1
|
Csuka EA, Ward SC, Ekelem C, Csuka DA, Ardigò M, Mesinkovska NA. Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis. Lasers Surg Med 2021; 53:776-797. [PMID: 33527483 DOI: 10.1002/lsm.23386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Technological advances in medicine have brought about many novel skin imaging devices. This review aims to evaluate the scientific evidence supporting the use of noninvasive optical imaging techniques to aid in the diagnosis and prognosis of inflammatory skin diseases. STUDY DESIGN/MATERIALS AND METHODS PubMed and Scopus were searched in September 2020 according to PRISMA guidelines for articles using reflectance confocal microscopy (RCM), optical coherence tomography (OCT), and multiphoton microscopy (MPM) in inflammatory skin diseases, excluding studies monitoring treatment efficacy. RESULTS At the time of the study, there were 66 articles that addressed the utilization of noninvasive imaging in interface, spongiotic, psoriasiform, vesiculobullous, and fibrosing/sclerosing inflammatory skin dermatoses: RCM was utilized in 46, OCT in 16, and MPM in 5 articles. RCM was most investigated in psoriasiform dermatoses, whereas OCT and MPM were both most investigated in spongiotic dermatoses, including atopic dermatitis and allergic contact dermatitis. CONCLUSIONS There is preliminary evidence to support the diagnostic potential of noninvasive optical imaging techniques in inflammatory skin diseases. Improvements in the devices and further correlation with histology will help broaden their utility. Additional studies are needed to determine the parameters for diagnostic features, disease differentiation, and staging of inflammatory skin conditions. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ella A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Suzanne C Ward
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Chloe Ekelem
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - David A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Marco Ardigò
- San Gallicano Dermatological Institute-IRCCS, Via Chianesi 53, Rome, 00144, Italy
| | - Natasha A Mesinkovska
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| |
Collapse
|
2
|
Ohto-Fujita E, Shimizu M, Sano S, Kurimoto M, Yamazawa K, Atomi T, Sakurai T, Murakami Y, Takami T, Murakami T, Yoshimura K, Hasebe Y, Atomi Y. Solubilized eggshell membrane supplies a type III collagen-rich elastic dermal papilla. Cell Tissue Res 2018; 376:123-135. [PMID: 30448901 DOI: 10.1007/s00441-018-2954-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022]
Abstract
Signs of aging in facial skin correlate with lifespan and chronic disease; however, the health of aging skin has not been extensively studied. In healthy young skin, the dermis forms a type III collagen-rich dermal papilla, where capillary vessels supply oxygen and nutrients to basal epidermal cells. Chicken eggshell membranes (ESMs) have been used as traditional medicines to promote skin wound healing in Asian countries for many years. Previously, we designed an experimental system in which human dermal fibroblasts (HDFs) were cultured on a dish with a solubilized ESM (S-ESM) bound to an artificial phosphorylcholine polymer; we found that genes that promoted the health of the papillary dermis, such as those encoding type III collagen, were induced in the S-ESM environment. The present study found that a gel with a ratio of 20% type III/80% type I collagen, similar to that of the baby skin, resulted in a higher elasticity than 100% type I collagen (p < 0.05) and that HDFs in the gel showed high mitochondrial activity. Thus, we decided to perform further evaluations to identify the effects of S-ESM on gene expression in the skin of hairless mice and found a significant increase of type III collagen in S-ESM. Picrosirius Red staining showed that type III collagen significantly increased in the papillary dermis after S-ESM treatment. Moreover, S-ESM application significantly improved human arm elasticity and reduced facial wrinkles. ESMs may have applications in extending lifespan by reducing the loss of tissue elasticity through the increase of type III collagen.
