1
|
Kocas M, Yamashita F, Comoglu T, Zhang Q. Enhancing Intracellular Uptake of Ivermectin through Liposomal Encapsulation. AAPS PharmSciTech 2025; 26:123. [PMID: 40316874 DOI: 10.1208/s12249-025-03113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Ivermectin (IVM), an antiparasitic drug approved by the Food and Drug Administration (FDA), is widely used to treat several neglected tropical diseases, including onchocerciasis, helminthiases, and scabies. Additionally, IVM has shown potential as a potent inhibitor of certain RNA viruses, such as SARS-CoV-2. However, IVM is highly hydrophobic, essentially insoluble in water, which limits its bioavailability and therapeutic effectiveness. The use of liposomes as drug carriers offers several advantages, including enhanced solubility for lipophilic drugs, passive targeting of immune system cells, sustained release, and improved tissue penetration. To address the limitations of IVM, including its poor solubility and bioavailability, liposomal formulations were developed using a combination of soyphosphatidylcholine (SPC), dioleylphosphatidylcholine (DOPC), cholesterol (Ch), and diethylphosphate (DCP) in two distinct molar ratios (1.85:1:0.15 and 7:2:1) via the ethanol injection method. The physicochemical properties of the placebo and IVM-loaded liposomes were extensively characterized in our earlier study, including the particle size, polydispersity index, and zeta potential. The present work adds a deeper level of investigation into how to effect cellular uptake and cytotoxicity in vitro of both free IVM and IVM-loaded liposomes in Vero E6 cells. The half-maximal cytotoxic concentrations (CC50) for free IVM and IVM-loaded liposomes were 10 μM and > 110 μM, respectively and the cellular uptake of IVM-loaded liposomes ranged from 13 to 60%, whereas free IVM showed a significantly lower uptake of only 2%. These results demonstrate that liposomal encapsulation effectively enhances IVM's cellular uptake while reducing its cytotoxicity, thus offering a promising strategy for improving the effectiveness of IVM.
Collapse
Affiliation(s)
- Meryem Kocas
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Selcuk University, Selçuklu, Konya, 42130, Turkey
- Graduate School of Health Sciences, Ankara University, Dışkapı, Ankara, 06610, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Yenimahalle, Ankara, 06560, Turkey
- Graduate School of Pharmaceutical Sciences, Department of Drug Delivery Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Fumiyoshi Yamashita
- Graduate School of Pharmaceutical Sciences, Department of Quantitative Pharmaceutics, Kyoto University, Kyoto, 606-8501, Japan
- Graduate School of Pharmaceutical Sciences, Department of Drug Delivery Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Yenimahalle, Ankara, 06560, Turkey.
| | - Qiyue Zhang
- Graduate School of Pharmaceutical Sciences, Department of Quantitative Pharmaceutics, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Šubarić D, Rastija V, Karnaš Babić M, Agić D, Majić I. Structural Features of Coumarin-1,2,4-Triazole Hybrids Important for Insecticidal Effects Against Drosophila melanogaster and Orius laevigatus (Fieber). Molecules 2025; 30:1662. [PMID: 40333563 PMCID: PMC12029422 DOI: 10.3390/molecules30081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Although the present use of pesticides in plant protection has limited the occurrence and development of plant diseases and pests, resistance to pesticides and their environmental and health hazards indicates an urgent need for new active ingredients in plant protection products. Recently synthesized coumarin-1,2,4-triazole hybrid compounds have been proven effective against plant pathogenic fungi and safe for soil-beneficial bacteria. Drosophila melanogaster, the common fruit fly, has been used as a model organism for scientific research. Additionally, it is considered a pest since it damages fruits and serves as a carrier for various plant diseases. On the contrary, Orius laevigatus is a beneficial true bug that biologically controls harmful arthropods in agricultural production. In the present study, we performed an adulticidal bioassay against D. melanogaster and O. laevigatus using coumarin-1,2,4-triazole hybrids. Quantitative structure-activity relationship studies (QSARs) and in silico ecotoxicity evaluation elucidated the structural features underlying the compounds' insecticidal activity. The derivative of 4-methylcoumarin-1,2,4-triazole with a 3-bromophenyl group showed great insecticidal potential. A molecular docking study indicated that the most active compound probably binds to glutamate-gated chloride channels.
Collapse
Affiliation(s)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (D.Š.); (M.K.B.); (D.A.); (I.M.)
| | | | | | | |
Collapse
|
3
|
Liu Q, Tao J, Kan L, Zhang Y, Zhang S. Diversity, antibacterial and phytotoxic activities of actinomycetes associated with Periplaneta fuliginosa. PeerJ 2024; 12:e18575. [PMID: 39611011 PMCID: PMC11604042 DOI: 10.7717/peerj.18575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Background Insect-associated actinomycetes represent a potentially rich source for discovering bioactive metabolites. However, the diversity, antibacterial and phytotoxic activities of symbiotic actinomycetes associated with Periplaneta fuliginosa have not yet been conducted. Results A total of 86 strains of actinomycetes were isolated from the cornicles and intestines of both nymphs and adults of P. fuliginosa. Diversity analysis revealed that the isolated strains were preliminarily identified as 17 species from two genera, and the dominant genus was Streptomyces. A total of 36 crude extracts (60%) obtained from the supernatant of the 60 fermented strains exhibited a potent antibacterial activity against at least one tested pathogenic bacterium. Among these active strains, 27 crude extracts (75%) exhibited phytotoxic activity against the radicle of Echinochloa crusgalli. Furthermore, seven known compounds, including methoxynicotine (1), (3Z,6Z)-3-(4-methoxybenzylidene)-6-(2-methylpropyl) piperazine-2,5-dione (2), XR334 (3), 1-hydroxy-4-methoxy-2-naphthoic acid (4), nocapyrone A (5), β-daucosterol (6), and β-sitosterol (7) were isolated from an active rare actinomycete Nocardiopsis sp. ZLC-87 which was isolated from the gut of adult P. fuliginosa. Among them, compound 4 exhibited moderate antibacterial activity against Micrococcus tetragenus, Staphylococcus aureus, Escherichia coli, and Pseudomonas syringae pv. actinidiae with the zone of inhibition (ZOI) of 14.5, 12.0, 12.5, and 13.0 mm at a concentration of 30 μg/disc, respectively, which was weaker than those of gentamicin sulfate (ZOI of 29.5, 19.0, 18.5, and 24.5 mm). In addition, the compound 4 had potent phytotoxic activity against the radicle of E. crusgalli and Abutilon theophrasti with the inhibition rate of 65.25% and 92.68% at the concentration of 100 μg/mL. Conclusion Based on these findings, this study showed that P. fuliginosa-associated actinomycetes held promise for the development of new antibiotic and herbicide resources.
Collapse
Affiliation(s)
- Qihua Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Longhui Kan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuxiang Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Barros GPD, Leme DP, Avilés LLA, Bricarello PA. Homeopathic Sulphur Ointment as Adjuvant in the Treatment of Sheep with Myiasis by Cochliomyia hominivorax (Diptera: Calliphoridae): A Case Series. HOMEOPATHY 2024; 113:190-204. [PMID: 37758190 DOI: 10.1055/s-0043-1770360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Myiasis by Cochliomyia hominivorax (Diptera: Calliphoridae) is a serious problem in animal health. Homeopathic Sulphur presents similarity with the clinical presentation verified in these cases and has already shown in vitro efficacy on the blowfly that causes this pathology. This article presents the report of a series of clinical cases of myiasis by C. hominivorax in sheep that underwent adjuvant treatment with homeopathic Sulphur and presents a theoretical-scientific discussion of biological events related to the clinical treatment of the condition. PATIENTS Seven naturally occurring myiases affecting sheep from an experimental farm were treated by an ointment impregnated with the homeopathic medicine Sulph 12cH, used as adjuvant after the manual removal of accessible larvae from the wound during wound cleaning. The animals were treated daily and evaluated clinically until complete healing of the lesions. Clinical information on the evolution of the inflammatory and scarring process was collected. Blood counts and bacteriological examinations were performed before and after topical homeopathic treatment. RESULTS The homeopathic ointment Sulph 12cH was able to inhibit the development of parasitic C. hominivorax larvae and promote tissue repair and healing in naturally occurring myiasis in the sheep of this study. CONCLUSION The homeopathic medicine Sulphur, formulated as an ointment, may be a useful new and adjuvant therapeutic option for treating myiasis in animals.
Collapse
Affiliation(s)
- Giuliano Pereira de Barros
- Departamento de Zootecnia e Desenvolvimento Rural, Programa de Pós Graduação em Agroecossistemas, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina. Florianópolis, SC, Brasil
| | - Denise Pereira Leme
- Departamento de Zootecnia e Desenvolvimento Rural, Programa de Pós Graduação em Agroecossistemas, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina. Florianópolis, SC, Brasil
| | - Laura Livia Arias Avilés
- Departamento de Zootecnia e Desenvolvimento Rural, Programa de Pós Graduação em Agroecossistemas, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina. Florianópolis, SC, Brasil
| | - Patrizia Ana Bricarello
- Departamento de Zootecnia e Desenvolvimento Rural, Programa de Pós Graduação em Agroecossistemas, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina. Florianópolis, SC, Brasil
| |
Collapse
|
5
|
Cerna-Chávez E, Rodríguez-Rodríguez JF, García-Conde KB, Ochoa-Fuentes YM. Potential of Streptomyces avermitilis: A Review on Avermectin Production and Its Biocidal Effect. Metabolites 2024; 14:374. [PMID: 39057697 PMCID: PMC11278826 DOI: 10.3390/metabo14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Secondary metabolites produced by the fermentation of Streptomyces avermitilis bacterium are powerful antiparasitic agents used in animal health, agriculture and human infection treatments. Avermectin is a macrocyclic lactone with four structural components (A1, A2, B1, B2), each of them containing a major and a minor subcomponent, out of which avermectin B1a is the most effective parasitic control compound. Avermectin B1a produces two homologue avermectins (B1 and B2) that have been used in agriculture as pesticides and antiparasitic agents, since 1985. It has a great affinity with the Cl-channels of the glutamate receptor, allowing the constant flow of Cl- ions into the nerve cells, causing a phenomenon of hyperpolarization causing death by flaccid paralysis. The purpose of this work was to gather information on the production of avermectins and their biocidal effects, with special emphasis on their role in the control of pests and phytopathogenic diseases. The literature showed that S. avermitilis is an important producer of macrocyclic lactones with biocidal properties. In addition, avermectin contributes to the control of ectoparasites and endoparasites in human health care, veterinary medicine and agriculture. Importantly, avermectin is a compound that is harmless to the host (no side effects), non-target organisms and the environment.
