1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Li Y, Sun S, Li B, Li Y, Liu C, Ta D. Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism. ULTRASONICS 2025; 150:107618. [PMID: 40031083 DOI: 10.1016/j.ultras.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Diabetic peripheral neuropathy (DPN), as one of the most prevalent complications of diabetes, leads to significant pain and financial burden to patients. Currently, there was no effective treatment for DPN since the glucose control was just a prevention and the drug therapy only relieved the DPN pain. As a non-invasive physical therapy, low-intensity pulsed ultrasound (LIPUS) is utilized in the musculoskeletal and nerve injuries therapy. Studies revealed that LIPUS could regenerate nerves by the mechanical stimulation via oxidative stress pathway, which was thought as the important factor for DPN, and might have potential in the DPN therapy. This study aimed to identify a new therapeutic strategy for DPN using LIPUS. We analyzed the therapy effect and explored the therapeutic mechanism of LIPUS on DPN in mice. This study involved animal experiments and C57BL/6J mice were randomly assigned to DPN model and Sham groups. The DPN model group was fed a high-fat chow diet and injected with streptozotocin (STZ) for 3 consecutive days (40 mg/kg/d), whereas the Sham group was fed a normal diet and injected with an equal volume of sodium citrate buffer. After the DPN model confirmed with the 84-day modeling process, the DPN mice were randomly allocated into the DPN group and the LIPUS group. The LIPUS group underwent ultrasound treatments with a center frequency of 1 MHz, a duty cycle of 20 %, and a spatial average temporal average intensity (ISATA) of 200 mW/cm2 for 20 min/d, 5 d/w. After the 56-day treatment, all mice were euthanized. LIPUS therapeutic effects were evaluated through measurements of fasting blood glucose (FBG), behavioral tests, oxidative stress tests, morphological analysis, immunofluorescence, and western blot analysis. The results indicated that DPN mice had significantly higher FBG levels (28.77 ± 2.95 mmol/L) compared with sham mice (10.31 ± 1.49 mmol/L). Additionally, DPN mice had significantly lower mechanical threshold (4.13 ± 0.92 g) and higher thermal latency (16.20 ± 2.39 s) compared with the sham mice (7.31 ± 0.83 g, 11.67 ± 1.21 s). After receiving LIPUS treatment, the glucose tolerance tests (GTT) suggested that LIPUS treatment improved glucose tolerance, which was shown by a decrease in the area under the curve (AUC) for glucose in the LIPUS group (AUC = 2452 ± 459.33 min*mmol/L) compared with the DPN group (AUC = 3271 ± 420.90 min*mmol/L). Behavioral tests showed that LIPUS treatment significantly alleviated DPN-induced abnormalities by improving the mechanical threshold from 2.79 ± 0.79 g in the DPN group to 5.50 ± 1.00 g in the LIPUS group, and significantly decreasing thermal latency from 12.38 ± 1.88 s in the DPN group to 9.49 ± 2.31 s in the LIPUS group. Morphological observations revealed that DPN mice had a thinning and irregularly shaped myelin sheath, with 61.04 ± 5.60 % of abnormal nerve fibers in the sciatic nerve in LIPUS group, compared with 49.76 ± 4.88 % of abnormal nerve fibers in the LIPUS-treated group. Additionally, LIPUS treatment increased the mean fluorescence intensity of the associated nerve regeneration protein (i.e., Nf200) from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS group. Western blot and immunofluorescence analysis showed that LIPUS treatment significantly reduced Keap1 expression to 0.04 ± 0.06 relative units, compared with 0.17 ± 0.30 in the DPN group. Furthermore, immunofluorescence analysis revealed that LIPUS treatment promoted the production of its downstream antioxidant protein, heme oxygenase-1 (HO-1), with an increase in the fluorescence intensity from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS-treated group. The fluorescence intensity of Nrf2 was significantly higher in the LIPUS group, increasing from 4.90 ± 0.25 arbitrary units in the DPN group to 15.18 ± 2.13 arbitrary units in the LIPUS-treated group. Additionally, the malondialdehyde (MDA) levels, an indicator of oxidative stress, were significantly reduced in the serum, from 5.40 ± 0.48 nmol/ml in the DPN group to 4.64 ± 0.16 nmol/ml in the LIPUS-treated group, and in the sciatic nerve, from 16.17 ± 5.88 nmol/mg protein to 4.67 ± 2.10 nmol/mg protein, suggesting the oxidative stress was inhibited by LIPUS. This study demonstrated for the first time that LIPUS could relive DPN through anti-oxidative stress process. This study suggests that LIPUS might be a new therapy strategy for DPN.
Collapse
Affiliation(s)
- Yiyuan Li
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shuxin Sun
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Boyi Li
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
3
|
Zhang YY, Zhu DX, Wang MY, Yi YT, Feng YH, Zhou C, Li CJ, Liu F, Shen JF. Activation of NR2A-Wnt-TLR2 Signaling Axis in Satellite Glial Cells of the Dorsal Root Ganglion Contributes to Neuropathic Pain Induced by Nerve Injury in Diabetic Mice. Mol Neurobiol 2025; 62:8013-8037. [PMID: 39964585 DOI: 10.1007/s12035-025-04754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Diabetic peripheral neuropathic pain (DPNP), a common diabetic mellitus (DM) complication, may result from the activation of satellite glial cells (SGCs) in the dorsal root ganglion (DRG), potentially enhancing peripheral sensitization. The N-methyl-D-aspartate receptor (NMDAR) subtype NR2A and Toll-like receptor (TLR)2 play key roles in neuroimmune interactions. However, their roles in SGCs of DRG and the precise mechanisms mediating peripheral sensitization in DPNP remain unclear. Here, we found that the expression of glial fibrillary acidic protein (GFAP), NR2A, and TLR2 in SGCs from DRG significantly increased under increased glucose and NMDA stimulation in vitro. Additionally, upregulation of interleukin (IL)-6 and nerve growth factor (NGF) was observed. Notably, lentivirus-induced NR2A knockdown (KD) and C29 (TLR2 inhibitor) significantly blocked the above SGCs changes induced by NMDA and increased glucose. Behavior tests showed mechanical and thermal sensitivities induced by sciatic nerve ligation (SNL) were more obvious in DM background related to streptozotocin (STZ) injection than non-DM background mice, which were significantly alleviated by NR2A conditional knockout (CKO) in SGCs and TLR2 KO. Moreover, immunofluorescence (IF) results revealed the co-expression of NR2A and TLR2 in neurons and SGCs in the DRG. Following SNL in DM mice, the upregulation of NR2A, TLR2, GFAP, β-catenin, p-GSK-3β, p-nuclear factor kappa (NF-κ)-B, IL-6, NGF, Bcl-2-associated X protein (Bax), and Caspase 3, and the significant downregulation of Bcl-2 were consistent with the changes observed after increased glucose and NMDA treatment. The upregulation of TLR2 was blocked by NR2A CKO and Wnt signal pathway inhibition. Additionally, the activation of SGCs, upregulated IL-6 as well as NGF secretion and increased apoptosis, associated with nerve injury in DM background were altered by TLR2 KO and NF-κB pathway inhibition. In conclusion, the activation of the NR2A-Wnt-TLR2 signaling axis mediated peripheral sensitization in the DRG by influencing SGCs' activation, and the synthesis and secretion of pro-inflammatory cytokines and NGF, promoting SGCs' apoptosis, thus exacerbating a peripheral nerve injury related-NP in DM background. Our study provided insights into the role of NR2A-Wnt-TLR2 signaling axis of SGCs in mediating the generation and maintenance of DPNP and suggested targeting this signaling axis may be a promising therapeutic approach for DPNP.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - De-Xin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mu-Yun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Ting Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Sharma S. Editorial for CASPAR: a retrospective cohort study of the high-concentration capsaicin topical system in patients with painful diabetic peripheral neuropathy of the feet. BMJ Open Diabetes Res Care 2025; 13:e005098. [PMID: 40316316 PMCID: PMC12049960 DOI: 10.1136/bmjdrc-2025-005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Affiliation(s)
- Sanjeev Sharma
- Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Ipswich, UK
| |
Collapse
|
5
|
Hu W, Garrison C, Prasad R, Boulton M, Grant M. Indole metabolism and its role in diabetic macrovascular and microvascular complications. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100532. [PMID: 40230659 PMCID: PMC11995707 DOI: 10.1016/j.ahjo.2025.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Tryptophan (Trp), an essential amino acid obtained through dietary sources, plays a crucial role in various physiological processes. The metabolism of Trp branches into three principal pathways: the serotonin pathway, the kynurenine pathway, and the indole pathway. The kynurenine and serotonin pathways are host pathways while the indole pathway is solely the result of bacterial metabolism. Trp metabolites extend their influence beyond protein biosynthesis to affect a spectrum of pathophysiological mechanisms including, but not limited to, neuronal function, immune modulation, inflammatory responses, oxidative stress regulation, and maintenance of intestinal health. This review focuses on indole derivatives and their impact on vascular health. Trp-containing dipeptides are highlighted as a targeted nutraceutical approach to modulate Trp metabolism, enhance beneficial metabolite production, and mitigate risk factors for vascular diseases. The importance of optimizing Trp intake and dietary strategies to harness the benefits of Trp-derived metabolites for vascular health is underscored, bringing to light the need for further research to refine these therapeutic approaches.
Collapse
Affiliation(s)
- W. Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - C. Garrison
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
7
|
Fadlilah S, Amelia VL, Tuppal CP, Chang HCR, Chang CW, Lin CL, Tsai HT. Significant Impacts of the Body-Mass Index, Blood Pressure, Blood Glucose, and Ankle-Brachial Index on Peripheral Neuropathy Risk in Indonesian With Type 2 Diabetes: A Cross-Sectional Study. Biol Res Nurs 2025:10998004251336795. [PMID: 40261070 DOI: 10.1177/10998004251336795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Background: Diabetic peripheral neuropathy is associated with morbidity and mortality in people with diabetes mellitus. Aims: In this study, we determined relationships of the body-mass index (BMI), systolic blood pressure, diastolic blood pressure, fasting blood glucose, HbA1c, and ankle-brachial index (ABI) with diabetic peripheral neuropathy risk. Methods: A cross-sectional study was conducted with 1088 Indonesians and data collected using self-reported questionnaires, laboratory examinations, and physical examinations. Instruments included a digital scale, height measurement device, digital sphygmomanometer, Doppler ultrasound, 10-g monofilament, and a 128-Hz tuning fork. Data analysis used the Chi-square test, Fisher Exact, and multiple logistic regression test with significance p < .05. Results: The BMI (p < .001), blood pressure (p < .001), ABI (p < .001), fasting blood glucose (p = .016), and HbA1c (p < .001) were significantly related to peripheral neuropathy risk. The conditions of obesity, hypertension, high ABI, high fasting blood glucose, and high HbA1c significantly increased the risk of peripheral neuropathy. Moreover, participants with ≥4 co-occurring abnormal levels of the BMI, systolic blood pressure, diastolic blood pressure, fasting blood glucose, HbA1c, and ABI had significantly synergistically increased risks of peripheral neuropathy, and the more abnormal conditions there were, the higher the risk of peripheral neuropathy. Conclusions: Abnormalities of the BMI, blood pressure, fasting blood glucose, HbA1c, and ABI significantly and synergistically increased the risk of peripheral neuropathy and can be considered predictors of peripheral neuropathy. Nurses are expected to be aware of these predictors so that they can immediately take appropriate steps if they encounter abnormal conditions by optimizing their role as educators.