Collapse
Affiliation(s)
- Eri Ohto-Fujita
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Miho Shimizu
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoei Sano
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Masashi Kurimoto
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Kai Yamazawa
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tomoaki Atomi
- Faculty of Health Sciences, Department of Physical Therapy, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Takashi Sakurai
- Department of Life Sciences, The Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Astellas Institute for Regenerative Medicine, 33 Locke Drive, Marlborough, MA, 01752, USA
| | - Yoshihiko Murakami
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Taku Takami
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Yukio Hasebe
- Almado Inc., 3-6-18 Kyobashi, Chuo-ku, Tokyo, 104-0031, Japan
| | - Yoriko Atomi
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
3
|
Hoogedoorn L, Peppelman M, van de Kerkhof P, van Erp P, Gerritsen M. The value ofin vivoreflectance confocal microscopy in the diagnosis and monitoring of inflammatory and infectious skin diseases: a systematic review. Br J Dermatol 2015; 172:1222-48. [DOI: 10.1111/bjd.13499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- L. Hoogedoorn
- Department of Dermatology; Radboud University Medical Center; PO Box 9101 NL 6500 HB Nijmegen the Netherlands
| | - M. Peppelman
- Department of Dermatology; Radboud University Medical Center; PO Box 9101 NL 6500 HB Nijmegen the Netherlands
| | - P.C.M. van de Kerkhof
- Department of Dermatology; Radboud University Medical Center; PO Box 9101 NL 6500 HB Nijmegen the Netherlands
| | - P.E.J. van Erp
- Department of Dermatology; Radboud University Medical Center; PO Box 9101 NL 6500 HB Nijmegen the Netherlands
| | - M.J.P. Gerritsen
- Department of Dermatology; Radboud University Medical Center; PO Box 9101 NL 6500 HB Nijmegen the Netherlands
| |
Collapse
|
4
|
Rudnicka L, Olszewska M, Rakowska A. In vivo reflectance confocal microscopy: usefulness for diagnosing hair diseases. J Dermatol Case Rep 2011; 2:55-9. [PMID: 21886715 DOI: 10.3315/jdcr.2008.1017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/16/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reflectance confocal laser scanning microscopy (R-CSLM) is a new diagnostic technique which allows visualization of "optical intersections" within the epidermis and superficial layers of the dermis. Outlines of cells and their architecture are imaged and may be analyzed both horizontally and vertically to the skin surface. The method proved useful in early melanoma detection. We evaluated the potential usefulness of this method in a short series of patients with hair diseases. MAIN OBSERVATIONS Two healthy persons and 6 patients with hair diseases (1 with alopecia areata, 1 with androgenic alopecia and 4 with genetic hair shaft abnormalities) were examined with the use of Vivascope 1500. In all patients one scalp location and one location in the mid forearm were evaluated. R-CSLM examination gave in all cases high quality images of the hair shaft intersections, at 1µm intervals, which allowed detailed analysis of the hair structure. Hair follicles could be partly visualized at a depth of up to 200µm, which allowed analysis of only superficial parts of the hair follicles. An additional hurdle was bright reflection within the follicular ostia, which decreased the perception of details in these images. Hair could be best visualized, when analyzed on flat surfaces. Receiving good quality images from convex surfaces on the scalp required additional effort from the patient (to not move) and from the physician (to obtain best possible fit of the "optic window" to the scalp). CONCLUSIONS These preliminary data show that R-CSLM may develop into a valuable tool in evaluation of hair shaft diseases. Further development is needed to apply this technique in abnormalities of the hair follicle and the perifollicular area.
Collapse
|
5
|
Koehler MJ, Lange-Asschenfeldt S, Kaatz M. Non-invasive imaging techniques in the diagnosis of skin diseases. ACTA ACUST UNITED AC 2011; 5:425-40. [DOI: 10.1517/17530059.2011.599064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Livingston DP, Tuong TD, Gadi SRV, Haigler CH, Gelman RS, Cullen JM. 3D volumes constructed from pixel-based images by digitally clearing plant and animal tissue. J Microsc 2011; 240:122-9. [PMID: 20946378 DOI: 10.1111/j.1365-2818.2010.03393.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Construction of three-dimensional volumes from a series of two-dimensional images has been restricted by the limited capacity to decrease the opacity of tissue. The use of commercial software that allows colour-keying and manipulation of two-dimensional images in true three-dimensional space allowed us to construct three-dimensional volumes from pixel-based images of stained plant and animal tissue without generating vector information. We present three-dimensional volumes of (1) the crown of an oat plant showing internal responses to a freezing treatment, (2) a sample of a hepatocellular carcinoma from a woodchuck liver that had been heat-treated with computer-guided radiofrequency ablation to induce necrosis in the central portion of the tumour, and (3) several features of a sample of mouse lung. The technique is well suited to images from large sections (greater than 1 mm) generated from paraffin-embedded tissues. It is widely applicable, having potential to recover three-dimensional information at virtually any resolution inherent in images generated by light microscopy, computer tomography, magnetic resonance imaging or electron microscopy.