Collapse
Affiliation(s)
- Ernesto Cerna-Chávez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - José Francisco Rodríguez-Rodríguez
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Karen Berenice García-Conde
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Yisa María Ochoa-Fuentes
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| |
Collapse
|
6
|
Tomar P, Thakur N, Jhamta S, Chowdhury S, Kapoor M, Singh S, Shreaz S, Rustagi S, Rai PK, Rai AK, Yadav AN. Bacterial biopesticides: Biodiversity, role in pest management and beneficial impact on agricultural and environmental sustainability. Heliyon 2024; 10:e31550. [PMID: 38828310 PMCID: PMC11140719 DOI: 10.1016/j.heliyon.2024.e31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Agro-environmental sustainability is based upon the adoption of efficient resources in agro-practices that have a nominal impact on the ecosystem. Insect pests are responsible for causing severe impacts on crop productivity. Wide ranges of agro-chemicals have been employed over the last 50 years to overcome crop yield losses due to insect pests. But better knowledge about the hazards due to chemical pesticides and other pest resistance and resurgence issues necessitates an alternative for pest control. The applications of biological pesticides offer a best alternate that is safe, cost-effective, easy to adoption and successful against various insect pests and pathogens. Like other organisms, insects can get a wide range of diseases from various microbes, such as bacteria, fungi, viruses, protozoa, and nematodes. In order to create agricultural pest management practices that are environmentally beneficial, bacterial entomopathogens are being thoroughly studied. Utilization of bacterial biopesticides has been adopted for the protection of agricultural products. The different types of toxin complexes released by various microorganisms and their mechanisms of action are recapitulated. The present review described the diversity and biocontrol prospective of certain bacteria and summarised the potential of bacterial biopesticides for the management of agricultural pests, insects, and other phytopathogenic microorganisms in agricultural practices.
Collapse
Affiliation(s)
- Preety Tomar
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Samiksha Jhamta
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Sirmour, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University Faizabad, Uttar Pradesh, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| |
Collapse
|
7
|
Wadsworth HA, Warnecke AMP, Barlow JC, Robinson JK, Steimle E, Ronström JW, Williams PE, Galbraith CJ, Baldridge J, Jakowec MW, Davies DL, Yorgason JT. Ivermectin increases striatal cholinergic activity to facilitate dopamine terminal function. Cell Biosci 2024; 14:50. [PMID: 38632622 PMCID: PMC11025261 DOI: 10.1186/s13578-024-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Ivermectin (IVM) is a commonly prescribed antiparasitic treatment with pharmacological effects on invertebrate glutamate ion channels resulting in paralysis and death of invertebrates. However, it can also act as a modulator of some vertebrate ion channels and has shown promise in facilitating L-DOPA treatment in preclinical models of Parkinson's disease. The pharmacological effects of IVM on dopamine terminal function were tested, focusing on the role of two of IVM's potential targets: purinergic P2X4 and nicotinic acetylcholine receptors. Ivermectin enhanced electrochemical detection of dorsal striatum dopamine release. Although striatal P2X4 receptors were observed, IVM effects on dopamine release were not blocked by P2X4 receptor inactivation. In contrast, IVM attenuated nicotine effects on dopamine release, and antagonizing nicotinic receptors prevented IVM effects on dopamine release. IVM also enhanced striatal cholinergic interneuron firing. L-DOPA enhances dopamine release by increasing vesicular content. L-DOPA and IVM co-application further enhanced release but resulted in a reduction in the ratio between high and low frequency stimulations, suggesting that IVM is enhancing release largely through changes in terminal excitability and not vesicular content. Thus, IVM is increasing striatal dopamine release through enhanced cholinergic activity on dopamine terminals.
Collapse
Affiliation(s)
- Hillary A Wadsworth
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Alicia M P Warnecke
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Joshua C Barlow
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - J Kayden Robinson
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Emma Steimle
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Joakim W Ronström
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Pacen E Williams
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Christopher J Galbraith
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Jared Baldridge
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA
| | - Michael W Jakowec
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Daryl L Davies
- Department of Neurology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Jordan T Yorgason
- Department of Cellular Biology and Physiology, and Neuroscience Program, Brigham Young University, 4005 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
8
|
Le B, Clarke NE, Legrand N, Nery SV. Effectiveness of ivermectin mass drug administration in the control of soil-transmitted helminth infections in endemic populations: a systematic review and meta-analysis. Infect Dis Poverty 2024; 13:16. [PMID: 38369483 PMCID: PMC10874526 DOI: 10.1186/s40249-024-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Current soil-transmitted helminth (STH) control guidelines endorse the use of albendazole or mebendazole for school-based targeted preventive chemotherapy (PC), yet their reduced efficacy against Strongyloides stercoralis and Trichuris trichiura presents significant limitations. Emerging evidence indicates that community-wide PC [or mass drug administration (MDA)] using ivermectin, commonly used in other neglected tropical disease (NTD) control programs, may play an important role in controlling these parasites. We conducted a systematic review and meta-analysis to evaluate the effectiveness of ivermectin PC in reducing STH prevalence in endemic populations. METHODS We searched Pubmed, EMBASE, and Web of Science on February 14, 2023, for studies that investigated the effectiveness of ivermectin PC, either alone or in combination with other anthelmintic drugs, on STH infections, and provided a measure of STH prevalence before and after PC. We calculated pooled prevalence reductions for each STH using random-effects meta-analyses. Our protocol is available on PROSPERO (registration number CRD42023401219). RESULTS A total of 21 were eligible for the systematic review, of which 15 were eligible for meta-analysis. All studies delivered ivermectin through MDA. The pooled prevalence reduction of S. stercoralis following MDA with ivermectin alone was 84.49% (95% CI 54.96-94.66) across five studies and 81.37% (95% CI 61.62-90.96) across seven studies with or without albendazole. The prevalence reduction of T. trichiura was 49.93% (95% CI 18.23-69.34) across five studies with ivermectin alone, and 89.40% (95% CI 73.66-95.73) across three studies with the addition of albendazole. There was high heterogeneity for all syntheses (I2 > 65%). CONCLUSIONS This study underscores the key role of ivermectin-based MDA in addressing limitations in current global STH guidelines in terms of limited efficacy against S. stercoralis and T. trichiura. Based on these findings, revising international STH guidelines to include ivermectin is a promising option to progress the control and eventual elimination of STHs and other NTDs.
Collapse
Affiliation(s)
- Brandon Le
- The Kirby Institute, University of New South Wales, Level 6, Wallace Wurth Building, Sydney, NSW, 2052, Australia.
| | - Naomi E Clarke
- The Kirby Institute, University of New South Wales, Level 6, Wallace Wurth Building, Sydney, NSW, 2052, Australia
| | - Nicolas Legrand
- The Kirby Institute, University of New South Wales, Level 6, Wallace Wurth Building, Sydney, NSW, 2052, Australia
| | - Susana Vaz Nery
- The Kirby Institute, University of New South Wales, Level 6, Wallace Wurth Building, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Galvão NA, Cordeiro F, Bernardi MM, Kirsten TB. Ivermectin prevents stress-induced testicular damage in juvenile rats. Tissue Cell 2024; 86:102292. [PMID: 38159533 DOI: 10.1016/j.tice.2023.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Ivermectin is a popular antiparasitic drug used in veterinary and human medicine. Studies by our group have shown that therapeutic doses of ivermectin induce some brain and behavioral impairments, especially in the reproductive sphere. So far, the studies were focused in adulthood. Considering that juveniles are more susceptible to drugs during developmental stages and both farm/domestic animals and humans have been medicated with ivermectin in youth, it is necessary to evaluate the possible harm effects in youth. The stress variable is also important, as it potentially influences the effects produced by ivermectin. Therefore, the objective of this study was to evaluate morphofunctional and hormonal reproductive aspects of juvenile rats exposed to ivermectin and/or stressed. Prepubertal male rats were treated with 0.2 or 1.0 mg/kg of ivermectin (a therapeutic dose and a higher dose, respectively). Rats were also submitted to a restraint stress session. The testis morphology and histology were analyzed and plasma testosterone levels were measured. The two doses of ivermectin did not induce a biologically relevant effect on testis and testosterone levels of rats. However, restraint stress impaired macroscopic and microscopic morphometric and stereological parameters, as well as the histology of the testis: it increased the relative testis weight, the tubular diameter, the tubular luminal diameter, and the tubular cellular index, and injured the interstitial area. Previous treatment of juvenile rats with ivermectin prevented most of the stress-induced testes injuries. In conclusion, in addition to be a remarkable antiparasitic agent, ivermectin prevented stress-induced testes injuries in juvenile rats.
Collapse
Affiliation(s)
- Nathalia A Galvão
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Flora Cordeiro
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil.
| |
Collapse
|
10
|
Damene E, Massebo F. Administration of ivermectin to cattle induced mortality, reduced fecundity and survivorship of Anopheles arabiensis in Ethiopia: an implication for expansion of vector control toolbox. Trop Med Health 2024; 52:11. [PMID: 38229204 PMCID: PMC10790479 DOI: 10.1186/s41182-023-00575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Although many countries have shown interest in eliminating malaria, approaches that complement existing vector control interventions are needed because existing methods have been scaled up but malaria still persists. Therefore, the effect of ivermectin administration to cattle was evaluated for its effect on mortality, survivorship and mortality of laboratory reared Anopheles arabiensis. METHODS Three calves were randomly selected and injected with ivermectin at a therapeutic dose of 0.2 mg/kg, while the other two calves received no treatment and served as controls. Five tents were constructed for the trial. Calves were housed in tents (one per tent) and then 30 starved female An. arabiensis were introduced into each tent. Only fully engorged females were collected from each tent and placed in different mosquito cages to monitor their mortality, survival and fecundity. Data analysis was done using SPSS version 16. RESULTS During the follow-up period (until day 21), ivermectin induced significantly higher mortality when compared to controls. It resulted in an average 24-h mortality rate of 81.6% against An. arabiensis on the first day following treatment. 100% An. arabiensis that fed on ivermectin-treated calves on the first day after treatment died within four days. Egg production rate of An. arabiensis that fed on ivermectin-treated calves was significantly lower compared to controls (F = 768.7, P < 0.001). CONCLUSION In conclusion, ivermectin induced mortality, reduced fecundity and survivorship of laboratory maintained An. arabiensis. Further study is recommended using a wild mosquito population. Moreover, mass ivermectin administration to domestic animals could be recommended to supplement the existing indoor based interventions.
