1
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
King Z, Desai SR, Frank DA, Shastri A. STAT signaling in the pathogenesis and therapy of acute myeloid leukemia and myelodysplastic syndromes. Neoplasia 2025; 61:101137. [PMID: 39933227 PMCID: PMC11869857 DOI: 10.1016/j.neo.2025.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent complex hematopoietic malignancies characterized by ineffective hematopoiesis and dysregulated myeloid differentiation. Recent research has underscored the critical role of aberrant STAT signaling pathways, particularly involving STAT3 and STAT5, in the pathogenesis of these disorders. Aberrant activation of STAT proteins has been implicated as a mediator of oncogenesis in several malignancies. In this review, we discuss the role of STAT proteins in both regulated and dysregulated hematopoiesis, the consequences of dysregulation in acute myeloid leukemia and myelodysplastic syndromes, therapeutic strategies, and recent advancements in STAT-targeted therapy. By integrating findings from recent preclinical and clinical studies, this review provides insights into the evolving landscape of STAT-targeted therapies, highlighting the promise of these approaches in enhancing treatment efficacy and improving patient outcomes in high-risk hematologic malignancies.
Collapse
MESH Headings
- Humans
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/pathology
- Signal Transduction/drug effects
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- STAT Transcription Factors/metabolism
- STAT Transcription Factors/genetics
- Animals
- Molecular Targeted Therapy
- Hematopoiesis
Collapse
Affiliation(s)
- Zoe King
- Department of Pediatric Hematology and Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Aditi Shastri
- Department of Oncology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Kemps PG, Woei-A-Jin FJSH, Quint KD, van den Bos C, Naeije L, van Laar JAM, Vanden Bempt I, Koudijs MJ, Vorderman RHP, Stelloo E, Swennenhuis JF, Bruggink AH, Hebeda KM, Scheijde-Vermeulen MA, Diercks GFH, Verdijk RM, Jansen PM, Hauben E, Tousseyn T, Cleven AHG, van Wezel T, van Halteren AGS, Hogendoorn PCW. Recurrent ETV3::NCOA2 fusions and MAPK pathway mutations in indeterminate dendritic cell histiocytosis. Blood Adv 2025; 9:439-444. [PMID: 39361730 PMCID: PMC11808610 DOI: 10.1182/bloodadvances.2024013696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024] Open
Affiliation(s)
- Paul G. Kemps
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - F. J. Sherida H. Woei-A-Jin
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Koen D. Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Leonie Naeije
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan A. M. van Laar
- Section of Clinical Immunology and Allergology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ruben H. P. Vorderman
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Stelloo
- Cergentis BV, a Solvias company, Utrecht, The Netherlands
| | | | | | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Gilles F. H. Diercks
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert M. Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Hauben
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Laboratory, Catholic University of Leuven, Leuven, Belgium
| | - Arjen H. G. Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid G. S. van Halteren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Section of Clinical Immunology and Allergology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
4
|
Fang J, Zhang J, Zhu L, Xin X, Hu H. The epigenetic role of EZH2 in acute myeloid leukemia. PeerJ 2024; 12:e18656. [PMID: 39655332 PMCID: PMC11627098 DOI: 10.7717/peerj.18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Acute myeloid leukemia (AML), a malignant disease of the bone marrow, is characterized by the clonal expansion of myeloid progenitor cells and a block in differentiation. The high heterogeneity of AML significantly impedes the development of effective treatment strategies. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), regulates the expression of downstream target genes through the trimethylation of lysine 27 on histone 3 (H3K27me3). Increasing evidence suggests that the dysregulation of EZH2 expression in various cancers is closely associated with tumorigenesis. In the review, we examine the role of EZH2 in AML, highlighting its crucial involvement in regulating stemness, proliferation, differentiation, immune response, drug resistance and recurrence. Furthermore, we summarize the application of EZH2 inhibitors in AML treatment and discuss their potential in combination with other therapeutic modalities. Therefore, targeting EZH2 may represent a novel and promising strategy for the treatment of AML.