Collapse
Affiliation(s)
- Siti Fadlilah
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Program Study of Nursing, Universitas Respati Yogyakarta, Yogyakarta, Indonesia
| | - Vivi Leona Amelia
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Program Study of Nursing, Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia
| | - Cyruz P Tuppal
- College of Health Allied, National University, Manila, Philippines
| | | | - Ching Wen Chang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia Ling Lin
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiu Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Enhancing Well-being in Vulnerable and Chronic Illness Populations, Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Zhou Y, Dai F, Zhao S, Li Z, Liang H, Wang X, Zhao L, Tan H. pH and Glucose Dual-Responsive Hydrogels Promoted Diabetic Wound Healing by Remodeling the Wound Microenvironment. Adv Healthc Mater 2025:e2500810. [PMID: 40237168 DOI: 10.1002/adhm.202500810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Indexed: 04/18/2025]
Abstract
The microenvironment of diabetic wounds is complicated and characterized by hyperglycemia, hyperinflammation, persistent infection, hypoxia, and ischemia, making wound restoration and healing extremely challenging. Therefore, functional hydrogel dressings with the ability to regulate the microenvironment of diabetic wounds are a promising strategy for the treatment of diabetic wounds. In this study, a pH/glucose dual-responsive hydrogel based on phenylboric acid-modified carboxymethyl chitosan (CMCSPBA), aldehyde-terminated polyethylene glycol (PEGCHO), and polyvinyl alcohol (PVA) has been developed for diabetic wound treatment via Schiff base and phenylboric ester interactions. Glucose oxidase (GOX), catalase (CAT), and deferoxamine mesylate (DFO) are incorporated into the hydrogel to endow it with multi-functionality. In the hyperglycemic environment of diabetic wounds, a benign feedback loop is formed through the synergistic action of each component of the hydrogel, which enables the reshaping of the microenvironment of diabetic wounds by adjusting the pH and glucose, alleviating oxidative stress and hypoxia, regulating the inflammatory response, inhibiting bacterial infection, and promoting angiogenesis, thus accelerating diabetic wound healing in streptozotocin (STZ)-induced diabetic mice.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fanjia Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
- Infectious Diseases Department, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Sifang Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zelong Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lingling Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hui Tan
- Infectious Diseases Department, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| |
Collapse
|
9
|
Gu X, Zhu F, Gao P, Shen Y, Lu L. Association between life's simple 7 and peripheral neuropathy among U.S. adults, a cross-sectional study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:118. [PMID: 40234951 PMCID: PMC11998258 DOI: 10.1186/s41043-025-00864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Peripheral neuropathy (PN) is a common disease among adults that can lead to severe clinical outcomes; Life's Simple 7(LS7) is recommended to reduce the risk of cardiovascular disease and stroke. However, the association between LS7 and PN has not been well studied yet. METHODS We enrolled 4634 adults aged 40 to 85 years from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. We used univariable and multivariable logistic regression models to evaluate the association between the LS7 score and PN. The LS7 score was treated as a continuous variable and divided into three groups: inadequate (0-7), average (8-10), and optimal (11-14). Subgroup analyses were also performed. RESULTS The average age of the participants was 55.28(0.24) years, and 684(11.59%) of those were diagnosed with PN. In three models, the inverse associations between LS7 and PN were found. In Model 3, a point increase in the LS7 score was associated with a 9% decreased incidence of PN, the odds ratio (OR) was 0.91, and the 95% confidence interval (CI) was 0.86 to 0.97. Compared with the inadequate LS7 score group, participants in the average and optimal groups were less likely to have PN, and the OR and 95%CI were 0.75(0.59,0.96) and 0.47(0.28,0.79), respectively. No significant interactions were found in the subgroup analyses. CONCLUSION An increased LS7 score is inversely associated with the likelihood of PN. This benefit was observed predominantly in participants who had the optimal LS7 score.
Collapse
Affiliation(s)
- Xi Gu
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fanfan Zhu
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Gao
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Leiqun Lu
- Department of Endocrinology, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Patel S, Dobrowsky RT. Schwann Cell Protein Kinase RNA-like ER Kinase (PERK) Is Not Necessary for the Development of Diabetic Peripheral Neuropathy but Negates the Efficacy of Cemdomespib Therapy. ACS Pharmacol Transl Sci 2025; 8:1129-1139. [PMID: 40242589 PMCID: PMC11997883 DOI: 10.1021/acsptsci.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes arising in part from glycemic damage to neurons and Schwann cells (SC). While the pathogenic mechanisms of DPN are complex, mitochondrial dysfunction and endoplasmic reticulum (ER) stress contribute to the development of DPN and serve as therapeutic targets for disease modification. Cemdomespib is an orally bioavailable small molecule which alleviates clinical indices of DPN that correlate with improvements in neuronal oxidative stress and mitochondrial bioenergetics. However, the contribution of SC ER stress in the onset of DPN and the therapeutic efficacy of cemdomespib remains unknown. To address this issue, mice expressing a conditional deletion of protein kinase RNA-like ER kinase (PERK) in myelinating SCs (SC-cPERK KO) and control SC-PERKf/f mice were rendered diabetic with streptozotocin. Diabetic SC-PERKf/f and SC-cPERK KO mice developed a similar magnitude of DPN as quantified by the onset of a thermal/mechanical hypoalgesia, decreases in nerve conduction velocity (NCV) and intraepidermal fiber density (iENFD). After 8 weeks of diabetes, daily treatment with 1 mg/kg cemdomespib for an additional 8 weeks significantly improved thermal/mechanical hypoalgesia, NCV, iENFD and decreased markers of ER stress in diabetic SC-PERKf/f mice, but the drug had no effect in diabetic SC-cPERK KO mice. Nrf2 is a PERK substrate and studies using rat SCs subjected to ER stress demonstrated that cemdomespib increased Nrf2 activity. Collectively, these data suggest that activation of SC PERK by diabetes is not necessary for the onset of DPN, but serves as a target in the action of cemdomespib, potentially by increasing Nrf2 activity.
Collapse
Affiliation(s)
- Sugandha Patel
- Department of Pharmacology
and Toxicology, University of Kansas, Lawrence, Kansas 66045, United States
| | - Rick T. Dobrowsky
- Department of Pharmacology
and Toxicology, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Huang KH, Huang SW, Yang Y, Gau SY, Tsai TH, Chang YL, Lee CY. Dose dependent relationship of metformin use and diabetic peripheral neuropathy risk in patients with type 2 diabetes mellitus. Sci Rep 2025; 15:12040. [PMID: 40200052 PMCID: PMC11979028 DOI: 10.1038/s41598-025-96445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
This study investigated the correlation between metformin use and diabetic peripheral neuropathy (DPN) risk in patients with type 2 diabetes mellitus (T2DM) and its dose-dependent relationship. The study included new-onset T2DM patients from 2002 to 2013. Patients were divided into two groups based on metformin treatment, and DPN risk was assessed at 2- and 5-year follow-ups. After adjusting for various factors, two logistic models, metformin cumulative defined daily dose (cDDD) and metformin treatment intensity (defined daily dose [DDD]/month), evaluated the metformin-DPN risk association. Results showed that patients with metformin cDDD < 300, 300-500, and > 500 had higher DPN risk at both follow-ups. Odds ratios (ORs) and confidence intervals (CIs) for DPN were 1.74 (1.69-1.79), 2.05 (1.81-2.32), and 2.36 (1.34-4.16) at 2 years and 1.63 (1.60-1.65), 1.82 (1.69-1.96), and 2.17 (1.56-3.03) at 5 years. Similarly, patients with < 10, 10-25, and > 25 DDD/month had higher DPN risk at both follow-ups. Metformin use correlated with DPN risk in T2DM patients, with a dose-dependent relationship. Higher metformin cDDD or treatment intensity increased DPN risk. However, the absence of vitamin B12 data limits the understanding of the underlying mechanisms. Well-designed, large-scale studies are required to evaluate the potential risks of metformin therapy for DPN in patients with T2DM.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shiang-Wen Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yih Yang
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shuo-Yan Gau
- Department of Business Administration, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ya-Lan Chang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Wu J, Hu H, Li X. Spinal neuron-glial crosstalk and ion channel dysregulation in diabetic neuropathic pain. Front Immunol 2025; 16:1480534. [PMID: 40264787 PMCID: PMC12011621 DOI: 10.3389/fimmu.2025.1480534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is one of the most prevalent complications of diabetes, characterized by a high global prevalence and a substantial affected population with limited effective therapeutic options. Although DNP is closely associated with hyperglycemia, an increasing body of research suggests that elevated blood glucose levels are not the sole inducers of DNP. The pathogenesis of DNP is intricate, involving the release of inflammatory mediators, alterations in synaptic plasticity, demyelination of nerve fibers, and ectopic impulse generation, yet the precise mechanisms remain to be elucidated. The spinal dorsal horn coordinates dynamic interactions between peripheral and central pain pathways, wherein dorsal horn neurons, microglia, and astrocytes synergize with Schwann cell-derived signals to process nociceptive information flow. Abnormally activated neurons can alter signal transduction by modifying the local microenvironment, compromising myelin integrity, and diminishing trophic support, leading to neuronal sensitization and an amplifying effect on peripheral pain signals, which in turn triggers neuropathic pain. Ion channels play a pivotal role in signal conduction, with the modulation of sodium, potassium, and calcium channels being particularly crucial for the regulation of pain signals. In light of the rising incidence of diabetes and the current scarcity of effective DNP treatments, a thorough investigation into the interactions between neurons and glial cells, especially the mechanisms of ion channel function in DNP, is imperative for identifying potential drug targets, developing novel therapeutic strategies, and thereby enhancing the prospects for DNP management.
