1
|
Qiu B, Qiao S, Shi X, Shen L, Deng B, Ma Z, Zhou D, Wei Y. Shen'ge Formula Protects Cardiac Function in Rats with Pressure Overload-Induced Heart Failure. Drug Des Devel Ther 2024; 18:1875-1890. [PMID: 38831869 PMCID: PMC11146625 DOI: 10.2147/dddt.s451720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background In China, Shen'ge formula (SGF), a Traditional Chinese Medicine blend crafted from ginseng and gecko, holds a revered place in the treatment of cardiovascular diseases. However, despite its prevalent use, the precise cardioprotective mechanisms of SGF remain largely uncharted. This study aims to fill this gap by delving deeper into SGF's therapeutic potential and underlying action mechanism, thus giving its traditional use a solid scientific grounding. Methods In this study, rats were subjected to abdominal aortic constriction (AAC) to generate pressure overload. Following AAC, we administered SGF and bisoprolol intragastrically at specified doses for two distinct durations: 8 and 24 weeks. The cardiac function post-treatment was thoroughly analyzed using echocardiography and histological examinations, offering insights into SGF's influence on vital cardiovascular metrics, and signaling pathways central to cardiac health. Results SGF exhibited promising results, significantly enhanced cardiac functions over both 8 and 24-week periods, evidenced by improved ejection fraction and fractional shortening while moderating left ventricular parameters. Noteworthy was SGF's role in the significant mitigation of myocardial hypertrophy and in fostering the expression of vital proteins essential for heart health by the 24-week mark. This intervention markedly altered the dynamics of the Akt/HIF-1α/p53 pathway, inhibiting detrimental processes while promoting protective mechanisms. Conclusion Our research casts SGF in a promising light as a cardioprotective agent in heart failure conditions induced by pressure overload in rats. Central to this protective shield is the modulation of the Akt/HIF-1α/p53 pathway, pointing to a therapeutic trajectory that leverages HIF-1α promotion and p53 nuclear transport inhibition.
Collapse
Affiliation(s)
- Boyong Qiu
- Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People’s Republic of China
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Qiao
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiujuan Shi
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lin Shen
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bing Deng
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zilin Ma
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Duan Zhou
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yihong Wei
- Cardiovascular Department, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Wang T, Hou B, Qin H, Liang J, Shi M, Song Y, Ma K, Chen M, Li H, Ding G, Yao B, Wang Z, Wei C, Jia Z. Qili Qiangxin (QLQX) capsule as a multi-functional traditional Chinese medicine in treating chronic heart failure (CHF): A review of ingredients, molecular, cellular, and pharmacological mechanisms. Heliyon 2023; 9:e21950. [PMID: 38034785 PMCID: PMC10682643 DOI: 10.1016/j.heliyon.2023.e21950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic heart failure (CHF) is a key part of cardiovascular continuum. Under the guidance of the theory of vessel-collateral doctrine, the present study proposes therapeutic benefits of Qili Qiangxin (QLQX) capsules, an innovative Chinese medicine, on chronic heart failure. The studies show that multiple targets of the drug on CHF, including enhancing myocardial systole, promoting urine excretion, inhibiting excessive activation of the neuroendocrine system, preventing ventricular remodeling by inhibiting inflammatory response, myocardial fibrosis, apoptosis and autophagy, enhancing myocardial energy metabolism, promoting angiogenesis, and improving endothelial function. Investigation on the effects and mechanism of the drug is beneficial to the treatment of chronic heart failure (CHF) through multiple targets and/or signaling pathways. Meanwhile, it provides new insights to further understand other refractory diseases in the cardiovascular continuum, and it also has an important theoretical and practical significance in enhancing prevention and therapeutic effect of traditional Chinese medicine for these diseases.