Collapse
MESH Headings
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Epigenesis, Genetic
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation/genetics
- Cell Proliferation/drug effects
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Jinyong Fang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jingcheng Zhang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaoru Xin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Huixian Hu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Manola KN, Zachaki S, Kakosaiou K, Ioannidou A, Kalomoiraki M, Rampias T. Cohesin RAD21 Gene Promoter Methylation in Patients with Acute Myeloid Leukemia. Life (Basel) 2024; 14:1311. [PMID: 39459611 PMCID: PMC11509327 DOI: 10.3390/life14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aberrant gene promoter methylation is one of the hallmarks of Acute Myeloid Leukemia (AML). RAD21 is an important gene, implicated in sister chromatids cohesion, DNA repair, the regulation of gene transcription, apoptosis and hematopoiesis. METHODS In this study, we investigate the possible implication of RAD21 promoter methylation in AML pathogenesis using a cohort of AML patients and a cohort of healthy individuals. RESULTS RAD21 promoter methylation was found in 24% of patients and in none of the controls (p = 0.023), indicating a possible contribution to AML development. Interestingly, a statistically higher frequency of RAD21 methylation was observed in patients with trisomy 8 (9/21, 42.9%, p = 0.021), while none of the patients with aberrations of chromosome 11 had RAD21 gene promoter methylation (0%, 0/11, p = 0.048). Patients with monosomal and complex karyotypes showed low frequencies of RAD21 methylation (7.7% and 15.4%, respectively) without reaching statistical significance. Moreover, ASXL1 mutations were not found to be associated with RAD21 methylation. CONCLUSIONS This is the first study which provides evidence for a possible pathogenetic role of RAD21 promoter methylation in AML development and especially in AML with trisomy 8. Further studies of RAD21 promoter methylation in large series of different AML genetic subgroups may contribute to the elucidation of AML pathogenesis and to the identification of new epigenetic biomarkers with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kalliopi N. Manola
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Sophia Zachaki
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Katerina Kakosaiou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Agapi Ioannidou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Marina Kalomoiraki
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
7
|
Boutzen H, Murison A, Oriecuia A, Bansal S, Arlidge C, Wang JCY, Lupien M, Kaufmann KB, Dick JE. Identification of leukemia stem cell subsets with distinct transcriptional, epigenetic and functional properties. Leukemia 2024; 38:2090-2101. [PMID: 39169113 PMCID: PMC11436360 DOI: 10.1038/s41375-024-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
The leukemia stem cell (LSC) compartment is a complex reservoir fueling disease progression in acute myeloid leukemia (AML). The existence of heterogeneity within this compartment is well documented but prior studies have focused on genetic heterogeneity without being able to address functional heterogeneity. Understanding this heterogeneity is critical for the informed design of therapies targeting LSC, but has been hampered by LSC scarcity and the lack of reliable cell surface markers for viable LSC isolation. To overcome these challenges, we turned to the patient-derived OCI-AML22 cell model. This model includes functionally, transcriptionally and epigenetically characterized LSC broadly representative of LSC found in primary AML samples. Focusing on the pool of LSC, we used an integrated approach combining xenograft assays with single-cell analysis to identify two LSC subtypes with distinct transcriptional, epigenetic and functional properties. These LSC subtypes differed in depth of quiescence, differentiation potential, repopulation capacity, sensitivity to chemotherapy and could be isolated based on CD112 expression. A majority of AML patient samples had transcriptional signatures reflective of either LSC subtype, and some even showed coexistence within an individual sample. This work provides a framework for investigating the LSC compartment and designing combinatorial therapeutic strategies in AML.
Collapse
Affiliation(s)
- Héléna Boutzen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Alexa Oriecuia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 0A3, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Silva-Carvalho AÉ, Filiú-Braga LDC, Bogéa GMR, de Assis AJB, Pittella-Silva F, Saldanha-Araujo F. GLP and G9a histone methyltransferases as potential therapeutic targets for lymphoid neoplasms. Cancer Cell Int 2024; 24:243. [PMID: 38997742 PMCID: PMC11249034 DOI: 10.1186/s12935-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Histone methyltransferases (HMTs) are enzymes that regulate histone methylation and play an important role in controlling transcription by altering the chromatin structure. Aberrant activation of HMTs has been widely reported in certain types of neoplastic cells. Among them, G9a/EHMT2 and GLP/EHMT1 are crucial for H3K9 methylation, and their dysregulation has been associated with tumor initiation and progression in different types of cancer. More recently, it has been shown that G9a and GLP appear to play a critical role in several lymphoid hematologic malignancies. Importantly, the key roles played by both enzymes in various diseases made them attractive targets for drug development. In fact, in recent years, several groups have tried to develop small molecule inhibitors targeting their epigenetic activities as potential anticancer therapeutic tools. In this review, we discuss the physiological role of GLP and G9a, their oncogenic functions in hematologic malignancies of the lymphoid lineage, and the therapeutic potential of epigenetic drugs targeting G9a/GLP for cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Alan Jhones Barbosa de Assis
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasilia, Brasília, Brazil
| | - Fábio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasilia, Brasília, Brazil
| | - Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Faculty of Health Sciences, University of Brasília, Brasilia, Brazil.
| |
Collapse
|
10
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
11
|
Harland L, Borgmann V, Otto F, Overkamp M, Bonzheim I, Fend F, Quintanilla-Martinez L, Nann D. Clonal Hematopoiesis and Bone Marrow Infiltration in Patients With Follicular Helper T-Cell Lymphoma of Angioimmunoblastic Type. Mod Pathol 2024; 37:100519. [PMID: 38777036 DOI: 10.1016/j.modpat.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Follicular helper T-cell (TFH) lymphoma harbors recurrent mutations of RHOAG17V, IDH2R172, TET2, and DNMT3A. TET2 and DNMT3A mutations are the most frequently affected genes in clonal hematopoiesis (CH). The aim of our study was to investigate the frequency of CH in bone marrow biopsies (BMB) of TFH/angioimmunoblastic T-cell lymphoma (TFH-AITL) patients and its association with myeloid neoplasms. A total of 29 BMB from 22 patients with a diagnosis of TFH-AITL were analyzed by next-generation sequencing (NGS) with a custom panel. Morphologically, 5 BMB revealed that TFH-AITL infiltrates of >5% of bone marrow (BM) cellularity confirmed in 4 cases by NGS-based T-cell clonality. IDH2R172 was demonstrated only in 1 (3%) of 29, and RHOAG17V in 2 (7%) of 29 samples. TET2 and DNMT3A were identified in 24 (83%) of 29 and 17 (59%) of 29 BMB, respectively. In the parallel lymph node the frequencies of mutations were 27% (IDH2R172), 64% (RHOAG17V), 86% (TET2), and 50% (DNMT3A). TET2 and/or DNMT3A mutations identical in lymph node and BMB were present in 18 (82%) of 22 patients, regardless of BM infiltration. In 3 cases the CH mutations were detected 13, 41, and 145 months before TFH-AITL diagnosis. Cases with TET2/DNMT3A mutations and BM variant allele frequencies >40% (7/18, 39%) showed lower blood counts. However, only low platelet count was statistically significant (P = .024). Myeloid neoplasms and/or myelodysplastic syndrome-related mutations were identified in 4 cases (4/22; 18%); all with high TET2 variant allele frequencies (>40%; P = .0114). In conclusion, CH is present in 82% of TFH-AITL and can be demonstrated up to 145 months before TFH-AITL diagnosis. NGS T-cell clonality analysis is an excellent tool to confirm TFH-AITL BM infiltration. Concurrent myeloid neoplasms were identified in 18% of the cases and were associated with TET2 mutations with high allelic burden (>40%). We demonstrated that myeloid neoplasms might occur simultaneously or precede the diagnosis of TFH lymphoma.
