1
|
Yu Q, Tang X, Hart T, Homer R, Belperron AA, Bockenstedt LK, Ring A, Nakamura A, Fikrig E. Secretory leukocyte protease inhibitor influences periarticular joint inflammation in B. burgdorferi-infected mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.24.625079. [PMID: 39651186 PMCID: PMC11623497 DOI: 10.1101/2024.11.24.625079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lyme disease, caused by Borrelia burgdorferi, is the most common tick-borne infection in the United States. Arthritis is a major clinical manifestation of infection, and synovial tissue damage has been attributed to the excessive pro-inflammatory responses. The secretory leukocyte protease inhibitor (SLPI) promotes tissue repair and exerts anti-inflammatory effects. The role of SLPI in the development of Lyme arthritis in C57BL/6 mice, which can be infected with B. burgdorferi, but only develop mild joint inflammation, was therefore examined. SLPI-deficient C57BL/6 mice challenged with B. burgdorferi had a higher infection load in the tibiotarsal joints and marked periarticular swelling, compared to infected wild type control mice. The ankle joint tissues of B. burgdorferi-infected SLPI-deficient mice contained significantly higher percentages of infiltrating neutrophils and macrophages. B. burgdorferi-infected SLPI-deficient mice also exhibited elevated serum levels of IL-6, neutrophil elastase, and MMP-8. Moreover, using a recently developed BASEHIT (BActerial Selection to Elucidate Host-microbe Interactions in high Throughput) library, we found that SLPI directly interacts with B. burgdorferi. These data demonstrate the importance of SLPI in suppressing periarticular joint inflammation in Lyme disease.
Collapse
Affiliation(s)
- Qian Yu
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Robert Homer
- Department of Pathology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Alexia A. Belperron
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Linda K. Bockenstedt
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Akira Nakamura
- Divisions of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Chen S, Putnik R, Li X, Diwaker A, Vasconcelos M, Liu S, Gondi S, Zhou J, Guo L, Xu L, Temme S, Bersch K, Hyland S, Yin J, Burstein E, Bahnson BJ, Gildersleeve JC, Grimes CL, Reinecker HC. PGLYRP1-mediated intracellular peptidoglycan detection promotes intestinal mucosal protection. Nat Commun 2025; 16:1864. [PMID: 39984444 PMCID: PMC11845746 DOI: 10.1038/s41467-025-57126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Peptidoglycan recognition proteins (PGLYRPs) are implicated in the control of the intestinal microbiota; however, molecular requirements for peptidoglycan (PGN) binding and receptor signaling mechanisms remain poorly understood. Here we show that PGLYRP1 is a receptor for the disaccharide motif of lysine N-acetylglucosamine N-acetylmuramic tripeptide (GMTriP-K). PGLYRP1 is required for innate immune activation by GMTriP-K but not muramyl dipeptide (MDP). In macrophages, intracellular PGLYRP1 complexes with NOD2 and GEF-H1, both of which are required for GMTriP-K-regulated gene expression. PGLYRP1 localizes to the endoplasmic reticulum and interacts at the Golgi with NOD2 upon GMTriP-K stimulation. PGLYRP1 and dependent gene expression signatures are induced in both mouse intestinal inflammation and human ulcerative colitis. Importantly, PGLYRP1 activation by GMTriP-K can result in the protection of mice from TNBS-induced colitis. Mammalian PGLYRPs can function as intracellular pattern recognition receptors for the control of host defense responses in the intestine.