Collapse
Affiliation(s)
- Ephrem Damene
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
11
|
Le B, Clarke NE, Hii SF, Byrne A, Khattak A, Lake S, Lazu E, Wickham S, Wand H, Olsen N, Zendejas-Heredia PA, Sokana O, Romani L, Engelman D, Nasi T, Boara D, Kaldor J, Steer A, Traub R, Nery SV. Effectiveness of one and two doses of ivermectin mass drug administration in reducing the prevalence and intensity of soil-transmitted helminth (STH) infections in Western Province, Solomon Islands: a cluster-randomised, before-after analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100942. [PMID: 38357395 PMCID: PMC10865046 DOI: 10.1016/j.lanwpc.2023.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
Background Ivermectin mass drug administration (MDA) is effective for controlling onchocerciasis and scabies, with evidence supporting its role in some species of soil-transmitted helminth (STH) infections. In the context of RISE, a cluster-randomised trial for scabies, this study evaluated the effectiveness of ivermectin MDA in reducing STH burden in the Western Province of Solomon Islands. Methods Twenty villages were randomised 1:1 to receive ivermectin MDA as one dose (IVM-1) or two doses (IVM-2) for scabies. The effectiveness of one and two doses in reducing STH prevalence and intensity was evaluated before (May 2019) and 21 months after (February 2021) MDA in May 2019. All residents aged 12 months or older in the study villages were eligible to participate and provide stool specimens. Species-specific STH infection and intensity were assessed using quantitative PCR. We compared prevalence and intensity of infection between baseline and 21 months in each intervention arm individually using cluster-level analysis (adjusted for clustering) and individual-level analysis (adjusted for sex, age, and clustering). The primary outcomes were the prevalence risk difference (RD) from the cluster-level analysis, and the change in adjusted odds of infection from the individual-level analysis. Secondary outcomes included change in incident rates of mean eggs per gram (epg) of stool from baseline to 21 months, relative risk difference in prevalence and relative change in odds of infection between arms at 21 months. Sex data (male/female) were self-reported. Findings Overall, STH infection was assessed in 830 participants from 18 villages at baseline and 1172 from 20 villages at follow-up. Females represented 58% (n = 478) of the sample at baseline and 59% (n = 690) at follow-up. We observed a reduction in Strongyloides spp. prevalence following two doses of ivermectin MDA in the cluster-level analysis from 7.0% (32/458 participants) to 1.2% (8/674 participants), corresponding to a RD of -0.07 (95% CI -0.14 to -0.01, p = 0.036), and in the individual-level analysis (OR 0.11, 95% CI 0.04-0.33, p < 0.001). T. trichiura prevalence decreased following one dose from 19.4% (74/372 participants) to 11.7% (56/505 participants) (OR 0.44, 95% CI 0.26-0.73, p = 0.0040), while egg count reduced in both arms (IVM-1: IRR 0.28, 95% CI 0.11-0.70, p = 0.0070; IVM-2: IRR 0.18, 95% CI 0.08-0.40, p < 0.001), in the individual-level analysis. We did not detect a significant difference in effect measures between the one- and two-dose arms for any species after 21 months. Interpretation Our study highlights the long-term benefits of ivermectin MDA in reducing the burden of Strongyloides spp. and T. trichiura. STH control programs should leverage the geographical overlap of NTDs, existing drug distribution channels, and broad-spectrum agents. Funding The National Health and Medical Research Council of Australia.
Collapse
Affiliation(s)
- Brandon Le
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Naomi E. Clarke
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Sze Fui Hii
- The University of Melbourne, Melbourne, Australia
| | - Aisling Byrne
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Alam Khattak
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Susanna Lake
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | - Handan Wand
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Nick Olsen
- Stats Central, University of New South Wales, Sydney, Australia
| | | | - Oliver Sokana
- Ministry of Health & Medical Services, Honiara, Solomon Islands
| | - Lucia Romani
- The Kirby Institute, University of New South Wales, Sydney, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Titus Nasi
- Ministry of Health & Medical Services, Honiara, Solomon Islands
| | | | - John Kaldor
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrew Steer
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Susana Vaz Nery
- The Kirby Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Aboul-Fotouh S, Mahmoud AN, Elnahas EM, Habib MZ, Abdelraouf SM. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms. Virol J 2023; 20:241. [PMID: 37875904 PMCID: PMC10594888 DOI: 10.1186/s12985-023-02210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) is the disease caused by SARS-CoV-2, a highly infectious member of the coronavirus family, which emerged in December 2019 in "Wuhan, China". It induces respiratory illness ranging from mild symptoms to severe disease. It was declared a "pandemic" by the World Health Organization (WHO) in March 2020. Since then, a vast number of clinical and experimental studies have been conducted to identify effective approaches for its prevention and treatment. MAIN BODY The pathophysiology of COVID-19 represents an unprecedented challenge; it triggers a strong immune response, which may be exacerbated by "a cytokine storm syndrome". It also induces thrombogenesis and may trigger multi-organ injury. Therefore, different drug classes have been proposed for its treatment and prevention, such as antivirals, anti-SARS-CoV-2 antibody agents (monoclonal antibodies, convalescent plasma, and immunoglobulins), anti-inflammatory drugs, immunomodulators, and anticoagulant drugs. To the best of our knowledge, this review is the first to present, discuss, and summarize the current knowledge about the different drug classes used for the treatment of COVID-19, with special emphasis on their targets, mechanisms of action, and important adverse effects and drug interactions. Additionally, we spotlight the latest "October 2023" important guidelines (NIH, IDSA, and NICE) and FDA approval or authorization regarding the use of these agents in the management of COVID-19. CONCLUSION Despite the wide array of therapeutic strategies introduced for the treatment of COVID-19, one of the most prominent therapeutic challenges is SARS-CoV-2 mutations and emerging new variants and subvariants. Currently, the anti-COVID-19 drug pipeline is continuously affording novel treatments to face this growing challenge.
Collapse
Affiliation(s)
- Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Nageh Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Esraa M Elnahas
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sahar M Abdelraouf
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
13
|
Xie Y, Jin C, Sang H, Liu W, Wang J. Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway. Inflammation 2023; 46:1626-1638. [PMID: 37227550 PMCID: PMC10209955 DOI: 10.1007/s10753-023-01829-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Multiple sclerosis (MS), a T-cell-mediated autoimmune disease that affects the central nervous system (CNS), is characterized by white matter demyelination, axon destruction, and oligodendrocyte degeneration. Ivermectin, an anti-parasitic drug, has anti-inflammatory, anti-tumor, and antiviral properties. However, to date, there are no in-depth studies on the effect of ivermectin on the function effector of T cells in murine experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we conducted in vitro experiments and found that ivermectin inhibited the proliferation of total T cells (CD3+) and their subsets (CD4+ and CD8+ T cells) as well as T cells secreting the pro-inflammatory cytokines IFN-γ and IL-17A; ivermectin also increased IL-2 production and IL-2Rα (CD25) expression, which was accompanied by an increase in the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg). Importantly, ivermectin administration reduced the clinical symptoms of EAE mice by preventing the infiltration of inflammatory cells into the CNS. Additional mechanisms showed that ivermectin promoted Treg cells while inhibiting pro-inflammatory Th1 and Th17 cells and their IFN-γ and IL-17 secretion; ivermectin also upregulated IL-2 production from MOG35-55-stimulated peripheral lymphocytes. Finally, ivermectin decreased IFN-γ and IL-17A production and increased IL-2 level, CD25 expression, and STAT5 phosphorylation in the CNS. These results reveal a previously unknown etiopathophysiological mechanism by which ivermectin attenuates the pathogenesis of EAE, indicating that it may be a promising option for T-cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yu Xie
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Hongzhen Sang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China.
| |
Collapse
|
14
|
Kern C, Müller P, Chaccour C, Liechti ME, Hammann F, Duthaler U. Pharmacokinetics of ivermectin metabolites and their activity against Anopheles stephensi mosquitoes. Malar J 2023; 22:194. [PMID: 37355605 DOI: 10.1186/s12936-023-04624-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Ivermectin (22,23-dihydroavermectin B1a: H2B1a) is an endectocide used to treat worm infections and ectoparasites including lice and scabies mites. Furthermore, survival of malaria transmitting Anopheles mosquitoes is strongly decreased after feeding on humans recently treated with ivermectin. Currently, mass drug administration of ivermectin is under investigation as a potential novel malaria vector control tool to reduce Plasmodium transmission by mosquitoes. A "post-ivermectin effect" has also been reported, in which the survival of mosquitoes remains reduced even after ivermectin is no longer detectable in blood meals. In the present study, existing material from human clinical trials was analysed to understand the pharmacokinetics of ivermectin metabolites and feeding experiments were performed in Anopheles stephensi mosquitoes to assess whether ivermectin metabolites contribute to the mosquitocidal action of ivermectin and whether they may be responsible for the post-ivermectin effect. METHODS Ivermectin was incubated in the presence of recombinant human cytochrome P450 3A4/5 (CYP 3A4/5) to produce ivermectin metabolites. In total, nine metabolites were purified by semi-preparative high-pressure liquid chromatography. The pharmacokinetics of the metabolites were assessed over three days in twelve healthy volunteers who received a single oral dose of 12 mg ivermectin. Blank whole blood was spiked with the isolated metabolites at levels matching the maximal blood concentration (Cmax) observed in pharmacokinetics study samples. These samples were fed to An. stephensi mosquitoes, and their survival and vitality was recorded daily over 3 days. RESULTS Human CYP3A4 metabolised ivermectin more rapidly than CYP3A5. Ivermectin metabolites M1-M8 were predominantly formed by CYP3A4, whereas metabolite M9 (hydroxy-H2B1a) was mainly produced by CYP3A5. Both desmethyl-H2B1a (M1) and hydroxy-H2B1a (M2) killed all mosquitoes within three days post-feeding, while administration of desmethyl, hydroxy-H2B1a (M4) reduced survival to 35% over an observation period of 3 days. Ivermectin metabolites that underwent deglycosylation or hydroxylation at spiroketal moiety were not active against An. stephensi at Cmax levels. Interestingly, half-lives of M1 (54.2 ± 4.7 h) and M4 (57.5 ± 13.2 h) were considerably longer than that of the parent compound ivermectin (38.9 ± 20.8 h). CONCLUSION In conclusion, the ivermectin metabolites M1 and M2 contribute to the activity of ivermectin against An. stephensi mosquitoes and could be responsible for the "post-ivermectin effect".
Collapse
Affiliation(s)
- Charlotte Kern
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
- Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Hammann
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Carrillo Heredero AM, Segato G, Menotta S, Faggionato E, Vismarra A, Genchi M, Bertini S. A New Method for Ivermectin Detection and Quantification through HPLC in Organic Matter (Feed, Soil, and Water). JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:6924263. [PMID: 36909924 PMCID: PMC9995184 DOI: 10.1155/2023/6924263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ivermectin is a macrocyclic lactone widely used in veterinary medicine for its broad-spectrum antiparasitic properties. It has been proven to be effective and safe. The purpose of this study was to develop a high-performance liquid chromatography method with a diode array detector for ivermectin screening in feed and water for animal consumption. Furthermore, the objective was to quantify ivermectin levels that were higher than 0.5 mg/kg in solid matrixes and 0.1 mg/kg in water. Doramectin was used as process standard. Samples were extracted using solid phase extraction with silica and C-18 columns. The method involved the use of high-performance liquid chromatography (HPLC) with a diode array detector (DAD). The results were interpreted using a calibration curve built with ivermectin standards at multiple concentrations (0.5, 1, 2, 5, and 12.5 mg/kg). Statistical evaluation of data was done using ANOVA. The data analysis showed that the linear regression was highly significant (P < 0.001), the intercept values were not significantly different from zero, and the correlation coefficient values (>0.999) indicated excellent linearity. Further tests demonstrated that this method is also useful when studying soil matrixes. The soil was dried and analyzed in the same way as feed; the same recoveries were realized on the spiked samples. The method is easy, inexpensive, precise, and repeatable; it requires very small amounts of sample.