Collapse
Affiliation(s)
- Jie Wu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haijun Hu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Li W, Yang T, Wang N, Li B, Meng C, Yu K, Zhou X, Cao R, Cui S. Maladaptive Peripheral Ketogenesis in Schwann Cells Mediated by CB 1R Contributes to Diabetic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414547. [PMID: 39887953 PMCID: PMC11967812 DOI: 10.1002/advs.202414547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Although studies have previously investigated metabolic disruptions in the peripheral nervous system (PNS), the exact metabolic mechanisms underlying DPN remain largely unknown. Herein, a specific form of metabolic remodeling involving aberrant ketogenesis within Schwann cells (SCs) in streptozotocin (STZ)-induced type I diabetes mellitus is identified. The PNS adapts poorly to such aberrant ketogenesis, resulting in disrupted energy metabolism, mitochondrial damage, and homeostatic decompensation, ultimately contributing to DPN. Additionally, the maladaptive peripheral ketogenesis is highly dependent on the cannabinoid type-1 receptor (CB1R)-Hmgcs2 axis. Silencing CB1R reprogrammed the metabolism of SCs by blocking maladaptive ketogenesis, resulting in rebalanced energy metabolism, reduced histopathological changes, and improved neuropathic symptoms. Moreover, this metabolic reprogramming can be induced pharmacologically using JD5037, a peripheral CB1R blocker. These findings revealed a new metabolic mechanism underlying DPN, and promoted CB1R as a promising therapeutic target for DPN.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Ningning Wang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Baolong Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Chuikai Meng
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Kaiming Yu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| |
Collapse
|
14
|
Kojima MI, Matsuura T, Ozaki K. Novel three-dimensional analysis method for accurate evaluation of cutaneous small sensory nerve fibers in mice. J Toxicol Pathol 2025; 38:167-175. [PMID: 40190624 PMCID: PMC11966124 DOI: 10.1293/tox.2024-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 04/09/2025] Open
Abstract
Intraepidermal nerve fiber (IENF) density is commonly evaluated to diagnose peripheral neuropathy. However, conventional two-dimensional (2D) analysis using rodent models shows high interstudy variability. Three-dimensional (3D) IENF analysis has been proposed for human skin biopsies because the spatial location of each nerve can be easily determined. However, no studies have compared 2D and 3D analyses of mouse cutaneous nerve fibers under the same conditions. We aimed to establish a more accurate analysis method for mouse cutaneous nerve fibers. We used the glabrous plantar metatarsal skin of male C57BL/6J mice. The middle area of the plantar skin was used for 2D and 3D analyses, and the marginal area was also investigated in the 3D analysis. Tissue transparency, nerve fiber-specific antibodies, confocal microscopy, and IMARIS software were used for the 3D analysis. The 3D analysis clearly defined branching points and continuity, allowing accurate IENF density measurement. Conversely, the 2D analysis could not accurately determine IENF density because it could not detect the continuity of the nerve from the dermis to epidermis. Thus, the actual IENF density from the 3D analysis was significantly less than that from the 2D analysis. In addition, the density and length of IENFs in the middle area were significantly higher than those in the marginal area. This 3D approach enables the precise capture of IENF trajectories with various parameters, establishing a standard method for evaluating peripheral neuropathy models. Furthermore, our findings indicate that comparative studies aiming to analyze mouse IENF need to consider the site of skin sampling.
Collapse
Affiliation(s)
- Minori Inanaga- Kojima
- Laboratory of Pathology, Faculty of Pharmaceutical Science,
Setsunan University, 45-1 Nagaotohge-cho, Hirakata, Osaka 573-0101, Japan
| | - Tetsuro Matsuura
- Laboratory of Pathology, Faculty of Pharmaceutical Science,
Setsunan University, 45-1 Nagaotohge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kiyokazu Ozaki
- Laboratory of Pathology, Faculty of Pharmaceutical Science,
Setsunan University, 45-1 Nagaotohge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
15
|
Nickerson DS, Yamasaki DS. Improving Microcirculation With Nerve Decompression: The Missing Link in Treatment of Diabetic Neuropathy and Diabetic Foot Ulcer. Int Wound J 2025; 22:e70198. [PMID: 40234038 PMCID: PMC11999732 DOI: 10.1111/iwj.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 04/17/2025] Open
Abstract
Sympathetic dysfunction in skin is well known in diabetic peripheral neuropathy. This produces dry, cracked, peeling skin susceptible to infection and also epidermal microcirculation insufficiency. Impaired autonomic neurovascular control opens dermal arterio-venous anastomoses and shunts microcirculation away from the epidermis and impairs skin oxygenation and nutrition. Few recognise that diabetic neuropathy includes swelling-induced entrapment neuropathy. Multiple peripheral nerves, swollen by the secondary polyol metabolic pathway, suffer local compressions at fibro-osseous tunnels. This includes the C-fibres controlling autonomic functions which constitute most of the nerve axons. No current standard of care therapy addresses the sympathetic-regulated neurovascular impairment of skin microcirculation in diabetes. Epineurolysis surgery for peripheral nerve decompression relieves local axonal compressions and generates recovery of sub-epidermal capillary flow. Clinical and animal diabetes studies have demonstrated objective improvements to epidermal hypoxia, demyelination and axonal histology. Seven surgery studies find an average 1.39% recurrence and zero amputations after prior Risk Class 3 wound healing in a mean of 1.78 years of follow-up. Deficits of electrophysiology, transcutaneous oxygenation and vasa nervorum circulation also improve. Surgically improved microcirculation is physiology-based. Nerve decompression minimises diabetic peripheral neuropathy, avoids initial diabetic foot ulcers, promotes neuropathic diabetic foot ulcer healing and minimises ulcer recurrences and subsequent amputation. The observational studies of these important benefits suggest wide application to the complications of diabetes neuropathy and beg for academic attention to Level 1 EBM confirmation.
Collapse
|
16
|
Tajabadi Z, Dadkhah PA, Gholami Chahkand MS, Esmaeilpour Moallem F, Karimi MA, Amini-Salehi E, Karimi M. Exploring the role of exosomes in diabetic neuropathy: From molecular mechanisms to therapeutic potential. Biomed Pharmacother 2025; 185:117959. [PMID: 40056828 DOI: 10.1016/j.biopha.2025.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of diabetes mellitus (DM), characterized by progressive neuronal damage, sensory dysfunction, and impaired quality of life. Recent advances in exosome research have elucidated their crucial role in DN's pathogenesis, diagnosis, and treatment. Exosomes-nanoscale extracellular vesicles-function as vehicles for molecular cargo, including microRNAs (miRNAs), proteins, and lipids, which mediate intercellular communication and regulate key biological processes. Pathologically, hyperglycemia and hyperlipidemia induce the release of exosomes enriched with pathogenic miRNAs, such as miR-130a and miR-20b-3p, which disrupt neuronal function, axonal regeneration, and inflammatory pathways. Conversely, diagnostic studies highlight the utility of exosomal biomarkers like miR-7 and miR-221 in the early detection and monitoring of DN. Therapeutically, Schwann cell-derived and mesenchymal stromal cell (MSC)-derived exosomes demonstrate neuroprotective and reparative effects by enhancing mitochondrial function, modulating inflammation, and promoting axonal repair. Emerging approaches, including engineered exosomes and miRNA-enriched vesicles, further expand their therapeutic potential. Despite these advances, challenges such as standardization, large-scale production, and clinical validation remain in translating these findings into clinical practice. This review underscores the multifaceted roles of exosomes in DN and highlights their potential as innovative tools for precision diagnostics and targeted therapies, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| |
Collapse
|
17
|
Ou X, Wang Z, Yu D, Guo W, Zvyagin AV, Lin Q, Qu W. VEGF-loaded ROS-responsive nanodots improve the structure and function of sciatic nerve lesions in type II diabetic peripheral neuropathy. Biomaterials 2025; 315:122906. [PMID: 39488031 DOI: 10.1016/j.biomaterials.2024.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus (DM), significantly contributing to the risk of amputation and mortality. Reactive oxygen species (ROS) can induce both neurological and structural harm through direct impact and pyroptosis, underscoring the critical role of ROS regulation in mitigating DPN. In this research endeavor, we propose harnessing the inherent antioxidant properties of sulfhydryl groups by grafting them onto gold nanodots through an amidation reaction, resulting in the creation of ROS-responsive AuNDs. Additionally, we aim to synthesize AuNDs-VEGF, wherein VEGF is attached to AuNDs via electrostatic interactions, as a therapeutic strategy for addressing DPN in rat models. The results of in vivo experiments showed that AuNDs and AuNDs-VEGF nanoparticles could increase the nerve conduction velocity, shorten the latency of nerve conduction in the sciatic nerve, promote the regeneration of nerve trophectodermal vessels, improve the structure and function of the sciatic nerve, reduce the apoptosis of neural cells, and alleviate the atrophy of the gastrocnemius muscle. Thus, VEGF-loaded ROS-responsive nanodots present a promising avenue for ameliorating diabetic peripheral neuropathy. This innovative approach not only extends the application possibilities of nanodots but also introduces a novel avenue for the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China; Department of Plastic and Burn Surgery, the Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130000, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Bio-photonics, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105. Nizhny Novgorod, Russia
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130000, China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China; Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, 130041, China.
| |
Collapse
|
18
|
Mohd Nayan NA, Chien CW, Lokman N, Alrashdi M, Mohamad Sabri MQ, Che Daud AZ. Translation and validation of the Malay version of the Duruöz hand index in individuals with diabetic peripheral neuropathy. HAND THERAPY 2025:17589983251325267. [PMID: 40160199 PMCID: PMC11948234 DOI: 10.1177/17589983251325267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025]
Abstract
Background Diabetic Peripheral Neuropathy (DPN) is a prevalent complication of Type 2 Diabetes Mellitus (T2DM), leading to hand function impairments that affect daily activities and quality of life. Despite its significance, no culturally adapted tool exists for assessing hand-related activity limitations in the Malay-speaking population. This study aimed to translate, culturally adapt and validate the Duruöz Hand Index (DHI) for Malaysians with DPN. Methods A cross-sectional study was conducted in two phases: (1) translation and cultural adaptation of the DHI into Malay and (2) evaluation of its psychometric properties. Content validity was assessed by a panel of nine experts using the Content Validity Index (CVI). Face validity was evaluated through a pilot test with 10 individuals with DPN. Internal consistency (Cronbach's alpha) and test-retest reliability (Intraclass Correlation Coefficient, ICC) were measured in 30 participants with DPN. Known-group validity was examined by comparing DPN participants with healthy individuals. Results The content validity of the Malay-DHI was excellent and face validity confirmed that the Malay-DHI was clear and comprehensible. Internal consistency was strong across all categories (α = 0.84-0.97). Test-retest reliability demonstrated excellent stability (ICC = 0.996-1.000). Known-group validity showed a significant difference between individuals with DPN and healthy individuals (Z = -6.93, p < .001). Conclusion The Malay version of the DHI demonstrated strong validity and reliability, making it a culturally relevant and robust tool for assessing hand function in individuals with DPN. This tool may facilitate targeted rehabilitation interventions and improve clinical outcomes.
