1
|
Saadh MJ, Allela OQB, Abdul Kareem R, Sanghvi G, PadmaPriya G, Thakur R, Kumari M, Gupta S, Khaitov K, Sameer HN, Yaseen A, Athab ZH, Adil M. Psoriasis: Immunological and genetic blueprints driving pathogenesis and potential for personalized therapies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:680-690. [PMID: 40343299 PMCID: PMC12057758 DOI: 10.22038/ijbms.2025.85335.18442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/26/2025] [Indexed: 05/11/2025]
Abstract
Psoriasis is a long-lasting inflammatory skin condition that impacts millions globally. The occurrence of this disorder differs significantly across various areas, resulting from a complex interplay of genetic and environmental influences. In psoriasis, the pathogenesis represents a complex interaction of innate and adaptive immunity that plays a significant role in the disease manifestation process. Many genetic factors predispose to psoriasis, which is considered a polygenic disease. Several genes concerning pathways like NF-κB and PI3K/Akt that modulate the amplification of inflammatory response and keratinocyte dysregulation have been elaborated in the light of their differential expression, susceptibility loci, and polymorphisms. Such genetic insights could open a whole new avenue for precision medicine in which biomarkers and gene-targeting therapies are promising options for personalized treatment. This review emphasizes the need for complex investigations into psoriasis, from molecular mechanisms to clinical manifestations, to bridge the gap between basic research and therapeutic development by furthering the understanding of psoriasis and paving the way for innovative treatments addressing skin lesions and systemic effects.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India
| | - G. PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishabh Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | - Kakhramon Khaitov
- Department of Dermatovenerology, Pediatric Dermatovenerology and AIDS, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, 100140, Uzbekistan
| | - Hayder Naji Sameer
- College of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Wang X, Chen J, Wu W, Fan J, Huang L, Sun W, He K, Li S, Li C. Circulating memory T cells and TCF1 + T cells aid in diagnosis and monitor disease activity in vitiligo. J Pharm Anal 2024; 14:100998. [PMID: 39698313 PMCID: PMC11652857 DOI: 10.1016/j.jpha.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/28/2024] [Accepted: 05/05/2024] [Indexed: 12/20/2024] Open
Abstract
Vitiligo is an immune memory skin disease. T-cell factor 1 (TCF1) is essential for maintaining the memory T-cell pool. There is an urgent need to investigate the characteristics of peripheral memory T-cell profile and TCF1+ T-cell frequencies in patients with vitiligo. In this study, 31 patients with active vitiligo (AV), 22 with stable vitiligo (SV), and 30 healthy controls (HCs) were included. We measured circulating memory and TCF1+ T-cell frequencies using flow cytometry. The Spearman's rank test was used to evaluate the correlation between cell frequencies and disease characteristics. Receiver operating characteristic curves (ROC) were constructed to investigate the discriminative power of the cell subpopulations. Circulating CD4+ and CD8+ terminally differentiated effector memory T-cell (TEMRA) frequencies were significantly higher in the AV group than in HCs (P < 0.05). TCF1+ T-cell subpopulations were widespread increased in patients with vitiligo (P < 0.05). After adjusting for potential confounders, CD8+ and CD4+ central memory (TCM) cells, and CD8+ TEMRA were correlated with disease activity (P < 0.05). The combined diagnostic value of the four (naïve, effector memory, TCM, and TEMRA) CD8+TCF1+ T-cell subsets was relatively high (area under the ROC curve (AUC) = 0.804, sensitivity = 71.70%, specificity = 83.34%), and the CD8+ T-cell subsets combination performed well in discriminating disease activity (AUC = 0.849, sensitivity = 70.97%, specificity = 90.91%). We demonstrated an altered circulating memory T-cell profile and increased TCF1+ T-cell percentage in patients with vitiligo. T-cell subpopulations had a strong value for vitiligo diagnosis and activity evaluation. This evidence presents a potential new pharmacological target for inhibiting autoimmunity that leads to vitiligo.
Collapse
Affiliation(s)
| | | | | | - Jinrong Fan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Luling Huang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weiwei Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
3
|
Peeva E, Yamaguchi Y, Ye Z, King B, Picardo M, Sloan A, Ezzedine K, Del Duca E, Estrada Y, Hassan-Zahraee M, He W, Hyde C, Bar J, Facheris P, Guttman-Yassky E. Efficacy and safety of ritlecitinib in vitiligo patients across Fitzpatrick skin types with biomarker analyses. Exp Dermatol 2024; 33:e15177. [PMID: 39304339 DOI: 10.1111/exd.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Efficacy and safety of ritlecitinib (an oral JAK3/TEC family kinase inhibitor) were evaluated in patients with nonsegmental vitiligo (NSV) across Fitzpatrick skin types (FSTs). Patients with FST I-III ('light skin'; n = 247) and FST IV-VI ('dark skin'; n = 117) received once-daily ritlecitinib 50 mg (with/without 4-week loading dose), low-dose ritlecitinib or placebo for 24 weeks. At baseline, patients with light skin displayed higher CLM-1 and NCR1 serum levels than patients with dark skin (p < 0.05). At 24 weeks, ritlecitinib 50 mg improved the extent of depigmentation measured by percent change from baseline in facial-vitiligo area scoring index (placebo-adjusted mean difference [90% CI]) in patients with light (-15.2 [-24.7, -5.8]; p = 0.004) and dark (-37.4 [-50.3, -24.4]; p < 0.0001) skin, with continuous re-pigmentation through week 48. Treatment-emergent adverse events were similar across FSTs. At weeks 4 and 24, ritlecitinib 50 mg reduced CXCL11 serum levels (p < 0.001) in patients with light skin, whereas patients with dark skin had increased levels at week 4 (p = 0.05) and no significant change at week 24. Ritlecitinib 50 mg decreased IL-9 and IL-22 expression levels in dark skin compared with light skin (qPCR; p < 0.05). These differences in immune dysregulations may explain why NSV patients with dark skin respond to therapy earlier than patients with light skin.
