1
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
2
|
Kita K, Xiu F, Jeschke MG. Ex vivo expansion of hematopoietic stem and progenitor cells: Recent advances. World J Hematol 2014; 3:18. [DOI: 10.5315/wjh.v3.i2.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
3
|
Saka K, Kawahara M, Teng J, Otsu M, Nakauchi H, Nagamune T. Top-down motif engineering of a cytokine receptor for directing ex vivo expansion of hematopoietic stem cells. J Biotechnol 2013; 168:659-65. [PMID: 24070902 DOI: 10.1016/j.jbiotec.2013.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
The technique to expand hematopoietic stem cells (HSCs) ex vivo is eagerly anticipated to secure an enough amount of HSCs for clinical applications. Previously we developed a scFv-thrombopoietin receptor (c-Mpl) chimera, named S-Mpl, which can transduce a proliferation signal in HSCs in response to a cognate antigen. However, a remaining concern of the S-Mpl chimera may be the magnitude of the cellular expansion level driven by this molecule, which was significantly less than that mediated by endogenous wild-type c-Mpl. In this study, we engineered a tyrosine motif located in the intracellular domain of S-Mpl based on a top-down approach in order to change the signaling properties of the chimera. The truncated mutant (trunc.) and an amino-acid substitution mutant (Q to L) of S-Mpl were constructed to investigate the ability of these mutants to expand HSCs. The result showed that the truncated and Q to L mutants gave higher and considerably lower number of the cells than unmodified S-Mpl, respectively. The proliferation level through the truncated mutant was even higher than that of non-transduced HSCs with the stimulation of a native cytokine, thrombopoietin. Moreover, we analyzed the signaling properties of the S-Mpl mutants in detail using a pro-B cell line Ba/F3. The data indicated that the STAT3 and STAT5 activation levels through the truncated mutant increased, whereas activation of the Q to L mutant was inhibited by a negative regulator of intracellular signaling, SHP-1. This is the first demonstration that a non-natural artificial mutant of a cytokine receptor is effective for ex vivo expansion of hematopoietic cells compared with a native cytokine receptor.
Collapse
Affiliation(s)
- Koichiro Saka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Increasing hematopoietic stem cell yield to develop mice with human immune systems. BIOMED RESEARCH INTERNATIONAL 2013; 2013:740892. [PMID: 23509770 PMCID: PMC3586441 DOI: 10.1155/2013/740892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.
Collapse
|
5
|
Nishino T, Osawa M, Iwama A. New approaches to expand hematopoietic stem and progenitor cells. Expert Opin Biol Ther 2012; 12:743-56. [DOI: 10.1517/14712598.2012.681372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Kita K, Lee JO, Finnerty CC, Herndon DN. Cord blood-derived hematopoietic stem/progenitor cells: current challenges in engraftment, infection, and ex vivo expansion. Stem Cells Int 2011; 2011:276193. [PMID: 21603139 PMCID: PMC3096303 DOI: 10.4061/2011/276193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/07/2011] [Accepted: 02/25/2011] [Indexed: 11/20/2022] Open
Abstract
Umbilical cord blood has served as an alternative to bone marrow for hematopoietic transplantation since the late 1980s. Numerous clinical studies have proven the efficacy of umbilical cord blood. Moreover, the possible immaturity of cells in umbilical cord blood gives more options to recipients with HLA mismatch and allows for the use of umbilical cord blood from unrelated donors. However, morbidity and mortality rates associated with hematopoietic malignancies still remain relatively high, even after cord blood transplantation. Infections and relapse are the major causes of death after cord blood transplantation in patients with hematopoietic diseases. Recently, new strategies have been introduced to improve these major problems. Establishing better protocols for simple isolation of primitive cells and ex vivo expansion will also be very important. In this short review, we discuss several recent promising findings related to the technical improvement of cord blood transplantation.
Collapse
Affiliation(s)
- Katsuhiro Kita
- Department of Surgery, Shriners Hospitals for Children, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | - Jong O. Lee
- Department of Surgery, Shriners Hospitals for Children, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | - Celeste C. Finnerty
- Department of Surgery, Shriners Hospitals for Children, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| | - David N. Herndon
- Department of Surgery, Shriners Hospitals for Children, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
- Department of Pediatrics, University of Texas Medical Branch, 815 Market Street, Galveston, TX 77550, USA
| |
Collapse
|
7
|
Chicha L, Feki A, Boni A, Irion O, Hovatta O, Jaconi M. Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34- and CD34+ progenitors with distinct characteristics. PLoS One 2011; 6:e14733. [PMID: 21364915 PMCID: PMC3045374 DOI: 10.1371/journal.pone.0014733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. METHODOLOGY/PRINCIPAL FINDINGS ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult β-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. CONCLUSIONS/SIGNIFICANCE Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures.