Collapse
Affiliation(s)
- Lennart Harland
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany; Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Vanessa Borgmann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Franziska Otto
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Mathis Overkamp
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany.
| | - Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| |
Collapse
|
12
|
Chen LY, Shen YA, Chu LH, Su PH, Wang HC, Weng YC, Lin SF, Wen KC, Liew PL, Lai HC. Active DNA Demethylase, TET1, Increases Oxidative Phosphorylation and Sensitizes Ovarian Cancer Stem Cells to Mitochondrial Complex I Inhibitor. Antioxidants (Basel) 2024; 13:735. [PMID: 38929174 PMCID: PMC11200674 DOI: 10.3390/antiox13060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment.
Collapse
Grants
- MOST 109-2314-B-038-052-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2314-B-038-096 Ministry of Science and Technology, Taiwan
- MOST 110-2314-B-038-060 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-038-108-MY3 Ministry of Science and Technology, Taiwan
- MOST 110- 471 2314-B-038-059 Ministry of Science and Technology, Taiwan
- MOST 110-2635-B-038-001 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-038-021-MY3 Ministry of Science and Technology, Taiwan
- 109TMU-SHH-20 Taipei Medical University-Shuang Ho Hospital, Taiwan
- TMU109-AE1-B22 Taipei Medical University, Taiwan
- MOST 109-2314-B-038-107-MY3 Ministry of Science and Technology, Taiwan
- MOST 111-2320-B-038-023-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Hui Chu
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
| | - Po-Hsuan Su
- College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shiou-Fu Lin
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Phui-Ly Liew
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
13
|
Wang Z, Tang S, Cai L, Wang Q, Pan D, Dong Y, Zhou H, Li J, Ji N, Zeng X, Zhou Y, Shen YQ, Chen Q. DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma. Br J Cancer 2024; 130:1744-1757. [PMID: 38582810 PMCID: PMC11130175 DOI: 10.1038/s41416-024-02670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunmei Dong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Zhou
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Mina A, Pavletic S, Aplan PD. The evolution of preclinical models for myelodysplastic neoplasms. Leukemia 2024; 38:683-691. [PMID: 38396286 PMCID: PMC10997513 DOI: 10.1038/s41375-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Myelodysplastic Neoplasms (MDS) are a group of clonal disorders characterized by ineffective hematopoiesis and morphologic dysplasia. Clinical manifestations of MDS vary widely and are dictated in large part by a range of genetic aberrations. The lack of robust in vitro models for MDS has limited the ability to conduct high throughput drug screens, which in turn has hampered the development of novel therapies for MDS. There are very few well-characterized MDS cell lines, and the available cell lines expand poorly in vitro. Conventional xenograft mouse models can provide an in vivo vessel to provide growth of cancer cells, but human MDS cells engraft poorly. Three-dimensional (3D) scaffold models that form human "ossicles" represent a promising new approach and can reproduce the intricate communication between hematopoietic stem and progenitor cells and their environment. Genetically engineered mice utilize specific mutations and may not represent the entire array of human MDS; however, genetically engineered mice provided in vivo proof of principle for novel agents such as luspatercept, demonstrating the clinical utility of this approach. This review offers an overview of available preclinical MDS models and potential approaches to accelerate accurate clinical translation.
Collapse
Affiliation(s)
- Alain Mina
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Steven Pavletic
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Aplan
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Stonestrom AJ, Menghrajani KN, Devlin SM, Franch-Expósito S, Ptashkin RN, Patel SY, Spitzer B, Wu X, Jee J, Sánchez Vela P, Milbank JH, Shah RH, Mohanty AS, Brannon AR, Xiao W, Berger MF, Mantha S, Levine RL. High-risk and silent clonal hematopoietic genotypes in patients with nonhematologic cancer. Blood Adv 2024; 8:846-856. [PMID: 38147626 PMCID: PMC10875331 DOI: 10.1182/bloodadvances.2023011262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) identified by somatic gene variants with variant allele fraction (VAF) ≥ 2% is associated with an increased risk of hematologic malignancy. However, CH defined by a broader set of genotypes and lower VAFs is ubiquitous in older individuals. To improve our understanding of the relationship between CH genotype and risk of hematologic malignancy, we analyzed data from 42 714 patients who underwent blood sequencing as a normal comparator for nonhematologic tumor testing using a large cancer-related gene panel. We cataloged hematologic malignancies in this cohort using natural language processing and manual curation of medical records. We found that some CH genotypes including JAK2, RUNX1, and XPO1 variants were associated with high hematologic malignancy risk. Chronic disease was predicted better than acute disease suggesting the influence of length bias. To better understand the implications of hematopoietic clonality independent of mutational function, we evaluated a set of silent synonymous and noncoding mutations. We found that silent CH, particularly when multiple variants were present or VAF was high, was associated with increased risk of hematologic malignancy. We tracked expansion of CH mutations in 26 hematologic malignancies sequenced with the same platform. JAK2 and TP53 VAF consistently expanded at disease onset, whereas DNMT3A and silent CH VAFs mostly decreased. These data inform the clinical and biological interpretation of CH in the context of nonhematologic cancer.