Collapse
Affiliation(s)
- Tongxing Wang
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Bin Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Haoran Qin
- Department of Integrative Oncology, Changhai Hospital, Naval Military Medical University, Shanghai 200438, China
| | - Junqing Liang
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Min Shi
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Yanfei Song
- Key Disciplines of State Administration of TCM for Luobing, Hebei Academy of Interactive Medicine, Shijiazhuang 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang 050035, China
| | - Kun Ma
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang 050035, China
| | - Meng Chen
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang 050035, China
| | - Huixin Li
- Key Disciplines of State Administration of TCM for Luobing, Hebei Academy of Interactive Medicine, Shijiazhuang 050035, China
| | - Guoyuan Ding
- Key Disciplines of State Administration of TCM for Luobing, Hebei Academy of Interactive Medicine, Shijiazhuang 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang 050035, China
| | - Bing Yao
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang 050035, China
| | - Zhixin Wang
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang 050035, China
| | - Cong Wei
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang 050035, China
| | - Zhenhua Jia
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Shijiazhuang 050035, China
- Key Disciplines of State Administration of TCM for Luobing, Hebei Academy of Interactive Medicine, Shijiazhuang 050035, China
| |
Collapse
|
3
|
Wang YC, Wang H, Shao CL, Li XY, Cui J, Guo HD. Screening and identification of effective components from modified Taohong Siwu decoction for protecting H9c2 cells from damage. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00773-3. [PMID: 37294373 DOI: 10.1007/s11626-023-00773-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
We found that modified Taohong Siwu decoction (MTHSWD) had cardioprotective effects after myocardial ischemia-reperfusion injury. This study was to screen the effective components of MTHSWD that have protective effects on H9c2 cell injury through H2O2 injury model. Fifty-three active components were screened by CCK8 assay to detect cell viability. The anti-oxidative stress ability was evaluated by detecting the levels of total superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. The anti-apoptotic effect was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL). Finally, the phosphorylation levels of ERK, AKT, and P38MAPK were detected by WB (Western blot) to study the protective mechanism of effective monomers against H9c2 cell injury. Among the 53 active ingredients of MTHSWD, ginsenoside Rb3, levistilide A, ursolic acid, tanshinone I, danshensu, dihydrotanshinone I, and astragaloside I could significantly increase the viability of H9c2 cells. The results of SOD and MDA showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA could significantly reduce the content of lipid peroxide in cells. TUNEL results showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA reduced apoptosis to varying degrees. The tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, and tanshinone I reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by H2O2, and the phosphorylation level of ERK was also significantly reduced by danshensu. At the same time, tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, tanshinone I, and danshensu significantly increased AKT phosphorylation level in H9c2 cells. In conclusion, the effective ingredients in MTHSWD provide basic basis and experimental reference for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-le Shao
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiu-Ya Li
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ji Cui
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
5
|
Ma LJ, Ma N, Cao JL, Wan JB. Characterizing the influence of different drying methods on chemical components of Panax notoginseng leaves by heart-cutting two-dimensional liquid chromatography coupled to orbitrap high-resolution mass spectrometry. Food Chem 2022; 369:130965. [PMID: 34492612 DOI: 10.1016/j.foodchem.2021.130965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
Panax notoginseng leaves (PNL) was considered as a promising functional food ingredient with abundant protopanaxdiol ginsenosides. In this study, the influence of different drying methods on chemical components in PNL was characterized by a newly developed heart-cutting 2D-LC-HRMS. Our data indicates that vigorous ginsenoside transformation occurs in PNL processed by sun-air drying and hot-air drying (HAD) at 50 °C, but not shade-air drying (SAD), HAD at 25 °C and steaming prior to drying (SD). Specifically, the main components of PNL, ginsenosides Rb3, Rc, Rb2, Rb1 and Rd, can be transformed into notoginsenosides Fd and Fe, ginsenoside Rd2, Gypenoside XVII and ginsenoside F2, respectively, by highly selective cleavage of β-1,2-glucosidic linkage at the C-3 position. Only SD can inactivate the proteins that mediate this transformation. Different drying methods also greatly affect the quality of PNL products extracted by the conventional decoction method. These findings offer the scientific basis to design industrial drying methods for ensuring the quality of PNL.