Collapse
Affiliation(s)
- Noor Aziella Mohd Nayan
- Centre for Occupational Therapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Chi-Wein Chien
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Najihah Lokman
- Department of Community Oral Health & Prevention, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Alrashdi
- College of Medical Rehabilitation Sciences, Taibah University, Medina, Saudi Arabia
| | - Mohamad Qayum Mohamad Sabri
- Occupational Therapy Program and Centre for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Zamir Che Daud
- Centre for Occupational Therapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Special Population Research, Innovation and Knowledge, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
19
|
Xu X, Zhang Y, Li S, Liao C, Yang X, Zhang W. Role of Galactosylceramide Metabolism in Satellite Glial Cell Dysfunction and Neuron-Glia Interactions in Painful Diabetic Peripheral Neuropathy. Cells 2025; 14:393. [PMID: 40136642 PMCID: PMC11940725 DOI: 10.3390/cells14060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent and disabling complication of diabetes, with painful diabetic peripheral neuropathy (PDPN) being its most severe subtype due to chronic pain and resistance to treatment. Satellite glial cells (SGCs), critical for maintaining dorsal root ganglion (DRG) homeostasis, undergo significant structural and functional changes under pathological conditions. This study investigated the role of galactosylceramide (GalCer), a key sphingolipid, in SGC dysfunction and neuron-glia interactions during DPN progression. Using a rat model of PDPN, we employed single-cell RNA sequencing (scRNA-seq), targeted mass spectrometry, and immunofluorescence analysis. The PDPN group exhibited transcriptional activation and structural reorganization of SGCs, characterized by increased SGC abundance and glial activation, evidenced by elevated Gfap expression. Functional enrichment analyses revealed disruptions in sphingolipid metabolism, including marked reductions in GalCer levels. Subclustering identified vulnerable SGC subsets, such as Cluster a, with dysregulated lipid metabolism. The depletion of GalCer impaired SGC-neuron communication, destabilizing DRG homeostasis and amplifying neurodegeneration and neuropathic pain. These findings demonstrate that GalCer depletion is a central mediator of SGC dysfunction in PDPN, disrupting neuron-glia interactions and exacerbating neuropathic pain. This study provides novel insights into the molecular mechanisms of DPN progression and identifies GalCer metabolism as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; (X.X.); (Y.Z.); (S.L.); (C.L.)
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; (X.X.); (Y.Z.); (S.L.); (C.L.)
| |
Collapse
|
20
|
Strobel A, Laputsina V, Heinze V, Schulz S, Wienke A, Reer M, Schlitt A. Nonpharmaceutical treatment of distal sensorimotor polyneuropathy in diabetic patients: an unblinded randomized clinical trial. BMC Complement Med Ther 2025; 25:93. [PMID: 40050870 PMCID: PMC11887202 DOI: 10.1186/s12906-025-04830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND For Diabetic polyneuropathy, the most prevalent form of polyneuropathy, there is a lack of evidence-based treatment options. Current approaches include pain management, alpha-lipoic acid, and antidepressants. Physical interventions, such as electrical stimulation (four-chamber galvanic bath) have been suggested but have limited supporting evidence. Heated granular stone therapy is another option to consider. METHODS An unblinded randomized controlled trials was conducted in 68 diabetic patients with distal sensorimotor polyneuropathy undergoing rehabilitation for diabetes mellitus as a primary or secondary diagnosis in the Paracelsus-Harz-Clinic (Quedlinburg, Germany). Patients were randomized into either the intervention group receiving heated granulated stone footbaths, or the control group receiving four-chamber galvanic baths. The primary endpoint was the assessment of any change in polyneuropathy using a vibration sensation test (Rydel-Seiffer scale, 8/8) from admission to discharge, analyzed by t-test and multivariable regression. Additionally, serum TNF-α and IL-6 as potential markers for polyneuropathy were compared over time using paired t-test. RESULTS The mean age of the patients was 66.8 ± 7.8 years; 63.2% were male and mean BMI was 32.2 ± 6.4 kg/m2. Of the patients, 98.5% suffered from type 2 diabetes (one patient with type I diabetes); 82.4% were receiving oral antidiabetic medication; and 58.8% were insulin dependent. Distal sensorimotor polyneuropathy improved in both groups. The sum score increased from 16.7 to 22.6 in the study group and from 20.3 to 23.6 in the control group. A t-test showed a non-significant difference in the change of sum score between the treatment groups (2.6 points, p = 0.092), but adjusting for potential risk factors favors the intervention group (p = 0.043). Both analyzed markers decreased over time in each treatment group with IL-6 showing a clinical and significant reduction in the control group (p = 0.03). CONCLUSION Diabetic patients with distal sensorimotor polyneuropathy benefit from physical treatment with administration of electrical stimulation (four-chamber galvanic bath) or a therapy with heated granulated stones three times a week. Our results indicate that heated stone therapy may be a potential treatment option. However, further research is required to understand the underlying biological processes. TRIAL REGISTRATION The study was registered in clinical trials.gov (identifier: NCT05622630, registration date: 18/11/2022).
Collapse
Affiliation(s)
- Alexandra Strobel
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle, Halle (Saale), Germany
| | - Volha Laputsina
- Department of Cardiology and Diabetology, Paracelsus-Harz-Clinic, Quedlinburg, Germany
| | - Viktoria Heinze
- Department of Cardiology and Diabetology, Paracelsus-Harz-Clinic, Quedlinburg, Germany
| | - Susanne Schulz
- Department for Operative Dentistry and Periodontology, University Clinic Halle (Saale), Halle (Saale), Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle, Halle (Saale), Germany
| | - Marco Reer
- Department of Cardiology and Diabetology, Paracelsus-Harz-Clinic, Quedlinburg, Germany
| | - Axel Schlitt
- Department of Cardiology and Diabetology, Paracelsus-Harz-Clinic, Quedlinburg, Germany.
- Medical Faculty, Martin Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
21
|
Nikolova D, Kamenov Z, Hristova J, Gateva AT. Levels of DEFA1, Progranulin, and NRG4 in Patients with Autonomic Neuropathy: Potential Biomarkers for Diagnosis and Prognosis. Metabolites 2025; 15:169. [PMID: 40137134 PMCID: PMC11944139 DOI: 10.3390/metabo15030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Diabetic autonomic neuropathy (DAN) is a severe complication of diabetes that affects the autonomic nervous system, impacting cardiovascular, gastrointestinal, genitourinary, and other systems. This study examines the levels of three potential biomarkers-DEFA1, progranulin, and NRG4-to assess their diagnostic and prognostic value in DAN patients. METHODS This observational, single-center study included 80 patients with type 2 diabetes. Clinical data and laboratory results were collected, and serum levels of DEFA1, progranulin, and NRG4 were measured using ELISA. The presence of DAN was assessed using Ewing's tests. Statistical analyses included t-tests, Pearson's correlations, and ROC analysis to explore associations and the predictive values of the biomarkers. RESULTS Progranulin levels were significantly elevated in patients with DAN compared to those without (p < 0.05), showing a positive correlation with diabetes duration (r = 0.375; p = 0.01) and a significant predictive value for DAN (AUC = 0.666; p = 0.013). DEFA1 and NRG4 levels did not differ significantly between the groups. Progranulin was also higher in patients who were treated with sulfonylureas and GLP-1 receptor agonists and in those with coronary artery disease. CONCLUSIONS Progranulin emerges as a potential biomarker for the presence and severity of DAN, correlating with disease duration and autonomic dysfunction. While DEFA1 and NRG4 showed no significant association, the findings underscore the importance of further exploring the inflammatory pathways in DAN. Progranulin measurement could enhance early diagnosis and personalized management of autonomic neuropathy in diabetes.
Collapse
Affiliation(s)
- Diana Nikolova
- Department of Internal Medicine, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria; (Z.K.); (A.T.G.)
| | - Zdravko Kamenov
- Department of Internal Medicine, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria; (Z.K.); (A.T.G.)
| | - Julieta Hristova
- Department of Clinical Laboratory, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Antoaneta Trifonova Gateva
- Department of Internal Medicine, Aleksandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria; (Z.K.); (A.T.G.)
| |
Collapse
|
22
|
Piccolo N, Wiggers A, Koubek EJ, Feldman EL. Neuropathy and the metabolic syndrome. eNeurologicalSci 2025; 38:100542. [PMID: 39720105 PMCID: PMC11664003 DOI: 10.1016/j.ensci.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Obesity and the metabolic syndrome (MetS) are major global health challenges that contribute significantly to the rising prevalence of type 2 diabetes (T2D) and neuropathy. Neuropathy, a common and disabling complication of T2D, is characterized by progressive distal-to-proximal axonal degeneration, driven in part by mitochondrial dysfunction in both neurons and axons. Recent evidence points to the toxic effects of saturated fatty acids on peripheral nerve health, with studies demonstrating that these fats impair mitochondrial function and bioenergetics, leading to distal axonal loss. Conversely, monounsaturated fatty acids are found to be neuroprotective, restoring mitochondrial function and preventing neuropathy. These findings suggest that dietary factors play a crucial role in the pathogenesis of neuropathy associated with metabolic dysregulation and emphasize the need for lifestyle interventions and therapies that target these newly identified mechanisms.
Collapse
Affiliation(s)
| | | | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Smithiseth K, Leurcharusmee P, Sawaddiruk P, Chattipakorn N, Chattipakorn S. Unraveling the link between magnesium and diabetic neuropathy: Evidence from in vitro to clinical studies. Nutr Res 2025; 135:13-31. [PMID: 39891959 DOI: 10.1016/j.nutres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Diabetic neuropathy (DN) is one of the major complications of diabetes and the most common cause of neuropathic pain. Although the underlying pathological mechanisms remain unclear, several studies have produced conflicting results regarding the link between magnesium (Mg) concentration and DN. This ambiguity raises questions about the potential benefits of Mg supplementation in individuals with DN. Therefore, this comprehensive review summarizes and discusses the evidence from clinical, in vitro, and in vivo studies on the association between Mg and DN. Several findings indicate that Mg depletion is linked to the presence of neuropathy in diabetic patients. Additionally, low Mg concentration may contribute to the onset or worsening of DN by promoting axonal degeneration through various pathways. Furthermore, multiple studies have shown that Mg supplementation can have neuroprotective effects. These findings suggest potential as an alternative or complementary therapy for preventing and treating DN in the future.
Collapse
Affiliation(s)
- Kannika Smithiseth
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Passakorn Sawaddiruk
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Tian Z, Zhang J, Fan Y, Sun X, Wang D, Liu X, Lu G, Wang H. Diabetic peripheral neuropathy detection of type 2 diabetes using machine learning from TCM features: a cross-sectional study. BMC Med Inform Decis Mak 2025; 25:90. [PMID: 39966886 PMCID: PMC11837659 DOI: 10.1186/s12911-025-02932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
AIMS Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Early identification of individuals at high risk of DPN is essential for successful early intervention. Traditional Chinese medicine (TCM) tongue diagnosis, one of the four diagnostic methods, lacks specific algorithms for TCM symptoms and tongue features. This study aims to develop machine learning (ML) models based on TCM to predict the risk of diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 4723 patients were included in the analysis (4430 with T2DM and 293 with DPN). TFDA-1 was used to obtain tongue images during a questionnaire survey. LASSO (least absolute shrinkage and selection operator) logistic regression model with fivefold cross-validation was used to select imaging features, which were then screened using best subset selection. The synthetic minority oversampling technique (SMOTE) algorithm was applied to address the class imbalance and eliminate possible bias. The area under the receiver operating characteristic curve (AUC) was used to evaluate the model's performance. Four ML algorithms, namely logistic regression (LR), random forest (RF), support vector classifier (SVC), and light gradient boosting machine (LGBM), were used to build predictive models for DPN. The importance of covariates in DPN was ranked using classifiers with better performance. RESULTS The RF model performed the best, with an accuracy of 0.767, precision of 0.718, recall of 0.874, F-1 score of 0.789, and AUC of 0.77. With a value of 0.879, the LGBM model appeared to be the best regarding recall Age, sweating, dark red tongue, insomnia, and smoking were the five most significant RF features. Age, yellow coating, loose teeth, smoking, and insomnia were the five most significant features of the LGBM model. CONCLUSIONS This cross-sectional study demonstrates that the RF and LGBM models can screen for high-risk DPN in T2DM patients using TCM symptoms and tongue features. The identified key TCM-related features, such as age, tongue coating, and other symptoms, may be advantageous in developing preventative measures for T2DM patients.