Collapse
Affiliation(s)
| | - Giulia Segato
- Food and Feed Chemical Department, Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna, Via Antonio Bianchi, 7/9, Brescia 25124, BS, Italy
| | - Simonetta Menotta
- Food and Feed Chemical Department, Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna, Via Antonio Bianchi, 7/9, Brescia 25124, BS, Italy
| | - Elena Faggionato
- Food and Feed Chemical Department, Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna, Via Antonio Bianchi, 7/9, Brescia 25124, BS, Italy
| | - Alice Vismarra
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma 43126, Italy
| | - Marco Genchi
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma 43126, Italy
| | - Simone Bertini
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma 43126, Italy
| |
Collapse
|
17
|
Jiménez-Gaona Y, Vivanco-Galván O, Morales-Larreategui G, Cabrera-Bejarano A, Lakshminarayanan V. Outcome of Ivermectin in Cancer Treatment: An Experience in Loja-Ecuador. NURSING REPORTS 2023; 13:315-326. [PMID: 36976682 PMCID: PMC10054244 DOI: 10.3390/nursrep13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Cancer is one of the leading causes of death worldwide, and trends in cancer incidence and mortality are increasing over last years in Loja-Ecuador. Cancer treatment is expensive because of social and economic issues which force the patients to look for other alternatives. One such alternative treatment is ivermectin-based antiparasitic, which is commonly used in treating cattle. This paper analyzed ivermectin use as cancer treatment in the rural area of the Loja province and the medical opinion regarding the use of ivermectin in humans. (2) Methods: The study used a mixed methodology using different sampling techniques such as observation, surveys, and interviews. (3) Results: The main findings show that 19% of the participants diagnosed with cancer take medicines based on ivermectin as alternative therapy to the cancer control and treatment without leaving treatment such as chemotherapy, radiotherapy, or immunotherapy, while 81% use it to treat other diseases. (4) Conclusions: Finally, we identify that the interviewed not only use IVM as anticancer treatment, but it is also used as a treatment against other diseases. Although the participants’ opinions indicate that they feel improvements in their health after the third dose, the specialist considers that there is no authorization to prescribe these alternative treatments. In addition, they confirmed that currently, there is no scientific knowledge about the application of these treatments in humans and they do not recommend their application. Thus, the anticancer mechanism of ivermectin remains to be further investigated; therefore, we consider that it is important to continue with this research by proposing a new stage to evaluate and determine the pharmacological action of this type of drug through an in vitro study in different cultures of cancer cells.
Collapse
Affiliation(s)
- Yuliana Jiménez-Gaona
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
- Instituto de Instrumentación Para la Imagen Molecular I3M, Universitat Politécnica de Valencia, E-46022 Valencia, Spain
- Correspondence:
| | - Oscar Vivanco-Galván
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Gonzalo Morales-Larreategui
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Andrea Cabrera-Bejarano
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
- Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
18
|
Chaccour C, Casellas A, Hammann F, Ruiz-Castillo P, Nicolas P, Montaña J, Mael M, Selvaraj P, Duthaler U, Mrema S, Kakolwa M, Lyimo I, Okumu F, Marathe A, Schürch R, Elobolobo E, Sacoor C, Saute F, Xia K, Jones C, Rist C, Maia M, Rabinovich NR. BOHEMIA: Broad One Health Endectocide-based Malaria Intervention in Africa-a phase III cluster-randomized, open-label, clinical trial to study the safety and efficacy of ivermectin mass drug administration to reduce malaria transmission in two African settings. Trials 2023; 24:128. [PMID: 36810194 PMCID: PMC9942013 DOI: 10.1186/s13063-023-07098-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Residual malaria transmission is the result of adaptive mosquito behavior that allows malaria vectors to thrive and sustain transmission in the presence of good access to bed nets or insecticide residual spraying. These behaviors include crepuscular and outdoor feeding as well as intermittent feeding upon livestock. Ivermectin is a broadly used antiparasitic drug that kills mosquitoes feeding on a treated subject for a dose-dependent period. Mass drug administration with ivermectin has been proposed as a complementary strategy to reduce malaria transmission. METHODS A cluster randomized, parallel arm, superiority trial conducted in two settings with distinct eco-epidemiological conditions in East and Southern Africa. There will be three groups: human intervention, consisting of a dose of ivermectin (400 mcg/kg) administered monthly for 3 months to all the eligible population in the cluster (>15 kg, non-pregnant and no medical contraindication); human and livestock intervention, consisting human treatment as above plus treatment of livestock in the area with a single dose of injectable ivermectin (200 mcg/kg) monthly for 3 months; and controls, consisting of a dose of albendazole (400 mg) monthly for 3 months. The main outcome measure will be malaria incidence in a cohort of children under five living in the core of each cluster followed prospectively with monthly RDTs DISCUSSION: The second site for the implementation of this protocol has changed from Tanzania to Kenya. This summary presents the Mozambique-specific protocol while the updated master protocol and the adapted Kenya-specific protocol undergo national approval in Kenya. BOHEMIA will be the first large-scale trial evaluating the impact of ivermectin-only mass drug administration to humans or humans and cattle on local malaria transmission TRIAL REGISTRATION: ClinicalTrials.gov NCT04966702 . Registered on July 19, 2021. Pan African Clinical Trials Registry PACTR202106695877303.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universidda de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Felix Hammann
- University Hospital of Bern, Inselspital, Bern, Switzerland
| | | | - Patricia Nicolas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Julia Montaña
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Mary Mael
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | | | | | | | | | - Issa Lyimo
- Ifakara Health Institute, Ifakara, Tanzania
| | | | | | - Roger Schürch
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Kang Xia
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | | | - Cassidy Rist
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Marta Maia
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- TH Chan Harvard School of Public Health, Boston, USA
| |
Collapse
|
19
|
Eba K, Habtewold T, Asefa L, Degefa T, Yewhalaw D, Duchateau L. Effect of Ivermectin ® on survivorship and fertility of Anopheles arabiensis in Ethiopia: an in vitro study. Malar J 2023; 22:12. [PMID: 36624480 PMCID: PMC9830892 DOI: 10.1186/s12936-023-04440-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Innovative vector control tools are needed to counteract insecticide resistance and residual malaria transmission. One of such innovative methods is an ivermectin (IVM) treatment to reduce vector survival. In this study, a laboratory experiment was conducted to investigate the effect of ivermectin on survivorship, fertility and egg hatchability rate of Anopheles arabiensis in Ethiopia. METHODS An in vitro experiment was conducted using 3-5 days old An. arabiensis adults from a colony maintained at insectary of Tropical and Infectious Diseases Research Center, Jimma University (laboratory population) and Anopheles mosquitoes reared from larvae collected from natural mosquito breeding sites (wild population). The mosquitoes were allowed to feed on cattle blood treated with different doses of ivermectin (0 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml and 80 ng/ml). During each feeding experiment, the mosquitoes were held in cages and blood-fed using a Hemotek feeder. Mortality and egg production were then recorded daily for up to 9 days. Time to death was analysed by a Cox frailty model with replicate as frailty term and source of mosquito (wild versus laboratory), treatment type (ivermectin vs control) and their interaction as categorical fixed effects. Kaplan Meier curves were plotted separately for wild and laboratory populations for a visual interpretation of mosquito survival as a function of treatment. RESULTS Both mosquito source and treatment had a significant effect on survival (P < 0.001), but their interaction was not significant (P = 0.197). Compared to the controls, the death hazard of An. arabiensis that fed on ivermectin-treated blood was 2.3, 3.5, 6.5, 11.5 and 17.9 times that of the control for the 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, and 80 ng/ml dose, respectively. With respect to the number of hatched larvae, hatched pupae and emerged adults per fed mosquitoes, a significant difference was found between the control and the 5 ng/ml dose group (P < 0.001). The number of hatched larvae and pupae, and emerged adults decreased further for the 10 ng/ml dose group and falls to zero for the higher doses. CONCLUSION Treating cattle blood with ivermectin reduced mosquito survival, fertility, egg hatchability, larval development and adult emergence of An. arabiensis in all tested concentrations of ivermectin in both the wild and laboratory populations. Thus, ivermectin application in cattle could be used as a supplementary vector control method to tackle residual malaria transmission and ultimately achieve malaria elimination in Ethiopia.
Collapse
Affiliation(s)
- Kasahun Eba
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tibebu Habtewold
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Lechisa Asefa
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.472427.00000 0004 4901 9087Department of Environmental Health Sciences, Bule Hora University, P.O. Box 144, Bule Hora, Ethiopia
| | - Teshome Degefa
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.411903.e0000 0001 2034 9160Tropical and Infectious Diseases Research Center, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Luc Duchateau
- grid.5342.00000 0001 2069 7798Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Ludhiadch A, Yadav UP, Munshi A. Currently available COVID-19 management options. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:111-124. [DOI: 10.1016/b978-0-323-91794-0.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
22
|
Apodaca Michel B, Navarro M, Pritsch M, Du Plessis JD, Shock J, Schwienhorst-Stich EM, Zirkel J, Schrader H, Saavedra Irala C, Rubilar G, Gunesch C, Kasang C, Zoller T, Gagyor I, Parisi S. Understanding the widespread use of veterinary ivermectin for Chagas disease, underlying factors and implications for the COVID-19 pandemic: a convergent mixed-methods study. BMJ Open 2022; 12:e058572. [PMID: 36115669 PMCID: PMC9485649 DOI: 10.1136/bmjopen-2021-058572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Veterinary ivermectin (vet-IVM) has been used widely in Latin America against COVID-19, despite the lack of scientific evidence and potential risks. Widespread vet-IVM intake was also discovered against Chagas disease during a study in Bolivia prior to the pandemic. All vet-IVM-related data were extracted to understand this phenomenon, its extent and underlying factors and to discuss potential implications for the current pandemic. DESIGN A convergent mixed-methods study design including a survey, qualitative in-depth interviews (IDI) and focus group discussions (FGD). SETTING A cross-sectional study conducted in 2018 covering the geographic area of Monteagudo, an endemic municipality for Chagas disease. PARTICIPANTS A total of 669 adult household representatives from 26 communities participated in the survey, supplemented by 14 IDI and 2 FGD among patients, relatives and key informants. RESULTS 9 IDI and 2 FGD contained narratives on vet-IVM use against Chagas disease. Five main themes emerged: (1) the extent of the vet-IVM phenomenon, (2) the perception of vet-IVM as a treatment for Chagas disease, (3) the vet-IVM market and the controversial role of stakeholders, (4) concerns about potential adverse events and (5) underlying factors of vet-IVM use against Chagas disease.In quantitative analysis, 28% of participants seropositive for Chagas disease had taken vet-IVM. Factors associated with multivariate analysis were advanced age (OR 17.01, 95 CI 1.24 to 36.55, p=0.027 for age above 60 years), the experience of someone close as information source (OR 3.13, 95 CI 1.62 to 5.02, p<0.001), seropositivity for Chagas disease (OR 3.89, 95 CI 1.39 to 6.20, p=0.005) and citing the unavailability of benznidazole as perceived healthcare barrier (OR 2.3, 95 CI 1.45 to 5.18, p=0.002). Participants with an academic education were less likely to report vet-IVM intake (OR 0.12, 95 CI 0.01 to 0.78, p=0.029). CONCLUSIONS Social determinants of health, the unavailability of treatment and a wonder drug image might contribute to the phenomenon of vet-IVM.