Collapse
Affiliation(s)
- Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, PR China
| | - Ni Ma
- Department of Product Development, Wenshan Sanqi Institute of Science and Technology, Wensan University, Wenshan, Yunnan, PR China
| | - Ji-Liang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, PR China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, PR China.
| |
Collapse
|
6
|
Protective Effect of Shenfu Injection () on Vascular Endothelial Damage in a Porcine Model of Hemorrhagic Shock. Chin J Integr Med 2022; 28:794-801. [PMID: 35023060 DOI: 10.1007/s11655-021-2876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effects of Shenfu Injection (, SFI) on endothelial damage in a porcine model of hemorrhagic shock (HS). METHODS After being bled to a mean arterial pressure of 40±3 mm Hg and held for 60 min, 32 pigs were treated with a venous injection of either shed blood (transfusion group), shed blood and saline (saline group), shed blood and SFI (SFI group) or without resuscitation (sham group). Venous blood samples were collected and analyzed at baseline and 0, 1, 2, 4, and 6 h after HS. Tumor necrosis factor-α (TNF-α), serum interleuking (IL)-6, and IL-10 levels were measured by enzyme-linked immunosorbent assay (ELISA); expressions of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM -1), von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1) and Bcl-2, Bax, and caspase-3 proteins were determined by Western blot. RESULTS The serum level of TNF-α in the SFI group was significantly lower than in the other groups at 0, 1, and 2 h after HS, while the level of IL-6 was lower at 4 and 6 h compared with the saline group (P<0.01 or P<0.05). The concentration of serum IL-10 was significantly higher in the SFI group than in the other groups at 0, 1, 4, and 6 h after HS (P<0.01). Western blot and immunohistochemistry of vascular tissue showed that the expression of caspase-3 was downregulated, and that of Bcl-2 and Bax was upregulated in the SFI group compared to other groups (P<0.05). CONCLUSION SFI attenuated endothelial injury in the porcine model of HS by inhibiting cell apoptosis, suppressing the formation of proinflammatory cytokines, and reducing endothelial activation.
Collapse
|
7
|
Revell MA, Pugh MA. Herbal Medications Used to Ameliorate Cardiac Conditions. Nurs Clin North Am 2021; 56:123-136. [PMID: 33549280 DOI: 10.1016/j.cnur.2020.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Herbs have been used for centuries to treat various diseases, including cardiovascular disease. Herbs may be used by clients exclusively for disease management or in combination with conventional medications. This article increases provider awareness of certain herbs and their potential use by clients, as well as their impact on the cardiovascular system. It is important for the advanced practice nurse to collect information related to herb use during history retrieval. This information should prompt the nurse to discuss possible benefits and side effects that may occur taking herbs in isolation or in combination with cardiovascular prescription medications.
Collapse
Affiliation(s)
- Maria A Revell
- Tennessee State University, School of Nursing, 3500 John A. Merritt Boulevard, Campus Box 9590, Nashville, TN 37209, USA.