Collapse
Affiliation(s)
- Shuyuan Chen
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xi Li
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alka Diwaker
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marina Vasconcelos
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Shuzhen Liu
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sudershan Gondi
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Klare Bersch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Stephen Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jianyi Yin
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brian J Bahnson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Hans-Christian Reinecker
- Division of Digestive and Liver Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Kumaresan V, Hung CY, Hermann BP, Seshu J. Role of Dual Specificity Phosphatase 1 (DUSP1) in influencing inflammatory pathways in macrophages modulated by Borrelia burgdorferi lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624562. [PMID: 39605372 PMCID: PMC11601599 DOI: 10.1101/2024.11.20.624562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Borrelia burgdorferi (Bb), the spirochetal agent of Lyme disease, has a large array of lipoproteins that play a significant role in mediating host-pathogen interactions within ticks and vertebrates. Although there is substantial information on the effects of B. burgdorferi lipoproteins (BbLP) on immune modulatory pathways, the application of multi-omics methodologies to decode the transcriptional and proteomic patterns associated with host cell responses induced by lipoproteins in murine bone marrow-derived macrophages (BMDMs) has identified additional effectors and pathways. Single-cell RNA-Seq (scRNA-Seq) performed on BMDMs treated with various concentrations of borrelial lipoproteins revealed macrophage subsets within the BMDMs. Differential expression analysis showed that genes encoding various receptors, type I IFN-stimulated genes, signaling chemokines, and mitochondrial genes are altered in BMDMs in response to lipoproteins. Unbiased proteomics analysis of lysates of BMDMs treated with lipoproteins corroborated several of these findings. Notably, dual specificity phosphatase 1 (Dusp1) gene was upregulated during the early stages of BMDM exposure to BbLP. Pre-treatment with benzylidene-3-cyclohexylamino-1-indanone hydrochloride (BCI), an inhibitor of both DUSP1 and 6 prior to exposure to BbLP, demonstrated that DUSP1 negatively regulates NLRP3-mediated pro-inflammatory signaling and positively regulates the expression of interferon-stimulated genes and those encoding Ccl5, Il1b, and Cd274. Moreover, DUSP1, IkB kinase complex and MyD88 also modulate mitochondrial changes in BMDMs treated with borrelial lipoproteins. These findings advance the potential for exploiting DUSP1 as a therapeutic target to regulate host responses in reservoir hosts to limit survival of B. burgdorferi during its infectious cycle between ticks and mammalian hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX-78249
| | - J. Seshu
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| |
Collapse
|
4
|
Chen S, Putnik R, Li X, Diwaker A, Vasconcelos M, Liu S, Zhou J, Guo L, Xu L, Temme S, Bersch K, Hyland S, Yin J, Burstein E, Gildersleeve JC, Grimes CL, Reinecker HC. PGLYRP-1 mediated intracellular peptidoglycan detection promotes mucosal protection. RESEARCH SQUARE 2024:rs.3.rs-5118704. [PMID: 39483916 PMCID: PMC11527351 DOI: 10.21203/rs.3.rs-5118704/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs or PGLYRPs) are implicated in the control of the intestinal microbiota; however, molecular requirements for peptidoglycan (PGN) binding and receptor signaling mechanisms remain poorly understood. We identified PGLYRP-1 as a receptor for the disaccharide motif of lysine N-acetylglucosamine N-acetylmuramic tripeptide (GMTriP-K) with a newly constructed PGN microarray. Surprisingly, PGLYRP-1 was required for innate immune activation of macrophages by GMTriP-K but not N-acetylglucosamine N-acetylmuramic dipeptide (GMDiP) or muramyl dipeptide (MDP). In macrophages, intracellular PGLYRP-1 complexed with NOD2 and GEF-H1, both of which were required for GMTriP-K-regulated gene expression. PGLYRP-1 localized to the endoplasmic reticulum and interacted at the Golgi with NOD2 upon GMTriP-K stimulation. PGLYRP-1 upregulation and its dependent gene expression signatures were induced in both mouse intestinal inflammation and human ulcerative colitis. Importantly, PGLYRP-1 activation by GMTriP-K resulted in innate immune activation and protection of mice from colitis. Our results show that PGLYRPs can function as intracellular PGN pattern recognition receptors for the control of host defense responses in the intestine.
Collapse
Affiliation(s)
- Shuyuan Chen
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Xi Li
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Alka Diwaker
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Marina Vasconcelos
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Shuzhen Liu
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, United States
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, United States
| | - Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Klare Bersch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Stephen Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Jianyi Yin
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Ezra Burstein
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States National Cancer Institute
| | - Hans-Christian Reinecker
- Department of Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
- Department of Immunology, Center for the Genetics of Host Defense, and Simmons Cancer Center University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United States
| |
Collapse
|
5
|
Brayton KA, Park JM. BASEHIT scores home run: elucidates pathogen-host interactions. Trends Parasitol 2024; 40:777-779. [PMID: 39054166 DOI: 10.1016/j.pt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
In a tour de force, Hart and colleagues recently used a technique known as BASEHIT (bacterial selection to elucidate host-microbe interactions in high throughput) to screen a yeast display library containing 3324 curated human exoproteins with 82 pathogen samples, focusing on vector-borne pathogens, to identify 1303 putative interactions.
