1
|
Qian X, Tong M, Zhang T, Li Q, Hua M, Zhou N, Zeng W. IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses. Protein Cell 2025; 16:188-210. [PMID: 38752989 PMCID: PMC11892005 DOI: 10.1093/procel/pwae030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 03/11/2025] Open
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meiyi Tong
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Hua
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Nan Zhou
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
2
|
Nakanishi M, Tamagawa-Mineoka R, Nishigaki H, Arakawa Y, Ohtsuka S, Katoh N. Role of Siglec-E in MC903-Induced Atopic Dermatitis. Exp Dermatol 2025; 34:e70064. [PMID: 39967561 DOI: 10.1111/exd.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Atopic dermatitis (AD) is a common skin disease. Although AD pathogenesis has been widely researched, inhibitory mechanisms in AD are still unclear. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors recognising sialic acids; most Siglecs work as inhibitory receptors. Among Siglecs, Siglec-E is expressed on dendritic cells (DCs) and eosinophils, important immune cells in AD. Although Siglec-E inhibits Type 1 inflammatory diseases, how it influences AD is unknown. Thus, we investigated the role of Siglec-E in AD mouse model by using Siglec-E knockout (KO) mice. We demonstrated that Siglec-E attenuated AD-like inflammation of mice caused by topical application of MC903 on ear skin (MC903-induced AD). To reveal the role of Siglec-E in MC903-induced AD, we focused on Siglec-E on DCs and eosinophils. We first showed that Sigle-E was expressed on cutaneous DCs and migratory DCs of draining lymph nodes. Moreover, OX40L expression on cutaneous DCs was reduced in the presence of Siglec-E. In vitro experiments using cultured spleen DCs (SpDCs), highly expressing Siglec-E, revealed that IL-33 was involved in the induction of Siglec-E and confirmed that Siglec-E inhibited OX40L expression on SpDCs induced by IL-33. Moreover, CD4+ T cell-SpDC coculture revealed that Siglec-E inhibited Th2 polarisation under IL-33 stimulation. We finally revealed that Siglec-E was expressed on eosinophils and reduced the eosinophils infiltration to the MC903-treated ear skin with the suppression of CD49d, a necessary integrin for eosinophil migration to skin tissue [1], expression on eosinophils. These findings elucidated the inhibitory role of Siglec-E in MC903-induced AD.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/immunology
- Mice
- Eosinophils/metabolism
- Mice, Knockout
- Dendritic Cells/metabolism
- Disease Models, Animal
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Mice, Inbred C57BL
- Skin
- Interleukin-33/metabolism
Collapse
Affiliation(s)
- Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratory for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- North Campus, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Weidinger S, Novak N. Hand eczema. Lancet 2024; 404:2476-2486. [PMID: 39615508 DOI: 10.1016/s0140-6736(24)01810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 12/16/2024]
Abstract
Hand eczema is a highly prevalent skin disease and one of the most common work-related disorders. In up to two-thirds of individuals affected by hand eczema, the disease becomes chronic and results in substantial personal and occupational disability. Manifestations of chronic hand eczema vary in severity and appearance over time, and people with eczema typically experience itch, pain, and a burning sensation. The pathophysiology of chronic hand eczema is multifactorial. Major risk factors are current or past atopic dermatitis and excessive or prolonged exposure to irritants or allergens. Based on the suspected main causes, chronic hand eczema is commonly classified into irritant, allergic, and atopic hand eczema. Diagnosis and assessment can be complex, and management is often challenging. Strategies include structured education, avoidance of trigger factors, primary to tertiary prevention, topical anti-inflammatory treatment with glucocorticosteroids, calcineurin inhibitors, or januskinase inhibitors, phototherapy, systemic retinoids, and off-label use of immunosuppressive drugs. Topical and systemic immunomodulatory therapies approved for atopic dermatitis could be used in severe atopic hand eczema and some of them are under clinical development for chronic hand eczema. Additional research is needed to better understand chronic hand eczema subtypes and underlying mechanisms, and the comparative effectiveness and safety of therapies. This Review combines established knowledge with ongoing changes in our understanding of the disease and their implications for prevention, management, and future research.
Collapse
Affiliation(s)
- Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Natalija Novak
- Center for Skin Diseases, Clinic for Dermatology and Allergy, Bonn, Germany.