Collapse
Affiliation(s)
- D P Livingston
- USDA and North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Lu K, Chen J, Zhuo S, Zheng L, Jiang X, Zhu X, Zhao J. Multiphoton laser scanning microscopy of localized scleroderma. Skin Res Technol 2010; 15:489-95. [PMID: 19832963 DOI: 10.1111/j.1600-0846.2009.00395.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE A real-time, non-invasive method will confer a benefit for the diagnosis and treatment of localized scleroderma (LS) in the clinic. The aim of this work was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for diagnosing LS and monitoring the treatment response in vivo. METHODS Three sclerodermatous skin specimens and two normal skin specimens were investigated using MPLSM based on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). MPLSM consists of a femtosecond Ti:sapphire laser and a scanning inverted microscope. Several parameters such as the epidermal thickness, the orientation ratio index of collagen bundles (ORICB), the spacing of collagen fibrin as well as the SHG to TPEF index of the dermis (STID) were developed to quantitatively discriminate the sclerodermatous skin from the normal skin. RESULTS The morphological differences were visualized obviously in the TPEF/SHG images of human skin (normal and sclerodermatous). The values of the developed parameters in normal skin were significantly different from that in sclerodermatous skin (P<0.05). CONCLUSION MPLSM could discriminate the sclerodermatous skin from the normal skin. With the advent of the clinical portability of typical MPLSM, this technique has great potential for application in the in vivo diagnosis of LS as well as for monitoring the treatment response.
Collapse
Affiliation(s)
- Kecheng Lu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Angelova-Fischer I, Pfeuti T, Zillikens D, Rose C. In vivoconfocal laser scanning microscopy for non-invasive diagnosis of pemphigus foliaceus. Skin Res Technol 2009; 15:40-4. [DOI: 10.1111/j.1600-0846.2008.00332.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Branzan AL, Landthaler M, Szeimies RM. In vivo confocal scanning laser microscopy in dermatology. Lasers Med Sci 2006; 22:73-82. [PMID: 17115235 DOI: 10.1007/s10103-006-0416-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/04/2006] [Indexed: 10/23/2022]
Abstract
The need to improve the diagnostic accuracy and sensitivity for skin tumours has led to the development of new non-invasive, in vivo techniques including ultrasound, dermoscopy, digital photography, confocal scanning laser microscopy, magnetic resonance imaging and optical coherence tomography. Of all these in vivo techniques, only confocal scanning laser microscopy allows for the examination of the epidermis and papillary dermis at a resolution approaching histological detail. This review article looks at some of the most important applications of this new technology, highlighting its qualities and limitations.
Collapse
Affiliation(s)
- Anca L Branzan
- Department of Dermatology, Regensburg University Hospital, Regensburg, Germany
| | | | | |
Collapse
|
11
|
Sauermann K, Jaspers S, Koop U, Wenck H. Topically applied vitamin C increases the density of dermal papillae in aged human skin. BMC DERMATOLOGY 2004; 4:13. [PMID: 15456516 PMCID: PMC522805 DOI: 10.1186/1471-5945-4-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 09/29/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND The influence of ageing on the density of the functional entities of the papillae containing nutritive capillaries, here in terms as the papillary index, and the effect of topically applied vitamin C were investigated by confocal laser scanning microscopy (CLSM) in vivo. METHODS The age dependency of the papillary index was determined by CLSM on 3 different age groups. Additionally, we determined the effect of a topical cream containing 3% vitamin C against the vehicle alone using daily applications for four months on the volar forearm of 33 women. RESULTS There were significant decreases in the papillary index showing a clear dependency on age. Topical vitamin C resulted in a significant increase of the density of dermal papillae from 4 weeks onward compared to its vehicle. Reproducibility was determined in repeated studies. CONCLUSIONS Vitamin C has the potential to enhance the density of dermal papillae, perhaps through the mechanism of angiogenesis. Topical vitamin C may have therapeutical effects for partial corrections of the regressive structural changes associated with the aging process.