| | - Marcia A Pugh
- Greene County Health System, 509 Wilson Avenue, Eutaw, AL 35462, USA
| |
Collapse
|
8
|
Ginsenoside Rb3 Alleviates the Toxic Effect of Cisplatin on the Kidney during Its Treatment to Oral Cancer via TGF- β-Mediated Mitochondrial Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6640714. [PMID: 33510805 PMCID: PMC7826210 DOI: 10.1155/2021/6640714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Objective The research aimed to confirm the role of the transforming growth factor-β (TGF-β) in cisplatin- (CPT-) evoked kidney toxicity and elucidate the mechanism that ginsenoside Rb3 (Rb3) could alleviate the kidney toxicity by CPT during its treatment to oral cancer via TGF-β-mediated mitochondrial apoptosis. Methods The model of xenograft nude mice bearing oral carcinoma cells ACC83 was established and treated with CPT and/or Rb3, respectively. Bodyweights of the treated mice were weighed, and the kidney tissues were collected; following, the histopathology and the expression of TGF-β were examined using H&E staining and immunohistochemistry. Afterward, the renal cells GP-293 were treated with CPT and/or Rb3. The expression and phosphoration of TGF-β, Smad2, Smad3, Bcl-2, and Bax in GP-293 cells were detected by Western blotting. The cellular apoptosis and mitochondrial membrane potential were analyzed using flow cytometry. Results The xenograft nude mice exposure to CPT presented the bodyweight loss, necrotic areas, and the increased expression of TGF in kidney tissue, and Rb3 pretreatment relieved these changes evoked by CPT. In GP-293 cells, CPT administration induced the phosphorylation of Smad2 and Smad3, and Rb3 pretreatment suppressed the induced phosphorylation by CPT. Besides, flow cytometry analysis showed that Rb3 inhibited the CPT-evoked cellular apoptosis ratio and mitochondrial membrane depolarization. The Western blotting test indicated that Rb3 alleviated the cleavage of PARP, caspase 3, caspase 8, and caspase 9, the induction of Bax expression, and inhibition of Bcl-2 expression. Additionally, after treating with the TGF inhibitor of disitertide, Rb3 exhibited no alleviation effects on CPT-evoked cellular apoptosis ratio, inhibition of Bax expression, and induction of Bcl-2 expression in GP-293 cells. Conclusion Rb3 could alleviate CPT-evoked toxic effects on kidney cells during its treatment to oral cancer via TGF-β-mediated mitochondrial apoptosis.
Collapse
|
9
|
Qiu F, Chen L, Wang H, Huang M, Sun X, Kan J, Du J, Li Y. Protective effect of supplementation with Ginseng,
Lilii Bulbus
and Poria against
PM
2
.5
in air pollution‐induced cardiopulmonary damage among adults. Phytother Res 2020; 35:877-887. [DOI: 10.1002/ptr.6835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Lin et al.) R&D Center Shanghai China
| | - Hanjin Wang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Min Huang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Juntao Kan
- Nutrilite Health Institute, Amway (Lin et al.) R&D Center Shanghai China
| | - Jun Du
- Nutrilite Health Institute, Amway (Lin et al.) R&D Center Shanghai China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College Huazhong University of Science and Technology Wuhan People's Republic of China
| |
Collapse
|
10
|
Xinyue Capsule in patients with stable coronary artery disease after percutaneous coronary intervention: a multicenter, randomized, placebo-controlled trial. Pharmacol Res 2020; 158:104883. [DOI: 10.1016/j.phrs.2020.104883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
|
11
|
Shao M, Guo D, Lu W, Chen X, Ma L, Wu Y, Zhang X, Wang Q, Wang X, Li W, Wang Q, Wang W, Li C, Wang Y. Identification of the active compounds and drug targets of Chinese medicine in heart failure based on the PPARs-RXRα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112859. [PMID: 32294506 DOI: 10.1016/j.jep.2020.112859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danqi Pill (DQP), commonly known as a routinely prescribed traditional Chinese medicine (TCM), is composed of Salviae Miltiorrhizae Radix et Rhizoma and Notoginseng Radix et Rhizoma and effective in treating heart failure (HF) clinically due to their multicompound and multitarget properties. However, the exact active compounds and corresponding targets of DQP are still unknown. AIM OF THE STUDY This study aimed to investigate active compounds and drug targets of DQP in heart failure based on the PPARs-RXRα pathway. MATERIALS AND METHODS Network pharmacology was used to predict the compound-target interactions of DQP. Left anterior descending (LAD)-induced HF mouse model and oxygen-glucose deprivation/recovery (OGD/R)-induced H9C2 model were constructed to screen the active compounds of DQP. RESULTS According to BATMAN-TCM (a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine we previously developed), 24 compounds in DQP were significantly enriched in the peroxisome proliferator activated receptors-retinoid X receptor α (PPARs-RXRα) pathway. Among them, Ginsenoside Rb3 (G-Rb3) had the best pharmacodynamics against OGD/R-induced loss of cell viability, and it was selected to verify the compound-target interaction. In HF mice, G-Rb3 protected cardiac functions and activated the PPARs-RXRα pathway. In vitro, G-Rb3 protected against OGD/R-induced reactive oxygen species (ROS) production, promoted the expressions of RXRα and sirtuin 3 (SIRT3), thereafter improved the intracellular adenosine triphosphate (ATP) level. Immunofluorescent staining demonstrated that G-Rb3 could activate RXRα, and facilitate RXRα shifting to the nucleus. HX531, the specific inhibitor of RXRα, could abolish the protective effects of G-Rb3 on RXRα translocation. Consistently, the effect was also confirmed on RXRα siRNA cardiomyocytes model. Moreover, surface plasmon resonance (SPR) assays identified that G-Rb3 bound directly to RXRα with the affinity of KD = 10 × 10-5 M. CONCLUSION By integrating network pharmacology and experimental validation, we identified that as the major active compound of DQP, G-Rb3 could ameliorate ROS-induced energetic metabolism dysfunction, maintain mitochondrial function and facilitate energy metabolism via directly targeting on RXRα. This study provides a promising strategy to dissect the effective patterns for TCM and finally promote the modernization of TCM.