| |
Collapse
|
4
|
Rizzi A, Li Pomi F, Inchingolo R, Viola M, Borgia F, Gangemi S. Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives. Biomedicines 2024; 12:2765. [PMID: 39767672 PMCID: PMC11673798 DOI: 10.3390/biomedicines12122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the world, approximately 1% of the population suffers from chronic spontaneous urticaria (CSU), burdening patients' quality of life and challenging clinicians in terms of treatment. Recent scientific evidence has unveiled the potential role of a family of molecules known as "alarmins" in the pathogenesis of CSU. Methods: Papers focusing on the potential pathogenetic role of alarmins in CSU with diagnostic (as biomarkers) and therapeutic implications, in English and published in PubMed, Scopus, Web of Science, as well as clinical studies registered in ClinicalTrials.gov and the EudraCT Public website, were reviewed. Results: The epithelial-derived alarmins thymic stromal lymphopoietin and IL-33 could be suitable diagnostic and prognostic biomarkers and possible therapeutic targets in CSU. The evidence on the role of non-epithelial-derived alarmins (heat shock proteins, S-100 proteins, eosinophil-derived neurotoxin, β-defensins, and acid uric to high-density lipoproteins ratio) is more heterogeneous and complex. Conclusions: More homogeneous studies on large cohorts, preferably supported by data from international registries, will be able to elucidate the intriguing and complex pathogenetic world of CSU.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Inchingolo
- UOC Pneumologia, Dipartimento Neuroscienze, Organi di Senso e Torace; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Marinella Viola
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
5
|
Nakanishi S, Hasegawa T, Maeno K, Motoyama A, Denda M. OBP2A regulates epidermal barrier function and protects against cytotoxic small hydrophobic molecules. iScience 2024; 27:111093. [PMID: 39502293 PMCID: PMC11536036 DOI: 10.1016/j.isci.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
The skin is constantly exposed to environmental sensory stimuli, which may include harmful volatiles and small hydrophobic molecules. However, the skin's protective mechanism against the latter agents is unclear. Here, we demonstrate that odorant binding protein 2A (OBP2A) protects epidermal keratinocytes against cytotoxic small hydrophobic molecules. OBP2A is mainly expressed in human epidermal keratinocytes. Cellular resistance to cytotoxic aldehyde and lipids was reduced in keratinocytes when OBP2A was silenced. Furthermore, silencing of OBP2A in a three-dimensional epidermal equivalent model resulted in impairment of epidermal barrier function. Inhibition of OBP2A caused disruption of keratinocyte lipid metabolism and induced endoplasmic reticulum stress. OBP2A expression was markedly decreased in the epidermis of atopic dermatitis lesional skin. In addition, interleukin-13 suppressed the expression of OBP2A in keratinocytes. Overall, our findings suggest that OBP2A regulates epidermal barrier function and contributes to protection of the skin against harmful small hydrophobic molecules.
Collapse
Affiliation(s)
| | | | | | - Akira Motoyama
- Shiseido Global Innovation Center, Yokohama 220-0011, Japan
| | - Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo 164-8525, Japan
| |
Collapse
|
6
|
Criado PR, Miot HA, Bueno-Filho R, Ianhez M, Criado RFJ, de Castro CCS. Update on the pathogenesis of atopic dermatitis. An Bras Dermatol 2024; 99:895-915. [PMID: 39138034 PMCID: PMC11551276 DOI: 10.1016/j.abd.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Atopic dermatitis is a chronic, recurrent, and multifactorial skin-mucosal manifestation resulting from the interaction between elements mainly associated with the skin barrier deficit, the homeostasis of the immune response, neurological aspects, and patterns of reactivity to environmental antigens, which are established in genetically predisposed individuals. In addition to the skin, atopic diathesis involves other organs such as the airways (upper and lower), eyes, digestive tract, and neuropsychiatric aspects, which inflict additional morbidity on the dermatological patient. The different phenotypes of the disease fundamentally depend on the participation of each of these factors, in different life circumstances, such as age groups, occupational exposure patterns, physical activity, pollution, genetic load, and climatic factors. A better understanding of the complexity of its pathogenesis allows not only the understanding of therapeutic targets but also how to identify preponderant elements that mediate disease activity in each circumstance, for selecting the best treatment strategies and mitigation of triggering factors. This narrative review presents an update on the pathogenesis of atopic dermatitis, especially aimed at understanding the clinical manifestations, the main disease phenotypes and the context of available therapeutic strategies.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Faculdade de Ciências Médicas de Santos (Centro Universitário Lusíada), Santos, SP, Brazil.