Collapse
Affiliation(s)
- Elena Peeva
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Yuji Yamaguchi
- Inflammation and Immunology Research Unit, Pfizer, Collegeville, Pennsylvania, USA
| | - Zhan Ye
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Brett King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mauro Picardo
- Istituto Dermopatico dell Immacolata, IDI, IRCCS, Rome, Italy
- Cutaneous Physiopathology Laboratory, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Abigail Sloan
- Clinical Statistics, Pfizer, Cambridge, Massachusetts, USA
| | - Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Yeriel Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Mina Hassan-Zahraee
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Wen He
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Craig Hyde
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Johnathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paola Facheris
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Shah KR, Garriga-Cerda L, Pappalardo A, Sorrells L, Jeong HJ, Lee CH, Abaci HE. A biopsy-sized 3D skin model with a perifollicular vascular plexus enables studying immune cell trafficking in the skin. Biofabrication 2024; 16:045006. [PMID: 38941996 PMCID: PMC11244652 DOI: 10.1088/1758-5090/ad5d1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Human skin vasculature features a unique anatomy in close proximity to the skin appendages and acts as a gatekeeper for constitutive lymphocyte trafficking to the skin. Approximating such structural complexity and functionality in 3D skin models is an outstanding tissue engineering challenge. In this study, we leverage the capabilities of the digital-light-processing bioprinting to generate an anatomically-relevant and miniaturized 3D skin-on-a-chip (3D-SoC) model in the size of a 6 mm punch biopsy. The 3D-SoC contains a perfusable vascular network resembling the superficial vascular plexus of the skin and closely surrounding bioengineered hair follicles. The perfusion capabilities of the 3D-SoC enables the circulation of immune cells, and high-resolution imaging of the immune cell-endothelial cell interactions, namely tethering, rolling, and extravasation in real-time. Moreover, the vascular pattern in 3D-SoC captures the physiological range of shear rates found in cutaneous blood vessels and allows for studying the effect of shear rate on T cell trafficking. In 3D-SoC, as expected,in vitro-polarized T helper 1 (Th1) cells show a stronger attachment on the vasculature compared to naïve T cells. Both naïve and T cells exhibit higher retention in the low-shear zones in the early stages (<5 min) of T cell attachment. Interestingly, at later stages T cell retention rate becomes independent of the shear rate. The attached Th1 cells further transmigrate from the vessel walls to the extracellular space and migrate toward the bioengineered hair follicles and interfollicular epidermis. When the epidermis is not present, Th1 cell migration toward the epidermis is significantly hindered, underscoring the role of epidermal signals on T cell infiltration. Our data validates the capabilities of 3D-SoC model to study the interactions between immune cells and skin vasculature in the context of epidermal signals. The biopsy-sized 3D-SoC model in this study represents a new level of anatomical and cellular complexity, and brings us a step closer to generating a truly functional human skin with its tissue-specific vasculature and appendages in the presence of circulating immune cells.
Collapse
Affiliation(s)
- Krutav Rakesh Shah
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Laura Garriga-Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Leila Sorrells
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Hun Jin Jeong
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Chang H Lee
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
5
|
Pan Y, Zhu Q, Hong T, Cheng J, Tang X. Targeting PRKDC activates the efficacy of antitumor immunity while sensitizing to chemotherapy and targeted therapy in liver hepatocellular carcinoma. Aging (Albany NY) 2024; 16:9047-9071. [PMID: 38787389 PMCID: PMC11164487 DOI: 10.18632/aging.205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) ranks among the malignancies with the highest mortality rates, primarily due to chemoresistance culminating in treatment failure. Despite its impact, predictive models addressing disease progression, tumor microenvironment, and drug sensitivity remain elusive for LIHC patients. Recognizing the significant influence of various programmed cell death (PCD) modes on tumor evolution, this study investigates PCD genes to elucidate their implications on the prognosis and immune landscape of LIHC. METHODS To develop the classification and model, we employed a total of 17 genes associated with PCD patterns. To collect data, we acquired gene expression profiles, somatic mutation information, copy number variation data, and corresponding clinical data from the TCGA database, specifically from LIHC patients. Moreover, we obtained spatial transcriptome data and additional bulk datasets from the Gene Expression Omnibus (GEO) database to conduct further analysis. Various experiments were conducted to validate the role of the PCD gene PRKDC in proliferation, migration, invasion, EMT, cell cycle, therapeutic sensitivity, and antitumor immunity. RESULTS A novel LIHC classification based on these genes divided patients into two clusters, C1 and C2. The C2 cluster exhibited characteristics indicative of poor prognosis and an immune-activated microenvironment. This group showed greater response potential to immune checkpoint inhibitors, displaying higher levels of certain immune signatures and receptors. A programmed cell death index (PCDI) was constructed using 17 selected PCD genes. This index could effectively predict patient prognosis, with higher PCDI indicating poorer survival rates and a more pro-tumor microenvironment. Immune landscapes revealed varying interactions with PCDI, suggesting therapeutic targets and insights into treatment resistance. Moreover, experiments results suggested that PRKDC can augment the invasive nature and growth of malignant cells and it can serve as a potential target for therapy, offering hope for ameliorating the prognosis of LIHC patients. CONCLUSIONS The study uncovers the insights of programmed cell death in the prognosis and potential therapeutic interventions. And we found that PRKDC can serve as a target for enhancing the efficacy of antitumor immunity while sensitizing chemotherapy and targeted therapy in liver hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yitong Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyao Zhu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, China
| | - Ting Hong
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xinhui Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
6
|
Lee S, Kim J, You JS, Hyun YM, Kim JY, Lee JE. Ischemic stroke outcome after promoting CD4+CD25+ Treg cell migration through CCR4 overexpression in a tMCAO animal model. Sci Rep 2024; 14:10201. [PMID: 38702399 PMCID: PMC11068779 DOI: 10.1038/s41598-024-60358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.