Collapse
Affiliation(s)
- Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenji Lu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Chen
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuefeng Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoping Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chun Li
- Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China; College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
12
|
Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother 2019; 120:109487. [PMID: 31577975 DOI: 10.1016/j.biopha.2019.109487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) leads to an increase in morbidity and mortality globally. Disorders of energy metabolism and apoptosis of cardiomyocytes are critically involved in the progression of HF. Ginsenoside Rb3 (G-Rb3) is a natural product derived from ginseng that has cardio-protective effect. The pharmacological mechanism of G-Rb3 in the treatment of HF remains to be clarified. In this study, we aimed to explore the regulative effects of G-Rb3 on fatty acids oxidation and apoptosis by in vivo and in vitro studies. Myocardial infarction (MI)-induced HF mice model and a cellular H9C2 injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The results showed that G-Rb3 could protect heart functions in MI-induced HF model. G-Rb3 treatment up-regulated expressions of key enzymes involved in β-oxidation of fatty acids, including carnitine palmitoyltransterase-1α (CPT-1α), acyl-CoA dehydrogenase long chain (ACADL) and the major mitochondrial deacetylase enzyme sirtuin 3 (SIRT3). The upstream transcriptional regulator, peroxisome proliferator-activated receptor α (PPARα), was also up-regulated by G-Rb3 treatment. In vitro study demonstrated that G-Rb3 could protect mitochondrial membrane integrity and exert anti-apoptotic effects, in addition to regulating fatty acids oxidation. Impressively, after cells were co-treated with PPARα inhibitor, the regulative effects of G-Rb3 on energy metabolism and apoptosis were abrogated. Our study suggests that G-Rb3 is a promising agent and PPARα is potential target in the management of HF.
Collapse
|
13
|
Han X, Li M, Zhao Z, Zhang Y, Zhang J, Zhang X, Zhang Y, Guan S, Chu L. Mechanisms underlying the cardio-protection of total ginsenosides against myocardial ischemia in rats in vivo and in vitro: Possible involvement of L-type Ca 2+ channels, contractility and Ca 2+ homeostasis. J Pharmacol Sci 2019; 139:240-248. [PMID: 30826245 DOI: 10.1016/j.jphs.2019.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022] Open
Abstract
Here we aimed to observe the effects of total ginsenosides (TG) against isoproterenol (ISO) induced myocardial ischemia (MI) and to explore its underlying mechanisms based on L-type Ca2+ current (ICa-L), intracellular Ca2+ ([Ca2+]i) and contraction in isolated rat myocytes. Rat model of MI was induced by subcutaneously injection of ISO (85 mg/kg) for 2 consecutive days. J-point elevation, heart rate, serum levels of creatine kinase (CK) and lactated dehydrogenase (LDH), and heart morphology changes were observed. Influences of TG on ICa-L, [Ca2+]i and contraction in isolated rat myocytes were observed by the patch-clamp technique and IonOptix detection system. TG significantly reduced J-point elevation, heart rate, serum levels of CK and LDH, and improved heart pathologic morphology. TG decreased ICa-L in concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 31.65 μg/mL. TG (300 μg/mL) decreased ICa-L of normal and ischemic ventricular myocytes by 64.33 ± 1.28% and 61.29 ± 1.38% respectively. At 30 μg/mL, TG reduced Ca2+ transient by 21.67 ± 0.94% and cell shortening by 38.43 ± 6.49%. This study showed that TG displayed cardioprotective effects on ISO-induced MI rats and the underlying mechanisms may be related to inhibition of ICa-L, damping of [Ca2+]i and decrease of contractility.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Mengying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Zhifeng Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ying Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Shengjiang Guan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