Collapse
Affiliation(s)
- Aaron J. Stonestrom
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kamal N. Menghrajani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sebastià Franch-Expósito
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan N. Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaodi Wu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Jee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pablo Sánchez Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer H. Milbank
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronak H. Shah
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abhinita S. Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - A. Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Simon Mantha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L. Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
19
|
Zhang Q, Yin L, Lai Q, Zhao Y, Peng H. Advances in the pathogenesis and therapeutic strategies of angioimmunoblastic T-cell lymphoma. Clin Exp Med 2023; 23:4219-4235. [PMID: 37759042 DOI: 10.1007/s10238-023-01197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive subtype of peripheral T-cell lymphomas with its cell origin determined to be follicular helper T-cells. AITL is characterized by a prominent tumor microenvironment involving dysregulation of immune cells, signaling pathways, and extracellular matrix. Significant progress has been made in the molecular pathophysiology of AITL, including genetic mutations, immune metabolism, hematopoietic-derived microenvironment, and non-hematopoietic microenvironment cells. Early diagnosis, detection of severe complications, and timely effective treatment are crucial for managing AITL. Treatment typically involves various combination chemotherapies, but the prognosis is often poor, and relapsed and refractory AITL remains challenging, necessitating improved treatment strategies. Therefore, this article provides an overview of the pathogenesis and latest advances in the treatment of AITL, with a focus on potential therapeutic targets, novel treatment strategies, and emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
- Qingyang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinqiao Lai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Agrawal‐Singh S, Bagri J, Sakakini N, Huntly BJP. A guide to epigenetics in leukaemia stem cells. Mol Oncol 2023; 17:2493-2506. [PMID: 37872885 PMCID: PMC10701772 DOI: 10.1002/1878-0261.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Leukaemia stem cells (LSCs) are the critical seed for the growth of haematological malignancies, driving the clonal expansion that enables disease initiation, relapse and often resistance. Specifically, they display inherent phenotypic and epigenetic plasticity resulting in complex heterogenic diseases. In this review, we discuss the key principles of deregulation of epigenetic processes that shape this disease evolution. We consider measures to define and quantify clonal heterogeneity, combining information from recent studies assessing mutational, transcriptional and epigenetic landscapes at single cell resolution in myeloid neoplasms (MN). We highlight the importance of integrating epigenetic and genetic information to better understand inter- and intra-patient heterogeneity and discuss how this understanding further informs evolution and progression trajectories and subsequent clinical response in MN. Under this topic, we also discuss efforts to identify mechanisms of resistance, by longitudinal analyses of patient samples. Finally, we highlight how we might target these aberrant epigenetic processes for better therapeutic outcomes and to potentially eradicate LSCs.
Collapse
Affiliation(s)
- Shuchi Agrawal‐Singh
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Jaana Bagri
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Nathalie Sakakini
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
| | - Brian J. P. Huntly
- Department of Haematology, Jeffrey Cheah Biomedical CentreUniversity of CambridgeUK
- Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Haematology ServiceCambridge University HospitalsUK
| |
Collapse
|
21
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
22
|
An C, Xue F, Sun L, Han H, Zhang Y, Hu Y. The impact of erythroblast enucleation efficiency on the severity of anemia in patients with myelodysplastic syndrome. Cell Commun Signal 2023; 21:332. [PMID: 37986081 PMCID: PMC10658927 DOI: 10.1186/s12964-023-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Anemia is the most common manifestation in myelodysplastic syndrome (MDS) patients, but the cause of ineffective hematopoiesis is not fully understood. Enucleation is an important event in the maturation process of erythroblasts. According to a series of morphological phenotypes of the pathological development of MDS erythroblasts, we speculate that there may be enucleation disorders. To verify this hypothesis, we cultured MDS bone marrow CD34+ cells in vitro and induced erythroblast development. The results showed that erythroblast enucleation in MDS was significantly lower than that in the normal group, and the rate of enucleation was positively correlated with hemoglobin concentration. Risk stratification of MDS was performed to further analyze the differences in enucleation among the normal group, low-middle risk group and high-risk group. The results showed that the enucleation rate of the high risk group was higher than that of the low-middle risk group but still lower than that of the normal group. Moreover, the expression of pERK and pAKT in MDS erythroblasts in the high risk group was higher than that in the normal group, while the expression of pERK and pAKT in the low-middle risk group was lower than that in the normal group. Furthermore, the enucleation of MDS was positively correlated with the phosphorylation degree of ERK and AKT. In conclusion, this study reveals that the enucleation of erythroblasts is one of the possible causes of anemia in MDS. Video Abstract.
