1
|
Jalili S, Hosn RR, Ko WC, Afshari K, Dhinakaran AK, Chaudhary N, Maiorino L, Haddadi N, Nathan A, Getz MA, Gaiha GD, Rashighi M, Harris JE, Hammond PT, Irvine DJ. Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.17.25324099. [PMID: 40166546 PMCID: PMC11957092 DOI: 10.1101/2025.03.17.25324099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Detecting antigen-specific lymphocytes is crucial for immune monitoring in the setting of vaccination, infectious disease, cancer, and autoimmunity. However, their low frequency and dispersed distribution across lymphoid organs, peripheral tissues, and blood pose challenges for reliable detection. To address this issue, we developed a strategy exploiting the functions of tissue-resident memory T cells (TRMs) to concentrate target circulating immune cells in the skin and then sample these cells non-invasively using a microneedle (MN) skin patch. TRMs were first induced at a selected skin site through initial sensitization with a selected antigen. Subsequently, these TRMs were restimulated by intradermal inoculation of a small quantity of the same antigen to trigger the "alarm" and immune recruitment functions of these cells, leading to accumulation of antigen-specific T cells from the circulation over several days. In mouse models of vaccination, we show that application of MN patches coated with an optimized hydrogel layer for cell and fluid sampling to this skin site allowed effective isolation of thousands of live antigen-specific lymphocytes as well as innate immune cells. In a human subject with allergic contact dermatitis, stimulation of TRMs with allergen followed by MN patch application allowed the recovery of diverse lymphocyte populations that were absent from untreated skin sites. These results suggest that TRM restimulation coupled with microneedle patch sampling can be used to obtain a window into both local and systemic antigen-specific immune cell populations in a noninvasive manner that could be readily applied to a wide range of disease or vaccination settings.
Collapse
Affiliation(s)
- Sasan Jalili
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Ryan R. Hosn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei-Che Ko
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Namit Chaudhary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Nazgol Haddadi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Anusha Nathan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Matthew A. Getz
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Gaurav D. Gaiha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E. Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
3
|
de Souza IR, Iulini M, Galbiati V, Rodrigues AC, Gradia DF, Andrade AJM, Firman JW, Pestana C, Leme DM, Corsini E. The evaluation of skin sensitization potential of the UVCB substance diisopentyl phthalate by in silico and in vitro methods. Arch Toxicol 2024; 98:2153-2171. [PMID: 38806720 PMCID: PMC11169023 DOI: 10.1007/s00204-024-03738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 05/30/2024]
Abstract
Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.
Collapse
Affiliation(s)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Ana Carolina Rodrigues
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Anderson J M Andrade
- Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Cynthia Pestana
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
4
|
de Souza IR, Iulini M, Galbiati V, Silva EZM, Sivek TW, Rodrigues AC, Gradia DF, Pestana CB, Leme DM, Corsini E. An integrated in silico-in vitro investigation to assess the skin sensitization potential of 4-Octylphenol. Toxicology 2023; 493:153548. [PMID: 37207816 DOI: 10.1016/j.tox.2023.153548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
One of the major challenges in chemical toxicity testing is the possibility to protect human health against adverse effects with non-animal methods. In this paper, 4-Octylphenol (OP) was tested for skin sensitization and immunomodulatory effects using an integrated in silico-in vitro test approach. In silico tools (QSAR TOOLBOX 4.5, ToxTree and VEGA) were used together with several in vitro tests including HaCaT cells (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA and expression of genes TNF, IL1A, IL6 and IL8 by RT- qPCR), RHE model (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA) and THP-1 activation assay (CD86/CD54 expression and IL-8 release). Additionally, the immunomodulatory effect of OP was investigated using lncRNAs MALAT1 and NEAT1 expression and LPS-induced THP-1 activation (CD86/CD54 expression and IL-8 release). The in silico tools predicted OP as a sensitizer. In vitro tests are also concordant with the in silico prediction. OP increased IL-6 expression (HaCaT cells); IL-18 and IL-8 expressions (RHE model). An irritant potential was also shown by a great expression of IL-1α (RHE model); and increased expression of CD54 marker and IL-8 in THP-1 cells. Immunomodulatory effects of OP were demonstrated by the downregulation of NEAT1, MALAT1 (epigenetic markers), IL6 and IL8; and an increase in LPS-induced CD54 and IL-8 expressions. Overall, results indicate that OP is a skin sensitizer, being positive in three key events of the AOP for skin sensitization, also showing immunomodulatory effects.
Collapse
Affiliation(s)
- Isisdoris Rodrigues de Souza
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy.
