1
|
Le PM, Pal-Ghosh S, Stepp MA, Menko AS. Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:960-981. [PMID: 39889825 PMCID: PMC12016862 DOI: 10.1016/j.ajpath.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Injuries to the cornea can lead to recurrent corneal erosions, compromising its barrier function and increasing the risk of infection. Vital as corneal integrity is to the eye's optical power and homeostasis, the immune response to corneal erosions remains poorly understood. It is also unknown whether there is coordinated immune activation between the cornea and other regions of the anterior segment to protect against microbial invasion and limit the spread of inflammation when corneal erosions occur. Herein, a corneal debridement wounding model was used to characterize the immune cell phenotypes populating the cornea in response to erosion formation, and whether and which immune cells are concurrently recruited to the surface of the lens was investigated. The formation of corneal erosions induced an influx of myeloid lineage phenotypes, both M2 macrophages associated with tissue healing and wound repair, and Ly6G+ Ly6C+ myeloperoxidase+ cells resembling neutrophils/polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), with few regulatory T cells, into the corneal stroma under erosion sites. This leukocyte migration into the cornea when erosions develop was paralleled by the recruitment of immune cells, predominantly neutrophils/PMN-MDSCs, to the anterior, cornea-facing lens capsule. Both cornea-infiltrating and lens capsule-associated neutrophil/PMN-MDSC-like immune cells produce the anti-inflammatory cytokine IL-10. These findings suggest a collaborative role for the lens capsule-associated immune cells in preventing infections, controlling inflammation, and maintaining homeostasis of the anterior segment during recurrent corneal erosions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation during Wound Closure. ACS Biomater Sci Eng 2025; 11:2249-2262. [PMID: 40029610 DOI: 10.1021/acsbiomaterials.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. Extra domain A (EDA) Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, EDA Fn organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional coactivator, yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate whether YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity, but on stiffer substrates, they decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest that there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Lemańska-Perek A, Krzyżanowska-Gołąb D, Wysoczański G, Barteczko-Grajek B, Goździk W, Adamik B. Changes in various forms of fibronectin in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass - a prospective, observational study. Sci Rep 2024; 14:30790. [PMID: 39730478 DOI: 10.1038/s41598-024-80765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) is associated with the transient activation of a systemic inflammatory response. Fibronectin (FN), an endogenous inflammatory mediator, is a key component of the extracellular matrix. This study aimed to detect changes in cellular and plasma FN levels, as well as its potential fragmentation or FN-fibrin complex formation, in 40 patients undergoing CABG with CPB. Our results indicate that CPB was associated with changes in the levels of cellular and plasma FN and with intensified FN fragmentation. Moreover, FN-fibrin complexes were detected in all patients, indicating activation of the coagulation process during CPB. In a multivariate regression analysis, a history of arterial hypertension and CPB duration influenced plasma FN levels at 6 h (β = -0.458, p = 0.001; -0.375, p = 0.008, respectively) and 12 h (β = -0.293, p = 0.026; -0.554, p = 0.000) after surgery. Alterations in FN concentration, intensified FN degradation, and the presence of FN-fibrin complexes after surgery may suggest that these changes are related to the remodelling of the extracellular matrix resulting from cardiac surgery and the associated repair processes. The results indicate that FN has clinical potential as a marker of repair processes.
Collapse
Affiliation(s)
- Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369, Wroclaw, Poland.
| | - Dorota Krzyżanowska-Gołąb
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369, Wroclaw, Poland
| | | | - Barbara Barteczko-Grajek
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| |
Collapse
|
4
|
Singerer I, Tempel L, Gruen K, Heiß J, Gutte C, Matasci M, Schrepper A, Bauer R, Berndt A, Jung C, Schulze PC, Neri D, Franz M. Extra domain A-containing fibronectin in pulmonary hypertension and treatment effects of a function-blocking antibody. Cardiovasc Res 2024; 120:1485-1497. [PMID: 39023231 DOI: 10.1093/cvr/cvae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/07/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Pulmonary vascular and right ventricular (RV) remodelling processes are important for development and progression of pulmonary hypertension (PH). The current study analysed the functional role of the extra domain A-containing fibronectin (ED-A+ Fn) for the development of PH by comparing ED-A+ Fn knockout (KO) and wild-type (WT) mice as well as the effects of an antibody-based therapeutic approach in a model of monocrotaline (MCT)-induced PH, which will be validated in a model of Sugen 5416/hypoxia-induced PH. METHODS AND RESULTS PH was induced using MCT (PH mice). Sixty-nine mice were divided into the following groups: sham-treated controls (WT: n = 7; KO: n = 7), PH mice without specific treatment (WT: n = 12; KO: n = 10), PH mice treated with a dual endothelin receptor antagonist (macitentan; WT: n = 6; KO: n = 11), WT PH mice treated with the F8 antibody, specifically recognizing ED-A+ Fn, (n = 8), and WT PH mice treated with an antibody of irrelevant antigen specificity (KSF, n = 8). Compared to controls, WT_PH mice showed a significant elevation of the RV systolic pressure (P = 0.04) and RV functional impairment including increased basal RV (P = 0.016) diameter or tricuspid annular plane systolic excursion (P = 0.008). In contrast, KO PH did not show such effects compared to controls (P = n.s.). In WT_PH mice treated with F8, haemodynamic and echocardiographic parameters were significantly improved compared to untreated WT_PH mice or those treated with the KSF antibody (P < 0.05). On the microscopic level, KO_PH mice showed significantly less tissue damage compared to the WT_PH mice (P = 0.008). Furthermore, lung tissue damage could significantly be reduced after F8 treatment (P = 0.04). Additionally, these findings could be verified in the Sugen 5416/hypoxia mouse model, in which F8 significantly improved echocardiographic, haemodynamic, and histologic parameters. CONCLUSION ED-A+ Fn is of crucial importance for PH pathogenesis representing a promising therapeutic target in PH. We here show a novel therapeutic approach using antibody-mediated functional blockade of ED-A+ Fn capable of attenuating and partially reversing PH-associated tissue remodelling.