Collapse
Affiliation(s)
- Chao An
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Fumin Xue
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ling Sun
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haiyan Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yali Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yibo Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
23
|
Phannasil P, Sukhuma C, Nauphar D, Nuamsee K, Svasti S. Up-regulation of microRNA 101-3p during erythropoiesis in β-thalassemia/HbE. Blood Cells Mol Dis 2023; 103:102781. [PMID: 37478523 DOI: 10.1016/j.bcmd.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Ineffective erythropoiesis is the main cause of anemia in β-thalassemia. The crucial hallmark of ineffective erythropoiesis is the high proliferation of erythroblast. microRNA (miR/miRNA) involves several biological processes, including cell proliferation and erythropoiesis. miR-101 was widely studied and associated with proliferation in several types of cancer. However, the miR-101-3p has not been studied in β-thalassemia/HbE. Therefore, this study aims to investigate the expression of miR-101-3p during erythropoiesis in β-thalassemia/HbE. The results showed that miR-101-3p was upregulated in the erythroblast of β-thalassemia/HbE patients on day 7, indicating that miR-101-3p may be involved with high proliferation in β-thalassemia/HbE. Therefore, the mRNA targets of miR-101-3p including Rac1, SUB1, TET2, and TRIM44 were investigated to determine the mechanisms involved with high proliferation of β-thalassemia/HbE erythroblasts. Rac1 expression was significantly reduced at day 11 in severe β-thalassemia/HbE compared to normal controls and mild β-thalassemia/HbE. SUB1 gene expression was significantly lower in severe β-thalassemia/HbE compared to normal controls at day 9 of culture. For TET2 and TRIM44 expression, a significant difference was not observed among normal and β-thalassemia/HbE. However, the high expression of miR-101-3p at day 7 and these target genes was not correlated, suggesting that this miRNA may regulate ineffective erythropoiesis in β-thalassemia/HbE via other target genes.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chanyanat Sukhuma
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Donny Nauphar
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat 10430, Indonesia; Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon 45132, West-Java, Indonesia
| | - Khanita Nuamsee
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Milbar HC, Caplan A, Schwab RD, Coromilas AJ, Baumrin E, Forrestel A, Steele KT, Micheletti RG, Perl A, Rosenbach M. Vitamin C deficiency in patients with acute myeloid leukemia: a case series and review of the literature. Blood Adv 2023; 7:5780-5783. [PMID: 37433638 PMCID: PMC10560999 DOI: 10.1182/bloodadvances.2023009923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Heather C. Milbar
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| | - Avrom Caplan
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY
| | - Robert D. Schwab
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | | | - Emily Baumrin
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| | - Amy Forrestel
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Alexander Perl
- Division of Hematology and Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Takahashi K, Tanaka T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer 2023; 9:707-715. [PMID: 37302922 PMCID: PMC10766088 DOI: 10.1016/j.trecan.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Myeloid malignancies, a group of hematopoietic disorders that includes acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs), are caused by the accumulation of genetic and epigenetic changes in hematopoietic stem and progenitor cells (HSPCs) over time. Despite the relatively low number of genomic drivers compared with other forms of cancer, the process by which these changes shape the genomic architecture of myeloid malignancies remains elusive. Recent advancements in clonal hematopoiesis research and the use of cutting-edge single cell technologies have shed new light on the developmental process of myeloid malignancies. In this review, we delve into the intricacies of clonal evolution in myeloid malignancies and its implications for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
27
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
28
|
Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30:1072-1090.e10. [PMID: 37541212 PMCID: PMC11166201 DOI: 10.1016/j.stem.2023.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, Zhejiang, China
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Steven T Rosen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Liang G, Wang L, You Q, Cahill K, Chen C, Zhang W, Fulton N, Stock W, Odenike O, He C, Han D. Cellular Composition and 5hmC Signature Predict the Treatment Response of AML Patients to Azacitidine Combined with Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300445. [PMID: 37271891 PMCID: PMC10427370 DOI: 10.1002/advs.202300445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Indexed: 06/06/2023]
Abstract
Azacitidine (AZA) is a DNA methyltransferase inhibitor and epigenetic modulator that can be an effective agent in combination with chemotherapy for patients with high-risk acute myeloid leukemia (AML). However, biological factors driving the therapeutic response of such hypomethylating agent (HMA)-based therapies remain unknown. Herein, the transcriptome and/or genome-wide 5-hydroxymethylcytosine (5hmC) is characterized for 41 patients with high-risk AML from a phase 1 clinical trial treated with AZA epigenetic priming followed by high-dose cytarabine and mitoxantrone (AZA-HiDAC-Mito). Digital cytometry reveals that responders have elevated Granulocyte-macrophage-progenitor-like (GMP-like) malignant cells displaying an active cell cycle program. Moreover, the enrichment of natural killer (NK) cells predicts a favorable outcome in patients receiving AZA-HiDAC-Mito therapy or other AZA-based therapies. Comparing 5hmC profiles before and after five-day treatment of AZA shows that AZA exposure induces dose-dependent 5hmC changes, in which the magnitude correlates with overall survival (p = 0.015). An extreme gradient boosting (XGBoost) machine learning model is developed to predict the treatment response based on 5hmC levels of 11 genes, achieving an area under the curve (AUC) of 0.860. These results suggest that cellular composition markedly impacts the treatment response, and showcase the prospect of 5hmC signatures in predicting the outcomes of HMA-based therapies in AML.
Collapse
Affiliation(s)
- Guanghao Liang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Linchen Wang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qiancheng You
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
| | - Kirk Cahill
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuanyuan Chen
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei Zhang
- Department of MedicineUniversity of California, San DiegoLa JollaCA92093USA
- Bristol‐Myers SquibbSan DiegoCA92121USA
| | - Noreen Fulton
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Wendy Stock
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Olatoyosi Odenike
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Dali Han
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
30
|
Macapagal SC, Bennani NN. Nodal peripheral T-cell lymphoma: Chemotherapy-free management, are we there yet? Blood Rev 2023; 60:101071. [PMID: 36898933 DOI: 10.1016/j.blre.2023.101071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a diverse and uncommon type of lymphoid malignancies with a dismal prognosis. Recent advances in genomic studies have shown recurring mutations that are changing our knowledge of the disease's molecular genetics and pathogenesis. As such, new targeted therapies and treatments to improve disease outcomes are currently being explored. In this review, we discussed the current understanding of the nodal PTCL biology with potential therapeutic implications and gave our insights on the promising novel therapies that are currently under study such as immunotherapy, chimeric antigen receptor T-cell therapy, and oncolytic virotherapy.