| | - Hélio Amante Miot
- Department of Dermatology, Faculdade de Medicina de Botucatu, Universidade do Estado de São Paulo, Botucatu, SP, Brazil
| | - Roberto Bueno-Filho
- Division of Dermatology, Department of Internal Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayra Ianhez
- Department of Dermatology, Hospital de Doenças Tropicais de Goiás, Goiânia, GO, Brazil
| | - Roberta Fachini Jardim Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Alergoskin Alergia e Dermatologia, UCARE Center and ADCARE, Santo André, SP, Brazil
| | - Caio César Silva de Castro
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil; Hospital de Dermatologia Sanitária do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Kim GI, Jeong HY, Kim IS, Lee SH, Kim SH, Moon YS, Cho KK. Interconnection of the Gut-Skin Axis in NC/Nga Mouse with Atopic Dermatitis: Effects of the Three Types of Bifidobacterium bifidum CBT-BF3 (Probiotics, Postbiotics, and Cytosine-Phosphate-Guanine Oligodeoxynucleotide) on T Cell Differentiation and Gut Microbiota. Food Sci Anim Resour 2024; 44:1417-1439. [PMID: 39554831 PMCID: PMC11564143 DOI: 10.5851/kosfa.2024.e100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024] Open
Abstract
The gut microbiota is an immune system regulator in the gut-skin axis. Dysfunctional interactions between the gut microbiota and the gut immune system can lead to the development of skin diseases such as atopic dermatitis (AD). Probiotics and postbiotics positively affect the balance of the gut microbiota, immune regulation, protection against pathogens, and barrier integrity. This study investigated the effects of probiotic Bifidobacterium bifidum, postbiotic B. bifidum (heat-killed), and cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) on the gut microbiota and T cell differentiation in NC/Nga mice induced with AD. 2,4-Dinitrochlorobenzene-induced AD mice had an increased SCORing atopic dermatitis-index and increased mRNA expression levels of Th2 and Th17 cell transcription factors and cytokines, and thymic stromal lymphopoietin (TSLP) cytokine in their mesenteric lymph nodes (mLNs; p<0.05). However, oral administration of the three types of B. bifidum (probiotics, postbiotics, CpG ODN) to AD mice decreased the mRNA expression levels of Th2 and Th17 cell transcription factors and cytokines as well as TSLP cytokine. They increased the mRNA expression levels of regulatory T (Treg) cell transcription factor and cytokine, galectin-9, and filaggrin genes (p<0.05). These effects were more noticeable in the mLNs than in the spleen. In addition, AD mice showed a decrease in Faecalibacterium prausnitzii, Roseburia spp., Leuconostoc citreum, Weissella cibaria, and Weissella koreensis (p<0.05). However, oral administration of the three types of B. bifidum increased Bacteroides spp., Bifidobacterium spp., F. prausnitzii, and Roseburia spp. (p<0.05).
Collapse
Affiliation(s)
- Gwang Il Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Hwa Yeong Jeong
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Seung Ho Lee
- Department of Nano-Bioengineering, Incheon
National University, Incheon 22012, Korea
| | - Sung Hak Kim
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience &
Integrated Biotechnology, Gyeongsang National University,
Jinju 52725, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| |
Collapse
|
8
|
Battut L, Leveque E, Valitutti S, Cenac N, Dietrich G, Espinosa E. IL-33-primed human mast cells drive IL-9 production by CD4 + effector T cells in an OX40L-dependent manner. Front Immunol 2024; 15:1470546. [PMID: 39416773 PMCID: PMC11479898 DOI: 10.3389/fimmu.2024.1470546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-33 (IL-33) is an alarmin released by epithelial cells in response to tissue damage. It activates resident immune sentinel cells, which then produce signals commonly associated with type 2 immune responses, particularly affecting infiltrating antigen-specific T cells. Given that mast cells (MCs) are a primary target of IL-33 and can shape T helper (Th) cell responses, we investigated the effect of IL-33 priming on the ability of MCs to influence Th cell cytokine production. To examine the Th cell/MC interaction, we developed human primary MC/memory CD4+ T-cell coculture systems involving both cognate and non-cognate interactions. Our results demonstrated that IL-33-primed MCs, whether as bystander cells cocultured with activated effector T cells or functioning as antigen-presenting cells, promoted IL-9 and increased IL-13 production in Th cells via an OX40L-dependent mechanism. This indicates that MCs sense IL-33-associated danger, prompting them to direct Th cells to produce the key type 2 effector cytokines IL-9 and IL-13.
Collapse
Affiliation(s)
- Louise Battut
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Edouard Leveque
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
| | - Salvatore Valitutti
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, CHU Toulouse, Toulouse, France
| | - Nicolas Cenac
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Gilles Dietrich
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Eric Espinosa
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| |
Collapse
|
9
|
Hutchins T, Sanyal A, Esencan D, Lafyatis R, Jacobe H, Torok KS. Characterization of Endothelial Cell Subclusters in Localized Scleroderma Skin with Single-Cell RNA Sequencing Identifies NOTCH Signaling Pathway. Int J Mol Sci 2024; 25:10473. [PMID: 39408800 PMCID: PMC11477421 DOI: 10.3390/ijms251910473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease characterized by inflammation and fibrosis, leading to severe cutaneous manifestations such as skin hardening, tightness, discoloration, and other textural changes that may result in disability. While LS shares similar histopathologic features and immune-fibroblast interactions with systemic sclerosis (SSc), its molecular mechanisms remain understudied. Endothelial cells (EC) are known to play a crucial role in SSc but have not been investigated in LS. Single-cell RNA sequencing (scRNA-seq) now allows for detailed examination of this cell type in the primary organ of interest for scleroderma, the skin. In this study, we analyzed skin-isolated cells from 27 LS patients (pediatric and adult) and 17 healthy controls using scRNA-seq. Given the known role of EC damage as an initial event in SSc and the histologic and clinical skin similarities to LS, we focused primarily on endothelial cells. Our analysis identified eight endothelial subclusters within the dataset, encompassing both disease and healthy samples. Interaction analysis revealed that signaling from diseased endothelial cells was predicted to promote fibrosis through SELE interaction with FGFBP1 and other target genes. We also observed high levels of JAG in arterial endothelial cells and NOTCH in capillary endothelial cells, indicating the activation of a signaling pathway potentially responsible for epidermal abnormalities and contributing to LS pathogenesis. In summary, our scRNA-seq analysis identified potential disease-propagating endothelial cell clusters with upregulated pathways in LS skin, highlighting their importance in disease progression.