Collapse
Affiliation(s)
- Kelly A Brayton
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
| | - Jason M Park
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR, Read CB, Johnson EE, Arora G, Dai Y, Cui Y, Chuang YM, Yu Q, Rahman MS, Mendes MT, Rolandelli A, Singh P, Tripathi AK, Ben Mamoun C, Caimano MJ, Radolf JD, Lin YP, Fingerle V, Margos G, Pal U, Johnson RM, Pedra JHF, Azad AF, Salje J, Dimopoulos G, Vinetz JM, Carlyon JA, Palm NW, Fikrig E, Ring AM. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell 2024; 187:4113-4127.e13. [PMID: 38876107 PMCID: PMC11959484 DOI: 10.1016/j.cell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Collapse
Affiliation(s)
- Thomas M Hart
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian Tang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reetika Chaurasia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Curtis B Read
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Emily E Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gunjan Arora
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yingjun Cui
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yu-Min Chuang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Yu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pallavi Singh
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Raymond M Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanne Salje
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph M Vinetz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Aaron M Ring
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98102, USA.
| |
Collapse
|
7
|
Putnik R, Zhou J, Irnov I, Garner E, Liu M, Bersch KL, Jacobs-Wagner C, Grimes CL. Synthesis of a Borrelia burgdorferi-Derived Muropeptide Standard Fragment Library. Molecules 2024; 29:3297. [PMID: 39064876 PMCID: PMC11279244 DOI: 10.3390/molecules29143297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The interplay between the human innate immune system and bacterial cell wall components is pivotal in understanding diseases such as Crohn's disease and Lyme arthritis. Lyme disease, caused by Borrelia burgdorferi, is the most prevalent tick-borne illness in the United States, with a substantial number of cases reported annually. While antibiotic treatments are generally effective, approximately 10% of Lyme disease cases develop persistent arthritis, suggesting a dysregulated host immune response. We have previously identified a link between the immunogenic B. burgdorferi peptidoglycan (PG) and Lyme arthritis and showed that this pathogen sheds significant amounts of PG fragments during growth. Here, we synthesize these PG fragments, including ornithine-containing monosaccharides and disaccharides, to mimic the unique composition of Borrelia cell walls, using reproducible and rigorous synthetic methods. This synthetic approach allows for the modular preparation of PG derivatives, providing a diverse library of well-defined fragments. These fragments will serve as valuable tools for investigating the role of PG-mediated innate immune response in Lyme disease and aid in the development of improved diagnostic methods and treatment strategies.
Collapse
Affiliation(s)
- Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Irnov Irnov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elise Garner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Min Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Klare L. Bersch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Pine M, Arora G, Hart TM, Bettini E, Gaudette BT, Muramatsu H, Tombácz I, Kambayashi T, Tam YK, Brisson D, Allman D, Locci M, Weissman D, Fikrig E, Pardi N. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Mol Ther 2023; 31:2702-2714. [PMID: 37533256 PMCID: PMC10492027 DOI: 10.1016/j.ymthe.2023.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.
Collapse
Affiliation(s)
- Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Thomas M Hart
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Tang X, Arora G, Matias J, Hart T, Cui Y, Fikrig E. A tick C1q protein alters infectivity of the Lyme disease agent by modulating interferon γ. Cell Rep 2022; 41:111673. [PMID: 36417869 PMCID: PMC9909562 DOI: 10.1016/j.celrep.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Arora G, Lynn GE, Tang X, Rosen CE, Hoornstra D, Sajid A, Hovius JW, Palm NW, Ring AM, Fikrig E. CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever. mBio 2022; 13:e0116122. [PMID: 36036625 PMCID: PMC9600505 DOI: 10.1128/mbio.01161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Raeeszadeh-Sarmazdeh M, Boder ET. Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. Methods Mol Biol 2022; 2491:3-25. [PMID: 35482182 DOI: 10.1007/978-1-0716-2285-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display has proven to be a powerful tool for the discovery of antibodies and other novel binding proteins and for engineering the affinity and selectivity of existing proteins for their targets. In the decades since the first demonstrations of the approach, the range of yeast display applications has greatly expanded to include many different protein targets and has grown to encompass methods for rapid protein characterization. Here, we briefly summarize the development of yeast display methodologies and highlight several selected examples of recent applications to timely and challenging protein engineering and characterization problems.