Collapse
Affiliation(s)
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Bhuvanadas S, Devi A. JARID2 and EZH2, The Eminent Epigenetic Drivers In Human Cancer. Gene 2023:147584. [PMID: 37353042 DOI: 10.1016/j.gene.2023.147584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Cancer has become a prominent cause of death, accounting for approximately 10 million death worldwide as per the World Health Organization reports 2020. Epigenetics deal with the alterations of heritable phenotypes, except for DNA alterations. Currently, we are trying to comprehend the role of utmost significant epigenetic genes involved in the burgeoning of human cancer. A sundry of studies reported the Enhancer of Zeste Homologue2 (EZH2) as a prime catalytic subunit of Polycomb Repressive Complex2, which is involved in several pivotal activities, including embryogenesis. In addition, EZH2 has detrimental effects leading to the onset and metastasis of several cancers. Jumonji AT Rich Interacting Domain2 (JARID2), an undebated crucial nuclear factor, has strong coordination with the PRC2 family. In this review, we discuss various epigenetic entities, primarily focusing on the possible role and mechanism of EZH2 and the significant contribution of JARID2 in human cancers.
Collapse
Affiliation(s)
- Sreeshma Bhuvanadas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203.
| |
Collapse
|
32
|
Singh H, Kumar M, Kanungo H. Role of Gene Mutations in Acute Myeloid Leukemia: A Review Article. Glob Med Genet 2023; 10:123-128. [PMID: 37360004 PMCID: PMC10289861 DOI: 10.1055/s-0043-1770768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Magesh Kumar
- Department of Periodontics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Himanshu Kanungo
- Department of Orthodontics and Dentofacial Orthopaedics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
33
|
Sashida G. Stem cell regulation and dynamics in myeloid malignancies. Int J Hematol 2023; 117:789-790. [PMID: 37191835 DOI: 10.1007/s12185-023-03615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
In this issue of PIH, we asked four researchers to write about basic research on the molecular mechanisms of the development of myeloid malignancies, in particular two epigenetic regulation and two space- and time-dependent factors. Regarding epigenomic regulation, Dr. Yang reviewed ASXL1, a polycomb modifier gene that is often mutated in myeloid malignancies, but also in clonal hematopoiesis in healthy elderly people, and Dr. Vu reviewed RNA modifications, which are critical for development and tissue homeostasis, and are now recognized as an important driver for cancer development. Regarding spatiotemporal factors, Dr. Inoue reviewed the role of extracellular vesicles in leukemic stem cell niches. As some cancers develop preferentially in infancy or old age, Dr. Osato discussed the time-specific development of leukemia involving the RUNX1-ETO mutation, which is often found in leukemia in adolescents and young adults. Recent studies on hematopoietic development have shown that hematopoietic stem cells do not generate multipotent progenitor cells, but that these cells develop in parallel. We hope that reconsideration of the definition of leukemic stem cells and their origin will help us understand the regulatory mechanisms of these cells, but also enable us to develop future therapies by targeting factors that regulate the leukemic stem cell and the niche.
Collapse
Affiliation(s)
- Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
34
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
35
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
36
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
37
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
38
|
Fukano M, Alzial G, Lambert R, Deblois G. Profiling the Epigenetic Landscape of the Tumor Microenvironment Using Chromatin Immunoprecipitation Sequencing. Methods Mol Biol 2023; 2614:313-348. [PMID: 36587133 DOI: 10.1007/978-1-0716-2914-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells within a tumor exhibit phenotypic plasticity that allows adaptation and survival in hostile tumor microenvironments. Reprogramming of epigenetic landscapes can support tumor progression within a specific microenvironment by influencing chromatin accessibility and modulating cell identity. The profiling of epigenetic landscapes within various tumor cell populations has significantly improved our understanding of tumor progression and plasticity. This protocol describes an integrated approach using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) optimized to profile genome-wide post-translational modifications of histone tails in tumors. Essential tools amenable to ChIP-seq to isolate tumor cell populations of interest from the tumor microenvironment are also presented to provide a comprehensive approach to perform heterogeneous epigenetic landscape profiling of the tumor microenvironment.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Gabriel Alzial
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada.
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
39
|
Chia YC, Siti Asmaa MJ, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics (Basel) 2023; 13:163. [PMID: 36611455 PMCID: PMC9818412 DOI: 10.3390/diagnostics13010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include polycythaemia vera, essential thrombocythaemia, and primary myelofibrosis. Unlike monogenic disorders, a more complicated series of genetic mutations are believed to be responsible for MPN with various degrees of thromboembolic and bleeding complications. Thrombosis is one of the early manifestations in patients with MPN. To date, the driver genes responsible for MPN include JAK2, CALR, MPL, TET2, ASXL1, and MTHFR. Affords have been done to elucidate these mutations and the incidence of thromboembolic events. Several lines of evidence indicate that mutations in JAK2, MPL, TET2 and ASXL1 gene and polymorphisms in several clotting factors (GPIa, GPIIa, and GPIIIa) are associated with the occurrence and prevalence of thrombosis in MPN patients. Some polymorphisms within XRCC1, FBG, F2, F5, F7, F12, MMP9, HPA5, MTHFR, SDF-1, FAS, FASL, TERT, ACE, and TLR4 genes may also play a role in MPN manifestation. This review aims to provide an insightful overview on the genetic perspective of thrombotic complications in patients with MPN.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Marini Ramli