Collapse
Affiliation(s)
| | - Sören Jaspers
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Urte Koop
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Horst Wenck
- Research and Development, Beiersdorf AG, Hamburg, Germany
| |
Collapse
|
12
|
Gambichler T, Sauermann K, Altintas MA, Altmeyer P, Hoffmann K. Acute effect of solar-simulated radiation on epidermal thickness assessed by confocal laser scanning microscopy in vivo. J Eur Acad Dermatol Venereol 2004; 18:638-9. [PMID: 15324418 DOI: 10.1111/j.1468-3083.2004.00974.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Gambichler T, Sauermann K, Altintas MA, Paech V, Kreuter A, Altmeyer P, Hoffmann K. Effects of repeated sunbed exposures on the human skin. In vivo measurements with confocal microscopy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2004; 20:27-32. [PMID: 14738530 DOI: 10.1111/j.1600-0781.2004.00079.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ultraviolet (UV) lamps used in commercial sunbeds are usually defined as UVA sources. Although it is well accepted that sunbed exposure significantly increases melanin pigmentation, its capacity to induce epidermal thickening is discussed controversially. OBJECTIVES The aim of this study was to assess non-invasively the effects of repeated sunbed exposures on epidermal thickness, cell size, and pigmentation by means of confocal laser-scanning microscopy (CLSM) in vivo. METHODS Eight volunteers had sunbed exposures six times in a 3-week period (cumulative dose: 126 J/cm(2) UVA). During irradiation, a small site (2 cm x 2 cm) on the lateral aspect of the inner forearm was covered with a UV-opaque sheet (non-exposed site). CLSM was performed with the Vivascope (Lucid, Henrietta, NY, USA) 24 h after the last UVA exposure on non-exposed sites and UVA-exposed sites that were on the medial aspect of the inner forearm at a distance of 2 cm to the non-exposed measurement site. The following parameters were assessed: thickness of the horny layer (DSC), minimal thickness of the epidermis (E(min)), minimal thickness of the viable epidermis (VE(min)), cell size of the granular layer (A(gran)), and the epidermal melanin content (MI). Additionally, colorimetric measurements have been carried out on non-exposed and UVA-exposed sites. RESULTS DSC of the UVA-exposed skin was significantly higher than the one of non-exposed sites (mean+/-SD: 15+/-2.9 microm vs. 12.8+/-3 microm). Although E(min) was significantly higher in UVA-exposed sites (mean+/-SD: 40.4+/-3.6 microm vs. 39+/-2.9 microm), a slight but not statistically significant (P>0.05) decrease of VE(min) was observed (25.5+/-2.1 microm vs. 26.2+/-2.4 microm). The median of cell size of the granular layer (A(gran)) significantly (P=0.008) differed between non-exposed (752.1 microm(2)) and UVA-exposed sites (600 microm(2)). MI was significantly (P=0.014) higher for the UVA-exposed skin (1.12 vs. 1.34). Accordingly, colorimetry revealed significantly (P< 0.01) lower skin brightness for UVA-exposed sites (L*=60.2+/-4.3) as compared with non-exposed sites (L*=63.4+/-3.9). CONCLUSIONS Sunbed exposures seem to induce photoadaptation not only by skin pigmentation but also by epidermal thickening that is predominantly due to an increase in thickness of the horny layer. Moreover, our data indicate that UVA radiation has an influence on the cell size of the granular layer. CLSM is a promising tool for photobiological studies in vivo.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Gudrunstrasse 56, Bochum D-44791, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Boixeda P, Pérez-Rodríguez A, Fernández-Lorente M, Arrazola JM. Novedades en láser cutáneo. ACTAS DERMO-SIFILIOGRAFICAS 2003. [DOI: 10.1016/s0001-7310(03)76675-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|