Collapse
Affiliation(s)
- Boris Apodaca Michel
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
- Medical Department, Centro Integral Dermatológico, Monteagudo, Plurinational State of Bolivia
| | - Miriam Navarro
- Department of Public Health, Science History and Gynecology, Universidad Miguel Hernández, Alicante, Spain
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, University Hospital LMU Munich, Munich, Germany
| | - Jeremy Douglas Du Plessis
- Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, South Africa
| | - Jonathan Shock
- Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, South Africa
| | - Eva-Maria Schwienhorst-Stich
- Department of General Practice, University Hospital Würzburg, Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Janina Zirkel
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Hanna Schrader
- Department of General Practice, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Saavedra Irala
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
- Medical Department, Centro Integral Dermatológico, Monteagudo, Plurinational State of Bolivia
| | - Gonzalo Rubilar
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
| | - Carolin Gunesch
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
| | - Christa Kasang
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
| | - Thomas Zoller
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ildiko Gagyor
- Department of General Practice, University Hospital Würzburg, Würzburg, Germany
| | - Sandra Parisi
- Department of Medical and Social Projects, DAHW, Würzburg, Germany
- Department of General Practice, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Inferences of actinobacterial metabolites to combat Corona virus. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9469815 DOI: 10.1007/s13596-022-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The entire globe is reeling under the magnitude of the current corona virus pandemic. This menace has proposed severe health and economic threats for all, thereby challenging our human existence itself. Since its outbreak, it has raised the concern and imperative need of developing novel and effective agents to combat viral diseases and now its variants as well. Despite the sincere and concerted efforts of scientists and pharma giants all over the world, there seems to be no ideal recourse found till date. Natural products are rich sources of novel compounds used in the treatment of infectious and non-infectious diseases. There are reports on natural products from microbes, plants and marine organisms that are active against viral targets. Actinobacteria, the largest phylum under the bacterial kingdom, is known for its secondary metabolite production with diverse bioactive potentials. Nearly 65% of antibiotics used in medicine are contributed by Actinobacteria. Compared to antibacterial and antifungal agents, antiviral compounds from Actinobacteria are less studied. In recent years Actinobacteria from under studied/extreme ecosystems are explored for their antiviral properties. Ivermectin and teicoplanin are examples of Actinobacteria-derived antiviral drugs available for commercial use. This review highlights the importance of actinobacteria as future sources of antiviral drug discovery.
Collapse
|
24
|
Manomaipiboon A, Pholtawornkulchai K, Poopipatpab S, Suraamornkul S, Maneerit J, Ruksakul W, Phumisantiphong U, Trakarnvanich T. Efficacy and safety of ivermectin in the treatment of mild to moderate COVID-19 infection: a randomized, double-blind, placebo-controlled trial. Trials 2022; 23:714. [PMID: 36028897 PMCID: PMC9412770 DOI: 10.1186/s13063-022-06649-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The emergent outbreak of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the requirement for therapeutic opportunities to overcome this pandemic. Ivermectin is an antiparasitic drug that has shown effectiveness against various agents, including SARS-CoV-2. This study aimed to assess the efficacy of ivermectin treatment compared with the standard of care (SOC) among people with mild to moderate COVID-19 symptoms. Methods In this randomized, double-blind, placebo-controlled, single-center, parallel-arm, superiority trial among adult hospitalized patients with mild to moderate COVID-19, 72 patients (mean age 48.57 ± 14.80 years) were randomly assigned to either the ivermectin (n=36) or placebo (n=36) group, along with receiving standard care. We aimed to compare the negativity of reverse transcription polymerase chain reaction (RT-PCR) result at days 7 and 14 of enrolment as the primary outcome. The secondary outcomes were duration of hospitalization, frequency of clinical worsening, survival on day 28, and adverse events. Results At days 7 and 14, no differences were observed in the proportion of PCR-positive patients (RR 0.97 at day 7 (p=0.759) and 0.95 at day 14 (p=0.813). No significant differences were found between the groups for any of the secondary endpoints, and no adverse events were reported. Conclusion No difference was found in the proportion of PCR-positive cases after treatment with ivermectin compared with standard care among patients with mild to moderate COVID-19 symptoms. However, early symptomatic recovery was observed without side effects. Trial registration ClinicalTrials.gov NCT05076253. Registered on 8 October 2021, prospectively. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06649-3.
Collapse
Affiliation(s)
- Anan Manomaipiboon
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | | | - Sujaree Poopipatpab
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Swangjit Suraamornkul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Jakravoot Maneerit
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Wiroj Ruksakul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | | | - Thananda Trakarnvanich
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand.
| |
Collapse
|
25
|
Gupta S, Vohra S, Sethi K, Gupta S, Bera BC, Kumar S, Kumar R. In vitro anti-trypanosomal effect of ivermectin on Trypanosoma evansi by targeting multiple metabolic pathways. Trop Anim Health Prod 2022; 54:240. [PMID: 35869164 PMCID: PMC9307293 DOI: 10.1007/s11250-022-03228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
High cytotoxicity and increasing resistance reports of existing chemotherapeutic agents against T. evansi have raised the demand for novel, potent, and high therapeutic index molecules for the treatment of surra in animals. In this regard, repurposing approach of drug discovery has provided an opportunity to explore the therapeutic potential of existing drugs against new organism. With this objective, the macrocyclic lactone representative, ivermectin, has been investigated for the efficacy against T. evansi in the axenic culture medium. To elucidate the potential target of ivermectin in T. evansi, mRNA expression profile of 13 important drug target genes has been studied at 12, 24, and 48 h interval. In the in vitro growth inhibition assay, ivermectin inhibited T. evansi growth and multiplication significantly (p < 0.001) with IC50 values of 13.82 μM, indicating potent trypanocidal activity. Cytotoxicity assays on equine peripheral blood mononuclear cells (PBMCs) and Vero cell line showed that ivermectin affected the viability of cells with a half-maximal cytotoxic concentration (CC50) at 17.48 and 22.05 μM, respectively. Data generated showed there was significant down-regulation of hexokinase (p < 0.001), ESAG8 (p < 0.001), aurora kinase (p < 0.001), casein kinase 1 (p < 0.001), topoisomerase II (p < 0.001), calcium ATPase 1 (p < 0.001), ribonucleotide reductase I (p < 0.05), and ornithine decarboxylase (p < 0.01). The mRNA expression of oligopeptidase B remains refractory to the exposure of the ivermectin. The arginine kinase 1 and ribonucleotide reductase II showed up-regulation on treatment with ivermectin. The ivermectin was found to affect glycolytic pathways, ATP-dependent calcium ATPase, cellular kinases, and other pathway involved in proliferation and maintenance of internal homeostasis of T. evansi. These data imply that intervention with alternate strategies like nano-formulation, nano-carriers, and nano-delivery or identification of ivermectin homologs with low cytotoxicity and high bioavailability can be explored in the future as an alternate treatment for surra in animals.
Collapse
|
26
|
Hazan S. Microbiome-Based Hypothesis on Ivermectin's Mechanism in COVID-19: Ivermectin Feeds Bifidobacteria to Boost Immunity. Front Microbiol 2022; 13:952321. [PMID: 35898916 PMCID: PMC9309549 DOI: 10.3389/fmicb.2022.952321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 01/24/2023] Open
Abstract
Ivermectin is an anti-parasitic agent that has gained attention as a potential COVID-19 therapeutic. It is a compound of the type Avermectin, which is a fermented by-product of Streptomyces avermitilis. Bifidobacterium is a member of the same phylum as Streptomyces spp., suggesting it may have a symbiotic relation with Streptomyces. Decreased Bifidobacterium levels are observed in COVID-19 susceptibility states, including old age, autoimmune disorder, and obesity. We hypothesize that Ivermectin, as a by-product of Streptomyces fermentation, is capable of feeding Bifidobacterium, thereby possibly preventing against COVID-19 susceptibilities. Moreover, Bifidobacterium may be capable of boosting natural immunity, offering more direct COVID-19 protection. These data concord with our study, as well as others, that show Ivermectin protects against COVID-19.
Collapse
|
27
|
Ferreira-da-Silva R, Ribeiro-Vaz I, Morato M, Junqueira Polónia J. A comprehensive review of adverse events to drugs used in COVID-19 patients: Recent clinical evidence. Eur J Clin Invest 2022; 52:e13763. [PMID: 35224719 PMCID: PMC9111855 DOI: 10.1111/eci.13763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since the breakthrough of the pandemic, several drugs have been used to treat COVID-19 patients. This review aims to gather information on adverse events (AE) related to most drugs used in this context. METHODS We performed a literature search to find articles that contained information about AE in COVID-19 patients. We analysed and reviewed the most relevant studies in the Medline (via PubMed), Scopus and Web of Science. The most frequent AE identified were grouped in our qualitative analysis by System Organ Class (SOC), the highest level of the MedDRA medical terminology for each of the drugs studied. RESULTS The most frequent SOCs among the included drugs are investigations (n = 7 drugs); skin and subcutaneous tissue disorders (n = 5 drugs); and nervous system disorders, infections and infestations, gastrointestinal disorders, hepatobiliary disorders, and metabolism and nutrition disorders (n = 4 drugs). Other SOCs also emerged, such as general disorders and administration site conditions, renal and urinary disorders, vascular disorders and cardiac disorders (n = 3 drugs). Less frequent SOC were eye disorders, respiratory, thoracic and mediastinal disorders, musculoskeletal and connective tissue disorders, and immune system disorders (n = 2 drugs). Psychiatric disorders, and injury, poisoning and procedural complications were also reported (n = 1 drug). CONCLUSIONS Some SOCs seem to be more frequent than others among the COVID-19 drugs included, although neither of the studies included reported causality analysis. For that purpose, further clinical studies with robust methodologies, as randomised controlled trials, should be designed and performed.