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Muhammad Farid Johan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev 2023; 57:100996. [PMID: 35989139 PMCID: PMC10693933 DOI: 10.1016/j.blre.2022.100996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Keri R Maher
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
42
|
Zhao M, Li Q, Yang J, Zhang M, Liu X, Zhang H, Huang Y, Li J, Bao J, Wang J, Du J, Guan T, Su L. Application of circulating tumour DNA in terms of prognosis prediction in Chinese follicular lymphoma patients. Front Genet 2023; 14:1066808. [PMID: 37152994 PMCID: PMC10157236 DOI: 10.3389/fgene.2023.1066808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Follicular lymphoma (FL), an indolent non-Hodgkin lymphoma (NHL), is generally incurable. Favourable prognosis and durable remission are crucial for FL patients. The genetic mutation spectrum provides novel biomarkers for determining the prognosis of FL patients, but its detection is easily affected by the collection of tumour tissue biopsies. In this study, we aimed to describe the mutational landscape of FL using circulating tumour DNA (ctDNA) samples and to explore the relationship between mutations and prognostic indicators of clinical outcome in patients with newly diagnosed follicular lymphoma and the prognostic value of such mutations. Methods: A total of 28 patients with newly diagnosed FL were included in this study. A targeted NGS-based 59-gene panel was used to assess the ctDNA mutation profiles. Differences in clinical factors between patients carrying mutations and those without mutations were analysed. We also explored the relationship between gene mutation status, mean VAFs (variant allele frequencies) and clinical factors. The Kaplan‒Meier method was applied to analyse the overall survival (OS) and progression-free survival (PFS) of patients carrying mutations and those without mutations. Results: ctDNA mutations were detectable in 21 (75%) patients. The most commonly mutated genes were CREBBP (54%, 15/28), KMT2D (50%, 14/28), STAT6 (29%, 8/28), CARD11 (18%, 5/28), PCLO (14%, 4/28), EP300 (14%, 4/28), BCL2 (11%, 3/28), and TNFAIP3 (11%, 3/28), with a mutation frequency of >10%. Patients with detectable ctDNA mutation tended to present with advanced Ann Arbor stage (III-IV) (p = 0.009), high FLIPI risk (3-5) (p = 0.023) and severe lymph node involvement (No. of involved areas ≥5) (p = 0.02). In addition, we found that the mean VAF was significantly higher in patients with advanced Ann Arbor stage, high-risk FLIPI, elevated lactate dehydrogenase (LDH: 0-248U/L), advanced pathology grade, bone marrow involvement (BMI) and lymph node involvement. Additionally, KMT2D, EP300, and STAT6 mutations were associated with inferior PFS (p < 0.05). Conclusion: We described the ctDNA mutation landscapes in Chinese patients with newly diagnosed FL and found that ctDNA VAF means reflect tumour burden. Moreover, PFS was shorter in patients with KMT2D, EP300 and STAT6 mutations.
Collapse
Affiliation(s)
- Mengjing Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaolan Liu
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hongwei Zhang
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yunpeng Huang
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Pathology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jiangping Bao
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingfang Wang
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Guan
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Tao Guan, ; Liping Su,
| | - Liping Su
- Department of Hematology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Tao Guan, ; Liping Su,
| |
Collapse
|
43
|
Centomo ML, Vitiello M, Poliseno L, Pandolfi PP. An Immunocompetent Environment Unravels the Proto-Oncogenic Role of miR-22. Cancers (Basel) 2022; 14:cancers14246255. [PMID: 36551740 PMCID: PMC9776418 DOI: 10.3390/cancers14246255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
MiR-22 was first identified as a proto-oncogenic microRNA (miRNA) due to its ability to post-transcriptionally suppress the expression of the potent PTEN (Phosphatase And Tensin Homolog) tumor suppressor gene. miR-22 tumorigenic role in cancer was subsequently supported by its ability to positively trigger lipogenesis, anabolic metabolism, and epithelial-mesenchymal transition (EMT) towards the metastatic spread. However, during the following years, the picture was complicated by the identification of targets that support a tumor-suppressive role in certain tissues or cell types. Indeed, many papers have been published where in vitro cellular assays and in vivo immunodeficient or immunosuppressed xenograft models are used. However, here we show that all the studies performed in vivo, in immunocompetent transgenic and knock-out animal models, unanimously support a proto-oncogenic role for miR-22. Since miR-22 is actively secreted from and readily exchanged between normal and tumoral cells, a functional immune dimension at play could well represent the divider that allows reconciling these contradictory findings. In addition to a critical review of this vast literature, here we provide further proof of the oncogenic role of miR-22 through the analysis of its genomic locus vis a vis the genetic landscape of human cancer.
Collapse
Affiliation(s)
- Maria Laura Centomo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Marianna Vitiello
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| |
Collapse
|
44
|
The R736H cancer mutation in DNMT3A modulates the properties of the FF-subunit interface. Biochimie 2022; 208:66-74. [PMID: 36528185 DOI: 10.1016/j.biochi.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.