Collapse
MESH Headings
- Animals
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/immunology
- Fibronectins/metabolism
- Fibronectins/genetics
- Mice, Knockout
- Disease Models, Animal
- Monocrotaline
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice, Inbred C57BL
- Pyrimidines/pharmacology
- Pulmonary Artery/physiopathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Male
- Endothelin Receptor Antagonists/pharmacology
- Vascular Remodeling/drug effects
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/pathology
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Isabell Singerer
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg, Klinikum Hersfeld-Rotenburg, Heinz-Meise-Str. 100, 36199 Rotenburg an der Fulda, Germany
| | - Laura Tempel
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Katja Gruen
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Judith Heiß
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Clara Gutte
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | | | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University Hospital Jena, Jena, Germany
| | - Reinhard Bauer
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, University Hospital Jena, Jena, Germany
| | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | | | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg, Klinikum Hersfeld-Rotenburg, Heinz-Meise-Str. 100, 36199 Rotenburg an der Fulda, Germany
| |
Collapse
|
5
|
Geiduschek EK, Bricco EK, McDowell CM. DAMPs Drive Fibroinflammatory Changes in the Glaucomatous ONH. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39382882 PMCID: PMC11469284 DOI: 10.1167/iovs.65.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose The optic nerve head (ONH) is well known to be the initial site of glaucomatous damage; however, the molecular mechanisms initiating this pathology are not fully understood. To further understand the initiating factors in glaucomatous damage we utilized a novel mouse model of glaucoma, B6.EDA+/+ mice, which constitutively express fibronectin containing the extra domain A (FN+EDA). FN+EDA is a known damage-associated molecular pattern (DAMP) that activates Toll-like receptor 4 and elicits a fibro-inflammatory response. Methods Eyes from B6.EDA+/+ and C57BL/6J mice were evaluated for retinal ganglion cell (RGC) death, retinal nerve fiber layer (RNFL) thickness, and optic nerve (ON) damage at 12 months and 22 months of age. ONH sections were isolated using laser capture microdissection for subsequent RNA-sequencing and Gene Set Enrichment Analysis (GSEA). GSEA results were confirmed using immunohistochemical (IHC) staining. Results B6.EDA+/+ mice exhibit significantly higher intraocular pressure, loss of RGCs, thinning of the RNFL, and progressive levels of ON damage at 12 months and 22 months of age compared to C57BL/6J controls. Protein expression of DAMPs FN+EDA and biglycan was significantly increased in B6.EDA+/+ mice compared to C57BL/6J controls. GSEA analysis identified significantly up- and downregulated gene groupings at both 12 months and 22 months of age, and IHC staining at 12 and 18 months of age demonstrated significant increases of IFNα, IFNβ, and pSTAT1 expression in B6.EDA+/+ mice compared to C57BL/6J controls. Conclusions Our study characterizes glaucomatous changes to the retina, ON, and ONH over the course of 2 years and identifies novel molecular pathways associated with these pathophysiological changes. These data illustrate the effects of FN+EDA on the fibro-inflammatory response in the aging ONH in a novel mouse model of glaucoma.
Collapse
Affiliation(s)
| | - Emma K. Bricco
- University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | |
Collapse
|
6
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation During Wound Closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614581. [PMID: 39386582 PMCID: PMC11463502 DOI: 10.1101/2024.09.23.614581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. EDA Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, Fn EDA organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional co-activator, Yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure, but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane (PDMS) substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate if YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity but on stiffer substrates, decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Pennsylvania
| | | | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Pennsylvania
| | - Michael Kegel
- Department of Bioengineering, Temple University, Pennsylvania
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Pennsylvania
| | - Karin Wang
- Department of Bioengineering, Temple University, Pennsylvania
| |
Collapse
|
7
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Uzair M, Singhal C, Ali A, Rajak S, Kapoor A, Agarwal SK, Tiwari S, Pande S, Prakash P. Myocardial ischemia-reperfusion injury released cellular fibronectin containing domain A (CFN-EDA): A destructive positive loop amplifying arterial thrombosis formation and exacerbating myocardial reperfusion injury. Thromb Res 2024; 238:117-128. [PMID: 38703585 DOI: 10.1016/j.thromres.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.
Collapse
Affiliation(s)
- Moh Uzair
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Chahak Singhal
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Azeem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Surendra Kumar Agarwal
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Shantanu Pande
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India.
| |
Collapse
|
9
|
Meyer KJ, Fingert JH, Anderson MG. Lack of evidence for GWAS signals of exfoliation glaucoma working via monogenic loss-of-function mutation in the nearest gene. Hum Mol Genet 2024:ddae088. [PMID: 38770563 DOI: 10.1093/hmg/ddae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Exfoliation syndrome (XFS) is a systemic disease of elastin-rich tissues involving a deposition of fibrillar exfoliative material (XFM) in the anterior chamber of the eye, which can promote glaucoma. The purpose of this study was to create mice with CRISPR/Cas9-induced variations in candidate genes identified from human genome-wide association studies (GWAS) and screen them for indices of XFS. METHODS Variants predicted to be deleterious were sought in the Agpat1, Cacna1a, Loxl1, Pomp, Rbms3, Sema6a, and Tlcd5 genes of C57BL/6J mice using CRISPR/Cas9-based gene editing. Strains were phenotyped by slit-lamp, SD-OCT imaging, and fundus exams at 1-5 mos of age. Smaller cohorts of 12-mos-old mice were also studied. RESULTS Deleterious variants were identified in six targets; Pomp was recalcitrant to targeting. Multiple alleles of some targets were isolated, yielding 12 strains. Across all genotypes and ages, 277 mice were assessed by 902 slit-lamp exams, 928 SD-OCT exams, and 358 fundus exams. Homozygosity for Agpat1 or Cacna1a mutations led to early lethality; homozygosity for Loxl1 mutations led to pelvic organ prolapse, preventing aging. Loxl1 homozygotes exhibited a conjunctival phenotype of potential relevance to XFS. Multiple other genotype-specific phenotypes were variously identified. XFM was not observed in any mice. CONCLUSIONS This study did not detect XFM in any of the strains. This may have been due to species-specific differences, background dependence, or insufficient aging. Alternatively, it is possible that the current candidates, selected based on proximity to GWAS signals, are not effectors acting via monogenic loss-of-function mechanisms.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 W, Iowa City, IA 52246, United States
| |
Collapse
|
10
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
11
|
Jia L, Wang W, Liang J, Niu S, Wang Y, Yang J, Li L, Wang G, Xu X, Mu L, Cheng K, Yang X, Wang Y, Luo H, Xia G, Ke Y, Zhang Y, Zhang H. Analyzing the cellular and molecular atlas of ovarian mesenchymal cells provides a strategy against female reproductive aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2818-2836. [PMID: 37460714 DOI: 10.1007/s11427-022-2335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/22/2023] [Indexed: 12/18/2023]
Abstract
Ovarian mesenchymal cells (oMCs) constitute a distinct microenvironment that supports folliculogenesis under physiological conditions. Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported to be an efficient approach to improve ovarian functions. However, the development and cellular and molecular characteristics of endogenous oMCs remain largely unexplored. In this study, we surveyed the single-cell transcriptomic landscape to dissect the cellular and molecular changes associated with the aging of oMCs in mice. Our results showed that the oMCs were composed of five ovarian differentiated MC (odMC) populations and one ovarian mesenchymal progenitor (oMP) cell population. These cells could differentiate into various odMCs via an oMP-derived route to construct the ovarian stroma structures. Comparative analysis revealed that ovarian aging was associated with decreased quantity of oMP cells and reduced quality of odMCs. Based on the findings of bioinformatics analysis, we designed different strategies involving supplementation with young oMCs to examine their effects on female fertility and health. Our functional investigations revealed that oMCs supplementation prior to ovarian senescence was the optimal method to improve female fertility and extend the reproductive lifespan of aged females in the long-term.