Collapse
Affiliation(s)
- Seowoo Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Fan J, He K, Chen J, Li S. Serum cytokine profiles predict response to systemic glucocorticoid in active vitiligo. Postepy Dermatol Alergol 2024; 41:189-196. [PMID: 38784928 PMCID: PMC11110216 DOI: 10.5114/ada.2024.138672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Vitiligo is an immune-related skin disease. Cytokines regulate immune response and inflammation and are involved in the pathogenesis of vitiligo. Aim To assess the serum levels of pro-inflammatory cytokines pre- and post- systemic glucocorticoid treatment in patients with active vitiligo. Material and methods We measured serum cytokine levels using the enzyme-linked immunosorbent assay in 31 patients with active vitiligo before and after treatment. All patients received systemic glucocorticoid (compound betamethasone injection) in combination with topical halometasone cream and tacrolimus ointment for 3 months. Twenty healthy controls were also examined. The cytokines measured included TNF-α, IL-1β, IL-6, IFN-γ, IL-2, IL-17, IL-10, IL-8, and CXCL10. Results The serum levels of TNF-α, IL-1β, IL-6, IFN-γ, IL-2, IL-17, IL-8, and CXCL10 were significantly higher, and levels of IL-10 were lower in vitiligo patients compared to controls. Additionally, serum IFN-γ (r = 0.378; p = 0.036), IL-17 (r = 0.426; p = 0.017), and CXCL10 (r = 0.514; p = 0.003) showed a positive correlation with affected body surface area in vitiligo patients. After 3 months of systemic glucocorticoid treatment, the levels of IL-1β, IFN-γ, IL-2, IL-17, and CXCL10 in responders were significantly decreased and nearly restored to normal levels. The IL-10 level was also increased in response to treatment. In contrast, the non-responder group had persistently high IL-6, IL-17, IL-8, and CXCL10 levels, and negligible changes in TNF-α, IL-1β, IFN-γ, IL-2, and IL-10. Conclusions Our study indicated that the levels of inflammatory cytokines were significantly ameliorated in the glucocorticoid responder group. Altered cell-mediated immunity may contribute to the resistance in vitiligo. The cytokines such as TNF-α, IL-1β, IFN-γ and IL-2 could serve as therapeutic targets for managing glucocorticoid-resistant vitiligo.
Collapse
Affiliation(s)
- Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinrong Fan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Ruan Y, Xu C, Zhang T, Zhu L, Wang H, Wang J, Zhu H, Huang C, Pan M. Single-Cell Profiling Unveils the Inflammatory Heterogeneity within Cutaneous Lesions of Bullous Pemphigoid. J Invest Dermatol 2024:S0022-202X(24)00209-4. [PMID: 38537929 DOI: 10.1016/j.jid.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
Bullous pemphigoid (BP) is a subepidermal blistering skin disease with a complex pathogenesis involving various immune cells. However, the transcriptional features of these cells remain poorly defined. In this study, we constructed a comprehensive and single-cell resolution atlas of various immune cells within BP skin lesions through integrative single-cell analysis, flow cytometry, and multiplex immunohistochemistry. We observed prominent expansion and transcriptional changes in mast cells, macrophages, basophils, and neutrophils within BP lesions. Mast cells within the lesions adopted an active state and exhibited an elevated capacity for producing proinflammatory mediators. We observed an imbalance of macrophages/dendritic cells within BP lesions. Two macrophage subpopulations (NLRP3+ and C1q+) with distinct transcriptional profiles were identified and upregulated effector programs. T-peripheral helper-like T helper 2 cells were expanded in skin lesions and peripheral blood of patients with BP and were capable of promoting B-cell responses. In addition, we observed clonally expanded granzyme B-positive CD8+ T cells within BP lesions. Chemokine receptor mapping revealed the potential roles of macrophages and mast cells in recruiting pathogenic immune cells and underlying mechanisms within BP lesions. Thus, this study reveals key immune pathogenic features of BP lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Xu C, Zhang T, Wang H, Zhu L, Ruan Y, Huang Z, Wang J, Zhu H, Huang C, Pan M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J Autoimmun 2024; 142:103128. [PMID: 37939532 DOI: 10.1016/j.jaut.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Pemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous immune microenvironment and the pathogenesis of pemphigus cutaneous lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
12
|
Kassab A, Khalij Y, Ayed Y, Dar-Odeh N, Kokandi AA, Denguezli M, Youssef M. Serum Inflammatory and Oxidative Stress Markers in Patients with Vitiligo. J Clin Med 2023; 12:5861. [PMID: 37762802 PMCID: PMC10532328 DOI: 10.3390/jcm12185861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Vitiligo is a common chronic hypomelanotic skin disorder. An intricate pool of markers associated with a complex combination of biological and environmental factors is thought to be implicated in etiology. This study aims to investigate the most important markers associated with vitiligo pathogenesis, including redox status, inflammation, and immune profile, in patients with vitiligo. MATERIALS AND METHODS The study included a total of 96 subjects: 30 patients with active non-segmental vitiligo, 30 patients with stable non-segmental vitiligo, and 36 controls. The vitiligo area severity index (VASI) and vitiligo disease activity score (VIDA) were determined. The following serum parameters were assessed: antioxidant status (TAS), superoxide dismutase activity (SOD), catalase activity (CAT), glutathione peroxidase activity (GPx), glutathione-S-transferase activity (GST), malondialdehyde (MDA), advanced oxidation protein products (AOPP), C reactive protein (CRP), interleukin-15 (IL-15), and chemokines (CXCL9, CXCL10). RESULTS The VASI score was not significantly different between active and stable vitiligo patients, as it was approximately 0.1. TAS, CAT, GPx, and GST were significantly lower in vitiligo patients compared to controls (p < 0.05). They were also significantly lower in active vitiligo when compared to stable vitiligo (p < 0.05). However, SOD levels were significantly higher in vitiligo patients than in controls and in the active vitiligo group than in the stable vitiligo group (p < 0.05). MDA and AOPP levels were significantly higher in patients with active and stable vitiligo compared to controls (p < 0.05). However, they did not significantly differ between active and stable vitiligo patients (p < 0.05). In both active and stable vitiligo, CRP and IL-15 were significantly higher than controls (p < 0.05). Whereas CRP was significantly higher in active (range = 2.0-7.2, mean = 4.46 ± 1.09) than in stable vitiligo (range = 1.6-6.7, mean = 3.75 ± 1.08) (p < 0.05). There was no significant difference in IL-15 levels between active and stable vitiligo. In both active and stable vitiligo, CXCL9 and CXCL10 were significantly higher than controls (p < 0.05), and they were significantly higher in active than stable vitiligo (p < 0.05). CONCLUSIONS In vitiligo, oxidative damage induces an increase in pro-inflammatory IL-15, which in turn promotes IFN-γ-inducible chemokines such as CXCL9 and CXCL10. Further, there seems to be a link between the VASI score and IL-15 levels. These data imply that inhibiting IL-15 could be a promising method for developing a potentially targeted treatment that suppresses the early interplay between oxidant stress and IL-15 keratinocyte production, as well as between resident and recirculating memory T cells.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Yassine Khalij
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
| | - Yosra Ayed
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Najla Dar-Odeh
- Department of Oral Surgery, Oral Medicine and Periodontics, School of Dentistry, The University of Jordan, Amman 11942, Jordan;
| | - Amal A. Kokandi
- Department of Dermatology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meriam Denguezli
- Department of Fundamental Sciences, Faculty of Dental Medicine, University of Monastir, Monastir 5019, Tunisia; (Y.A.); (M.D.)
| | - Monia Youssef
- Department of Dermatology, Hospital of Fattouma Bourguiba, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| |
Collapse
|
13
|
Shiu J, Lentsch G, Polleys CM, Mobasher P, Ericson M, Georgakoudi I, Ganesan AK, Balu M. Non-invasive Imaging Techniques for Monitoring Cellular Response to Treatment in Stable Vitiligo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553419. [PMID: 37645823 PMCID: PMC10462045 DOI: 10.1101/2023.08.15.553419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Punch grafting procedures, where small pieces of normal skin are transplanted into stable vitiligo patches, results in repigmentation in only half of patients treated, yet the factors that determine whether a patient responds to treatment or not are still unknown. Reflectance confocal microscopy (RCM) is adept at visualizing melanocyte migration and epidermal changes over large areas while multiphoton microscopy (MPM) can capture metabolic changes in keratinocytes. With the overall goal of identifying optical biomarkers for early treatment response, we followed 12 vitiligo lesions undergoing punch grafting. Dendritic melanocytes adjacent to the graft site were observed before clinical evidence of repigmentation in treatment responsive patients but not in treatment non-responsive patients, suggesting that the early visualization of melanocytes is indicative of a therapeutic response. Keratinocyte metabolic changes in vitiligo skin adjacent to the graft site also correlated with treatment response, indicating that a keratinocyte microenvironment that more closely resembles normal skin is more hospitable for migrating melanocytes. Taken together, these studies suggest that successful melanocyte transplantation requires both the introduction of new melanocytes and modulation of the local tissue microenvironment.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | | | - Pezhman Mobasher
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Marissa Ericson
- Biostatistics, Epidemiology and Research Design, University of California, Irvine, Irvine, CA, USA
| | - Irene Georgakoudi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Skin Biology Resource Center, University of California, Irvine, Irvine, CA, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
- Skin Biology Resource Center, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Chang Y, Kang P, Cui T, Guo W, Zhang W, Du P, Yi X, Guo S, Gao T, Li C, Li S. Pharmacological inhibition of demethylzeylasteral on JAK-STAT signaling ameliorates vitiligo. J Transl Med 2023; 21:434. [PMID: 37403086 DOI: 10.1186/s12967-023-04293-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The activation of CD8+ T cells and their trafficking to the skin through JAK-STAT signaling play a central role in the development of vitiligo. Thus, targeting this key disease pathway with innovative drugs is an effective strategy for treating vitiligo. Natural products isolated from medicinal herbs are a useful source of novel therapeutics. Demethylzeylasteral (T-96), extracted from Tripterygium wilfordii Hook F, possesses immunosuppressive and anti-inflammatory properties. METHODS The efficacy of T-96 was tested in our mouse model of vitiligo, and the numbers of CD8+ T cells