14
|
Zhao D, Zhang M, Yuan H, Meng C, Zhang B, Wu H. Ginsenoside Rb1 protects against spinal cord ischemia-reperfusion injury in rats by downregulating the Bax/Bcl-2 ratio and caspase-3 and p-Ask-1 levels. Exp Mol Pathol 2018; 105:229-235. [DOI: 10.1016/j.yexmp.2018.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/01/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023]
|
15
|
Wilson WB, Sander LC. Method development for the certification of a ginsenoside calibration solution via liquid chromatography with absorbance and mass spectrometric detection. J Chromatogr A 2018; 1574:114-121. [PMID: 30220428 DOI: 10.1016/j.chroma.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
The research presented here describes the development of two analytical methods for use in the certification of a ginsenoside calibration solution Standard Reference Material (SRM) 3389 consisting of seven ginsenosides: Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. The new methods utilized the liquid chromatographic (LC) separation of ginsenoside mixtures with absorbance detection (UV) and mass spectrometry (MS). Ginsenosides Rb3, Rg2, Rg3, Rh1, and Rh2 were evaluated for use as internal standards for LC/MS measurements. The 12 ginsenosides were baseline resolved by gradient elution LC/UV, with an initial mobile phase composition of 22% acetonitrile and 78% water, flow rate of 0.7 mL/min, and column temperature of 25 °C. The work presented here includes a detailed investigation into the optimization of the chromatographic conditions to minimize measurement biases that result from unresolved constituents. Temperature and mobile phase composition are known to play a significant role in column selectivity; however, flow rate is expected to influence primarily the separation efficiency and detection sensitivity. In the current study, column selectivity changed with changes in flow rate and the relative retention of ginsenoside Rg2 and Rh1 changed as the flow rate increased from 0.6 mL/min to 1.0 mL/min.
Collapse
Affiliation(s)
- Walter B Wilson
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| | - Lane C Sander
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| |
Collapse
|
16
|
Zhao L, Ma Y, Chen C, Liu S, Wu W. Pharmacokinetic and metabolic studies of ginsenoside Rb3 in rats using RRLC-Q-TOF-MS. J Chromatogr Sci 2018; 56:480-487. [PMID: 29897460 DOI: 10.1093/chromsci/bmy019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 11/13/2022]
Abstract
Ginsenoside Rb3 is one of major ginsenosides in Panax ginseng with effect on cardio-vascular and central nervous system. The aim of this study is to develop a rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method for pharmacokinetic study of ginsenoside Rb3 and simultaneous determination of metabolites in rats. The results showed that the concentration-time profile of ginsenoside Rb3 conformed to a two-compartment pharmacokinetic model after intravenous administration at the dosage of 2.0 mg/kg for rats. The mean plasma elimination half-lives were 13.77 ± 1.23 min and 2045.70 ± 156.20 min for the distribution and exterminate phases t1/2α and t1/2β. In the metabolic study, prototype ginsenoside Rb3 and deglycosylation metabolites were characterized by comparison with the retention time of the standard compounds, accurate mass measurement and the characteristic fragment ions obtained from MS/MS. Two major metabolites Mb1 and M2' were tentatively identified in rat urine samples after intravenous administration, and four possible metabolites Mb1, F2, M2' and CK were detected in rat feces samples after oral administration. The deglycosylation was found to be the major metabolic pathways of ginsenoside Rb3 in rat. The in vivo metabolic pathway of ginsenoside Rb3 was summarized.