Collapse
Affiliation(s)
- Longzhong Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Jing Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shudong Niu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yibo Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ge Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Mu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaixin Cheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Haoshu Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Yuwen Ke
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Franco-Valls H, Tusquets-Uxó E, Sala L, Val M, Peña R, Iaconcig A, Villarino Á, Jiménez-Arriola M, Massó P, Trincado JL, Eyras E, Muro AF, Otero J, García de Herreros A, Baulida J. Formation of an invasion-permissive matrix requires TGFβ/SNAIL1-regulated alternative splicing of fibronectin. Breast Cancer Res 2023; 25:143. [PMID: 37964360 PMCID: PMC10647173 DOI: 10.1186/s13058-023-01736-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFβ, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFβ target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFβ-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix that does not sustain TGFβ-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.
Collapse
Affiliation(s)
- Héctor Franco-Valls
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Elsa Tusquets-Uxó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona, Spain
| | - Laura Sala
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- National Institutes of Health: Intramural Research Program, Bethesda, MD, USA
| | - Maria Val
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Vall Hebron Institute of Research, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Álvaro Villarino
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Martín Jiménez-Arriola
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Pere Massó
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Juan L Trincado
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Eduardo Eyras
- Research Program of Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Baulida
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Dr. Aiguader, 88, 08003, Barcelona, Spain.
| |
Collapse
|
13
|
Otten ABC, Amarbayar O, Cai P, Cheng B, Qu K, Sun BK. The Long Noncoding RNA PRANCR Is Associated with Alternative Splicing of Fibronectin-1 in Keratinocytes. J Invest Dermatol 2023; 143:1825-1830.e6. [PMID: 36906126 PMCID: PMC10775970 DOI: 10.1016/j.jid.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 03/13/2023]
Affiliation(s)
- Auke B C Otten
- Department of Dermatology, University of California San Diego, San Diego, California, USA; Department of Physiology, VU Medical Center, Amsterdam UMC, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Oyumergen Amarbayar
- Department of Dermatology, University of California San Diego, San Diego, California, USA
| | - Pengfei Cai
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, San Diego, California, USA
| | - Kun Qu
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
14
|
Geiduschek EK, McDowell CM. The Fibro-Inflammatory Response in the Glaucomatous Optic Nerve Head. Int J Mol Sci 2023; 24:13240. [PMID: 37686046 PMCID: PMC10487997 DOI: 10.3390/ijms241713240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a progressive disease and the leading cause of irreversible blindness. The limited therapeutics available are only able to manage the common risk factor of glaucoma, elevated intraocular pressure (IOP), indicating a great need for understanding the cellular mechanisms behind optic nerve head (ONH) damage during disease progression. Here we review the known inflammatory and fibrotic changes occurring in the ONH. In addition, we describe a novel mechanism of toll-like receptor 4 (TLR4) and transforming growth factor beta-2 (TGFβ2) signaling crosstalk in the cells of the ONH that contribute to glaucomatous damage. Understanding molecular signaling within and between the cells of the ONH can help identify new drug targets and therapeutics.
Collapse
Affiliation(s)
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Farooq F, Amin A, Wani UM, Lone A, Qadri RA. Shielding and nurturing: Fibronectin as a modulator of cancer drug resistance. J Cell Physiol 2023; 238:1651-1669. [PMID: 37269547 DOI: 10.1002/jcp.31048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
Resistance to chemotherapy and targeted therapies constitute a common hallmark of most cancers and represent a dominant factor fostering tumor relapse and metastasis. Fibronectin, an abundant extracellular matrix glycoprotein, has long been proposed to play an important role in the pathobiology of cancer. Recent research has unraveled the role of Fibronectin in the onset of chemoresistance against a variety of antineoplastic drugs including DNA-damaging agents, hormone receptor antagonists, tyrosine kinase inhibitors, microtubule destabilizing agents, etc. The current review summarizes the role played by Fibronectin in mediating drug resistance against diverse anticancer drugs. We have also discussed how the aberrant expression of Fibronectin drives the oncogenic signaling pathways ultimately leading to drug resistance through the inhibition of apoptosis, promotion of cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Umer Majeed Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asif Lone
- Department of Biochemistry, Deshbandu College, University of Delhi, Delhi, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
17
|
Venu VKP, Moregola A, Da Dalt L, Uboldi P, Bonacina F, Muro AF, Norata GD. Fibronectin extra domain a limits liver dysfunction and protects mice during acute inflammation. ATHEROSCLEROSIS PLUS 2023; 52:23-31. [PMID: 37287804 PMCID: PMC10242638 DOI: 10.1016/j.athplu.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Background and aim The primary transcript of fibronectin (FN) undergoes alternative splicing to generate different isoforms, including FN containing the Extra Domain A (FN_EDA+), whose expression is regulated spatially and temporarily during developmental and disease conditions including acute inflammation. The role of FN_EDA+ during sepsis, however, remains elusive. Methods Mice constitutively express the EDA domain of fibronectin (EDA+/+); lacking the FN EDA domain (EDA-/-) or with a conditional ablation of EDA + inclusion only in liver produced FN (alb-CRE+EDA floxed mice) thus expressing normal plasma FN were used. Systemic inflammation and sepsis were induced by either LPS injection (70 mg/kg) or by cecal ligation and puncture (CLP) Neutrophils isolated from septic patients were tested for neutrophil binding ability. Results We observed that EDA+/+ were protected toward sepsis as compared to EDA-/- mice. Also alb-CRE+EDA floxed mice presented reduced survival, thus indicating a key role for EDA in protecting toward sepsis. This phenotype was associated with improved liver and spleen inflammatory profile. Ex vivo experiments showed that neutrophils bind to a larger extent to an FN_EDA + coated surface as compared to FN, thus potentially limiting their over-reactivity. Conclusions Our study demonstrates that the inclusion of the EDA domain in fibronectin dampens the nflammatoryi consequences of sepsis.