Collapse
Affiliation(s)
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Arora G, Sajid A, Chuang YM, Dong Y, Gupta A, Gambardella K, DePonte K, Almeras L, Dimopolous G, Fikrig E. Immunomodulation by Mosquito Salivary Protein AgSAP Contributes to Early Host Infection by Plasmodium. mBio 2021; 12:e0309121. [PMID: 34903042 PMCID: PMC8669493 DOI: 10.1128/mbio.03091-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria is caused when Plasmodium sporozoites are injected along with saliva by an anopheline mosquito into the dermis of a vertebrate host. Arthropod saliva has pleiotropic effects that can influence local host responses, pathogen transmission, and exacerbation of the disease. A mass spectrometry screen identified mosquito salivary proteins that are associated with Plasmodium sporozoites during saliva secretions. In this study, we demonstrate that one of these salivary antigens, Anopheles gambiae sporozoite-associated protein (AgSAP), interacts directly with Plasmodium falciparum and Plasmodium berghei sporozoites. AgSAP binds to heparan sulfate and inhibits local inflammatory responses in the skin. The silencing of AgSAP in mosquitoes reduces their ability to effectively transmit sporozoites to mice. Moreover, immunization with AgSAP decreases the Plasmodium burden in mice that are bitten by Plasmodium-infected mosquitoes. These data suggest that AgSAP facilitates early Plasmodium infection in the vertebrate host and serves as a target for the prevention of malaria. IMPORTANCE Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components. Mosquito proteins have the potential to serve as antigens to prevent or influence malaria without directly targeting the pathogen. This may help set a new paradigm for vaccine development. In this study, we have elucidated the role of a novel salivary antigen, named Anopheles gambiae sporozoite-associated protein (AgSAP). The results presented here show that AgSAP interacts with Plasmodium falciparum and Plasmodium berghei sporozoites and modulates local inflammatory responses in the skin. Furthermore, our results show that AgSAP is a novel mosquito salivary antigen that influences the early stages of Plasmodium infection in the vertebrate host. Individuals living in countries where malaria is endemic generate antibodies against AgSAP, which indicates that AgSAP can serve as a biomarker for disease prevalence and epidemiological analysis.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Akash Gupta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristen Gambardella
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, France
| | - George Dimopolous
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
A mosquito AgTRIO monoclonal antibody reduces early Plasmodium infection of mice. Infect Immun 2021; 90:e0035921. [PMID: 34724388 DOI: 10.1128/iai.00359-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. Passive immunization of mice with mosquito AgTRIO antisera offers significant protection against Plasmodium infection of mice. Furthermore, passive transfer of both AgTRIO antisera and an anti-circumsporozoite protein monoclonal antibody provides synergistic protection. In this study, we generated monoclonal antibodies against AgTRIO to delineate the regions of AgTRIO associated with protective immunity. Monoclonal antibody 13F-1 markedly reduced Plasmodium infection in mice and recognized a region, VDDLMAKFN, in the carboxyl terminus of AgTRIO. 13F-1 is an IgG2a isotype monoclonal antibody and the Fc region is required for protection. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.
Collapse
|
14
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Turturice BA, Theorell J, Koenig MD, Tussing-Humphreys L, Gold DR, Litonjua AA, Oken E, Rifas-Shiman SL, Perkins DL, Finn PW. Perinatal granulopoiesis and risk of pediatric asthma. eLife 2021; 10:e63745. [PMID: 33565964 PMCID: PMC7889076 DOI: 10.7554/elife.63745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Collapse
Affiliation(s)
- Benjamin A Turturice
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Juliana Theorell
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Mary Dawn Koenig
- Department of Women, Children and Family Health Science, College of Nursing, University of IllinoisChicagoUnited States
| | | | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Department of Pediatrics, University of RochesterRochesterUnited States
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - David L Perkins
- Department of Medicine, Division of Nephrology, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| | - Patricia W Finn
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| |
Collapse
|
16
|
DeHart TG, Kushelman MR, Hildreth SB, Helm RF, Jutras BL. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol 2021; 6:1583-1592. [PMID: 34819646 PMCID: PMC8612929 DOI: 10.1038/s41564-021-01003-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) β-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.
Collapse
Affiliation(s)
- Tanner G. DeHart
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Mara R. Kushelman
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Sherry B. Hildreth
- grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Richard F. Helm
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Brandon L. Jutras
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Molecular and Cellular Biology, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|