infiltration and melanocytes remaining in the epidermis were quantified using whole-mount tail staining. Immune regulation of T-96 in CD8+ T cells was evaluated using flow cytometry. Pull-down assay, mass spectrum analysis, molecular docking, knockdown and overexpression approaches were utilized to identify the target proteins of T-96 in CD8+ T cells and keratinocytes. RESULTS Here, we found that T-96 reduced CD8+ T cell infiltration in the epidermis using whole-mount tail staining and alleviated the extent of depigmentation to a comparable degree of tofacitinib (Tofa) in our vitiligo mouse model. In vitro, T-96 decreased the proliferation, CD69 membrane expression, and IFN-γ, granzyme B, (GzmB), and perforin (PRF) levels in CD8+ T cells isolated from patients with vitiligo. Pull-down assays combined with mass spectrum analysis and molecular docking showed that T-96 interacted with JAK3 in CD8+ T cell lysates. Furthermore, T-96 reduced JAK3 and STAT5 phosphorylation following IL-2 treatment. T-96 could not further reduce IFN-γ, GzmB and PRF expression following JAK3 knockdown or inhibit increased immune effectors expression upon JAK3 overexpression. Additionally, T-96 interacted with JAK2 in IFN-γ-stimulated keratinocytes, inhibiting the activation of JAK2, decreasing the total and phosphorylated protein levels of STAT1, and reducing the production and secretion of CXCL9 and CXCL10. T-96 did not significantly inhibit STAT1 and CXCL9/10 expression following JAK2 knockdown, nor did it suppress upregulated STAT1-CXCL9/10 signaling upon JAK2 overexpression. Finally, T-96 reduced the membrane expression of CXCR3, and the culture supernatants pretreated with T-96 under IFN-γ stressed keratinocytes markedly blocked the migration of CXCR3+CD8+ T cells, similarly to Tofa in vitro. CONCLUSION Our findings demonstrated that T-96 might have positive therapeutic responses to vitiligo by pharmacologically inhibiting the effector functions and skin trafficking of CD8+ T cells through JAK-STAT signaling.
Collapse
Affiliation(s)
- Yuqian Chang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Pengran Du
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Fourth Military Medical University, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
15
|
Li S, Guo Y, Hu H, Gao N, Yan X, Zhou Q, Liu H. TANK shapes an immunosuppressive microenvironment and predicts prognosis and therapeutic response in glioma. Front Immunol 2023; 14:1138203. [PMID: 37215097 PMCID: PMC10196049 DOI: 10.3389/fimmu.2023.1138203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Glioma, the most prevalent malignant intracranial tumor, poses a significant threat to patients due to its high morbidity and mortality rates, but its prognostic indicators remain inaccurate. Although TRAF-associated NF-kB activator (TANK) interacts and cross-regulates with cytokines and microenvironmental immune cells, it is unclear whether TANK plays a role in the immunologically heterogeneous gliomas. Methods TANK mRNA expression patterns in public databases were analyzed, and qPCR and IHC were performed in an in-house cohort to confirm the clinical significance of TANK. Then, we systematically evaluated the relationship between TANK expression and immune characteristics in the glioma microenvironment. Additionally, we evaluated the ability of TANK to predict treatment response in glioma. TANK-associated risk scores were developed by LASSO-Cox regression and machine learning, and their prognostic ability was tested. Results TANK was specifically overexpressed in glioma and enriched in the malignant phenotype, and its overexpression was related to poor prognosis. The presence of a tumor microenvironment that is immunosuppressive was evident by the negative correlations between TANK expression and immunomodulators, steps in the cancer immunity cycle, and immune checkpoints. Notably, treatment for cancer may be more effective when immunotherapy is combined with anti-TANK therapy. Prognosis could be accurately predicted by the TANK-related risk score. Conclusions High expression of TANK is associated with the malignant phenotype of glioma, as it shapes an immunosuppressive tumor microenvironment. Additionally, TANK can be used as a predictive biomarker for responses to various treatments and prognosis.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Yan
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Kim JC, Lee ES. Progression of Pre-Existing Vitiligo during Secukinumab Treatment for Psoriasis. Ann Dermatol 2023; 35:S117-S121. [PMID: 37853881 PMCID: PMC10608358 DOI: 10.5021/ad.21.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2023] Open
Abstract
Vitiligo has been considered an unexplained paradoxical phenomenon during biologics use. Herein, we report an adult case of progression of pre-existing vitiligo during secukinumab treatment for psoriasis, and we also examined the immunohistochemical changes in relation to biologics use. He was being administered monthly secukinumab of 300 mg dose for 2 years, and all psoriatic lesions were cleared, but pre-existing hypopigmented lesions became more distinct and larger than before unlike when using adalimumab. A skin biopsy of the hypopigmented lesion showed loss of epidermal melanocytes and absence of gp100 immune activities, and he was finally diagnosed with progression of pre-existing vitiligo. Immunohistochemical staining of vitiligo lesion showed decrease in interleukin-17 and tumor necrosis factor-α and increase in CD8+ T cells, interferon-γ, and CXCL10 after the use of secukinumab. In this study, we suggest that biologics-induced cytokine imbalance play a critical role in vitiligo progression in patients with chronic inflammatory diseases, including psoriasis.