Collapse
Affiliation(s)
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Zhang X, Yu X, Yu Z, Fan C, Li Y, Li H, Shen Y, Sun Z, Zhang S. Network pharmacology and bioinformatics to identify molecular mechanisms and therapeutic targets of Ruyi Jinhuang Powder in the treatment of monkeypox. Medicine (Baltimore) 2023; 102:e33576. [PMID: 37115075 PMCID: PMC10145999 DOI: 10.1097/md.0000000000033576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Monkeypox outbreaks across the globe has aroused widespread concern. Ruyi Jinhuang Powder (RJP), a common formula in Chinese medicine, is used to treat pox-like illnesses. This study aimed to identify the molecular mechanisms and therapeutic targets of RJP for the treatment of monkeypox using network pharmacology and bioinformatics techniques. The bioactive substances and potential targets of each component of RJP were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The differentially expressed genes (DEGs) of the monkeypox virus (MPXV) were identified from the GSE24125 by GEO2R. Key signaling pathways, bioactive components, and potential targets were obtained by bioinformatics analysis, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and protein-protein interactions (PPI) analyses. Finally, molecular docking was used to predict the interaction between active compounds and core targets. A total of 158 active ingredients and 17 drug-disease-shared targets of RJP were screened. Bioinformatics indicated that wogonin and quercetin might be potential drug candidates. Potential therapeutic targets were identified. Immune-related mechanisms that exerted antiviral effects included signaling pathways like TNF, age-rage, and c-type lectin receptor pathways. Our results illustrated the good therapeutic effect of RJP on monkeypox in terms of biological activity, potential targets, and molecular mechanism. This also offered a promising strategy to reveal the scientific basis and therapeutic mechanism of herbal formulas used to treat the disease.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinping Yu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhichao Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengcheng Fan
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueming Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingkai Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zijin Sun
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
20
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
21
|
Baldassarro VA, Giraldi V, Giuliani A, Moretti M, Pagnotta G, Flagelli A, Clavenzani P, Lorenzini L, Giardino L, Focarete ML, Giacomini D, Calzà L. Poly(l-lactic acid) Scaffold Releasing an α 4β 1 Integrin Agonist Promotes Nonfibrotic Skin Wound Healing in Diabetic Mice. ACS APPLIED BIO MATERIALS 2022; 6:296-308. [PMID: 36542733 PMCID: PMC9937562 DOI: 10.1021/acsabm.2c00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin wound healing is a highly complex process that continues to represent a major medical problem, due to chronic nonhealing wounds in several classes of patients and to possible fibrotic complications, which compromise the function of the dermis. Integrins are transmembrane receptors that play key roles in this process and that offer a recognized druggable target. Our group recently synthesized GM18, a specific agonist for α4β1, an integrin that plays a role in skin immunity and in the migration of neutrophils, also regulating the differentiated state of fibroblasts. GM18 can be combined with poly(l-lactic acid) (PLLA) nanofibers to provide a controlled release of this agonist, resulting in a medication particularly suitable for skin wounds. In this study, we first optimized a GM18-PLLA nanofiber combination with a 7-day sustained release for use as skin wound medication. When tested in an experimental pressure ulcer in diabetic mice, a model for chronic nonhealing wounds, both soluble and GM18-PLLA formulations accelerated wound healing, as well as regulated extracellular matrix synthesis toward a nonfibrotic molecular signature. In vitro experiments using the adhesion test showed fibroblasts to be a principal GM18 cellular target, which we then used as an in vitro model to explore possible mechanisms of GM18 action. Our results suggest that the observed antifibrotic behavior of GM18 may exert a dual action on fibroblasts at the α4β1 binding site and that GM18 may prevent profibrotic EDA-fibronectin-α4β1 binding and activate outside-in signaling of the ERK1/2 pathways, a critical component of the wound healing process.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Alessandro Giuliani
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Marzia Moretti
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Giorgia Pagnotta
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, 2 via Selmi, 40126 Bologna, Italy
| | - Alessandra Flagelli
- Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Paolo Clavenzani
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Luca Lorenzini
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Luciana Giardino
- Department
of Veterinary Medical Science, University
of Bologna, 50 Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,IRET
Foundation, 41/E Via
Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy
| | - Maria Letizia Focarete
- Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, 2 via Selmi, 40126 Bologna, Italy
| | - Daria Giacomini
- Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, 2 via Selmi, 40126 Bologna, Italy,
| | - Laura Calzà
- Interdepartmental
Center for Industrial Research in Health Sciences and Technologies, University of Bologna, 41/E Via Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,IRET
Foundation, 41/E Via
Tolara di Sopra, 40064 Ozzano Emilia, Bologna, Italy,Department
of Pharmacy and BioTechnology, University
of Bologna, 15 Via San
Donato, 40127 Bologna, Italy,
| |
Collapse
|
22
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
23
|
Mavlyutov TA, Kuhn MS, Bilal SE, De Ieso ML, Chauhan AK, Stamer WD, McDowell CM. Decreased outflow facility and Schlemm's canal defects in a mouse model of glaucoma. Exp Eye Res 2022; 225:109249. [PMID: 36152913 PMCID: PMC9722577 DOI: 10.1016/j.exer.2022.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
Previously we identified B6.EDA+/+ mice as a novel mouse model that presents with elevated IOP and trabecular meshwork damage. Here, we expand on our previous findings by measuring aqueous humor outflow facility and analyzing the integrity of the inner wall of Schlemm's canal. As expected, intraocular pressure (IOP) was increased, and outflow facility was decreased compared to C57BL/6J controls. B6.EDA+/+ mice had significantly increased expression of the adherens junction protein, VE-cadherin by the inner wall endothelium of Schlemm's canal. These data suggest that in addition to trabecular meshwork damage, there are changes in Schlemm's canal in B6.EDA+/+ mice that lead to aqueous outflow dysfunction and ocular hypertension.
