroenterology and Hepatology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
| | - Nouama Bouanani
- Hematology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
- Mohammed VI University of Health SciencesCasablancaMorocco
| | - Rajaa Jabouri
- Mohammed VI University of Health SciencesCasablancaMorocco
- Internal Medicine DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
| | - Safaa Darouich
- Hematology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
- Mohammed VI University of Health SciencesCasablancaMorocco
| | - Sara Nejjari
- Hematology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
- Mohammed VI University of Health SciencesCasablancaMorocco
| | - Fadila Guessous
- Mohammed VI University of Health SciencesCasablancaMorocco
- Department of Biological SciencesFaculty of MedicineCasablancaMorocco
| | - Kamal Doghmi
- Hematology DepartmentCheikh Khalifa International University HospitalCasablancaMorocco
- Mohammed VI University of Health SciencesCasablancaMorocco
| |
Collapse
|
48
|
Karki R, Kanneganti TD. The 'cytokine storm': molecular mechanisms and therapeutic prospects. Trends Immunol 2021; 42:681-705. [PMID: 34217595 DOI: 10.1016/j.it.2021.06.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Cytokine storm syndrome (CSS) has generally been described as a collection of clinical manifestations resulting from an overactivated immune system. Cytokine storms (CSs) are associated with various pathologies, as observed in infectious diseases, certain acquired or inherited immunodeficiencies and autoinflammatory diseases, or following therapeutic interventions. Despite the role of CS in tissue damage and multiorgan failure, a systematic understanding of its underlying molecular mechanisms is lacking. Recent studies demonstrate a positive feedback loop between cytokine release and cell death pathways; certain cytokines, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), can activate inflammatory cell death, leading to further cytokine secretion. Here, we discuss recent progress in innate immunity and inflammatory cell death, providing insights into the cellular and molecular mechanisms of CSs and therapeutics that might quell ensuing life-threatening effects.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
49
|
Gera A, Misra A, Tiwari A, Singh A, Mehndiratta S. A hungry Histiocyte, altered immunity and myriad of problems: Diagnostic challenges for Pediatric HLH. Int J Lab Hematol 2021; 43:1443-1450. [PMID: 34118134 DOI: 10.1111/ijlh.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Hemophagocytic lymphohistiocytosis (HLH) is an immune deregulation disorder with varied clinical presentation which clinically overlaps with widespread tropical infections. METHODS We conducted a retrospective chart review of children diagnosed with HLH at our center from February-2017 to October-2020. RESULTS Out of the nine diagnosed patients, genetic predisposition was present in three children; two had identified infectious triggers. The mean age of presentation was 30 months with male predominance. The most common clinical findings were fever, organomegaly, and pancytopenia. The median value of fibrinogen was-156 mg/dL, ferritin-12 957 ng/mL and for triglycerides-349 mg/dL, respectively. In children with identified genetic predisposition, serum ferritin levels were usually more than 10 000 ng/mL. The majority of our patients had evidence of hemophagocytosis on bone marrow examination. In our experience, although nonspecific, very high ferritin and serum triglycerides with low fibrinogen in a patient with bi-cytopenia, pancytopenia was the most suggestive evidence of HLH. Genetic evaluation in our series identified three children, one with primary HLH genetic mutation and two with underlying immune deficiency syndrome. The presence of HLH in the accelerated phase of Chediak-Higashi and AD Hyper IgE syndrome with HLH is extremely rare. Leishmaniasis (in nonendemic area) and Ebstein-Barr virus (EBV) was identified as an infectious trigger in two cases. Most of our cases received treatment as per HLH 2004 protocol. Three children died during the initial diagnosis and treatment. HLH with subcutaneous panniculitis-like T-cell lymphoma recovered well. CONCLUSION HLH remains a life-threatening disorder associated with a variety of underlying illnesses as highlighted by our case series.
Collapse
Affiliation(s)
- Akriti Gera
- Department of Pediatrics, VMMC and Safdarjung Hospital, New Delhi, India
| | - Aroonima Misra
- Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Aditi Tiwari
- Department of Pediatrics, VMMC and Safdarjung Hospital, New Delhi, India
| | - Amitabh Singh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, VMMC and Safdarjung Hospital, New Delhi, India
| | - Sumit Mehndiratta
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, VMMC and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
50
|
Guan YQ, Shen KF, Yang L, Cai HD, Zhang ML, Wang JC, Long XL, Xiong J, Gu J, Zhang PL, Xiao M, Zhang W, Zhou JF. Inherited Genetic Susceptibility to Nonimmunosuppressed Epstein-Barr Virus-associated T/NK-cell Lymphoproliferative Diseases in Chinese Patients. Curr Med Sci 2021; 41:482-490. [PMID: 34170459 DOI: 10.1007/s11596-021-2375-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Epstein-Barr virus (EBV) T/NK-cell lymphoproliferative diseases are characterized by clonal expansion of EBV-infected T or NK cells, including chronic active EBV infection of T/NK-cell type (CAEBV+T/NK), EBV-associated hemophagocytic lymphohistiocytosis (EBV+HLH), extranodal NK/T-cell lymphoma of nasal type (ENKTL), and aggressive NK-cell leukemia (ANKL). However, the role of inherited genetic variants to EBV+T/NK-LPDs susceptibility is still unknown. A total of 171 nonimmunosuppressed patients with EBV+T/NK-LPDs and 104 healthy donors were retrospectively collected and a targeted sequencing study covering 15 genes associated with lymphocyte cytotoxicity was performed. The 94 gene variants, mostly located in UNC13D, LYST, ITK, and PRF1 genes were detected, and mutations covered 28/50 (56.00%) of CAEBV-T/NK, 31/51 (60.78%) of EBV+HLH, 13/28 (46.42%) of ENKTL, and 13/48 (27.09%) of ANKL. Most mutations represented monoallelic and missense. Three-year overall survival rate of patients with CAEBV-T/NK and EBV+HLH was significantly lower in patients with germline mutations than in those without germline mutations (P=0.0284, P=0.0137). Our study provided novel insights into understanding a spectrum of nonimmunosuppressed EBV+T/NK-LPDs with respect to genetic defects associated with lymphocyte cytotoxicity and reminded us that the gene sequencing may be an auxiliary test for diagnosis and risk stratification of EBV+T/NK-LPDs.
Collapse
Affiliation(s)
- Yu-Qi Guan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Feng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao-Dong Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Lan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Chen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lu Long
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Xiong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Ling Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|