Collapse
Affiliation(s)
- Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Deren Esencan
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S. Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| |
Collapse
|
10
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
11
|
Kenney HM, Battaglia J, Herman K, Beck LA. Atopic dermatitis and IgE-mediated food allergy: Common biologic targets for therapy and prevention. Ann Allergy Asthma Immunol 2024; 133:262-277. [PMID: 38908432 DOI: 10.1016/j.anai.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To highlight common mechanistic targets for the treatment of atopic dermatitis (AD) and IgE-mediated food allergy (IgE-FA) with potential to be effective for both diseases and prevent atopic progression. DATA SOURCES Data sources were PubMed searches or National Clinical Trials (NCT)-registered clinical trials related to AD, IgE-FA, and other atopic conditions, especially focused on the pediatric population. STUDY SELECTIONS Human seminal studies and/or articles published in the past decade were emphasized with reference to preclinical models when relevant. NCT-registered clinical trials were filtered by inclusion of pediatric subjects younger than 18 years with special focus on children younger than 12 years as a critical period when AD and IgE-FA diseases may often be concurrent. RESULTS AD and IgE-FA share several pathophysiologic features, including epithelial barrier dysfunction, innate and adaptive immune abnormalities, and microbial dysbiosis, which may be critical for the clinical progression between these diseases. Revolutionary advances in targeted biologic therapies have shown the benefit of inhibiting type 2 immune responses, using dupilumab (anti-interleukin-4Rα) or omalizumab (anti-IgE), to potentially reduce symptom burden for both diseases in pediatric populations. Although the potential for biologics to promote disease remission (AD) or sustained unresponsiveness (IgE-FA) remains unclear, the refinement of biomarkers to predict infants at risk for atopic disorders provides promise for prevention through timely intervention. CONCLUSION AD and IgE-FA exhibit common features that may be leveraged to develop biologic therapeutic strategies to treat both conditions and even prevent atopic progression. Future studies should be designed with consistent age stratification in the pediatric population and standardized regimens of adjuvant oral immunotherapy or dose escalation (IgE-FA) to improve cross-study interpretation.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jennifer Battaglia
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Katherine Herman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Division of Allergy and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
12
|
Law BF, Lin CC, Hettick JM. Human keratinocyte response to 4,4'-methylene diphenyl diisocyanate-glutathione conjugate exposure. Xenobiotica 2024; 54:749-758. [PMID: 39235803 PMCID: PMC11951212 DOI: 10.1080/00498254.2024.2401493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Workplace exposure to diisocyanates like 4,4'-methylene diphenyl diisocyanate can cause occupational asthma (MDI-OA), and the underlying biological pathways are still being researched.Although uncertainty remains, evidence supports the hypothesis that dermal exposure to MDI plays an important role in the development of MDI-OA.Gene expression, proteomics, and informatics tools were utilised to characterise changes in expression of RNA and protein in cultured human HEKa keratinocyte cells following exposure to conjugates of MDI with glutathione (MDI-GSH).RT-qPCR analysis using a panel of 39 candidate primers demonstrated 9 candidate genes upregulated and 30 unchanged.HPLC-MS/MS analysis of HEKa cell lysate identified 18 540 proteins across all samples 60 proteins demonstrate statistically significant differential expression in exposed cells, some of which suggest activation of immune and inflammatory pathways.The results support the hypothesis that dermal exposures have the potential to play an important role in the development of MDI-OA. Furthermore, proteomic and gene expression data suggest multiple immune (adaptive and innate) and inflammatory pathways may be involved in the development of MDI-OA.
Collapse
Affiliation(s)
- Brandon F Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Justin M Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
13
|
Melhem H, Niess JH. Eosinophilic Esophagitis and Inflammatory Bowel Disease: What Are the Differences? Int J Mol Sci 2024; 25:8534. [PMID: 39126102 PMCID: PMC11313654 DOI: 10.3390/ijms25158534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Eosinophilic esophagitis (EoE) and inflammatory bowel disease (IBD) are chronic inflammatory disorders of the gastrointestinal tract, with EoE predominantly provoked by food and aeroallergens, whereas IBD is driven by a broader spectrum of immunopathological and environmental triggers. This review presents a comprehensive comparison of the pathophysiological and therapeutic strategies for EoE and IBD. We examine the current understanding of their underlying mechanisms, particularly the interplay between environmental factors and genetic susceptibility. A crucial element in both diseases is the integrity of the epithelial barrier, whose disruption plays a central role in their pathogenesis. The involvement of eosinophils, mast cells, B cells, T cells, dendritic cells, macrophages, and their associated cytokines is examined, highlighting the importance of targeting cytokine signaling pathways to modulate immune-epithelial interactions. We propose that advances in computation tools will uncover the significance of G-protein coupled receptors (GPCRs) in connecting immune and epithelial cells, leading to novel therapies for EoE and IBD.