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53575, USA
| | - Megan S Kuhn
- Duke Eye Center, Duke University, Durham, NC, USA
| | - Samer E Bilal
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53575, USA
| | | | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Colleen M McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53575, USA.
| |
Collapse
|
24
|
Malara A, Gruppi C, Massa M, Tira ME, Rosti V, Balduini A, Barosi G. Elevated plasma EDA fibronectin in primary myelofibrosis is determined by high allele burden of JAK2V617F mutation and strongly predicts splenomegaly progression. Front Oncol 2022; 12:987643. [PMID: 36212480 PMCID: PMC9532599 DOI: 10.3389/fonc.2022.987643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
In primary myelofibrosis, extra-domain A fibronectin (EDA-FN), the result of alternative splicing of FN gene, sustains megakaryocyte proliferation and confers a pro-inflammatory phenotype to bone marrow cell niches. In this work we assessed the levels of circulating EDA-FN in plasma samples of 122 patients with primary myelofibrosis. Patients with a homozygous JAK2V617F genotype displayed the higher level of plasma EDA-FN. Increased EDA-FN levels were associated with anemia, elevated high-sensitivity C-reactive protein, bone marrow fibrosis and splanchnic vein thrombosis at diagnosis. While no correlation was observed with CD34+ hematopoietic stem cell mobilization, elevated blood level of EDA-FN at diagnosis was a predictor of large splenomegaly (over 10 cm from the left costal margin) outcome. Thus, EDA-FN expression in primary myelofibrosis may represent the first marker of disease progression, and a novel target to treat splenomegaly.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Alessandro Malara, ; Alessandra Balduini,
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Margherita Massa
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Maria Enrica Tira
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Alessandro Malara, ; Alessandra Balduini,
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|
25
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
26
|
Mzyk P, Hernandez H, Le T, Ramirez JR, McDowell CM. Toll-Like Receptor 4 Signaling in the Trabecular Meshwork. Front Cell Dev Biol 2022; 10:936115. [PMID: 35912101 PMCID: PMC9335276 DOI: 10.3389/fcell.2022.936115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Primary open-angle glaucoma is one of the leading causes of blindness worldwide. With limited therapeutics targeting the pathogenesis at the trabecular meshwork (TM), there is a great need for identifying potential new targets. Recent evidence has implicated Toll-like receptor 4 (TLR4) and it is signaling pathway in augmenting the effects of transforming growth factor beta-2 (TGFβ2) and downstream extracellular matrix production. In this review, we examine the role of TLR4 signaling in the trabecular meshwork and the interplay between endogenous activators of TLR4 (damage-associated molecular patterns (DAMPs)), extracellular matrix (ECM), and the effect on intraocular pressure.
Collapse
Affiliation(s)
- Philip Mzyk
- University of Wisconsin-Madison, Madison, WI, United States
| | | | - Thanh Le
- University of Houston-Victoria, Victoria, TX, United States
| | | | | |
Collapse
|
27
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
28
|
Mavlyutov TA, Myrah JJ, Chauhan AK, Liu Y, McDowell CM. Fibronectin extra domain A (FN-EDA) causes glaucomatous trabecular meshwork, retina, and optic nerve damage in mice. Cell Biosci 2022; 12:72. [PMID: 35619185 PMCID: PMC9137085 DOI: 10.1186/s13578-022-00800-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.
Collapse
Affiliation(s)
- Timur A. Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Justin J. Myrah
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Anil K. Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA USA
| | - Yang Liu
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
29
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
30
|
Mzyk P, Zalog EG, McDowell CM. A20 Attenuates the Fibrotic Response in the Trabecular Meshwork. Int J Mol Sci 2022; 23:1928. [PMID: 35216043 PMCID: PMC8875798 DOI: 10.3390/ijms23041928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Although the extracellular matrix (ECM) in trabecular meshwork (TM) cells is known to be important in intraocular pressure (IOP) regulation, the molecular mechanisms involved in generating a glaucomatous environment in the TM are not completely understood. Recently we identified a molecular pathway, transforming growth factor beta 2 (TGFβ2)-toll-like receptor 4 (TLR4) signaling crosstalk, as an important regulator of glaucomatous damage in the TM, which contributes to fibrosis. Here we evaluate a novel molecular target, A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), which may help to block pathological TGFβ2-TLR4 signaling. Primary human TM cells were analyzed for A20 message and for A20 and fibronectin protein expression after treatment with TGFβ2. A20 message increased when the TLR4 pathway was inhibited in TM cells. In addition, TGFβ2, a known inducer of fibrosis, increased fibronectin expression, while at the same time decreasing the expression of A20. We then overexpressed A20 in TM cells in order to test the effect on treatment with TGFβ2, lipopolysaccharide (LPS), or cellular fibronectin extra domain A (cFN-EDA). Importantly, overexpression of A20 rescued the fibrotic response when TM cells were treated with TGFβ2, LPS, or cFN-EDA. In situ hybridization was used to probe for A20 RNA expression in age-matched control (C57BL/6J) mice and mice that constitutively express the EDA isoform of fibronectin (B6.EDA+/+). In this novel mouse model of glaucoma, A20 RNA was increased versus age-matched control mice in a cyclic manner at 6 weeks and 1 year of age, but not at 8 months. Overall, these data suggest that A20 may work through a negative feedback mechanism attenuating the ability of TGFβ2-TLR4 signaling to induce fibrosis.
Collapse
Affiliation(s)
| | | | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Madison, Madison, WI 53706, USA; (P.M.); (E.G.Z.)