Collapse
Affiliation(s)
- Zhikui Tian
- School of Rehabilitation Medicine, Qilu Medical University, Shandong, 255300, China
| | - JiZhong Zhang
- School of Rehabilitation Medicine, Qilu Medical University, Shandong, 255300, China
| | - Yadong Fan
- Medical College of Yangzhou University, YangZhou, 225000, China
| | - Xuan Sun
- College of Traditional Chinese Medicine, Binzhou Medical University, Shandong, China
| | - Dongjun Wang
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, 063000, China
| | - XiaoFei Liu
- School of Rehabilitation Medicine, Qilu Medical University, Shandong, 255300, China
| | - GuoHui Lu
- School of Rehabilitation Medicine, Qilu Medical University, Shandong, 255300, China.
| | - Hongwu Wang
- School of Health Sciences and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
25
|
Yuan CX, Wang X, Liu Y, Xu TC, Yu Z, Xu B. Electroacupuncture alleviates diabetic peripheral neuropathy through modulating mitochondrial biogenesis and suppressing oxidative stress. World J Diabetes 2025; 16:93130. [PMID: 39959279 PMCID: PMC11718478 DOI: 10.4239/wjd.v16.i2.93130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/15/2024] [Accepted: 10/31/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities. The effects mediated by the silent information regulator type 2 homolog-1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) axis present new opportunities for the treatment of type 2 diabetic peripheral neuropathy (T2DPN), potentially breaking this harmful cycle. AIM To validate the effectiveness of electroacupuncture (EA) in the treatment of T2DPN and investigate its potential mechanism based on the SIRT1/PGC-1α axis. METHODS The effects of EA were evaluated through assessments of metabolic changes, morphological observations, and functional examinations of the sciatic nerve, along with measurements of inflammation and oxidative stress. Proteins related to the SIRT1/PGC-1α axis, involved in the regulation of mitochondrial biogenesis and antioxidative stress, were detected in the sciatic nerve using Western blotting to explain the underlying mechanism. A counterevidence group was created by injecting a SIRT1 inhibitor during EA intervention to support the hypothesis. RESULTS In addition to diabetes-related metabolic changes, T2DPN rats showed significant reductions in pain threshold after 9 weeks, suggesting abnormal peripheral nerve function. EA treatment partially restored metabolic control and reduced nerve damage in T2DPN rats. The SIRT1/PGC-1α axis, which was downregulated in the model group, was upregulated by EA intervention. The endogenous antioxidant system related to the SIRT1/PGC-1α axis, previously inhibited in diabetic rats, was reactivated. A similar trend was observed in inflammatory markers. When SIRT1 was inhibited in diabetic rats, these beneficial effects were abolished. CONCLUSION EA can alleviate the symptoms of T2DNP in experimental rats, and its effects may be related to the mitochondrial biogenesis and endogenous antioxidant system mediated by the SIRT1/PGC-1α axis.
Collapse
Affiliation(s)
- Chong-Xi Yuan
- Department of Traditional Chinese Medicine, Suzhou Xiangcheng People's Hospital, Suzhou 215100, Jiangsu Province, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xuan Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- College of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, Jiangsu Province, China
| | - Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Tian-Cheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
26
|
Yang YM, Ma HB, Xiong Y, Wu Q, Gao XK. PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy. J Biomed Sci 2025; 32:20. [PMID: 39934809 PMCID: PMC11818136 DOI: 10.1186/s12929-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is a prevalent and painful complication of diabetes; however, the mechanisms underlying its pathogenesis remain unclear, and effective clinical treatments are lacking. This study aims to explore the role of peroxisomes in Schwann cells in DN. METHODS The abundance of peroxisomes in the sciatic nerves of mice or Schwann cells was analyzed using laser confocal super-resolution imaging and western blotting. The RFP-GFP-SKL (Ser-Lys-Leu) probe was utilized to assess pexophagy (peroxisomes autophagy) levels. To evaluate the palmitoylation of PEX11B, the acyl-resin assisted capture (acyl-RAC) assay and the Acyl-Biotin Exchange (ABE) assay were employed. Additionally, MR (Mendelian randomization) analysis was conducted to investigate the potential causal relationship between DN and MS (Multiple sclerosis). RESULTS There was a decrease in peroxisomal abundance in the sciatic nerves of diabetic mice, and palmitic acid (PA) induced a reduction in peroxisomal abundance by inhibiting peroxisomal biogenesis in Schwann cells. Mechanistically, PA induced the palmitoylation of PEX11B at C25 site, disrupting its self-interaction and impeding peroxisome elongation. Fenofibrate, a PPARα agonist, effectively rescued peroxisomal dysfunction caused by PA and restored the peroxisomal abundance in diabetic mice. Lastly, MR analysis indicates a notable causal influence of DN on MS, with its onset and progression intricately linked to peroxisomal dysfunction. CONCLUSIONS Targeting the peroxisomal biogenesis pathway may be an effective strategy for preventing and treating DN, underscoring the importance of addressing MS risk at the onset of DN.
Collapse
Affiliation(s)
- Yu Mei Yang
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hang Bin Ma
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yue Xiong
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xiu Kui Gao
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
27
|
Lecce E, Bellini A, Greco G, Martire F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Physiological mechanisms of neuromuscular impairment in diabetes-related complications: Can physical exercise help prevent it? J Physiol 2025. [PMID: 39898972 DOI: 10.1113/jp287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Diabetes mellitus is a chronic disorder that progressively induces complications, compromising daily independence. Among these, diabetic neuropathy is particularly prevalent and contributes to substantial neuromuscular impairments in both types 1 and 2 diabetes. This condition leads to structural damage affecting both the central and peripheral nervous systems, resulting in a significant decline in sensorimotor functions. Alongside neuropathy, diabetic myopathy also contributes to muscle impairment and reduced motor performance, intensifying the neuromuscular decline. Diabetic neuropathy typically implicates neurogenic muscle atrophy, motoneuron loss and clustering of muscle fibres as a result of aberrant denervation-reinervation processes. These complications are associated with compromised neuromuscular junctions, where alterations occur in pre-synaptic vesicles, mitochondrial content and post-synaptic signalling. Neural damage is intensified by chronic hyperglycaemia and oxidative stress, exacerbating vascular dysfunction and reducing oxygen delivery. These complications imply a severe decline in neuromuscular performance, evidenced by reductions in maximal force and power output, rate of force development and muscle endurance. Furthermore, diabetes-related complications are compounded by age-related degenerative changes in long-term patients. Aerobic and resistance training offer promising approaches for managing blood glucose levels and neuromuscular function. Aerobic exercise promotes mitochondrial biogenesis and angiogenesis, supporting metabolic and cardiovascular health. Resistance training primarily enhances neural plasticity, muscle strength and hypertrophy, which are crucial factors for mitigating sarcopenia and preserving functional independence. This topical review examines current evidence on the physiological mechanisms underlying diabetic neuropathy and the potential impact of physical activity in counteracting this decline.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessio Bellini
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Giuseppe Greco
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Fiorella Martire
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| |
Collapse
|
28
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Wang Z, Kushibiki H, Tarusawa T, Osonoi S, Ogasawara S, Miura C, Sasaki T, Ryuzaki M, Yagihashi S, Mizukami H. Hypertension is associated with the reduction in epidermal small fibres independently of sural nerve inflammation in type 2 diabetic subjects. J Neurochem 2025; 169:e16235. [PMID: 39453752 PMCID: PMC11808456 DOI: 10.1111/jnc.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024]
Abstract
Diabetic polyneuropathy (DPN) is a multifactorial disease associated not only with hyperglycaemia but also with circulatory disturbances such as hypertension. A close interaction between the immune system and hypertension is known. It remains unclear whether the inflammatory response is associated with hypertension in the pathology of human DPN. Autopsied patients were evaluated: 7 non-diabetic patients (nDM), 11 non-diabetic patients with hypertension (nDMHT), 6 patients with diabetes (DM) and 9 patients with hypertension and diabetes (DMHT). Intraepidermal nerve fibre density (IENFD) was examined by immunofluorescent staining. Dissected sural nerve (SNs) were morphometrically quantified. Dermal and endoneurial macrophage infiltration was evaluated by double immunostaining using anti-CD68 and anti-CD206 antibodies. IENFD was significantly decreased in DM compared to nDM (p < 0.05) and was further decreased in DMHT (p < 0.05). Myelinated nerve fibre density (MNFD) in the SN was significantly decreased in DM compared with nDM (p < 0.05) and further decreased in DMHT (p < 0.01 vs. DM). The infiltration of CD206-/CD68+ proinflammatory macrophages in the SN was significantly increased in DM compared to nDM (p < 0.05), whilst the number of CD206+/CD68+ anti-inflammatory macrophages was decreased in DM (p < 0.05). Hypertension had no impact on macrophage infiltration. The ratio of CD206- and CD206+ macrophage was negatively correlated with MNFD (r = 0.42, p < 0.05) but not IENFD (r = 0.30, p = 0.09). Dermal CD206+ macrophage infiltration was similar amongst all groups. Diabetes complicated by hypertension significantly increased the total diffusion barrier thickness (p < 0.01 vs. DM). Total diffusion barrier thickness was inversely correlated with both IENFD (r = -0.59, p < 0.01) and MNFD (r =-0.62, p < 0.01). Our results suggest that vascular factors and inflammation might be synergistically involved in pathological changes in human diabetic patients through different mechanisms.