Collapse
Affiliation(s)
- Hassan Melhem
- Gastroenterology Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Gastroenterology Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, 4002 Basel, Switzerland
| |
Collapse
|
14
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Isidoro-Ayza M, Klein BS. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 2024; 385:194-200. [PMID: 38991070 DOI: 10.1126/science.adn5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
16
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
17
|
Shoda T, Taylor RJ, Sakai N, Rothenberg ME. Common and disparate clinical presentations and mechanisms in different eosinophilic gastrointestinal diseases. J Allergy Clin Immunol 2024; 153:1472-1484. [PMID: 38555071 PMCID: PMC11162323 DOI: 10.1016/j.jaci.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Eosinophilic gastrointestinal diseases (EGIDs) are a group of diseases characterized by selective eosinophil infiltration of the gastrointestinal (GI) tract in the absence of other causes of eosinophilia. These diseases are generally driven by type 2 inflammation, often in response to food allergen exposure. Among all EGIDs, the clinical presentation often includes a history of atopic disease with a variety of GI symptoms. EGIDs are traditionally separated into eosinophilic esophagitis (EoE) and non-EoE EGIDs. EoE is relatively better understood and now associated with clinical guidelines and 2 US Food and Drug Administration-approved treatments, whereas non-EoE EGIDs are rarer and less well-understood diseases without US Food and Drug Administration-approved treatments. Non-EoE EGIDs are further subclassified by the area of the GI tract that is involved; they comprise eosinophilic gastritis, eosinophilic enteritis (including eosinophilic duodenitis), and eosinophilic colitis. As with other GI disorders, the disease presentations and mechanisms differ depending on the involved segment of the GI tract; however, the differences between EoE and non-EoE EGIDs extend beyond which GI tract segment is involved. The aim of this article is to summarize the commonalities and differences between the clinical presentations and disease mechanisms for EoE and non-EoE EGIDs.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard J Taylor
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Naoya Sakai
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
18
|
Feng X, Zhan H, Sokol CL. Sensory neuronal control of skin barrier immunity. Trends Immunol 2024; 45:371-380. [PMID: 38653601 PMCID: PMC11102800 DOI: 10.1016/j.it.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.
Collapse
Affiliation(s)
- Xinyi Feng
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Haoting Zhan
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front Med (Lausanne) 2024; 11:1342176. [PMID: 38590314 PMCID: PMC10999685 DOI: 10.3389/fmed.2024.1342176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Chisa Nakashima
- Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | | |
Collapse
|
20
|
Saadalla A, Jacela J, Poll R, Slev P. Immunoassay Testing of Alpha-Gal Specific Immunoglobulin-E: Data from a National Reference Laboratory. J Appl Lab Med 2024; 9:262-272. [PMID: 38424720 DOI: 10.1093/jalm/jfad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Immunoassay measurements of serum alpha-gal (AG) specific IgE (sIgE) enable antibody detection and quantification with high sensitivity and specificity and are essential for AG syndrome diagnosis and patient management. We here present and analyze results from over 15 000 patient serum samples tested using the ImmunoCAP (Thermo/Phadia) assay. METHODS AG-sIgE levels and positivity rates were correlated to patient age, gender, geographic location, repeat testing results, sIgE levels to co-tested red meat whole allergen extracts, and Rocky Mountain spotted fever (RMSF) serology performed on a subset of patient samples. RESULTS Of the tested samples, 36.7% contained detectable (>0.1 KUA/L) AG-sIgE. Antibody levels were higher in patients of older age, in samples submitted from lower midwestern and southern states, and during the June-December period of the year. Specific IgE to co-tested red meat whole allergens showed moderate to strong correlation to AG-sIgE and were of lower levels. Samples with positive RMSF IgG titers (≥1:64) were of overall higher AG-IgE levels. CONCLUSION Findings are consistent with the role of lone star ticks in AG syndrome pathogenesis. Levels of measured sIgE to AG are higher than co-tested sIgE to red meat whole allergen, consistent with the improved diagnostic performance of component-resolved testing.