Collapse
Affiliation(s)
- Renato Ferreira-da-Silva
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Inês Ribeiro-Vaz
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Manuela Morato
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, University of Porto, Porto, Portugal
| | - Jorge Junqueira Polónia
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Department of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Jamhour RMAQ, Al-Nadaf AH, Wedian F, Al-Mazaideh GM, Mustafa M, Huneif MA, Mahmoud SY, Farrag ES, Al-Rimawi F, Salman HA, Alqudah AA, Alakhras F. Phytochemicals As a Potential Inhibitor of COVID-19: An In-Silico Perspective. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [PMCID: PMC9395807 DOI: 10.1134/s0036024422070251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The current research has centered on the use of pharmacological and binding affinity methods to test the 36 compounds as bioactive constituents’ inhibitors for COVID-19. Six compounds out of 36 phytoconstituents (rutin, quercetin, catechin gallate, rhamnetin, campesterol and stigmasterol) have demonstrated outstanding molecular docking and drug-like properties as HIV inhibitors Lopinavir and Indinavir. Interestingly, the lowest binding energies (LBE) and the inhibition constant (Ki) have showed that these compounds are able to bind to the P-glycoprotein substrate of 3CLpro and Nsp15. Interestingly, rutin has been found to be an excellent potential inhibitor for COVID-19 proteins because it has the best LBE score and Ki value than those of other compounds, and of its ability to form strong H-bonds with COVID-19 proteins. The compounds that come next to the rutin compound are stigmasterol and campesterol. As a result, these compounds are considered possible novel inhibitors of COVID-19. In order to validate the computational results, more in vitro and in vivo investigations are required to support the findings of this research.
Collapse
Affiliation(s)
- Rasheed M. A. Q. Jamhour
- Department of Chemistry and Chemical Technology, Faculty of Science, Tafila Technical University, 66110 Tafila, Jordan
| | - Afaf H. Al-Nadaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mu’tah University, Alkarak, Jordan
| | - Fadel Wedian
- Department of Chemistry, Faculty of Science, Yarmouk University, 22163 Irbid, Jordan
| | - Ghassab M. Al-Mazaideh
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Morad Mustafa
- Department of Chemistry, School of Science, University of Jordan, 11942 Amman, Jordan
| | - Mohammed Ayed Huneif
- Department of Pediatrics, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Sabry Younis Mahmoud
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
- Microbiology Department, Sohag University, Sohag, Egypt
| | - Eman Saleh Farrag
- Clinical Laboratory Science Department, College of Applied Medical Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
- Microbiology Department, South Valley University, Qena, Egypt
| | - Fuad Al-Rimawi
- Department of Chemistry, Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, Jerusalem, Palestine
| | - Haya Ayyal Salman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ali Abdallah Alqudah
- Department of Applied Biology, Faculty of Science, Tafila Technical University, Tafila, Jordan
| | - Fadi Alakhras
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
29
|
Onyeaka H, Tamasiga P, Agbara JO, Mokgwathi OA, Uwishema O. The use of Ivermectin for the treatment of COVID-19: Panacea or enigma? CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022; 16:101074. [PMID: 35694631 PMCID: PMC9174099 DOI: 10.1016/j.cegh.2022.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022] Open
Abstract
The outbreak of SARS-CoV-2 pandemic has triggered unprecedented social, economic and health challenges. To control and reduce the infection rate, countries employed non-pharmaceutical measures such as social distancing, isolation, quarantine, and the use of masks, hand and surface sanitisation. Since 2021 a global race for COVID-19 vaccination ensued, mainly due to a lack of equitable vaccine production and distribution. To date, no treatments have been demonstrated to cure COVID-19. The scientific World is now considering the potential use of Ivermectin as a prophylactic and treatment for COVID-19. Against this background, the objective of this study is to review the literature to demystify the enigma or panacea in the use of Ivermectin. This paper intends to investigate literature which supports the existence or shows the nonexistence of a causal link between Ivermectin, COVID-19 mortality and recovery. There are inconsistent results on the effectiveness of Ivermectin in the treatment of COVID-19 patients. Some studies have asserted that in a bid to slow down the transmission of COVID-19, ivermectin can be used to inhibit the in vitro replication of SARS-CoV-2. The pre-existing health system burdens can be alleviated as patients treated prophylactically would reduce hospital admissions and stem the spread of COVID-19. On a global scale, Ivermectin is currently used by about 28% of the world's population, and its adoption is presently about 44% of countries. However, the full administration of this drug would require further tests to establish its clinical effectiveness and efficacy.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Joy O Agbara
- Department of Obstetrics and Gynaecology, College of Medicine, Lagos State University, Lagos, Nigeria
| | | | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda.,Clinton Global Initiative University, New York, NY, USA.,Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
30
|
Patil VM, Verma S, Masand N. Prospective mode of action of Ivermectin: SARS-CoV-2. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 4:100018. [PMID: 36593981 PMCID: PMC8607737 DOI: 10.1016/j.ejmcr.2021.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The well-known anti-helminthic drug ivermectin (IVM) has been established as an example of drug repurposing for the management of SARS-CoV-2 infection. Various study has been done to understand the inhibitory mechanism of IVM against SARS-CoV-2 targets. Broadly, IVM has been categorized as a host-directed agent and the proposed mechanism involves inhibition of the IMPα/ß1-mediated nuclear import of viral proteins. In addition, in vitro/in vivo and molecular docking/dynamic simulation studies suggested multitargets mechanism of IVM against SARS-CoV-2. Present manuscript attempts to provide an overview of the detailed mechanism of action based on experimental and computational studies. The knowledge of binding interaction of IVM and SARS-CoV-2 targets will give the direction to developed new and potential anti-COVID agents.
Collapse
Affiliation(s)
- Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, 122505, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
31
|
Albariqi AH, Wang Y, Yoon Kyung Chang R, Quan DH, Wang X, Kalfas S, Drago J, Britton WJ, Chan HK. Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment. Int J Pharm 2022; 619:121688. [PMID: 35314278 PMCID: PMC8933053 DOI: 10.1016/j.ijpharm.2022.121688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
Pharmacokinetic limitations associated with oral ivermectin may limit its success as a potential COVID-19 treatment based on in vitro experiments which demonstrate antiviral efficacy against SARS-CoV-2 at high concentrations. Targeted delivery to the lungs is a practical way to overcome these limitations and ensure the presence of a therapeutic concentration of the drug in a clinically critical site of viral pathology. In this study, the pharmacokinetics (PK) and safety of inhaled dry powders of ivermectin with lactose were investigated in healthy mice. Female BALB/c mice received ivermectin formulation by intratracheal administration at high (3.15 mg/kg) or low doses (2.04 mg/kg). Plasma, bronchoalveolar lavage fluid (BALF), lung, kidney, liver, and spleen were collected at predetermined time points up to 48 h and analyzed for PK. Histological evaluation of lungs was used to examine the safety of the formulation. Inhalation delivery of ivermectin formulation showed improved pharmacokinetic performance as it avoided protein binding encountered in systemic delivery and maintained a high exposure above the in vitro antiviral concentration in the respiratory tract for at least 24 h. The local toxicity was mild with less than 20% of the lung showing histological damage at 24 h, which resolved to 10% by 48 h.
Collapse
Affiliation(s)
- Ahmed H Albariqi
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; The Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Diana H Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia
| | - Xiaonan Wang
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia
| | - Stefanie Kalfas
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3052, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3052, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, VIC, 3010, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, NSW, 2006, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
32
|
Avermectin B1a production in Streptomyces avermitilis is enhanced by engineering aveC and precursor supply genes. Appl Microbiol Biotechnol 2022; 106:2191-2205. [PMID: 35258669 DOI: 10.1007/s00253-022-11854-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Avermectins (AVEs) are economically potent anthelmintic agents produced by Streptomyces avermitilis. Among eight AVE components, B1a exhibits the highest insecticidal activity. The purpose of this study was to enhance B1a production, particularly in the high-yielding industrial strain A229, by a combination strategy involving the following steps. (i) aveC gene was engineered to increase B1a:B2a ratio. Three aveC variants (aveC2m, aveC5m, and aveC8m, respectively encoding two, five, and eight amino acid mutations) were synthesized by fusion PCR. B1a:B2a ratio in A229 derivative having kasOp*-controlled aveC8m reached 1.33 (B1a and B2a titers were 8120 and 6124 μg/mL). Corresponding values in A229 were 0.99 and 6447 and 6480 μg/mL. (ii) β-oxidation pathway genes fadD and fadAB were overexpressed in wild-type (WT) strain and A229 to increase supply of acyl-CoA precursors for AVE production. The resulting strains all showed increased B1a titer. Co-overexpression of pkn5p-driven fadD and fadAB in A229 led to B1a titer of 8537 μg/mL. (iii) Genes bicA and ecaA involved in cyanobacterial CO2-concentrating mechanism (CCM) were introduced into WT and A229 to enhance carboxylation velocity of acetyl-CoA and propionyl-CoA carboxylases, leading to increased supply of malonyl- and methylmalonyl-CoA precursors and increased B1a titer. Co-expression of bicA and ecaA in A229 led to B1a titer of 8083 μg/mL. (iv) aveC8m, fadD-fadAB, and bicA-ecaA were co-overexpressed in A229, resulting in maximal B1a titer (9613 μg/mL; 49.1% increase relative to A229). Our findings demonstrate that the combination strategy we provided here is an efficient approach for improving B1a production in industrial strains.Key points• aveC mutation increased avermectin B1a:B2a ratio and B1a titer.• Higher levels of acyl-CoA precursors contributed to enhanced B1a production.• B1a titer in an industrial strain was increased by 49.1% via a combination strategy.
Collapse
|
33
|
Abstract
Introduction: Avermectins are common antiparasitic drugs, derived from Streptomyces bacteria that exhibit activity against arthropods and nematodes. Ivermectin, an avermectin derivative, is used as a treatment for parasitic infections in humans and domesticated animals.Discussion: Ivermectin's mechanism of action involves binding to ligand-gated ion channel receptors including glutamate, GABA, and glycine, resulting in parasitic paralysis and death. Due to varying expression of these ion channel receptors in vertebrate species, ivermectin toxicity is rarely reported in mammals. Ivermectin is also a substrate for P-glycoprotein, which limits its neurological toxicity in humans. Genetic polymorphisms in P-glycoprotein or coadministration of P-glycoprotein inhibitors may increase the neurotoxicity of ivermectin. Other toxic effects of ivermectin after therapeutic oral use include edema, rash, headache, and ocular complaints. Most of these effects are mild and short in duration. Ivermectin exhibits antiviral effects in-vitro at very high concentrations. This has led to suggestions of ivermectin as a potential treatment for SARS-CoV-2 (COVID-19) infection, although the drug's pharmacokinetic parameters reduce the likelihood that high concentrations of the drug can be achieved in-vivo.Conclusion: Due to concern for adverse events, specifically neurotoxicity, as well as a paucity of supporting evidence, the use of ivermectin as a routine treatment or preventive measure for COVID-19 infection is not recommended at this time.