Collapse
Affiliation(s)
- Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Chinatsu Miura
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
30
|
de Seixas Soares AL, Brech GC, Machado-Lima A, dos Santos JR, D’ Andréa Greve JM, Grecco MV, Afonso M, Sousa JC, Rodrigues AT, dos Santos Lino MH, da Silva VC, de Souza Carneiro PNF, Evangelista AL, Davis CL, Castilho Alonso A. Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:184. [PMID: 40003410 PMCID: PMC11855748 DOI: 10.3390/ijerph22020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
The present study aimed to evaluate the effects of 12-week resistance training (RT) on muscle strength, dynamic balance, glycemic control and the lipid profile. METHODS The Laboratory of Movement Studies in the University of São Paulo, Brazil, developed this longitudinal study between 2021 and 2023. It assessed 62 males with type 2 diabetes mellitus pre and post an RT protocol. The participants, who were 69.8 (±3.9) years old, took part in a 12-week twice-weekly RT program. Three sets of eight to twelve repetitions each were executed for eight exercises targeting the large muscle groups. The intensity was set between 7 and 8 out of 10 for perceived effort, according to the Omni Resistance Exercise Scale. All participants were evaluated pre and post in knee extensor and flexor strength by isokinetic dynamometry, handgrip strength by manual dynamometry and dynamic postural balance by a force platform, as well as blood tests to determine the lipid and glycemic profiles. For comparison, paired t or Wilcoxon tests were used at an alpha of 5%. RESULTS There was an improvement in muscular strength by handgrip restricted to the non-dominant side (p = 0.033) and for the bilateral knee flexors (p < 0.001) and extensors (p < 0.001), as determined by isokinetic dynamometry. There was no improvement in dynamic postural balance, glycemic control or lipid control. CONCLUSIONS The 12-week RT promoted improved muscle strength in knee extension and flexion and non-dominant grip pressure but did not affect dynamic balance, glycemic control or the lipid profile.
Collapse
Affiliation(s)
- André Luiz de Seixas Soares
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Guilherme Carlos Brech
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Adriana Machado-Lima
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Joselma Rodrigues dos Santos
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Júlia Maria D’ Andréa Greve
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Marcus Vinicius Grecco
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Mara Afonso
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Juliana Cristina Sousa
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Ariana Tito Rodrigues
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
| | - Matheus Henrique dos Santos Lino
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
| | - Vanderlei Carneiro da Silva
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Patricia Nemara Freitas de Souza Carneiro
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
| | - Alexandre Lopes Evangelista
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| | - Catherine L. Davis
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Angelica Castilho Alonso
- Graduate Program in Aging Sciences, University Sao Judas Tadeu (USJT), São Paulo CEP 03166-000, SP, Brazil; (A.L.d.S.S.); (A.T.R.); (M.H.d.S.L.); (V.C.d.S.); (P.N.F.d.S.C.); (A.C.A.)
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo CEP 05402-000, SP, Brazil; (J.R.d.S.); (J.M.D.A.G.); (M.V.G.); (M.A.); (J.C.S.); (A.L.E.)
| |
Collapse
|
31
|
Młynarska E, Czarnik W, Dzieża N, Jędraszak W, Majchrowicz G, Prusinowski F, Stabrawa M, Rysz J, Franczyk B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int J Mol Sci 2025; 26:1094. [PMID: 39940862 PMCID: PMC11817707 DOI: 10.3390/ijms26031094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic disease affecting over 400 million people globally, is driven by genetic and environmental factors. The pathogenesis involves insulin resistance and β-cell dysfunction, mediated by mechanisms such as the dedifferentiation of β-cells, mitochondrial dysfunction, and oxidative stress. Treatment should be based on non-pharmacological therapy. Strategies such as increased physical activity, dietary modifications, cognitive-behavioral therapy are important in maintaining normal glycemia. Advanced therapies, including SGLT2 inhibitors and GLP-1 receptor agonists, complement these treatments and offer solid glycemic control, weight control, and reduced cardiovascular risk. Complications of T2DM, such as diabetic kidney disease, retinopathy, and neuropathy, underscore the need for early diagnosis and comprehensive management to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Natasza Dzieża
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Jędraszak
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Filip Prusinowski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
32
|
Kwiatkowska KM, Garagnani P, Bonafé M, Bacalini MG, Calzari L, Gentilini D, Ziegler D, Gerrits MM, Faber CG, Malik RA, Marchi M, Salvi E, Lauria G, Pirazzini C. Painful diabetic neuropathy is associated with accelerated epigenetic aging. GeroScience 2025:10.1007/s11357-025-01516-w. [PMID: 39847262 DOI: 10.1007/s11357-025-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings. The purpose of this work was to study, for the first time, whether biological age is involved in pain development in a huge cohort of DN patients with neuropathy assessed by anatomopathological assay (99 painful (PDN), 132 painless (PLDN) patients, 84 controls (CTRL)). Six subsets of DNAm biomarkers were calculated to evaluate NP-associated changes in epigenetic aging, telomere shortening, blood cell count estimates, and plasma protein surrogates. We observed pain-related acceleration of epigenetic age (DNAmAgeHannum, DNAmGrimAgeBasedOnPredictedAge, DNAmAgeSkinBloodClock), pace of aging (DunedinPoAm), and shortening of telomeres between PDN and PLDN patients. PDN showed decreased predicted counts of B lymphocytes, naive and absolute CD8 T cells, and increased granulocyte counts. Several surrogates of plasma proteins were significantly different (GHR, MMP1, THBS2, PAPPA, TGF-α, GDF8, EDA, MPL, CCL21) in PDNs compared to PLDNs. These results provide the first evidence of an acceleration of biological aging in patients with painful compared to painless DN. This achievement has been possible thanks to the state of the art clinical phenotyping of the enrolled patients. Our findings indicate that the aging process may be directly involved in the PDN progression and in general health degeneration in the T2DM patients. Therefore, it is possible to hypothesize that the administration of effective antiaging drugs could slow down or even block the disease advancement.
Collapse
Affiliation(s)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy.
| | - Massimiliano Bonafé
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Catharina G Faber
- Department of Neurology, Institute of Mental Health and Neuroscience, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Rayaz A Malik
- Institute of Cardiovascular Sciences, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, England
- Weill Cornell Medicine-Qatar, Ar-Rayyan, Doha, Qatar
| | - Margherita Marchi
- Department of Clinical Neurosciences, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Erika Salvi
- Department of Clinical Neurosciences, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Su Y, Liu T, Zhao M, Wu D, Wang Y, Wu X. Isoviolanthin promotes Schwann cells activity in peripheral nerve regeneration via Fhl3-mediated epithelial-mesenchymal transition-like process: An in vitro study. Heliyon 2025; 11:e41087. [PMID: 39811297 PMCID: PMC11731196 DOI: 10.1016/j.heliyon.2024.e41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration. We represented the first evidence that isoviolanthin possesses the capability to enhance Schwann cell proliferation and migration. Then, transcriptome sequencing was employed to examine the Differential Expressed Genes (DEGs), resulting in the identification of 193 DEGs. Following this, the expression levels of the top 5 up-regulated genes were confirmed through RT-qPCR, with Fhl3 demonstrating the most significant up-regulation. Schwann cells were transduced with virus particles made in HEK-293T/17 cells by transfection with lentivirus packaging plasmids containing Fhl3. A notable enhancement in Schwann cell proliferation and migration was observed following transduction. Furthermore, the Fhl3-up group exhibited a significant upregulation of Vimentin expression compared to the control group. These results suggested that isoviolanthin plays a positive role in enhancing Schwann cells' activity via increasing Fhl3 expression, and the mechanism may be related to the EMT(epithelial-mesenchymal transition)-like process.
Collapse
Affiliation(s)
- Yajuan Su
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiantian Liu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minjun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Wu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuehua Wang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xubo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
34
|
Sudo SZ, Montagnoli TL, Dematté BE, Santos AD, Trachez MM, Gubert F, Mendez-Otero R, Zapata-Sudo G. Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats. J Pain Res 2025; 18:127-136. [PMID: 39816206 PMCID: PMC11732753 DOI: 10.2147/jpr.s480894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients. Methods This work evaluated the antinociceptive effect of intranasal administration of the combination of dextro-ketamine (keta), a non-competitive glutamatergic receptor antagonist, and dexmedetomidine (DEX), a selective alpha2-adrenergic agonist, in rats with neuropathic pain induced by streptozotocin-DM. Results The thermal hyperalgesia and mechanical allodynia observed in DM model are reduced with the intranasal administration of the combination of keta and DEX (200 + 0.10 μg/kg) after 3 days of treatment. The antinociceptive action could be due to reduction of Ca2+ influx with lower glutamate release and reduced excitability through the activation of alpha2-adrenergic receptors by DEX and reduction of NMDA receptor activation by glutamate with lower excitability due to the antagonism produced by keta. DM induced increased expression of glial fibrillary acid protein (GFAP) and tumor necrosis factor-alpha (TNF-alpha) detected by immunohistochemistry, indicating greater astrocyte activity and intense inflammatory response. Intranasal administration for 10 days of the combination of low doses of keta and DEX promoted an intense decrease in the expression of both GFAP and TNF-alpha, indicating lower activation of astrocytes in the spinal cord and reduced production and release of TNF-alpha, favoring the reduction of inflammation. Conclusion Intranasal administration of low doses of keta with DEX could be a new therapeutic approach to reduce neuropathic pain and consequently improve the quality of life of diabetic patients.
Collapse
Affiliation(s)
- Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Eduardo Dematté
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Margarete Manhães Trachez
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Bhrigu B, Sharma S, Kumar N, Banik BK. Assessment for Diabetic Neuropathy: Treatment and Neurobiological Perspective. Curr Diabetes Rev 2025; 21:12-31. [PMID: 38798207 DOI: 10.2174/0115733998290606240521113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Diabetic neuropathy, also known as diabetic peripheral sensorimotor neuropathy (DPN), is a consequential complexity of diabetes, alongside diabetic nephropathy, diabetic cardiomyopathy, and diabetic retinopathy. It is characterized by signs and symptoms of peripheral nerve damage in diabetes patients after ruling out other causes. Approximately 20% of people with diabetes are affected by this painful and severe condition. The development of diabetic neuropathy is influenced by factors such as impaired blood flow to the peripheral nerves and metabolic issues, including increased polyol pathway activation, myo-inositol loss, and nonenzymatic glycation. The present review article provides a brief overview of the pathological changes in diabetic neuropathy and the mechanisms and types of DPN. Various diagnostic tests and biomarkers are available to assess nerve damage and its severity. Pharmacotherapy for neuropathic pain in diabetic neuropathy is complex. This review will explore current treatment options and potential future developments to improve the quality of life for patients suffering from diabetic neuropathy.