Collapse
Affiliation(s)
- Abdulrahman Saadalla
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Jessica Jacela
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Rick Poll
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Patricia Slev
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
21
|
Dobrican-Băruța CT, Deleanu DM, Muntean IA, Nedelea I, Bălan RG, Filip GA, Procopciuc LM. The Alarmin Triad-IL-25, IL-33, and TSLP-Serum Levels and Their Clinical Implications in Chronic Spontaneous Urticaria. Int J Mol Sci 2024; 25:2026. [PMID: 38396704 PMCID: PMC10889490 DOI: 10.3390/ijms25042026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
This study delves into the critical role of alarmins in chronic spontaneous urticaria (CSU), focusing on their impact on disease severity and the quality of life (QoL) of patients. We investigated the alterations in alarmin levels in CSU patients and their correlations with the Urticaria Activity Score (UAS7) and the Dermatology Life Quality Index (DLQI). We analyzed serum levels of interleukin-25 (IL-25), interleukin-33 (IL-33), and thymic stromal lymphopoietin (TSLP) in 50 CSU patients, comparing these to 38 healthy controls. The study examined the relationship between alarmin levels and clinical outcomes, including disease severity and QoL. Elevated levels of IL-33 and TSLP in CSU patients (p < 0.0001) highlight their potential role in CSU pathogenesis. Although IL-25 showed higher levels in CSU patients, this did not reach statistical significance (p = 0.0823). Crucially, IL-33's correlation with both UAS7 and DLQI scores underscores its potential as a biomarker for CSU diagnosis and severity assessment. Of the alarmins analyzed, IL-33 emerges as particularly significant for further exploration as a diagnostic and prognostic biomarker in CSU. Its substantial correlation with disease severity and impact on QoL makes it a compelling candidate for future research, potentially serving as a target for therapeutic interventions. Given these findings, IL-33 deserves additional investigation to confirm its role and effectiveness as a biomarker and therapeutic target in CSU.
Collapse
Affiliation(s)
- Carmen-Teodora Dobrican-Băruța
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (C.-T.D.-B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj Napoca, Romania
| | - Diana Mihaela Deleanu
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (C.-T.D.-B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj Napoca, Romania
| | - Ioana Adriana Muntean
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (C.-T.D.-B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj Napoca, Romania
| | - Irena Nedelea
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (C.-T.D.-B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj Napoca, Romania
| | - Radu-Gheorghe Bălan
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (C.-T.D.-B.)
| | - Gabriela Adriana Filip
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Biochemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
22
|
Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol 2024; 132:187-195. [PMID: 37758055 DOI: 10.1016/j.anai.2023.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide, affecting 20% of children and 5% of adults. One critical component in the pathophysiology of AD is the epidermal skin barrier, with its outermost layer, the stratum corneum (SC), conferring biochemical properties that enable resilience against environmental threats and maintain homeostasis. The skin barrier may be conceptualized as a key facilitator of complex interactions between genetics, host immunity, the cutaneous microbiome, and environmental exposures. The key genetic risk factor for AD development and persistence is a loss-of-function mutation in FLG, with recent advances in genomics focusing on rare variant discovery, establishment of pathogenic mechanisms, and exploration of the role of other epidermal differentiation complex gene variants in AD. Aberrant type 2 inflammatory responses down-regulate the transcription of key epidermal barrier genes, alter the composition of SC lipids, and induce further injury through a neurocutaneous feedback loop and the itch-scratch cycle. The dysbiotic epidermis exhibits reduced bacterial diversity and enhanced colonization with Staphylococcus and Malassezia species, which contribute to both direct barrier injury through the action of bacterial toxins and perpetuation of the inflammatory cascades. Enhanced understanding of each of the pathogenic mechanisms underpinning barrier disruption has led to the development of novel topical and systemic molecules, including interleukin (IL)-4Ra, IL-13, PDE4, and Janus-associated kinase inhibitors, whose clinical effectiveness exceeds conventional treatment modalities. In this narrative review, we aim to summarize the current understanding of the above-mentioned pathophysiological and therapeutic mechanisms, with a focus on the genetic, cellular, and molecular mechanisms underpinning AD development.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Lee SH, Kang B, Kamenyeva O, Ferreira TR, Cho K, Khillan JS, Kabat J, Kelsall BL, Sacks DL. Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non-healing cutaneous leishmaniasis. Nat Commun 2023; 14:7852. [PMID: 38030609 PMCID: PMC10687111 DOI: 10.1038/s41467-023-43588-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Hua X, Blosch CD, Dorsey H, Ficaro MK, Wallace NL, Hsung RP, Dai J. Epidermal Loss of RORα Enhances Skin Inflammation in a MC903-Induced Mouse Model of Atopic Dermatitis. Int J Mol Sci 2023; 24:10241. [PMID: 37373387 DOI: 10.3390/ijms241210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease featuring skin barrier dysfunction and immune dysregulation. Previously, we reported that the retinoid-related orphan nuclear receptor RORα was highly expressed in the epidermis of normal skin. We also found that it positively regulated the expression of differentiation markers and skin barrier-related genes in human keratinocytes. In contrast, epidermal RORα expression was downregulated in the skin lesions of several inflammatory skin diseases, including AD. In this study, we generated mouse strains with epidermis-specific Rora ablation to understand the roles of epidermal RORα in regulating AD pathogenesis. Although Rora deficiency did not cause overt macroscopic skin abnormalities at the steady state, it greatly amplified MC903-elicited AD-like symptoms by intensifying skin scaliness, increasing epidermal hyperproliferation and barrier impairment, and elevating dermal immune infiltrates, proinflammatory cytokines, and chemokines. Despite the normal appearance at the steady state, Rora-deficient skin showed microscopic abnormalities, including mild epidermal hyperplasia, increased TEWL, and elevated mRNA expression of Krt16, Sprr2a, and Tslp genes, indicating subclinical impairment of epidermal barrier functions. Our results substantiate the importance of epidermal RORα in partially suppressing AD development by maintaining normal keratinocyte differentiation and skin barrier function.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Conrad Dean Blosch