Collapse
Affiliation(s)
- Jin Cheol Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
17
|
Chen Y, Griffiths CEM, Bulfone-Paus S. Exploring Mast Cell-CD8 T Cell Interactions in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:1564. [PMID: 36675078 PMCID: PMC9861959 DOI: 10.3390/ijms24021564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The skin is exposed to environmental challenges and contains skin-resident immune cells, including mast cells (MCs) and CD8 T cells that act as sentinels for pathogens and environmental antigens. Human skin MCs and their mediators participate in the maintenance of tissue homeostasis and regulate the recruitment and activity of immune cells involved in the pathogenesis of skin diseases. The cutaneous CD8 T cell compartment is comprised of long-persisting resident memory T cells (TRM) and migratory or recirculating cells; both populations provide durable site immune surveillance. Several lines of evidence indicate that MC-derived products, such as CCL5 and TNF-α, modulate the migration and function of CD8 T cells. Conversely, activated CD8 T cells induce the upregulation of MC costimulatory molecules. Moreover, the close apposition of MCs and CD8 T cells has been recently identified in the skin of several dermatoses, such as alopecia areata. This review outlines the current knowledge about bidirectional interactions between human MCs and CD8 T cells, analyses the alteration of their communication in the context of three common skin disorders in which these cells have been found altered in number or function-psoriasis, atopic dermatitis, and vitiligo-and discusses the current unanswered questions.
Collapse
Affiliation(s)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Dermatology Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
19
|
Haddadi NS, Mande P, Brodeur TY, Hao K, Ryan GE, Moses S, Subramanian S, Picari X, Afshari K, Marshak-Rothstein A, Richmond JM. Th2 to Th1 Transition Is Required for Induction of Skin Lesions in an Inducible and Recurrent Murine Model of Cutaneous Lupus-Like Inflammation. Front Immunol 2022; 13:883375. [PMID: 35833127 PMCID: PMC9271959 DOI: 10.3389/fimmu.2022.883375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 01/26/2023] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune skin disease characterized by a strong IFN signature, normally associated with type I IFNs. However, increasing evidence points to an additional role for IFNγ, or at least a pathogenic T effector subset dependent on IFNγ, for disease progression. Nevertheless, Th2 effector subsets have also been implicated in CLE. We have now assessed the role of specific T cell subsets in the initiation and persistence of skin disease using a T cell-inducible murine model of CLE, dependent on KJ1-26 T cell recognition of an ovalbumin fusion protein. We found that only Th2-skewed cells, and not Th1-skewed cells, induced the development of skin lesions. However, we provide strong evidence that the Th2 disease-initiating cells convert to a more Th1-like functional phenotype in vivo by the time the skin lesions are apparent. This phenotype is maintained and potentiates over time, as T cells isolated from the skin, following a second induction of self-antigen, expressed more IFN-γ than T cells isolated at the time of the initial response. Transcriptional analysis identified additional changes in the KJ1-26 T cells at four weeks post injection, with higher expression levels of interferon stimulated genes (ISGs) including CXCL9, IRF5, IFIH1, and MX1. Further, injection of IFN-γ-/- T cells faied to induce skin disease in mice. We concluded that Th2 cells trigger skin lesion formation in CLE, and these cells switch to a Th1-like phenotype in the context of a TLR7-driven immune environment that is stable within the T cell memory compartment.
Collapse
Affiliation(s)
- Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Purvi Mande
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Tia Y. Brodeur
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kaiyuan Hao
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Grace E. Ryan
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Stephanie Moses
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sharon Subramanian
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Xhuliana Picari
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ann Marshak-Rothstein
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Jillian M. Richmond, ; Ann Marshak-Rothstein,
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Jillian M. Richmond, ; Ann Marshak-Rothstein,
| |
Collapse
|
20
|
Cao P, Yang M, Chang C, Wu H, Lu Q. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clin Rev Allergy Immunol 2022; 63:357-370. [PMID: 35674978 DOI: 10.1007/s12016-022-08936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China. .,Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China. .,Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Su Y, Zhang F, Wu L, Kuang H, Wang Q, Cheng G. Total withanolides ameliorates imiquimod-induced psoriasis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114895. [PMID: 34875348 DOI: 10.1016/j.jep.2021.114895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Datura metel L. has been used as an anesthetic in clinic for more than 1800 years in China, and the main efficacy of D. metel L. flower is relieving asthma and cough, relieving spasm and relieving pain. From 1978 to 1980, Datura metel L. was used as an anesthetic agent and occasionally cured psoriasis patients during anesthesia clinically, and our group confirmed that the effective portion is total withanolides (YWS). Moreover, the new drug "Datura metel L. capsule" composed of YWS has since been approved and used for the treatment of more than 3,000 psoriasis patients, with efficacy and cure rates greater than 90% and 65%. However, the immunological mechanism has not been elucidated. AIM OF THE STUDY Nowadays, although total withanolides from Datura metel L. have a better clinical efficacy in the treatment of psoriasis, there is a lack of overall understanding of the mechanism of their treatment, especially about some immune cells and proteins closely related to psoriasis and their relationship in executive function and biological significance. This study focused on investigating the mechanism of psoriasis treatment by YWS and determined the biochemical processes in the treatment of psoriasis based on Treg/Th17 axis cell-mediated bidirectional immunoregulatory functions, which provides an important scientific basis for understanding