| |
Collapse
|
31
|
Baralle M, Baralle FE. Alternative splicing and liver disease. Ann Hepatol 2021; 26:100534. [PMID: 34547477 DOI: 10.1016/j.aohep.2021.100534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023]
Abstract
Alternative splicing produces complex and dynamic changes in the protein isoforms that are necessary for the proper biological functioning of the metabolic pathways involved in liver development and hepatocyte homeostasis. Changes in the physiological state of alternatively spliced forms are increasingly linked to liver pathologies. This may occur when the expression or function of the set of proteins controlling the alternative splicing processes are altered by external effectors such as oxidative stress and other environmental variations. Studies addressing these modifications reveal a complex interplay between the expression levels of different proteins that regulate the alternative splicing process as well as the changes in alternative splicing. This interplay results in a cascade of different protein isoforms that correlate with the progression of non-alcoholic fatty liver disease, hepatocellular carcinoma, and alcoholic liver disease. However, research on the detailed molecular mechanism underlying the production of these isoforms is needed. It is imperative to identify the physiological processes affected by the differentially spliced isoforms and confirm their role on the onset and maintenance of the pathology. This is required to design potential therapeutic approaches targeting the key splicing changes to revert the pathological condition as well as identify prognostic markers. In this review, we describe the complexity of the splicing process through an example to encourage researchers to go down this path. Subsequently, rather than a catalog of splicing events we have hand-picked and discuss a few selected studies of specific liver pathologies and suggested ways to focus research on these areas.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Italy
| | - Francisco E Baralle
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
32
|
Hensel JA, Heineman BD, Kimble AL, Jellison ER, Reese B, Murphy PA. Identification of splice regulators of fibronectin-EIIIA and EIIIB by direct measurement of exon usage in a flow-cytometry based CRISPR screen. Sci Rep 2021; 11:19835. [PMID: 34615942 PMCID: PMC8494765 DOI: 10.1038/s41598-021-99079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix protein fibronectin (FN) is alternatively spliced in a variety of inflammatory conditions, resulting in increased inclusion of alternative exons EIIIA and EIIIB. Inclusion of these exons affects fibril formation, fibrosis, and inflammation. To define upstream regulators of alternative splicing in FN, we have developed an in vitro flow-cytometry based assay, using RNA-binding probes to determine alternative exon inclusion level in aortic endothelial cells. This approach allows us to detect exon inclusion in the primary transcripts themselves, rather than in surrogate splicing reporters. We validated this assay in cells with and without FN-EIIIA and -EIIIB expression. In a small-scale CRISPR KO screen of candidate regulatory splice factors, we successfully detected known regulators of EIIIA and EIIIB splicing, and detected several novel regulators. Finally, we show the potential in this approach to broadly interrogate upstream signaling pathways in aortic endothelial cells with a genome-wide CRISPR-KO screen, implicating the TNFalpha and RIG-I-like signaling pathways and genes involved in the regulation of fibrotic responses. Thus, we provide a novel means to screen the regulation of splicing of endogenous transcripts, and predict novel pathways in the regulation of FN-EIIIA inclusion.
Collapse
Affiliation(s)
| | | | - Amy L Kimble
- Center for Vascular Biology, UCONN Health, Farmington, CT, USA
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT, USA
| | - Patrick A Murphy
- Center for Vascular Biology, UCONN Health, Farmington, CT, USA. .,Center for Vascular Biology & Calhoun Cardiology Center, University of Connecticut Medical School, 263 Farmington Avenue, Farmingon, CT, 06030, USA.
| |
Collapse
|
33
|
Phillips AT, Boumil EF, Castro N, Venkatesan A, Gallo E, Adams JJ, Sidhu SS, Bernstein AM. USP10 Promotes Fibronectin Recycling, Secretion, and Organization. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34665194 PMCID: PMC8543399 DOI: 10.1167/iovs.62.13.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Integrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFβ activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs). Methods Primary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry. Results USP10 overexpression increased α5β1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7–2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5β1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN. Conclusions Our data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.
Collapse
Affiliation(s)
- Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| | - Arunkumar Venkatesan
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jarrett J Adams
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| |
Collapse
|
34
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
35
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
36
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
37
|
Jain M, Dev R, Doddapattar P, Kon S, Dhanesha N, Chauhan AK. Integrin α9 regulates smooth muscle cell phenotype switching and vascular remodeling. JCI Insight 2021; 6:147134. [PMID: 34027892 PMCID: PMC8262341 DOI: 10.1172/jci.insight.147134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Excessive proliferation of vascular smooth muscle cells (SMCs) remains a significant cause of in-stent restenosis. Integrins, which are heterodimeric transmembrane receptors, play a crucial role in SMC biology by binding to the extracellular matrix protein with the actin cytoskeleton within the SMC. Integrin α9 plays an important role in cell motility and autoimmune diseases; however, its role in SMC biology and remodeling remains unclear. Herein, we demonstrate that stimulated human coronary SMCs upregulate α9 expression. Targeting α9 in stimulated human coronary SMCs, using anti-integrin α9 antibody, suppresses synthetic phenotype and inhibits SMC proliferation and migration. To provide definitive evidence, we generated an SMC-specific α9-deficient mouse strain. Genetic ablation of α9 in SMCs suppressed synthetic phenotype and reduced proliferation and migration in vitro. Mechanistically, suppressed synthetic phenotype and reduced proliferation were associated with decreased focal adhesion kinase/steroid receptor coactivator signaling and downstream targets, including phosphorylated ERK, p38 MAPK, glycogen synthase kinase 3β, and nuclear β-catenin, with reduced transcriptional activation of β-catenin target genes. Following vascular injury, SMC-specific α9-deficient mice or wild-type mice treated with murine anti-integrin α9 antibody exhibited reduced injury-induced neointimal hyperplasia at day 28 by limiting SMC migration and proliferation. Our findings suggest that integrin α9 regulates SMC biology, suggesting its potential therapeutic application in vascular remodeling.
Collapse
Affiliation(s)
- Manish Jain
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rishabh Dev
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Prakash Doddapattar
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Nirav Dhanesha
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anil K Chauhan
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
38
|
Spada S, Tocci A, Di Modugno F, Nisticò P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from structural and functional features to clinical practice in oncology. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:102. [PMID: 33731188 PMCID: PMC7972229 DOI: 10.1186/s13046-021-01908-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.