Collapse
Affiliation(s)
- Bhanupriya Bhrigu
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| | - Nitin Kumar
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Chuang YC, Jiang BY, Chen CC. Effect of Advillin Knockout on Diabetic Neuropathy Induced by Multiple Low Doses of Streptozotocin. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:11-21. [PMID: 39670415 DOI: 10.4103/ejpi.ejpi-d-24-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
ABSTRACT Advillin is an actin-binding protein involved in regulating the organization of actin filaments and the dynamics of axonal growth cones. In mice, advillin is exclusively expressed in somatosensory neurons, ubiquitously expressed in all neuron subtypes during neonatal ages and particularly enriched in isolectin B4-positive (IB4 + ) non-peptidergic neurons in adulthood. We previously showed that advillin plays a key role in axon regeneration of somatosensory neurons during peripheral neuropathy. Mice lacking advillin lost the ability to recover from neuropathic pain induced by oxaliplatin, chronic compression of the sciatic nerve, and experimental autoimmune encephalitis. However, the role of advillin in painful diabetic neuropathy remains unknown. Diabetic neuropathy, a prevalent complication of types 1 and 2 diabetes mellitus, poses significant treatment challenges because of the limited efficacy and adverse side effects of current analgesics. Here we probed the effect of advillin knockout on neuropathic pain in a diabetic mouse model induced by multiple low doses of streptozotocin (STZ). STZ-induced cold allodynia was resolved in 8 weeks in wild-type ( Avil +/+ ) mice but could last more than 30 weeks in advillin-knockout ( Avil -/- ) mice. Additionally, Avi -/- but not Avil +/+ mice showed STZ-induced mechanical hypersensitivity of muscle. Consistent with the prolonged and/or worsened STZ-induced neuropathic pain, second-line coping responses to pain stimuli were greater in Avil -/- than Avil +/+ mice. On analyzing intraepidermal nerve density, STZ induced large axon degeneration in the hind paws but with distinct patterns between Avil +/+ and Avil -/- mice. We next probed whether advillin knockout could disturb capsaicin-induced axon regeneration ex vivo because capsaicin is clinically used to treat painful diabetic neuropathy by promoting axon regeneration. In a primary culture of dorsal root ganglion cells, 10-min capsaicin treatment selectively promoted neurite outgrowth of IB4 + neurons in Avil +/+ but not Avil -/- groups, which suggests that capsaicin could reprogram the intrinsic axonal regeneration by modulating the advillin-mediated actin dynamics. In conclusion, advillin knockout prolonged STZ-induced neuropathic pain in mice, which may be associated with the impaired intrinsic capacity of advillin-dependent IB4 + axon regeneration.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Yang Jiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Biomedical Translational Research Center, Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
37
|
Gao T, Luo J, Fan J, Gong G, Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep 2025; 31:28. [PMID: 39540354 PMCID: PMC11579833 DOI: 10.3892/mmr.2024.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.
Collapse
Affiliation(s)
- Tangqing Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jingya Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Juanning Fan
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Haihong Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
38
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner KL, Kwai NCG, Krishnan AV. Impact of glucagon-like peptide-1 receptor agonists on axonal function in diabetic peripheral neuropathy. J Neurophysiol 2025; 133:14-21. [PMID: 39584713 DOI: 10.1152/jn.00228.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects approximately half of the 500 million people with type 2 diabetes worldwide. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) receptors in the peripheral nervous system may be a suitable target for DPN treatment. Fourteen participants were consecutively recruited after being prescribed either semaglutide or dulaglutide as part of standard clinical care for type 2 diabetes. Participants underwent clinical assessment, nerve conduction studies, and axonal excitability assessment at baseline and at 3 mo following commencement of GLP-1 receptor agonist (GLP-1RA) therapy. These data were combined with 10 participants who had previously received exenatide therapy, and mathematical modeling of excitability data was undertaken. Clinical neuropathy scores improved at 3 mo following commencement of GLP-1 (baseline TNS 3.7 ± 4.5, posttreatment TNS 2.3 ± 3.4, P = 0.005). Nerve conduction studies demonstrated an improvement in sural amplitude at 3 mo (baseline 11.9 ± 8.5 μV, posttreatment 14.2 ± 9.2 μV; P = 0.013). Axonal excitability studies revealed changes consistent with improvements in Na+/K+-ATPase pump function and Na+ permeability, and this was supported by mathematical modeling. GLP-1RA therapy improves clinical and neurophysiological outcomes in DPN. Treatment with GLP-1RA may reverse axonal dysfunction by improving Na+/K+-ATPase pump function.NEW & NOTEWORTHY Diabetic peripheral neuropathy is known to be relentlessly progressive and irreversible. Prospective studies in 24 participants with diabetic peripheral neuropathy (DPN) treated with glucagon-like peptide-1 receptor agonists (GLP-1RA) demonstrated improvements in clinical neuropathy scores, nerve conduction studies, and axonal excitability recordings. Analysis of axonal excitability recordings revealed the mechanism for GLP-1RA improvement in DPN were changed consistent with improvements in Na+/K+-ATPase pump function, and this was supported by mathematical modeling.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Tushar Issar
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Kerry-Lee Milner
- Department of Endocrinology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Natalie C G Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Schwarz D, Le Marois M, Sturm V, Peters AS, Longuespée R, Helm D, Schneider M, Eichmüller B, Hidmark AS, Fischer M, Kender Z, Schwab C, Hausser I, Weis J, Dihlmann S, Böckler D, Bendszus M, Heiland S, Herzig S, Nawroth PP, Szendroedi J, Fleming T. Exploring Structural and Molecular Features of Sciatic Nerve Lesions in Diabetic Neuropathy: Unveiling Pathogenic Pathways and Targets. Diabetes 2025; 74:65-74. [PMID: 39418320 DOI: 10.2337/db24-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Lesioned fascicles (LFs) in the sciatic nerves of individuals with diabetic neuropathy (DN) correlate with clinical symptom severity. This study aimed to characterize the structural and molecular composition of these lesions to better understand DN pathogenesis. Sciatic nerves from amputees with and without type 2 diabetes (T2D) were examined using ex vivo magnetic resonance neurography, in vitro imaging, and proteomic analysis. Lesions were only found in T2D donors and exhibited significant structural abnormalities, including axonal degeneration, demyelination, and impaired blood-nerve barrier (BNB). Although non-LFs from T2D donors showed activation of neuroprotective pathways, LFs lacked this response and instead displayed increased complement activation via the classical pathway. The detection of liver-derived acute-phase proteins suggests that BNB disruption facilitates harmful interorgan communication between the liver and nerves. These findings reveal key molecular mechanisms contributing to DN and highlight potential targets for therapeutic intervention. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maxime Le Marois
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas S Peters
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Vascular Biomaterial Bank Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- German Cancer Research Center (DKFZ) Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Eichmüller
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Asa S Hidmark
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
| | - Constantin Schwab
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, University Hospital, Aachen, Germany
| | - Susanne Dihlmann
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dittmar Böckler
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Fleming
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
40
|
Valli G, Wu R, Minnock D, Sirago G, Annibalini G, Casolo A, Del Vecchio A, Toniolo L, Barbieri E, De Vito G. Can non-invasive motor unit analysis reveal distinct neural strategies of force production in young with uncomplicated type 1 diabetes? Eur J Appl Physiol 2025; 125:247-259. [PMID: 39212731 DOI: 10.1007/s00421-024-05595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE to investigate the early consequences of type 1 diabetes (T1D) on the neural strategies of muscle force production. METHODS motor unit (MU) activity was recorded from the vastus lateralis muscle with High-Density surface Electromyography during isometric knee extension at 20 and 40% of maximum voluntary contraction (MVC) in 8 T1D (4 males, 4 females, 30.5 ± 3.6 years) and 8 matched control (4 males, 4 females, 27.3 ± 5.9 years) participants. Muscle biopsies were also collected from vastus lateralis for fiber type analysis, including myosin heavy chain (MyHC) isoform content via protein and mRNA expression. RESULTS MVC was comparable between groups as well as MU conduction velocity, action potentials' amplitude and proportions of MyHC protein isoforms. Nonetheless, MU discharge rate, relative derecruitment thresholds and mRNA expression of MyHC isoform I were lower in T1D. CONCLUSIONS young people with uncomplicated T1D present a different neural control of muscle force production. Furthermore, differences are detectable non-invasively in absence of any functional manifestation (i.e., force production and fiber type distribution). These novel findings suggest that T1D has early consequences on the neuromuscular system and highlights the necessity of a better characterization of neural control in this population.
Collapse
Affiliation(s)
- Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rui Wu
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dean Minnock
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
41
|
Jiang Y, Hu J, Cui C, Peng Z, Yang S, Lei J, Li B, Yang X, Qin J, Yin M, Liu X, Ye K, Xu Z, Zhang X, Lu X. Netrin1-Enriched Exosomes From Genetically Modified ADSCs as a Novel Treatment for Diabetic Limb Ischemia. Adv Healthc Mater 2025; 14:e2403521. [PMID: 39440618 DOI: 10.1002/adhm.202403521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Diabetic limb ischemia (DLI) is a frequent complication of diabetes and the leading cause of non-traumatic amputation. Traditional treatments like stent placement and bypass surgery may not suit all patients. Exosome transplantation has emerged as a promising therapy. Netrin1, a protective cardiovascular factor, has an unclear role in DLI. This study investigates the role of Netrin1 in DLI patients and evaluates the therapeutic potential of exosomes derived from Netrin1-overexpressing adipose-derived stem cells (N-ADSCs). The expression of Netrin1 is significantly decreased in both endothelial cells and serum of DLI patients, highlighting its potential as a biomarker or therapeutic target. In vitro, Netrin1-enriched exosomes (N-Exos) promoted human umbilical vein endothelial cell (HUVEC) proliferation, migration, tube formation, and increased resistance to apoptosis under high glucose conditions. These protective effects are mediated through PI3K/AKT/eNOS and MEK/ERK pathways, and N-Exos further facilitated macrophage polarization from M1 to M2. In vivo, N-Exos demonstrates superior therapeutic effects over ADSC exosomes (Exos), including enhanced angiogenesis, improved collateral artery remodeling, reduced inflammation, and muscle protection. Collectively, these findings identify Netrin1 as a critical factor in DLI and underscore its significance in disease progression and therapeutic strategies. N-Exos offers a promising non-cellular therapeutic approach for the treatment of DLI.
Collapse
Affiliation(s)
- Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Chaoyi Cui
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhaoxi Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Sen Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinrui Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minyi Yin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
42
|
Huang H, Fan Y, Yan F, Hu Y, He H, Xu T, Zhu X, Zhu Y, Diao W, Xia X, Tu J, Li A, Lin B, Liu Q, Lu Z, Xi T, Wang W, Xu D, Chen Z, Wang Z, Chen X, Shan G. Diabetes and long duration leading to speech-, low/mid-, and high- frequency hearing loss: current evidence from the China National Health Survey 2023. J Endocrinol Invest 2025; 48:233-243. [PMID: 38869778 PMCID: PMC11729146 DOI: 10.1007/s40618-024-02406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE To examine the effect of diabetes, duration of diabetes, and blood glucose on speech-, low/mid-, and high-frequency hearing loss. METHODS In this cross-sectional study, 2821 participants aged 20-87 years in the China National Health Survey were included. Diabetes was defined as valid fasting blood glucose (FBG) of ≥ 7.0 mmol/L, a self-reported history of diabetes or the use of anti-diabetic medications. Speech-(500, 1000, 2000, and 4000 Hz), low/mid- (500, 1000 and 2000 Hz), and high-frequency (4000, 6000, and 8000 Hz) hearing loss was defined as pure tone average of responding frequencies > 20 dB HL in the better ear, respectively. RESULTS In fully adjusted models, for speech-, low/mid-, and high-frequency hearing loss, compared with no diabetes, those with diabetes (OR[95%CI]: 1.44 [1.12, 1.86], 1.23 [0.94, 1.61], and 1.75 [1.28, 2.41], respectively) and with diabetes for > 5 years duration (OR[95%CI]: 1.63 [1.09, 2.42], and 1.63 [1.12, 2.36], 2.15 [1.25, 3.70], respectively) were at higher risk. High FBG level was associated with a higher risk of speech-, low/ mid-, and high-frequency hearing loss. And there were stronger associations between HL and diabetes, longer duration and higher in "healthier population" (no hypertension, no dyslipidemia and younger age). CONCLUSION Diabetes, longer duration, and higher FBG level were independently associated with hearing loss for speech-, low/mid- and high-frequency hearing loss, particularly in higher frequency and "healthier population". Paying more attention to hearing loss in those populations could lower the burden of hearing loss.