Collapse
Affiliation(s)
- Kelly Johnson-Arbor
- Department of Plastic Surgery, MedStar Georgetown University Hospital, Washington, DC, USA.,National Capital Poison Center, Washington, DC, USA
| |
Collapse
|
34
|
Mayer MA, Krolewiecki A, Ferrero A, Bocchio M, Barbero J, Miguel M, Paladini A, Delgado C, Ojeda JR, Elorza C, Bertone A, Fleitas PE, Vera G, Kohan MR. Safety and Efficacy of a MEURI Program for the Use of High Dose Ivermectin in COVID-19 Patients. Front Public Health 2022; 10:813378. [PMID: 35273939 PMCID: PMC8902036 DOI: 10.3389/fpubh.2022.813378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Background In the absence of antiviral alternatives, interventions under research for COVID-19 might be offered following guidelines from WHO for monitored emergency use of unregistered and experimental interventions (MEURI). Ivermectin is among several drugs explored for its role against SARS-CoV-2, with a well-known safety profile but conflicting data regarding clinical utility for COVID-19. The aim of this report is to inform on the results of a MEURI Program of high-dose ivermectin in COVID-19 carried out by the Ministry of Health of the Province of La Pampa, Argentina. Methods COVID-19 subjects, within 5 days of symptoms onset were invited to participate in the program, which consisted in the administration of ivermectin 0.6 mg/kg/day for 5 days plus standard of care. Active pharmacosurveillance was performed for 21 days, and hepatic laboratory assessments were performed in a subset of patients. Frequency of Intensive Care Unit (ICU) admission and COVID-19-related mortality of subjects in the ivermectin intention to treat group were compared with that observed in inhabitants of the same province during the same period not participating in the program. Results From 21,232 subjects with COVID-19, 3,266 were offered and agreed to participate in the ivermectin program and 17,966 did not and were considered as controls. A total of 567 participants reported 819 adverse events (AEs); 3.13% discontinued ivermectin due to adverse events. ICU admission was significantly lower in the ivermectin group compared to controls among participants ≥40 year-old (1.2 vs. 2.0%, odds ratio 0.608; p = 0.024). Similarly, mortality was lower in the ivermectin group in the full group analysis (1.5 vs. 2.1%, odds ratio 0.720; p = 0.029), as well as in subjects ≥ 40 year- old (2.7 vs. 4.1%, odds ratio 0.655; p = 0.005). Conclusions This report highlights the safety and possible efficacy of high dose ivermectin as a potentially useful intervention deserving public health-based consideration for COVID-19 patients.
Collapse
Affiliation(s)
- Marcos Alejandro Mayer
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
- Fundación Centro de Salud e Investigaciones Médicas, Santa Rosa, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandro Krolewiecki
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Sede Regional Orán, Salta, Argentina
| | - Alejandro Ferrero
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Marcelo Bocchio
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Juan Barbero
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Marcos Miguel
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Ariel Paladini
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Carlos Delgado
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Juan Ramón Ojeda
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Claudia Elorza
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Ana Bertone
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Pedro Emanuel Fleitas
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Sede Regional Orán, Salta, Argentina
| | - Gustavo Vera
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| | - Mario Rubén Kohan
- Ministerio de Salud de la Provincia de La Pampa, Santa Rosa, Argentina
| |
Collapse
|
35
|
Shirazi FM, Mirzaei R, Nakhaee S, Nejatian A, Ghafari S, Mehrpour O. Repurposing the drug, ivermectin, in COVID-19: toxicological points of view. Eur J Med Res 2022; 27:21. [PMID: 35123559 PMCID: PMC8817475 DOI: 10.1186/s40001-022-00645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 12/15/2022] Open
Abstract
The global COVID-19 pandemic has affected the world's population by causing changes in behavior, such as social distancing, masking, restricting people's movement, and evaluating existing medication as potential therapies. Many pre-existing medications such as tocilizumab, ivermectin, colchicine, interferon, and steroids have been evaluated for being repurposed to use for the treatment of COVID-19. None of these agents have been effective except for steroids and, to a lesser degree, tocilizumab. Ivermectin has been one of the suggested repurposed medications which exhibit an in vitro inhibitory activity on SARS-CoV-2 replication. The most recommended dose of ivermectin for the treatment of COVID-19 is 150-200 µg/kg twice daily. As ivermectin adoption for COVID-19 increased, the Food and Drug Administration (FDA) issued a warning on its use during the pandemic. However, the drug remains of interest to clinicians and has shown some promise in observational studies. This narrative reviews the toxicological profile and some potential therapeutic effects of ivermectin. Based on the current dose recommendation, ivermectin appears to be safe with minimum side effects. However, serious questions remain about the effectiveness of this drug in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Farshad M Shirazi
- Arizona Poison & Drug Information Center, College of Pharmacy and University of Arizona College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Roya Mirzaei
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13169-43551, Tehran, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Nejatian
- Department of Civil Eng., Sharif University of Technology, Tehran, Iran
| | - Shokouh Ghafari
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
- Data Science Institute, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
36
|
Zhang P, Li Y, Xu W, Cheng J, Zhang C, Gao J, Li Z, Tao L, Zhang Y. Immunotoxicity induced by Ivermectin is associated with NF-κB signaling pathway on macrophages. CHEMOSPHERE 2022; 289:133087. [PMID: 34843829 DOI: 10.1016/j.chemosphere.2021.133087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Ivermectin (IVM) has been widely used as a highly effective and broad-spectrum biopesticide in animal husbandry and agriculture. Considering the frequent environmental and occupational exposure, the various toxic effects caused by IVM should be paid more attention. The immune system is a common target of toxins due to its complexity and sensitivity. The toxicity effect of the immune system may lead to increased susceptibility to infections, with potentially fatal consequences. The immunotoxicity of IVM has received little attention, which poses a challenge to the systematic assessment of safety risks. The purpose of this study was to assess the immunotoxicity of the IVM using in vitro cellular assays. We proved that IVM could inhibit the cell viability, induce DNA damage and enhance apoptosis. In addition to the induction of cytotoxicity, IVM has also been shown to reduce the phagocytic capacity and significantly increase the mRNA expression levels of proinflammatory cytokines IL-6, IL-1 β and TNF-α. Intracellular biochemical assay indicated that activation of the NF-κB signaling pathway, overproduction of reactive oxygen species (ROS), release of cytochrome C, DNA double strand damage. These results indicate that IVM can induce immunotoxicity through induction of immune dysfunction and cytotoxicity. In conclusion, this study supports that IVM can be immunotoxic to macrophages in different ways, and draw attention to the potential immunotoxicity of IVM.
Collapse
Affiliation(s)
- Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yandi Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
37
|
Elesdoudy A. Efficacy of ivermectin in patients with coronavirus disease 2019 pneumonia with severe and critically ill status. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2022. [DOI: 10.4103/ecdt.ecdt_30_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Mohamed N, Hamad MA, Ghaleb AH, Esmat G, Elsabahy M. Applications of nanoengineered therapeutics and vaccines: special emphasis on COVID-19. IMMUNOMODULATORY EFFECTS OF NANOMATERIALS 2022. [PMCID: PMC9212255 DOI: 10.1016/b978-0-323-90604-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomedicine provides innovative strategies that had significantly improved drug and gene delivery and allowed control over the engineering of therapeutics, diagnostics, vaccines, and other medical devices, for a diversity of medical applications. This review focuses on the current attempts to develop potent nanoengineered vaccines and therapeutics against coronaviruses, and the recent fabrication strategies and design principles to control acute infections from the escalating SARS-CoV-2 pandemic. Nanomedical approaches provide versatile platforms that can be utilized to enhance the overall potency, safety, and stability of vaccines, thus augmenting the desired immune response. Their modulable conformational features of size, shape, surface charge, antigen display, and composition allow for precise tuning and optimization of the nanoconstructs for the management of a variety of diseases and pathological conditions. The ability to control the release of their encapsulated cargoes and the possibility of surface decoration with various moieties support the construction of multifunctional nanomaterials that ultimately boost and prolong the immune response elicited and/or therapeutic effects, selectively at the diseased tissues and target sites.
Collapse
|
39
|
Tawfeek SE, Domouky AM, Abdel-Kareem RH. Protective effect of vitamin C against ivermectin induced nephrotoxicity in different age groups of male wistar rats: bio-histopathological study. Anat Cell Biol 2021; 54:501-517. [PMID: 34887362 PMCID: PMC8693136 DOI: 10.5115/acb.21.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Ivermectin (Ive) has exceedingly efficient against several microorganisms including viruses; therefore, it could help as a potential treatment of COVID-19. Because of increasing consumption of ivermectin and vitamin C (Vit.C) in hope to treat COVID-19, and because of ivermectin nephrotoxic effects have not been fully clarified especially in juvenile age, it was conducted to examine the histopathological and biochemical effects of ivermectin on adult and juvenile kidneys, and to assess the possible protective role of Vit.C against this potential toxicity. Rats were divided to 4 subgroups (Control subgroup, Vit.C subgroup, Ive subgroup, and Vit.C+Ive subgroup), 1 week after 4 doses of ivermectin (0.4 mg/kg Ive±1.25 mg/kg Vit.C), blood samples obtained for assessment of kidney function test, part of kidneys prepared for determination of matrix metalloproteinase-9 and antioxidant enzymes essay. Other parts prepared for histopathological and ultrastructural examination. Results showed that administration of ivermectin led to attenuation in kidney function and in activities of the antioxidant enzymes and increase in matrix metalloproteinase-9 activity. In addition, there were histological damages (shrunken glomeruli, widened urinary space, cytoplasmic vacuolation and pyknotic nuclei with epithelial exfoliation, extravasated blood, and mononuclear cell infiltration) and immunohistochemistry revealed increase in percentage of Bax proapoptotic protein expression. Also, ultrastructure examination showed alteration in cell architecture. All these changes were more obvious in juvenile group while co-administration of Vit.C led to significant protection more in adult group. In conclusion, Ivermectin should be used cautiously especially in juvenile age, and co-administration of Vit.C is highly recommended.