Collapse
Affiliation(s)
- Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
39
|
Dhanesha N, Jain M, Doddapattar P, Undas A, Chauhan AK. Cellular fibronectin promotes deep vein thrombosis in diet-induced obese mice. J Thromb Haemost 2021; 19:814-821. [PMID: 33300307 PMCID: PMC8527852 DOI: 10.1111/jth.15206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Overweight and obesity are significant risk factors for deep vein thrombosis (DVT). Cellular fibronectin containing extra domain A (Fn-EDA), an endogenous ligand for toll-like-receptor 4 (TLR4), contributes to thrombo-inflammation. The role of Fn-EDA in the modulation of DVT is not elucidated yet. OBJECTIVE To determine whether Fn-EDA promotes DVT in the context of diet-induced obesity. METHODS Wild-type (WT) and Fn-EDA-deficient mice were either fed control or high-fat (HF) diet for 12 weeks. DVT was induced by inferior vena cava (IVC) stenosis and evaluated after 48 hours. Cellular Fn-EDA levels in the plasma of venous thromboembolism (VTE) patients were measured by sandwich ELISA. RESULTS We found that cellular Fn-EDA levels were significantly elevated in VTE patients' plasma and positively correlated with body mass index. HF diet-fed WT mice exhibited increased DVT susceptibility compared with control diet-fed WT mice. In contrast, HF diet-fed Fn-EDA-deficient mice exhibited significantly reduced thrombus weight and decreased incidence (%) of DVT compared with HF diet-fed WT mice concomitant with reduced neutrophil content and citrullinated histone H3-positive cells (a marker of NETosis) in IVC thrombus. Exogenous cellular Fn-EDA potentiated NETosis in neutrophils stimulated with thrombin-activated platelets via TLR4. Genetic deletion of TLR4 in Fn-EDA+ mice (constitutively express Fn-EDA in plasma and tissues), but not in Fn-EDA-deficient mice, reduced DVT compared with respective controls. CONCLUSION These results demonstrate a previously unknown role of Fn-EDA in the DVT exacerbation, which may be an essential mechanism promoting DVT in the setting of diet-induced obesity.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Manish Jain
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Prakash Doddapattar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University, Kraków, Poland
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
40
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
41
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
42
|
Efthymiou G, Radwanska A, Grapa AI, Beghelli-de la Forest Divonne S, Grall D, Schaub S, Hattab M, Pisano S, Poet M, Pisani DF, Counillon L, Descombes X, Blanc-Féraud L, Van Obberghen-Schilling E. Fibronectin Extra Domains tune cellular responses and confer topographically distinct features to fibril networks. J Cell Sci 2021; 134:jcs.252957. [PMID: 33526715 DOI: 10.1242/jcs.252957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular fibronectin (FN; also known as FN1) variants harboring one or two alternatively spliced so-called extra domains (EDB and EDA) play a central bioregulatory role during development, repair processes and fibrosis. Yet, how the extra domains impact fibrillar assembly and function of the molecule remains unclear. Leveraging a unique biological toolset and image analysis pipeline for direct comparison of the variants, we demonstrate that the presence of one or both extra domains impacts FN assembly, function and physical properties of the matrix. When presented to FN-null fibroblasts, extra domain-containing variants differentially regulate pH homeostasis, survival and TGF-β signaling by tuning the magnitude of cellular responses, rather than triggering independent molecular switches. Numerical analyses of fiber topologies highlight significant differences in variant-specific structural features and provide a first step for the development of a generative model of FN networks to unravel assembly mechanisms and investigate the physical and functional versatility of extracellular matrix landscapes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Agata Radwanska
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice 06108, France
| | - Anca-Ioana Grapa
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice 06108, France.,Université Côte d'Azur, Inria, CNRS, i3S, Nice 06902, France
| | | | - Dominique Grall
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice 06108, France
| | | | - Maurice Hattab
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice 06108, France
| | - Sabrina Pisano
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice 06107, France
| | - Mallorie Poet
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice 06107, France
| | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Yan H, Tai Y, Xue Y, Wei Y, Wang K, Zhao Q, Wang S, Kong D, Midgley AC. Design and Evaluation of a Polypeptide that Mimics the Integrin Binding Site for EDA Fibronectin to Block Profibrotic Cell Activity. Int J Mol Sci 2021; 22:ijms22041575. [PMID: 33557232 PMCID: PMC7913925 DOI: 10.3390/ijms22041575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yifan Tai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yueming Xue
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yongzhen Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Correspondence: (S.W.); (A.C.M.); Tel.: +86-1562-004-7851 (A.C.M.)
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence: (S.W.); (A.C.M.); Tel.: +86-1562-004-7851 (A.C.M.)
| |
Collapse
|
44
|
Bozó R, Flink LB, Belső N, Gubán B, Széll M, Kemény L, Bata-Csörgő Z. Could basement membrane alterations, resembling micro-wounds at the dermo-epidermal junction in psoriatic non-lesional skin, make the skin susceptible to lesion formation? Exp Dermatol 2021; 30:765-772. [PMID: 33348435 DOI: 10.1111/exd.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Current data suggest that tissue microenvironment control immune functions. Therefore, understanding the tissue environment in which immune activation occurs will enhance our capability to interfere with abnormal immune pathology. Here, we argue that studying the constitutively abnormal functions of clinically uninvolved psoriatic skin in patients with plaque type psoriasis is very important to better understand psoriasis pathobiology, because non-lesional skin provides the tissue environment in which the psoriatic lesion develops. A key question in psoriasis is what initiates the abnormal, uncontrolled immune activation in the first place and the answer may lie in the skin. In light of this concept, we summarize abnormalities at the dermal-epidermal junction region which shows a special "non-healing-like" micro-wound phenotype in the psoriatic non-lesional skin that may act as a crucial susceptibility factor in the development of the disease.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Nóra Belső
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Barbara Gubán
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| |
Collapse
|
45
|
Shokhirev MN, Johnson AA. Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell 2021; 20:e13280. [PMID: 33336875 PMCID: PMC7811842 DOI: 10.1111/acel.13280] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Aging in humans is an incredibly complex biological process that leads to increased susceptibility to various diseases. Understanding which genes are associated with healthy aging can provide valuable insights into aging mechanisms and possible avenues for therapeutics to prolong healthy life. However, modeling this complex biological process requires an enormous collection of high‐quality data along with cutting‐edge computational methods. Here, we have compiled a large meta‐analysis of gene expression data from RNA‐Seq experiments available from the Sequence Read Archive. We began by reprocessing more than 6000 raw samples—including mapping, filtering, normalization, and batch correction—to generate 3060 high‐quality samples spanning a large age range and multiple different tissues. We then used standard differential expression analyses and machine learning approaches to model and predict aging across the dataset, achieving an R2 value of 0.96 and a root‐mean‐square error of 3.22 years. These models allow us to explore aging across health status, sex, and tissue and provide novel insights into possible aging processes. We also explore how preprocessing parameters affect predictions and highlight the reproducibility limits of these machine learning models. Finally, we develop an online tool for predicting the ages of human transcriptomic samples given raw gene expression counts. Together, this study provides valuable resources and insights into the transcriptomics of human aging.