the mechanism underlying the treatment of psoriasis by YWS. MATERIALS AND METHODS The effects of YWS on the lesion pathology of IMQ-induced psoriasis mice and the underlying molecular mechanism were assessed directly using HE staining, the PASI score and the animal body mass. We also investigated the effects of YWS on the Treg/Th17 axis and their critical functions in psoriasis pathogenesis via molecular biological methods. Finally, we performed differential proteomics analysis on skin in IMQ-induced psoriasis mice to clarify the effect of YWS by incorporates mass spectrometry-bioinformatics and annotated the functions and pathways associated with the differential proteins through GO enrichment, KEGG pathway analysis and PPI networks analysis, respectively. RESULTS YWS regulated the imbalance of the Treg/Th17 axis. And proteomic analysis showed that YWS up-regulated 46 and down-regulated 37 proteins. According to the bioinformatics analysis, the improvement of Treg/Th17 imbalance may be the key immunological mechanism of YWS in the treatment of psoriasis by up-regulating the butyrate metabolism pathway, down-regulating leukocyte migration, inhibiting the phagocytic function of natural killer cells, suppressing osteoclast differentiation and interfering with chemokine activity, and the critical proteins involved are Lyn, HMGCS2, ABAT, ITGβ2, PRKCβ, MMP9, NCF1, JUNβ, and Hck. CONCLUSION This research clarified that the improvement of the imbalance of the Treg/Th17 axis may be the key immunological mechanism of YWS in the treatment of psoriasis through metabolic pathways and influencing key proteins. The results not only expand the therapeutic targets and approaches for the treatment of psoriasis, which is a challenging and complex disease, but also deepens the understanding of the mechanism of YWS in the treatment of psoriasis and other important conditions to open up a new way of thinking for research on YWS in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yang Su
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fan Zhang
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lun Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Haixue Kuang
- School of Pharmacy, Key Laboratory of Medicinal Materials, Chinese Academy of Sciences, Key Laboratory of Basic and Applied Research of Northern Medicine, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 511400, China
| | - Genhong Cheng
- Faculty of Microbiology and Immunogenetics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Samson LD, Buisman A, Ferreira JA, Picavet HSJ, Verschuren WMM, Boots AMH, Engelfriet P. Inflammatory marker trajectories associated with frailty and ageing in a 20‐year longitudinal study. Clin Transl Immunology 2022; 11:e1374. [PMID: 35154709 PMCID: PMC8826353 DOI: 10.1002/cti2.1374] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The aim of this exploratory study was to investigate the development of low‐grade inflammation during ageing and its relationship with frailty. Methods The trajectories of 18 inflammatory markers measured in blood samples, collected at 5‐year intervals over a period of 20 years from 144 individuals aged 65–75 years at the study endpoint, were related to the degree of frailty later in life. Results IFN‐γ‐related markers and platelet activation markers were found to change in synchrony. Chronically elevated levels of IL‐6 pathway markers, such as CRP and sIL‐6R, were associated with more frailty, poorer lung function and reduced physical strength. Being overweight was a possible driver of these associations. More and stronger associations were detected in women, such as a relation between increasing sCD14 levels and frailty, indicating a possible role for monocyte overactivation. Multivariate prediction of frailty confirmed the main results, but predictive accuracy was low. Conclusion In summary, we documented temporal changes in and between inflammatory markers in an ageing population over a period of 20 years, and related these to clinically relevant health outcomes.
Collapse
Affiliation(s)
- Leonard Daniël Samson
- National Institute of Public Health and the Environment Bilthoven The Netherlands
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen The Netherlands
| | - Anne‐Marie Buisman
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - José A Ferreira
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - H Susan J Picavet
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - W M Monique Verschuren
- National Institute of Public Health and the Environment Bilthoven The Netherlands
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Annemieke MH Boots
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen The Netherlands
| | - Peter Engelfriet
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| |
Collapse
|
23
|
The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8796735. [PMID: 35096274 PMCID: PMC8791757 DOI: 10.1155/2022/8796735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is a common chronic autoimmune skin disorder featured with depigmented patches and underlying destruction of melanocytes in the lesional skin. Multiple factors and mechanisms have been proposed for the etiopathogenesis of vitiligo, among which oxidative stress has been widely accepted as a key factor in initiating melanocyte loss. The altered redox status caused by oxidative stress, including the overproduction of reactive oxygen species (ROS) and the decreased activity of the antioxidant system in the skin, surrenders the resistance of melanocytes to exogenous or endogenous stimuli and eventually impairs the normal defense mechanism, leading to the absence of melanocytes. Considering the important role of innate and adaptive immunity in vitiligo, there is mounting evidence revealing an association between oxidative stress and autoimmunity. Since the significant changes of chemokines have been documented in vitiligo in many recent studies, it has been suggested that ROS-mediated chemotactic signals are not only the biomarkers of disease progression and prognosis but also are involved in the pathogenesis of vitiligo by facilitating the innate and adaptive immune cells, especially melanocyte-specific T cells, trafficking to the lesional areas of vitiligo. In this review, we discuss the interaction between oxidative stress and autoimmune response orchestrated by chemokines, including CXCL16-CXCR6 axis, CXCL9/CXCL10-CXCR3 axis, and other altered chemokines in vitiligo, and we also try to provide insight into potential therapeutic options through targeting these pathways.