Collapse
|
45
|
RNA methylation in immune cells. Adv Immunol 2022; 155:39-94. [PMID: 36357012 DOI: 10.1016/bs.ai.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers (Basel) 2022; 14:cancers14174132. [PMID: 36077669 PMCID: PMC9454802 DOI: 10.3390/cancers14174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Differential diagnosis between Blastic pDC Neoplasm (BPDCN) and Acute Myeloid Leukemia with pDC expansion (pDC-AML) is particularly challenging, and genomic features can help in diagnosis. This review aims at clarifying recent data on genomics features because the past five years have generated a large amount of original data regarding pDC neoplasms. The genetic landscape of BPDCN is now well-defined, with important updates concerning MYC/MYC rearrangements, but also epigenetic defects and novel concepts in oncogenic and immune pathways. Concerning pDC-AML, they now appear to exhibit an original mutation landscape, especially with RUNX1 mutations, which is of interest for diagnostic criteria and for therapeutic purposes. We highlight here these two different profiles, which contribute to differential diagnosis between BPDCN and pDC-AML. This point is particularly important for the study of different therapeutic strategies between BPDCN and AML. Abstract Plasmacytoid Dendritic Cells (pDC) are type I interferon (IFN)-producing cells that play a key role in immune responses. Two major types of neoplastic counterparts for pDC are now discriminated: Blastic pDC Neoplasm (BPDCN) and Mature pDC Proliferation (MPDCP), associated with myeloid neoplasm. Two types of MPDCP are now better described: Chronic MyeloMonocytic Leukemia with pDC expansion (pDC-CMML) and Acute Myeloid Leukemia with pDC expansion (pDC-AML). Differential diagnosis between pDC-AML and BPDCN is particularly challenging, and genomic features can help for diagnosis. Here, we systematically review the cytogenetic, molecular, and transcriptional characteristics of BPDCN and pDC-AML. BPDCN are characterized by frequent complex karyotypes with recurrent MYB/MYC rearrangements as well as recurrent deletions involving ETV6, IKZF1, RB1, and TP53 loci. Epigenetic and splicing pathways are also particularly mutated, while original processes are dysregulated, such as NF-kB, TCF4, BCL2, and IFN pathways; neutrophil-specific receptors; and cholinergic signaling. In contrast, cytogenetic abnormalities are limited in pDC-AML and are quite similar to other AML. Interestingly, RUNX1 is the most frequently mutated gene (70% of cases). These typical genomic features are of potential interest for diagnosis, and also from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, F-25000 Besancon, France
- Laboratoire d’Hématologie et d’Immunologie Régional, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besancon, France
- Correspondence:
| | - Mary Callanan
- INSERM 1231 and 1209, University of Bourgogne-Franche Comté, F-21000 Dijon, France
- Service d’Oncologie Génétique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Christine Lefebvre
- INSERM 1209 and CNRS UMR 5309, Université Grenoble-Alpes, F-38000 Grenoble, France
- Laboratoire de Génétique des hémopathies, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
47
|
MOZ is critical for the development of MOZ/MLL-fusion-induced leukemia through regulation of Hoxa9/Meis1 expression. Blood Adv 2022; 6:5527-5537. [PMID: 35947126 PMCID: PMC9577624 DOI: 10.1182/bloodadvances.2020003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Monocytic leukemia zinc finger protein (MOZ, MYST3, or KAT6A) is a MYST-type acetyltransferase involved in chromosomal translocation in acute myelogenous leukemia (AML) and myelodysplastic syndrome. MOZ is established as essential for hematopoiesis; however, the role of MOZ in AML has not been addressed. We propose that MOZ is critical for AML development induced by MLL-AF9, MLL-AF10, or MOZ-TIF2 fusions. Moz-deficient hematopoietic stem/progenitor cells (HSPCs) transduced with an MLL-AF10 fusion gene neither formed colonies in methylcellulose nor induced AML in mice. Moz-deficient HSPCs bearing MLL-AF9 also generated significantly reduced colony and cell numbers. Moz-deficient HSPCs expressing MOZ-TIF2 could form colonies in vitro but could not induce AML in mice. By contrast, Moz was dispensable for colony formation by HOXA9-transduced cells and AML development caused by HOXA9 and MEIS1, suggesting a specific requirement for MOZ in AML induced by MOZ/MLL fusions. Expression of the Hoxa9 and Meis1 genes was decreased in Moz-deficient MLL fusion-expressing cells, while expression of Meis1, but not Hoxa9, was reduced in Moz-deficient MOZ-TIF2 AML cells. AML development induced by MOZ-TIF2 was rescued by introducing Meis1 into Moz-deficient cells carrying MOZ-TIF2. Meis1 deletion impaired MOZ-TIF2–mediated AML development. Active histone modifications were also severely reduced at the Meis1 locus in Moz-deficient MOZ-TIF2 and MLL-AF9 AML cells. These results suggest that endogenous MOZ is critical for MOZ/MLL fusion-induced AML development and maintains active chromatin signatures at target gene loci.
MOZ is critical for MOZ/MLL fusion-mediated AML development, Meis1 induction by MOZ fusions, and Hoxa9/Meis1 induction by MLL fusions. Endogenous MOZ is required to maintain MOZ-target and active histone modifications at the Meis1 gene locus.
Collapse
|
48
|
Novel inhibitor of hematopoietic cell kinase as a potential therapeutic agent for acute myeloid leukemia. Cancer Immunol Immunother 2022; 71:1909-1921. [DOI: 10.1007/s00262-021-03111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
|
49
|
Robertson NA, Latorre-Crespo E, Terradas-Terradas M, Lemos-Portela J, Purcell AC, Livesey BJ, Hillary RF, Murphy L, Fawkes A, MacGillivray L, Copland M, Marioni RE, Marsh JA, Harris SE, Cox SR, Deary IJ, Schumacher LJ, Kirschner K, Chandra T. Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects. Nat Med 2022; 28:1439-1446. [PMID: 35788175 PMCID: PMC9307482 DOI: 10.1038/s41591-022-01883-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/27/2022] [Indexed: 12/20/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) increases rapidly in prevalence beyond age 60 and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Because mutations in HSPCs often drive leukemia, we hypothesized that HSPC fitness substantially contributes to transformation from CHIP to leukemia. HSPC fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. If mutations in different genes lead to distinct fitness advantages, this could enable patient stratification. We quantified the fitness effects of mutations over 12 years in older age using longitudinal sequencing and developed a filtering method that considers individual mutational context alongside mutation co-occurrence to quantify the growth potential of variants within individuals. We found that gene-specific fitness differences can outweigh inter-individual variation and, therefore, could form the basis for personalized clinical management.
Collapse
Affiliation(s)
| | | | - Maria Terradas-Terradas
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Jorge Lemos-Portela
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Alison C Purcell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Louise MacGillivray
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Linus J Schumacher
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Kristina Kirschner
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| | - Tamir Chandra
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
50
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|