Collapse
Affiliation(s)
- H Huang
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Y Fan
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - F Yan
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Hu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - H He
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - T Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - X Zhu
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Zhu
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - W Diao
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - X Xia
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - J Tu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - A Li
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - B Lin
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Q Liu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Z Lu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - T Xi
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - W Wang
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - D Xu
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Z Chen
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Z Wang
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - X Chen
- Department of Otolaryngology-Head and Neck Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - G Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Zhong J, Li X, Yuan M, Chen D, Li Y, Lian X, Wang M. Metabolomics study of serum from patients with type 2 diabetes: Peripheral neuropathy could be associated with sphingosine and phospholipid molecules. Lipids 2025; 60:3-13. [PMID: 39243215 DOI: 10.1002/lipd.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Abnormal lipid metabolism is one of the risk factors for type 2 diabetes mellitus peripheral neuropathy (DPN). This study aimed to determine the differences in lipid metabolism in patients with type 2 diabetes and DPN and the possible pathogenesis caused by this difference. The participants comprised type 2 diabetes mellitus patients with DPN (N = 60) and healthy controls (N = 20). Blood samples were drawn from the participants in the morning in the fasting state, and then changes in serum lipids were explored using targeted metabolomics on the liquid chromatography-electrospray ionization-tandem mass spectrometry platform. Among the 1768 differentially abundant lipid metabolites, the results of orthogonal partial least squares-discriminant analysis combined with random forest analysis showed that the levels of sphingosine (SPH) (d18:0), carnitine 22:1, lysophosphatidylethanolamine (LPE) (18:0/0:0), LPC (16:0/0:0), lysophosphatidylcholine (LPC) (18:1/0:0), LPC (0:0/18:0) and LPE (0:0/18:1) were significantly different between the two groups. Spearman correlation analysis showed that SPH (d18:0), carnitine 22:1, LPE (18:0/0:0), and LPC (0:0/18:0) levels correlated highly with the patients' electromyography results. Kyoto Encyclopedia of Genes and Genomes pathway annotation and enrichment analysis of 538 differentially abundant lipid metabolites revealed that type 2 diabetes mellitus DPN was related to glycerophospholipid metabolism and glycerol metabolism. Our results further identified the dangerous lipid metabolites associated with DPN and abnormal lipid metabolism. The influence of lipid metabolites such as SPH and phospholipid molecules on DPN development in patients with type 2 diabetes mellitus were suggested and the possible pathogenic pathways were clarified, providing new insights into the clinical risk of DPN in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jingchen Zhong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province of Chinese Medicine, Nanjing, China
| | - Xiaojie Li
- College of Integrative Chinese and Western Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mengqian Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province of Chinese Medicine, Nanjing, China
| | - Dong Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province of Chinese Medicine, Nanjing, China
| | - Yancai Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province of Chinese Medicine, Nanjing, China
| | - Xiaoyang Lian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province of Chinese Medicine, Nanjing, China
| | - Ming Wang
- Geriatric Hospital of Nanjing Medical University, Jiangsu Province Official Hospital, Nanjing, China
| |
Collapse
|
44
|
Musial DC, Ajita ME, Bomfim GHS. Benefits of Cilostazol's Effect on Vascular and Neuropathic Complications Caused by Diabetes. Med Sci (Basel) 2024; 13:1. [PMID: 39846696 PMCID: PMC11755643 DOI: 10.3390/medsci13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus (DM) is a global health concern with a rising incidence, particularly in aging populations and those with a genetic predisposition. Over time, DM contributes to various complications, including nephropathy, retinopathy, peripheral arterial disease (PAD), and neuropathy. Among these, diabetic neuropathy and PAD stand out due to their high prevalence and significant impact on patients' quality of life. Diabetic distal symmetric polyneuropathy, the most common form of diabetic neuropathy, is driven by neuroinflammation stemming from prolonged hyperglycemia. Simultaneously, hyperglycemia significantly increases the risk of PAD, a condition further exacerbated by factors like smoking, age, and sedentary lifestyles. PAD frequently manifests as claudication, a debilitating symptom marked by pain and cramping during physical activity, which limits mobility and worsens patients' outcomes. Cilostazol, a phosphodiesterase-3 inhibitor, has proven effective in managing intermittent claudication in PAD by improving walking distances and enhancing blood flow. Recent studies have also explored its potential benefits for diabetic neuropathy. Cilostazol's mechanisms include vasodilation, platelet inhibition, and increased cyclic adenosine monophosphate (cAMP) levels, which may contribute to improved neurological outcomes. However, variability in the clinical evidence due to inconsistent treatment protocols highlights the need for further investigation. This review explores cilostazol's mechanisms of action and therapeutic applications for managing neuropathy and PAD in diabetic patients, aiming to provide insights into its potential as a dual-purpose pharmacological agent in this high-risk population.
Collapse
Affiliation(s)
| | - Maria Eduarda Ajita
- Department of Medicine, Pontifícia Universidade Católica do Paraná, Londrina 86067-000, PR, Brazil;
| | | |
Collapse
|
45
|
Begum M, Choubey M, Tirumalasetty MB, Arbee S, Sadik S, Mohib MM, Srivastava S, Minhaz N, Alam R, Mohiuddin MS. Exploring the Molecular Link Between Diabetes and Erectile Dysfunction Through Single-Cell Transcriptome Analysis. Genes (Basel) 2024; 15:1596. [PMID: 39766863 PMCID: PMC11675191 DOI: 10.3390/genes15121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Erectile dysfunction (ED) is a pathophysiological condition in which the patients cannot achieve an erection during sexual activity, and it is often overlooked yet prevalent among diabetic men, globally affecting approximately 35-75% of diabetic individuals. The precise mechanisms through which diabetes contributes to ED remain elusive, but the existing literature suggests the potential involvement of nerve and vascular damage that affects the penile supply. In the present review, we reanalyze the existing human single-cell transcriptomic data from patients having diabetes mellitus-associated ED with normal erections. The analysis validates the expression of genes associated with antioxidative pathways, growth factors, adipokines, angiogenesis, vascular functions, penile erection, sexual function, and inflammation in diverse cell types from healthy individuals and those with ED. Our transcriptomic analysis reveals alterations in the expression of adiponectin receptors in the pathogenesis of ED compared to their counterparts in healthy subjects. This comprehensive review sheds light on the molecular underpinnings of ED in the context of diabetes, providing an in-depth understanding of the biological and cellular alterations involved and paving the way for possible targeted therapeutic discoveries in the field of diabetes-associated male infertility.
Collapse
Affiliation(s)
- Mahmuda Begum
- Department of Internal Medicine, HCA-St. David’s Medical Center, 919 E 32nd St, Austin, TX 78705, USA;
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| | - Munichandra Babu Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| | - Shahida Arbee
- Institute for Molecular Medicine, Aichi Medical University, 1-Yazako, Karimata, Aichi, Nagakute 480-1103, Japan;
| | - Sibly Sadik
- National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka 1212, Bangladesh;
| | - Mohammad Mohabbulla Mohib
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Magdeburger Straße 6, 06112 Halle, Germany;
| | | | - Naofel Minhaz
- PGY1, Family Medicine, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada;
| | - Riffat Alam
- Alberta Hospital Edmonton, 17480 Fort Rd NW, Edmonton, AB T5Y 6A8, Canada;
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY 11501, USA or (M.C.); (M.B.T.)
| |
Collapse
|
46
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
47
|
Wiegand V, Gao Y, Teusch N. Pharmacological Effects of Paeonia lactiflora Focusing on Painful Diabetic Neuropathy. PLANTA MEDICA 2024; 90:1115-1129. [PMID: 39471979 DOI: 10.1055/a-2441-6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.
Collapse
Affiliation(s)
- Vanessa Wiegand
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
48
|
Jiang Y, Liu X, Jiang Z. From Morphology to Therapeutic Strategies: Exploring New Applications of Ultrasound for Diabetic Peripheral Neuropathy Diagnosis and Management. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2231-2245. [PMID: 39239831 DOI: 10.1002/jum.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that can result in severe lower limb pain and amputation. Early detection and treatment of DPN are vital, but this condition is often missed due to a lack of symptoms and the insensitivity of testing methods. This article reviews various ultrasound imaging modalities in the direct and indirect evaluation of peripheral neuropathy. Moreover, how ultrasound-related therapeutic strategies are playing a role in clinical treatment is discussed. Finally, the application of innovative methodologies in the diagnosis of DPN, including ultrasound attenuation, photoacoustic imaging, and artificial intelligence, is described.
Collapse
Affiliation(s)
- Yanfeng Jiang
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| | - Xiatian Liu
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| | - Zhenzhen Jiang
- Department of Ultrasound, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
49
|
Ping J, Hao HZ, Wu ZQ, Yang YJ, Yu HS. Integrating data mining and network pharmacology for traditional Chinese medicine for drug discovery of diabetic peripheral neuropathy. SLAS Technol 2024; 29:100228. [PMID: 39638256 DOI: 10.1016/j.slast.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The purpose of this study was to examine the therapeutic potential of core traditional Chinese medicine (CTCM) in the treatment of diabetic peripheral neuropathy (DPN) through the use of a data-driven approach that combined network pharmacology and data mining. Important components of traditional Chinese medicine (TCM) and the targets that correspond with them were found through the examination of numerous databases and clinical prescriptions. The possible therapeutic pathways were investigated, with an emphasis on the AGE-RAGE pathway that was discovered via network pharmacology analysis. By evaluating histopathological alterations, inflammatory and apoptotic markers, microcirculation, and blood hypercoagulability in a rat model of DPN, the effectiveness of CTCM was confirmed.Through experimental validation in DPN rats, it was shown that CTCM improved histopathology, decreased inflammation and apoptosis, improved microcirculation, and corrected coagulation abnormalities in addition to alleviating neuropathic pain. These studies show the value of data-driven approaches in advancing traditional medicine research for drug development and offer a mechanistic basis for CTCM's therapeutic potential in DPN.
Collapse
Affiliation(s)
- Jing Ping
- Medical Laboratory, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Hong-Zheng Hao
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Zhen-Qi Wu
- Dean's Office, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Yong-Ju Yang
- Department of Rehabilitation, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - He-Shan Yu
- Medical Laboratory, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
50
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|