- Biomedical Research Model Services, University of Wisconsin, Madison, WI 53705, USA
| | - Hannah Dorsey
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Maria K Ficaro
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Nicole L Wallace
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard P Hsung
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Dai
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
25
|
Tsuji G, Hashimoto-Hachiya A, Yumine A, Takemura M, Kido-Nakahara M, Ito T, Yamamura K, Nakahara T. PDE4 inhibition by difamilast regulates filaggrin and loricrin expression via keratinocyte proline-rich protein in human keratinocytes. J Dermatol Sci 2023:S0923-1811(23)00114-7. [PMID: 37156706 DOI: 10.1016/j.jdermsci.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Difamilast, a topical phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective for treating atopic dermatitis (AD), but the molecular mechanism involved is unclear. Since skin barrier dysfunction including reduced expression of filaggrin (FLG) and loricrin (LOR) contributes to AD development, difamilast treatment may be able to improve this dysfunction. PDE4 inhibition increases transcriptional activity of cAMP-responsive element binding protein (CREB). Therefore, we hypothesized that difamilast may affect FLG and LOR expression via CREB in human keratinocytes. OBJECTIVE To elucidate the mechanism by which difamilast regulates FLG and LOR expression via CREB in human keratinocytes. METHODS We analyzed normal human epidermal keratinocytes (NHEKs) treated with difamilast. RESULTS We observed increases of intracellular cAMP levels and CREB phosphorylation in difamilast (5 μM)-treated NHEKs. Next, we found that difamilast treatment increased mRNA and protein levels of FLG and LOR in NHEKs. Since reduced expression of keratinocyte proline-rich protein (KPRP) is reported to be involved in skin barrier dysfunction in AD, we examined KPRP expression in difamilast-treated NHEKs. We found that difamilast treatment increased mRNA and protein levels of KPRP in NHEKs. Furthermore, KPRP knockdown using siRNA transfection abolished the upregulation of FLG and LOR in difamilast-treated NHEKs. Finally, CREB knockdown canceled the upregulation of FLG, LOR, and KPRP in difamilast-treated NHEKs, indicating that PDE4 inhibition by difamilast treatment positively regulates FLG and LOR expression via the CREB-KPRP axis in NHEKs. CONCLUSION These findings may provide further guidance for therapeutic strategies in the treatment of AD using difamilast.
Collapse
Affiliation(s)
- Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan.
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Ayako Yumine
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Yamamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
26
|
Lee SH, Kang B, Kamenyeva O, Ferreira TR, Cho K, Khillan JS, Kabat J, Kelsall BL, Sacks DL. Dermis resident macrophages orchestrate localized ILC2-eosinophil circuitries to maintain their M2-like properties and promote non-healing cutaneous leishmaniasis. RESEARCH SQUARE 2023:rs.3.rs-2644705. [PMID: 37066418 PMCID: PMC10104262 DOI: 10.21203/rs.3.rs-2644705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tissue-resident macrophages (TRMs) are critical for tissue homeostasis/repair. We previously showed that dermal TRMs produce CCL24 (eotaxin2) which mediates their interaction with IL-4 producing eosinophils, required to maintain their number and M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we unveil another layer of TRM self-maintenance involving their production of TSLP, an alarmin typically characterized as epithelial cell-derived. Both TSLP signaling and IL-5+ innate lymphoid cell 2 (ILC2s) were shown to maintain the number of dermal TRMs and promote infection. Single cell RNA sequencing identified the dermal TRMs as the sole source of TSLP and CCL24. Development of Ccl24-cre mice permitted specific labeling of dermal TRMs, as well as interstitial TRMs from other organs. Genetic ablation of TSLP from dermal TRMs reduced the number of dermal TRMs, and disease was ameliorated. Thus, by orchestrating localized type 2 circuitries with ILC2s and eosinophils, dermal TRMs are self-maintained as a replicative niche for L. major.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian L. Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
NOD2 Agonism Counter-Regulates Human Type 2 T Cell Functions in Peripheral Blood Mononuclear Cell Cultures: Implications for Atopic Dermatitis. Biomolecules 2023; 13:biom13020369. [PMID: 36830738 PMCID: PMC9953199 DOI: 10.3390/biom13020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is known as a skin disease; however, T cell immunopathology found in blood is associated with its severity. Skin Staphylococcus aureus (S. aureus) and associated host-pathogen dynamics are important to chronic T helper 2 (Th2)-dominated inflammation in AD, yet they remain poorly understood. This study sought to investigate the effects of S. aureus-derived molecules and skin alarmins on human peripheral blood mononuclear cells, specifically testing Th2-type cells, cytokines, and chemokines known to be associated with AD. We first show that six significantly elevated Th2-related chemokine biomarkers distinguish blood from adult AD patients compared to healthy controls ex vivo; in addition, TARC/CCL17, LDH, and PDGF-AA/AB correlated significantly with disease severity. We then demonstrate that these robust AD-associated biomarkers, as well as associated type 2 T cell functions, are readily reproduced from healthy blood mononuclear cells exposed to the alarmin TSLP and the S. aureus superantigen SEB in a human in vitro model, including IL-13, IL-5, and TARC secretion as well as OX-40-expressing activated memory T cells. We further show that the agonism of nucleotide-binding oligomerization domain-containing protein (NOD)2 inhibits this IL-13 secretion and memory Th2 and Tc2 cell functional activation while inducing significantly increased pSTAT3 and IL-6, both critical for Th17 cell responses. These findings identify NOD2 as a potential regulator of type 2 immune responses in humans and highlight its role as an endogenous inhibitor of pathogenic IL-13 that may open avenues for its therapeutic targeting in AD.