| | - Enzo Zini Moreira Silva
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Tainá Wilke Sivek
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Cynthia Bomfim Pestana
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
6
|
Kamiya S, Ikegami I, Yanagi M, Takaki H, Kamekura R, Sato T, Kobayashi K, Kamiya T, Kamada Y, Abe T, Inoue KI, Hida T, Uhara H, Ichimiya S. Functional Interplay between IL-9 and Peptide YY Contributes to Chronic Skin Inflammation. J Invest Dermatol 2022; 142:3222-3231.e5. [PMID: 35850207 DOI: 10.1016/j.jid.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/05/2023]
Abstract
Complex interactions between keratinocytes and various cell types, such as inflammatory cells and stromal cells, contribute to the pathogenesis of chronic inflammatory skin lesions. In proinflammatory cytokine‒mediated disease settings, IL-9 plays a pathological role in inflammatory dermatitis. However, IL-9‒related mechanisms remain incompletely understood. In this study, we established tamoxifen-induced keratinocyte-specific IL-9RA-deficient mice (K14CRE/ERTIl9raΔ/Δ mice) to examine the role of IL-9 in multicellular interactions under chronic skin inflammatory conditions. Studies using an imiquimod-induced psoriasis-like model showed that K14CRE/ERTIl9raΔ/Δ mice exhibited a significantly reduced severity of dermatitis and mast cell infiltration compared with control K14WTIl9rafl/fl mice. Transcriptome analyses of psoriasis-like lesions showed that the level of peptide Y-Y (Pyy), a member of the neuropeptide Y family, was markedly downregulated in K14CRE/ERTIl9raΔ/Δ epidermis. Pyy blockade suppressed epidermal thickening and mast cell numbers in imiquimod-treated wild-type mice. Together with in vitro studies indicating that Pyy induced IL-9 production and chemotactic activity in bone marrow‒derived mast cells, these findings suggest that Pyy-mediated interplay between keratinocytes and mast cells contributes to psoriasiform inflammation. Further investigation focusing on the IL-9‒Pyy axis may provide valuable information for the development of new treatment modalities for inflammatory dermatitis.
Collapse
Affiliation(s)
- Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiju Kobayashi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuka Kamada
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
7
|
Effect of PUVA and NB-UVB Therapy on the Skin Cytokine Profile in Patients with Mycosis Fungoides. JOURNAL OF ONCOLOGY 2022; 2022:3149293. [PMID: 35237320 PMCID: PMC8885178 DOI: 10.1155/2022/3149293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma. The aim of the present study was to produce up-to-date information on different phototherapy approaches on skin cytokines in patients with MF. Methods. A total of 27 patients with mycosis fungoides were treated with phototherapy: NB-UVB (narrow‐band ultraviolet B therapy) (10 patients) and PUVA (long-wavelength ultraviolet radiation of spectrum A with the use of skin-photosensitizing furocoumarins) therapy (17 patients). Evaluation of the effectiveness of treatment was carried out using BSA (body surface area) and the modified assessment of the severity of the skin lesions scale (mSWAT) used to quantify tumor mass in cutaneous T-cell lymphomas. Average numbers of procedures were 30.2 and 27.8 in the NB-UVB and PUVA groups, respectively. The median total dose of NB-UVB irradiation was 19.9 J/cm2 and PUVA therapy was 104.0 J/cm2. The overall response to therapy including complete and partial remission was 74.9% in the total group; 70% in the NB-UVB group, and 77.7% in the PUVA therapy group. In the obtained biopsies from lesions, surrounding tissue before treatment and skin samples of four healthy volunteers, the concentration of the IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L, and TNF-α cytokines was studied. An increase in IL-4 and TNF-α levels was shown in the lesional skin of patients compared to the skin of healthy controls. After the treatment, positive correlations of mSWAT with the levels of IL22, IL33, and TNF-α in the tumor tissue were found. The levels of IL10 and IFN-γ after PUVA treatment were increased in comparison to baseline. There was no difference in cytokine levels before/after NB-UVB therapy.
Collapse
|
8
|
Page KM, Suarez-Farinas M, Suprun M, Zhang W, Garcet S, Fuentes-Duculan J, Li X, Scaramozza M, Kieras E, Banfield C, Clark JD, Fensome A, Krueger JG, Peeva E. Molecular and Cellular Responses to the TYK2/JAK1 Inhibitor PF-06700841 Reveal Reduction of Skin Inflammation in Plaque Psoriasis. J Invest Dermatol 2020; 140:1546-1555.e4. [PMID: 31972249 DOI: 10.1016/j.jid.2019.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
Abstract
The IL-23/T helper type 17 cell axis is a target for psoriasis. The TYK2/Janus kinase 1 inhibitor PF-06700841 will directly suppress TYK2-dependent IL-12 and IL-23 signaling and Janus kinase 1-dependent signaling in cells expressing these signaling molecules, including T cells and keratinocytes. This clinical study sought to define the inflammatory gene and cellular pathways through which PF-06700841 improves the clinical manifestations of psoriasis. Patients (n = 30) with moderate-to-severe psoriasis were randomized to once-daily 30 mg (n = 14) or 100 mg (n = 7) PF-06700841 or placebo (n = 9) for 28 days. Biopsies were taken from nonlesional and lesional skin at baseline and weeks 2 and 4. Changes in the psoriasis transcriptome and genes induced by IL-17 in keratinocytes were evaluated with microarray profiling and reverse transcriptase-PCR. Reductions in IL-17A, IL-17F, and IL-12B mRNA were observed as early as 2 weeks and approximately 70% normalization of lesional gene expression after 4 weeks. Immunohistochemistry showed significant decreases in markers of keratinocyte activation, epidermal thickness, KRT16 and Ki-67 expression, and immune cell infiltrates CD3+/CD8+ (T cells) and CD11c (dendritic cells) after 2 weeks of treatment, corresponding with improvement in histologic score. PF-06700841 improves clinical symptoms of chronic plaque psoriasis by inhibition of proinflammatory cytokines that require TYK2 and Janus kinase 1 for signal transduction.
Collapse
Affiliation(s)
| | | | - Maria Suprun
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Xuan Li
- Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|