Collapse
Affiliation(s)
- Laurie Chicha
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Gynecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
| | - Alessandro Boni
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Olivier Irion
- Stem Cell Research Laboratory, Department of Gynecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
| | - Outi Hovatta
- Stem Cell Research Laboratory, Department of Gynecology and Obstetrics, Geneva University Hospital, Geneva, Switzerland
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marisa Jaconi
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Howe M, Zhao J, Bodenburg Y, McGuckin CP, Forraz N, Tilton RG, Urban RJ, Denner L. Oct-4A isoform is expressed in human cord blood-derived CD133 stem cells and differentiated progeny. Cell Prolif 2009; 42:265-75. [PMID: 19438894 DOI: 10.1111/j.1365-2184.2009.00593.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES This study aims to establish whether the pluripotent embryonic stem cell marker and nuclear transcription factor Oct-4A isoform is expressed in human umbilical cord blood CD133 stem cells (CD133 cells) and their differentiated progeny. MATERIALS AND METHODS CD133 cells were examined for expression of the embryonic stem cell marker Oct-4A by reverse transcription-polymerase chain reaction using primers specific for the coding region of the Oct-4A isoform. Immunocytochemistry and flow cytometry were performed using an antibody raised to a peptide from the unique amino-terminal domain of the Oct-4A isoform, that does not exist in the Oct-4B isoform. Furthermore, specificity was confirmed by pre-adsorption of the antibody with the peptide immunogen. Differentiation was determined before and after expansion in culture, by flow cytometry for haematopoietic stem cell and differentiation markers. For many studies, after 7 days of culture CD133-positive and CD133-negative cells were separated by flow cytometry for additional analyses. Multilineage haematopoietic proliferative potential was determined using colony-forming assays. RESULTS Freshly isolated CD133 cells expressed Oct-4A mRNA and protein. The cells proliferated rapidly in culture producing only a small proportion of CD133-positive cells and a much larger proportion of non-self-renewing CD133-negative cells. Proliferation was also associated with loss of other adult stem cell markers, gain of differentiated haematopoietic markers, and maintenance of potential to generate haematopoietic lineages. Oct-4A mRNA and protein were expressed throughout these changes. CONCLUSIONS Oct-4A, which is associated with self-renewal in embryonic stem cells, neither defines nor confers self-renewal to CD133 stem cells.
Collapse
Affiliation(s)
- M Howe
- Stark Diabetes Center, Galveston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Robinson S, Niu T, de Lima M, Ng J, Yang H, McMannis J, Karandish S, Sadeghi T, Fu P, del Angel M, O'Connor S, Champlin R, Shpall E. Ex vivo expansion of umbilical cord blood. Cytotherapy 2006; 7:243-50. [PMID: 16081350 DOI: 10.1080/14653240510027172] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The efficacy of cord blood (CB) transplantation is limited by the low cell dose available. Low cell doses at transplant are correlated with delayed engraftment, prolonged neutropenia and thrombocytopenia and elevated risk of graft failure. To potentially improve the efficacy of CB transplantation, approaches have been taken to increase the cell dose available. One approach is the transplantation of multiple cord units, another the use of ex vivo expansion. Evidence for a functional and phenotypic heterogeneity exists within the HSC population and one concern associated with ex vivo expansion is that the expansion of lower 'quality' hematopoietic progenitor cells (HPC) occurs at the expense of higher 'quality' HPC, thereby impacting the reserve of the graft. There is evidence that this is a valid concern while other evidence suggests that higher quality HPC are preserved and not exhausted. Currently, ex vivo expansion processes include: (1) liquid expansion: CD34+ or CD133+ cells are selected and cultured in medium containing factors targeting the proliferation and self-renewal of primitive hematopoietic progenitors; (2) co-culture expansion: unmanipulated CB cells are cultured with stromal components of the hematopoietic microenvironment, specifically mesenchymal stem cells (MSC), in medium containing growth factors; and (3) continuous perfusion: CB HPC are cultured with growth factors in 'bioreactors' rather than in static cultures. These approaches are discussed. Ultimately, the goal of ex vivo expansion is to increase the available dose of the CB cells responsible for successful engraftment, thereby reducing the time to engraftment and reducing the risk of graft failure.