Collapse
|
28
|
Underwood B, Troutman TD, Schwartz JT. Breaking down the complex pathophysiology of eosinophilic esophagitis. Ann Allergy Asthma Immunol 2023; 130:28-39. [PMID: 36351516 PMCID: PMC10165615 DOI: 10.1016/j.anai.2022.10.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic and progressive immune-mediated disease of the esophagus associated with antigen-driven type 2 inflammation and symptoms of esophageal dysfunction. Our understanding of EoE pathophysiology has evolved since its initial recognition more than 20 years ago and has translated into diagnostic and novel therapeutic approaches that are affecting patient care. The mechanisms underlying disease development and progression are influenced by diverse factors, such as genetics, age, allergic comorbidities, and allergen exposures. Central to EoE pathophysiology is a dysregulated feed-forward cycle that develops between the esophageal epithelium and the immune system. Allergen-induced, type 2-biased immune activation by the esophageal epithelium propagates a cycle of impaired mucosal barrier integrity and allergic inflammation, eventually leading to tissue remodeling and progressive organ dysfunction. Herein, we review the current understanding of fundamental pathophysiological mechanisms contributing to EoE pathogenesis.
Collapse
Affiliation(s)
- Brynne Underwood
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ty D Troutman
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Justin T Schwartz
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
29
|
Vavougios GD, de Erausquin GA, Snyder HM. Type I interferon signaling in SARS-CoV-2 associated neurocognitive disorder (SAND): Mapping host-virus interactions to an etiopathogenesis. Front Neurol 2022; 13:1063298. [PMID: 36570454 PMCID: PMC9771386 DOI: 10.3389/fneur.2022.1063298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Epidemiological, clinical, and radiological studies have provided insights into the phenomenology and biological basis of cognitive impairment in COVID-19 survivors. Furthermore, its association with biomarkers associated with neuroinflammation and neurodegeneration supports the notion that it is a distinct aspect of LongCOVID syndrome with specific underlying biology. Accounting for the latter, translational studies on SARS-CoV-2's interactions with its hosts have provided evidence on type I interferon dysregulation, which is seen in neuroinflammatory and neurodegenerative diseases. To date, studies attempting to describe this overlap have only described common mechanisms. In this manuscript, we attempt to propose a mechanistic model based on the host-virus interaction hypothesis. We discuss the molecular basis for a SARS-CoV-2-associated neurocognitive disorder (SAND) focusing on specific genes and pathways with potential mechanistic implications, several of which have been predicted by Vavougios and their research group. Furthermore, our hypothesis links translational evidence on interferon-responsive gene perturbations introduced by SARS-CoV-2 and known dysregulated pathways in dementia. Discussion emphasizes the crosstalk between central and peripheral immunity via danger-associated molecular patterns in inducing SAND's emergence in the absence of neuroinfection. Finally, we outline approaches to identifying targets that are both testable and druggable, and could serve in the design of future clinical and translational studies.
Collapse
Affiliation(s)
- George D. Vavougios
- Department of Neurology, University of Cyprus, Lefkosia, Cyprus,Department of Respiratory Medicine, University of Thessaly, Larisa, Greece,*Correspondence: George D. Vavougios ;
| | - Gabriel A. de Erausquin
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UTHSA, San Antonio, TX, United States
| | - Heather M. Snyder
- Division of Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, United States
| |
Collapse
|
30
|
Stanbery AG, Shuchi Smita, Jakob von Moltke, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022; 150:1302-1313. [PMID: 35863509 PMCID: PMC9742339 DOI: 10.1016/j.jaci.2022.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.
Collapse
Affiliation(s)
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, Wash
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Wash
| | | | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| |
Collapse
|