Collapse
Affiliation(s)
- Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core Salk Institute for Biological Studies La Jolla CA USA
| | | |
Collapse
|
46
|
Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol 2020; 30:132-145. [PMID: 33211348 DOI: 10.1111/exd.14243] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Keloid disorder, a group of fibroproliferative skin diseases, is characterized by unremitting accumulation of the extracellular matrix (ECM) of connective tissue, primarily collagen, to develop cutaneous tumors on the predilection sites of skin. There is a strong genetic predisposition for keloid formation, and individuals of African and Asian ancestry are particularly prone. The principal cell type responsible for ECM accumulation is the myofibroblast derived from quiescent resident skin fibroblasts either through trans-differentiation or from keloid progenitor stem cells with capacity for multi-lineage differentiation and self-renewal. The biosynthetic pathways leading to ECM accumulation are activated by several cytokines, but particularly by TGF-β signalling. The mechanical properties of the cellular microenvironment also play a critical role in the cell's response to TGF-β, as demonstrated by culturing of fibroblasts derived from keloids and control skin on substrata with different degrees of stiffness. These studies also demonstrated that culturing of fibroblasts on tissue culture plastic in vitro does not reflect their biosynthetic capacity in vivo. Collectively, our current understanding of the pathogenesis of keloids suggests a complex network of interacting cellular, molecular and mechanical factors, with distinct pathways leading to myofibroblast differentiation and activation. Keloids can serve as a model system of fibrotic diseases, a group of currently intractable disorders, and deciphering of the critical pathogenetic steps leading to ECM accumulation is expected to identify targets for pharmacologic intervention, not only for keloids but also for a number of other, both genetic and acquired, fibrotic diseases.
Collapse
Affiliation(s)
- Edward J Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter J Wermuth
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jouni Uitto
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases, and the Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
FN-EDA mediates angiogenesis of hepatic fibrosis via integrin-VEGFR2 in a CD63 synergetic manner. Cell Death Discov 2020; 6:140. [PMID: 33293521 PMCID: PMC7722740 DOI: 10.1038/s41420-020-00378-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Pathological angiogenesis is an important component of hepatic fibrosis along with fibrous deposition, but its role is not well understood. Here, we demonstrated that fibronectin containing extra domain A(FN-EDA), a fibronectin splice variant highly expressed in hepatic fibrosis, mediated angiogenesis in disease progression. FN-EDA was positively correlated with pathological angiogenesis in hepatic fibrosis, and a reduction in FN-EDA expression was associated with diminished intrahepatic angiogenesis and fibrosis. FN-EDA mostly colocalized with hepatic stellate cells (HSCs) and interference or blockage of FN-EDA attenuated migration and tube formation in co-cultured endothelial cells. Mechanistic studies indicated that FN-EDA was secreted to promote phosphorylation of VEGFR2 with the assistance of integrin and CD63. Targeting FN-EDA-integrin combination postponed the progression of hepatic angiogenesis and fibrosis in vivo. These results indicated that FN-EDA plays an emerging role in angiogenesis in hepatic fibrosis and could be a potential therapeutic intervention for the disease.
Collapse
|
48
|
Greenwell JC, Torres-Gonzalez E, Ritzenthaler JD, Roman J. Interplay between aging, lung inflammation/remodeling, and fibronectin EDA in lung cancer progression. Cancer Biol Ther 2020; 21:1109-1118. [PMID: 33222614 DOI: 10.1080/15384047.2020.1831372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lung cancer remains the leading cause of cancer death in the United States. Since most lung cancers occur in aged individuals with chronic lung disorders characterized by inflammation and/or fibrosis, we hypothesized that aging and tissue inflammation/remodeling act in concert to promote lung cancer progression. To test this, we engaged in studies using young and aged C57BL/6 mice in conjunction with bleomycin treatment in a syngeneic model of lung cancer. Wildtype young (3 months) and aged (9 months) C57BL/6 mice were injected with Lewis Lung Carcinoma (LLC) cells at day 14 after injection with phosphate-buffered saline or bleomycin. Untreated aged mice were found to develop more lung metastases than young mice. Bleomycin induced weight loss and lung inflammation/remodeling in both young and aged mice, and it increased the number of lung metastases in aged lungs, but not in young lungs. Since aged lungs show alterations in the expression of fibronectin EDA, we repeated studies in aged WT and aged FN EDA KO mice. In the absence of tissue remodeling/inflammation, WT and FN EDA KO mice developed the same number of metastases when injected with LLC cells. However, the increase in lung metastasis due to bleomycin treatment was abolished in FN EDA KO mice, but only in aged and injured lungs. Together, these studies show increased lung cancer metastasis in aging animals and point to the influence of FN EDA and injury in this process.
Collapse
Affiliation(s)
- John C Greenwell
- Department of Pharmacology & Toxicology, University of Louisville, Health Sciences Center , Louisville, KY, USA
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders, University of Louisville Health Sciences Center , Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University , Philadelphia, PA, USA
| | - Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders, University of Louisville Health Sciences Center , Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University , Philadelphia, PA, USA
| | - Jesse Roman
- Department of Pharmacology & Toxicology, University of Louisville, Health Sciences Center , Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders, University of Louisville Health Sciences Center , Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University , Philadelphia, PA, USA.,Robley Rex VA Medical Center , Louisville, KY, USA
| |
Collapse
|
49
|
Abstract
Fibronectin (FN) circulating in the blood and produced by cells provides the basis of the extracellular matrix (ECM) formed in healing acute wounds. The time-dependent deposition of FN by macrophages, its synthesis by fibroblasts and myofibroblasts, and later degradation in the remodeled granulation tissue are a prerequisite for successful healing of wounds. However, the pattern of FN expression and deposition in skin lesions is disturbed. The degradation of the ECM components including FN in varicose veins prevails over ECM synthesis and deposition. FN is inconspicuous in the fibrotic lesions in lipodermatosclerosis, while tenascin-C containing FN-like peptide sequences are prominent. FN is produced in large amounts by fibroblasts at the edge of venous ulcers but FN deposition at the wound bed is impaired. Both the proteolytic environment in the wounds and the changed function of the ulcer fibroblasts may be responsible for the poor healing of venous ulcers. The aim of this review is to describe the current knowledge of FN pathophysiology in chronic venous diseases. In view of the fact that FN plays a crucial role in organizing the ECM, further research focused on FN metabolism in venous diseases may bring results applicable to the treatment of the diseases.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
50
|
Bingham GC, Lee F, Naba A, Barker TH. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol 2020; 91-92:152-166. [DOI: 10.1016/j.matbio.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
|