Collapse
Affiliation(s)
- S Robinson
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Richard RE, Blau CA. Small-molecule-directed mpl signaling can complement growth factors to selectively expand genetically modified cord blood cells. Stem Cells 2003; 21:71-8. [PMID: 12529553 DOI: 10.1634/stemcells.21-1-71] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Efforts toward achieving gene therapy for blood disorders are plagued by low rates of gene transfer into hemopoietic stem cells. Recent studies suggest that this obstacle can be circumvented using selection. One way to achieve selection employs genes that encode receptor-bearing fusion proteins capable of inducing cell growth in response to drugs called chemical inducers of dimerization (CIDs). We have previously shown that genetically modified marrow cells from mice can proliferate for up to a year in culture in response to CID-initiated signals arising from the thrombopoietin receptor (mpl). The sustained growth observed in mouse hemopoietic cells results from an mpl-induced self-renewal of multipotential hemopoietic progenitor cells. In contrast, human hemopoietic cells proliferate only transiently in response to the mpl signal (from differentiation of transduced erythroid and megakaryocytic progenitors), while human myeloid progenitors fail to respond. Here, we show that myeloid progenitors from human cord blood can be induced to proliferate and/or differentiate in response to the mpl signal by providing additional signals via a combination of growth factors. These findings are relevant for the eventual clinical application of CID-regulated cell therapy.
Collapse
Affiliation(s)
- Robert E Richard
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | |
Collapse
|
11
|
Pick M, Eldor A, Grisaru D, Zander AR, Shenhav M, Deutsch VR. Ex vivo expansion of megakaryocyte progenitors from cryopreserved umbilical cord blood. A potential source of megakaryocytes for transplantation. Exp Hematol 2002; 30:1079-87. [PMID: 12225800 DOI: 10.1016/s0301-472x(02)00884-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Umbilical cord blood (CB) provides an alternative source of hematopoietic progenitor cells for transplantation; however, prolonged thrombocytopenia remains a major obstacle due to the low numbers of megakaryocyte progenitor (Mk-prog) cells and their subsequent delayed engraftment. In this study, we improved techniques for enrichment, cryopreservation, and ex vivo expansion of Mk-prog cells from CB. MATERIALS AND METHODS CB mononuclear cells (MNC) were isolated and Mk-prog enriched by sedimentation on gelatin followed by centrifugation with Ficoll-Hypaque and cryopreserved. The capacity of MNC to produce Mk-prog cells, assessment of CD34(+) and Mk-prog expansion in liquid culture, and analysis of the cell populations by flow cytometry were studied in cryopreserved separated CB and compared to whole CB and freshly separated samples. RESULTS Excellent viability of greater than 85% was maintained after cryopreservation of separated CB. The number of colony-forming Mk-prog, myeloid, and erythroid progenitor cells did not decrease with cryopreservation. Flow cytometric analysis of cryopreserved cells revealed significant removal of the residual red blood cells while maintaining complete recovery of CD34(+), CD41(+) (Mk), myeloid, and T and B cells compared to noncryopreserved CB cells. There was no difference in the ability of separated cryopreserved MNC CB cells to be expanded in short-term liquid cultures. CONCLUSIONS The conditions defined here for cryopreservation of gelatin/Ficoll-Hypaque separated CB, followed by ex vivo expansion of MNC, allowed complete recovery of proliferating CD41(+), CD34(+), Mk-prog cells, and other hematopoietic progenitors. Mk-prog cell expansion just before the scheduled transplantation is easily applicable by this technically simple and economical procedure that requires only an aliquot of red cell cell-depleted MNC to be separated from the CB unit before cryopreservation.
Collapse
Affiliation(s)
- Marjorie Pick
- The Hematology Institute, Tel-Aviv Sourasky Medical Center, The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
12
|
Madlambayan GJ, Rogers I, Casper RF, Zandstra PW. Controlling culture dynamics for the expansion of hematopoietic stem cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:481-92. [PMID: 11522231 DOI: 10.1089/15258160152509091] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ex vivo expansion of hematopoietic stem cells (HSCs) is the subject of intense commercial and academic interest due to the potential of HSCs to be a renewable source of material for cellular therapeutics. Unfortunately, because methodologies have not yet been developed to grow clinically relevant numbers of HSCs (or their derivatives) consistently, the potential of this technology is limited. Manipulation of the in vitro culture microenvironment, primarily through cytokine supplementation, has been the predominant approach in studies attempting to expand primary human HSC numbers in vitro. While promising results have been obtained, it is becoming clear that novel methods must be developed before cellular therapies using these stem cells can become routine. Ideally, bioprocesses must be designed to target specifically the growth of stem cell populations while incorporating positive and negative feedback from potentially dynamic mature and maturing cell populations. The product of these culture systems should consist of not only HSCs, but also of cells that allow the engraftment of HSCs and, ideally, cells responsible for the immediate or accelerated functional support of patients. Development of such "designer transplants" will require combining optimal culture conditions capable of amplifying HSC numbers with novel approaches for finely controlling the number, functional capabilities, and characteristics of potentially therapeutic cells in these very complex cell culture systems.
Collapse
Affiliation(s)
- G J Madlambayan
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|