Collapse
|
24
|
Tang N, Zhang YY, Cheng JH, Zhao ZB, Fan Y. Cross-talk between CXC chemokine ligand 10-CXC chemokine receptor 3 axis and CC chemokine ligand 17-CC chemokine receptor 4 axis in the pathogenesis of oral lichen planus. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:405-412. [PMID: 34409795 DOI: 10.7518/hxkq.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aimed to determine whether a correlation existed between CXC chemokine ligand 10 (CXCL10)-CXC chemokine receptor 3 (CXCR3) and CC chemokine ligand 17 (CCL17)-CC chemokine receptor 4 (CCR4) in the pathogenesis of oral lichen planus (OLP). METHODS Peripheral blood of OLP patients (non-erosive and erosive groups) and healthy controls were collected, and T cells were isolated and purified. T cells were co-cultured with three groups: blank, anti-CXCR3, and anti-CCR4. CXCR3 and CCR4 expression were detected by flow cytometry, and CXCL10 and CCL17 were detected by enzyme-linked immunosorbent assay, respectively. RESULTS The purities of T cells were all >95% in the three groups (P>0.05). Receptor expression showed that CXCR3 and CCR4 in the anti-CXCR3 group was downregulated in OLP compared with the blank group (P>0.05). The level of CCR4 in the anti-CCR4 group was significantly downregulated (P<0.05), and CXCR3 was upregulated (P>0.05). Ligand analysis results showed that CXCL10 in the anti-CXCR3 group was significantly downregulated in OLP compared with the blank group (P<0.05), and CCL17 was also downregulated (P>0.05). CCL17 in the anti-CCR4 group was significantly downregulated (P<0.05), and CXCL10 was upregulated (P>0.05). The trend of receptors and ligands in controls was consistent with OLP, but no significant difference existed between the antagonistic and the blank groups (P>0.05). CONCLUSIONS Two axes interact with each other in the pathogenesis of OLP and may play different roles in its occurrence and development.
Collapse
Affiliation(s)
- Nan Tang
- Dept. of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yu-Yao Zhang
- Dept. of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jue-Hua Cheng
- Dept. of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhi-Bai Zhao
- Dept. of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yuan Fan
- Dept. of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
25
|
Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clin Rev Allergy Immunol 2021; 61:299-323. [PMID: 34283349 DOI: 10.1007/s12016-021-08868-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Vitiligo is an autoimmune disease of the skin characterized by epidermal melanocyte loss resulting in white patches, with an approximate prevalence of 0.5-2% worldwide. Several precipitating factors by chemical exposure and skin injury present commonly in patients with vitiligo. Although the diagnosis appears to be straightforward for the distinct clinical phenotype and specific histological features, vitiligo provides many challenges including chronicity, treatment resistance, frequent relapse, associated profound psychosocial effect, and negative impact on quality of life. Multiple mechanisms are involved in melanocyte disappearance, including genetics, environmental factors, and immune-mediated inflammation. Compelling evidence supports the melanocyte intrinsic abnormalities with poor adaptation to stressors leading to instability and release of danger signals, which will activate dendritic cells, natural killer cells, and innate lymphoid cells to initiate innate immunity, ultimately resulting in T-cell mediated adaptive immune response and melanocyte destruction. Importantly, the cross- talk between keratinocytes, melanocytes, and immune cells, such as interferon (IFN)-γ signaling pathway, builds inflammatory loops that give rise to the disease deterioration. Improved understanding of the immune pathogenesis of vitiligo has led to the development of new therapeutic options including Janus kinase (JAK) inhibitors targeting IFN-γ signaling pathways, which can effectively reverse depigmentation. Furthermore, definition of treatment goals and integration of comorbid diseases into vitiligo management have revolutionized the way vitiligo is treated. In this review, we highlight recent developments in vitiligo clinical aspects and immune pathogenesis. Our key objective is to raise awareness of the complexity of this disease, the potential of prospective therapy strategies, and the need for early and comprehensive management.
Collapse
|
26
|
Ryan GE, Harris JE, Richmond JM. Resident Memory T Cells in Autoimmune Skin Diseases. Front Immunol 2021; 12:652191. [PMID: 34012438 PMCID: PMC8128248 DOI: 10.3389/fimmu.2021.652191] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue resident memory T cells (TRM) are a critical component of the immune system, providing the body with an immediate and highly specific response against pathogens re-infecting peripheral tissues. More recently, however, it has been demonstrated that TRM cells also form during autoimmunity. TRM mediated autoimmune diseases are particularly destructive, because unlike foreign antigens, the self-antigens are never cleared, continuously activating self-reactive TRM T cells. In this article, we will focus on how TRMs mediate disease in autoimmune skin conditions, specifically vitiligo, psoriasis, cutaneous lupus erythematosus, alopecia areata and frontal fibrosing alopecia.
Collapse
Affiliation(s)
- Grace E. Ryan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | | | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
27
|
Lu M, Kim WH, Lillehoj HS, Li C. Development and characterization of novel mouse monoclonal antibodies against chicken chemokine CC motif ligand 4. Vet Immunol Immunopathol 2020; 227:110091. [PMID: 32682170 DOI: 10.1016/j.vetimm.2020.110091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
Chemokine (C-C motif) ligand (CCL) 4 is a CC chemokine subfamily member defined by the sequential positioning of conserved cysteine residues. Upon the binding of G-protein-coupled receptors on the cell surface, CCL4 mediates a diverse set of biological processes including chemotaxis, tumorigenesis, homeostasis and thymopoiesis. Although the physiological roles of mammalian CCL4s were elucidated >20 years ago, there is limited information on the biological activities of chicken CCL4 (chCCL4). In the present study, we developed and characterized mouse monoclonal antibodies (mAbs) against chCCL4 to characterize better the immunological properties of chCCL4. Out of initial screening of >400 clones, two mAbs detecting chCCL4, 1A12 and 15D9, were identified and characterized using western blotting and chCCL4-specific antigen-capture enzyme-linked immunosorbent assay, and their neutralizing activity was validated by chCCL4-induced peripheral blood mononuclear cell chemotaxis assay. Furthermore, the intracellular expression of chCCL4 in various chicken cells by immunocytochemistry and flow cytometry was confirmed using 1A12 and 15D9 mAbs. These results collectively indicate that 1A12 and 15D9 mAbs specifically detect chicken CCL4 and they will be valuable immune reagents for basic and applied studies in avian immunology.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD, 20705, USA.
| |
Collapse
|