Collapse
Affiliation(s)
- Shereen E Tawfeek
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Anatomy, Faculty of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Ayat M Domouky
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reham H Abdel-Kareem
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
40
|
Mohan A, Tiwari P, Suri TM, Mittal S, Patel A, Jain A, Velpandian T, Das US, Boppana TK, Pandey RM, Shelke SS, Singh AR, Bhatnagar S, Masih S, Mahajan S, Dwivedi T, Sahoo B, Pandit A, Bhopale S, Vig S, Gupta R, Madan K, Hadda V, Gupta N, Garg R, Meena VP, Guleria R. Single-dose oral ivermectin in mild and moderate COVID-19 (RIVET-COV): A single-centre randomized, placebo-controlled trial. J Infect Chemother 2021; 27:1743-1749. [PMID: 34483029 PMCID: PMC8384587 DOI: 10.1016/j.jiac.2021.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Ivermectin is an antiparasitic drug which has in-vitro efficacy in reducing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral load. Hence, Ivermectin is under investigation as a repurposed agent for treating COVID-19. METHODS In this pilot, double blind, randomized controlled trial, hospitalized patients with mild-to-moderate COVID-19 were assigned to a single oral administration of an elixir formulation of Ivermectin at either 24 mg or 12 mg dose, or placebo in a 1:1:1 ratio. The co-primary outcomes were conversion of RT-PCR to negative result and the decline of viral load at day 5 of enrolment. Safety outcomes included total and serious adverse events. The primary outcomes were assessed in patients who had positive RT-PCR at enrolment (modified intention-to-treat population). Safety outcomes were assessed in all patients who received the intervention (intention-to-treat population). RESULTS Among the 157 patients randomized, 125 were included in modified intention-to-treat analysis. 40 patients each were assigned to Ivermectin 24 mg and 12 mg, and 45 patients to placebo. The RT-PCR negativity at day 5 was higher in the two Ivermectin arms but failed to attain statistical significance (Ivermectin 24 mg, 47.5%; 12 mg arm, 35.0%; and placebo arm, 31.1%; p-value = 0.30). The decline of viral load at day 5 was similar in each arm. No serious adverse events occurred. CONCLUSIONS In patients with mild and moderate COVID-19, a single oral administration of Ivermectin did not significantly increase either the negativity of RT-PCR or decline in viral load at day 5 of enrolment compared with placebo.
Collapse
Affiliation(s)
- Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Tejas Menon Suri
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Patel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Avinash Jain
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjalkumar Subhash Das
- Department of Ocular Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Krishna Boppana
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Suresh Shelke
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Angel Rajan Singh
- Department of Hospital Administration, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Tanima Dwivedi
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Biswajeet Sahoo
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Anuja Pandit
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Bhopale
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Vig
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Gupta
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Garg
- Department of Onco-Anesthesia, Pain and Palliative Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ved Prakash Meena
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
41
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
42
|
Early-life exposure to Ivermectin alters long-term growth and disease susceptibility. PLoS One 2021; 16:e0258185. [PMID: 34644335 PMCID: PMC8513825 DOI: 10.1371/journal.pone.0258185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic medicine, which is often used as a treatment for parasites or as a prophylaxis. While studies have looked at the long-term effects of Ivermectin on helminths, studies have not considered the long-term impacts of this treatment on host health or disease susceptibility. Here, we tracked the effects of early life Ivermectin treatment in Cuban tree frogs (Osteopilus septentrionalis) on growth rates, mortality, metabolically expensive organ size, and susceptibility to Batrachochytrium dendrobatidis (Bd) infection. One year after exposure, there was no effect of Ivermectin exposure on frog mass (X21 = 0.904, p = 0.34), but when tracked through the exponential growth phase (~2.5 years) the Ivermectin exposed individuals had lower growth rates and were ultimately smaller (X21 = 7.78, p = 0.005; X21 = 5.36, p = 0.02, respectively). These results indicate that early life exposure is likely to have unintended impacts on organismal growth and potentially reproductive fitness. Additionally, we exposed frogs to Bd, a pathogenic fungus that has decimated amphibian populations globally, and found early life exposure to Ivermectin decreased disease susceptibility (disease load: X21 = 17.57, p = 0.0002) and prevalence (control: 55%; Ivermectin: 22%) over 2 years after exposure. More research is needed to understand the underlying mechanism behind this phenomenon. Given that Ivermectin exposure altered disease susceptibility, proper controls should be implemented when utilizing this drug as an antiparasitic treatment in research studies.
Collapse
|
43
|
Zou N, Zhou D, Chen Y, Lin P, Chen Y, Wang W, Xie J, Wang M. A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Front Microbiol 2021; 12:706647. [PMID: 34497593 PMCID: PMC8419470 DOI: 10.3389/fmicb.2021.706647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Banana Fusarium wilt disease caused by Fusarium oxyspoum f. sp. cubense (Foc) seriously threatens the banana industry. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Compared with traditional physical and chemical practices, biocontrol strategy using beneficial microbes is considered as an environmentally sound option to manage fungal disease. In this study, a strain, H3-2, isolated from a non-infected banana orchard, exhibited high antifungal activity against Foc TR4. According to its morphological, physiological, and biochemical characteristics, the strain H3-2 was identified as Streptomyces sp. and convinced by the polymorphic phylogenic analysis of 16S rRNA sequences. Extracts of the strain H3-2 suppressed the growth and spore germination of Foc TR4 in vitro by destroying cell membrane integrity and mycelial ultrastructure. Notably, the strain and its extracts showed broad-spectrum antifungal activity against the selected seven fungal phytopathogens. Fourteen chemical compounds in the extracts were identified by gas chromatography–mass spectrometer (GC-MS), primarily phenolic compounds. Additional pot inoculation experiment demonstrated that the fermentation broth of the strain H3-2 promoted the growth of banana seedlings by efficiently inhibiting the spread of banana Fusarium wilt disease. This study demonstrated the potential application of the novel Streptomyces sp. H3-2 for the management of banana Fusarium wilt.
Collapse
Affiliation(s)
- Niexia Zou
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China.,Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Ping Lin
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mingyuan Wang
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
44
|
Cho Y, Sohn Y, Hyun J, Baek Y, Kim M, Kim J, Ahn J, Jeong S, Ku N, Yeom JS, Ahn M, Oh D, Choi J, Kim S, Lee K, Song Y, Choi J. Effectiveness of Convalescent Plasma Therapy in Severe or Critically Ill COVID-19 Patients: A Retrospective Cohort Study. Yonsei Med J 2021; 62:799-805. [PMID: 34427065 PMCID: PMC8382726 DOI: 10.3349/ymj.2021.62.9.799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Coronavirus disease-2019 (COVID-19) is a novel respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); there are few specific treatments. Convalescent plasma (CP), donated by people who have recovered from COVID-19, is an investigational therapy for severe or critically ill patients with COVID-19. MATERIALS AND METHODS This retrospective cohort study evaluated the effectiveness of CP therapy in patients with severe or life-threatening cases of COVID-19 at two hospitals in Seoul, Korea, between May and September 2020. Clinical outcomes were evaluated in 20 patients with CP therapy in a descriptive manner. Additionally, the changes in cycle threshold (Ct) values of 10 patients with CP therapy were compared to those of 10 controls who had the same (±0.8) initial Ct values but did not receive CP. RESULTS Of the 20 patients (mean age 66.6 years), 18 received high-dose oxygen therapy using mechanical ventilators or high-flow nasal cannulas. Systemic steroids were administered to 19 patients who received CP. The neutralizing antibody titers of the administered CP were between 1:80 and 1:10240. There were two ABO-mismatched transfusions. The World Health Organization ordinal scale score and National Institutes of Health severity score improved in half of the patients within 14 days. Those who received CP showed a higher increase in Ct values at 24 h and 72 h after CP therapy compared to controls with similar initial Ct values (p=0.002). No transfusion-related side effects were observed. CONCLUSION CP therapy may be a potential therapeutic option in severe or critically ill patients with COVID-19.
Collapse
Affiliation(s)
- YunSuk Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - YuJin Sohn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - JongHoon Hyun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - YaeJee Baek
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - MooHyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - JungHo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - JinYoung Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - SuJin Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - NamSu Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - MiYoung Ahn
- Department of Internal Medicine, Seoul Medical Center, Seoul, Korea
| | - DongHyun Oh
- Department of Internal Medicine, Seoul Medical Center, Seoul, Korea
| | - JaePhil Choi
- Department of Internal Medicine, Seoul Medical Center, Seoul, Korea
| | - SinYoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - KyoungHwa Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - YoungGoo Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - JunYong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
46
|
Jain S, Potschka H, Chandra PP, Tripathi M, Vohora D. Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications. Epilepsy Res 2021; 174:106675. [PMID: 34044300 PMCID: PMC8132550 DOI: 10.1016/j.eplepsyres.2021.106675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
In regard to the global pandemic of COVID-19, it seems that persons with epilepsy (PWE) are not more vulnerable to get infected by SARS-CoV-2, nor are they more susceptible to a critical course of the disease. However, management of acute seizures in patients with COVID-19 as well as management of PWE and COVID-19 needs to consider potential drug-drug interactions between antiseizure drugs and candidate drugs currently assessed as therapeutic options for COVID-19. Repurposing of several licensed and investigational drugs is discussed for therapeutic management of COVID-19. While for none of these approaches, efficacy and tolerability has been confirmed yet in sufficiently powered and controlled clinical studies, testing is ongoing with multiple clinical trials worldwide. Here, we have summarized the possible mechanisms of action of drugs currently considered as potential therapeutic options for COVID-19 management along with possible and confirmed drug-drug interactions that should be considered for a combination of antiseizure drugs and COVID-19 candidate drugs. Our review suggests that potential drug-drug interactions should be taken into account with drugs such as chloroquine/hydroxychloroquine and lopinavir/ritonavir while remdesivir and tocilizumab may be less prone to clinically relevant interactions with ASMs.
Collapse
Affiliation(s)
- Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Königinstr. 16, D-80539, Munich, Germany
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
47
|
Thigpen J. SARS CoV-2 (COVID-19) Current Pharmacotherapy for Mother and Infant. Neonatal Netw 2021; 40:175-182. [PMID: 34088863 DOI: 10.1891/11-t-737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19), appeared in the United States over 1 year ago. This virus has a wide range of presentations, from being asymptomatic to causing severe acute respiratory syndrome, which can lead to death. It has led to a worldwide effort to find effective treatments, from repurposed medications to new discoveries, as well as the push to develop effective vaccines. As the race to fight this pandemic unfolds, this column provides what is currently available to combat this virus, how it has been utilized in the pregnant population, and what data have been made available about how these treatments affect fetal development and the neonate.
Collapse
|
48
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
49
|
Pessanha de Carvalho L, Kreidenweiss A, Held J. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action. Molecules 2021; 26:2304. [PMID: 33921170 PMCID: PMC8071546 DOI: 10.3390/molecules26082304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.
Collapse
Affiliation(s)
- Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| |
Collapse
|
50
|
Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics (Basel) 2021; 10:antibiotics10040381. [PMID: 33916775 PMCID: PMC8066277 DOI: 10.3390/antibiotics10040381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.
Collapse
|