Collapse
Affiliation(s)
- Lefeng Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China.,Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| |
Collapse
|
17
|
Jiang Y, Li M, Lu Z, Wang Y, Yu X, Sui D, Fu L. Ginsenoside Rg3 induces ginsenoside Rb1-comparable cardioprotective effects independent of reducing blood pressure in spontaneously hypertensive rats. Exp Ther Med 2017; 14:4977-4985. [PMID: 29201202 PMCID: PMC5704305 DOI: 10.3892/etm.2017.5198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
Ginsenoside Rg3 (Rg3) is a rare type of ginsenoside used as an anti-tumor medicine in China. Ginsenoside Rb1 (Rb1), which exhibits protective effects on the cardiovascular system, is similar to Rg3 in chemical structure. In the present study, Rb1 and Rg3 were administered for 6 weeks to spontaneously hypertensive rats (SHR) and their cardioprotective effects were assessed. According to echocardiography and histopathological examinations, the decrease in cardiac function and ventricular remodeling that occurred in SHR rats were attenuated by Rb1 and Rg3. However, tail-cuff blood pressure measurements indicated that Rb1 and Rg3 did not reduce blood pressure in SHR rats. The cardioprotective effects of Rb1 and Rg3 occurred independently of blood pressure reduction. Furthermore, immunohistochemistry (IHC) revealed that renin angiotensin system (RAS) activity in the myocardium of SHR was significantly attenuated by Rb1 and Rg3, whereas ELISA identified no significant changes of RAS activity in the serum. The results of IHC and reverse transcription-quantitative polymerase chain reaction demonstrated that levels of transforming growth factor β1, tumor necrosis factor-α, interleukin-6, interleukin-1 and endothelian-1 in the myocardium of SHR rats were reduced following Rb1 and Rg3 treatment. This may be due to the attenuation of RAS activity in the myocardium and the mechanisms of the cardioprotective effects of Rb1 and Rg3.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Fu
- Jilin Yatai Pharmaceutical Co., Ltd., Changchun, Jilin 130033, P.R. China
- Institute of Dalian Fusheng Natural Medicine, Dalian, Liaoning 116600, P.R. China
| |
Collapse
|
18
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
19
|
Pang LZ, Ju AC, Zheng XJ, Li F, Song YF, Zhao Y, Gu YF, Chen FL, Liu CH, Qi J, Gao Z, Kou JP, Yu BY. YiQiFuMai Powder Injection attenuates coronary artery ligation-induced myocardial remodeling and heart failure through modulating MAPKs signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:67-77. [PMID: 28237302 DOI: 10.1016/j.jep.2017.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE YiQiFuMai Powder Injection (YQFM), a traditional Chinese medicine prescription re-developed based on Sheng-Mai-San, is a classical and traditional therapeutic for clinical heart failure (HF) and angina. However, its potential mechanism against HF remains unclear. AIM OF THE STUDY The present study observes the therapeutic role of YQFM and mechanisms underlying its effects on coronary artery ligation (CAL)-induced myocardial remodeling (MR) and HF. METHODS MR and HF were induced by permanent CAL for 2 weeks in ICR mice. Then mice were treated with YQFM (0.13g/kg, 0.26g/kg and 0.53g/kg) once a day until 2 weeks later. Cardiac structure and function were evaluated by echocardiography. Serum lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA) were measured by biochemical kits and cardiomyocyte morphology was assessed by hematoxylin-eosin (HE) staining. Myocardial hydroxyproline (HYP), serum amino-terminal pro-peptide of pro-collagen type III (PIIINP), and Masson's trichrome staining were employed to evaluate cardiac fibrosis. Circulating level of N-terminal pro-B-type natriuretic peptide (NT-proBNP) was tested by ELISA kit to predict prognosis of CAL-induced HF. Effects of YQFM on the mitogen-activated protein kinases (MAPKs) pathway after CAL operation was evaluated by Western blotting and immunohistochemistry assay. RESULTS YQFM (0.53g/kg) improved the left ventricular (LV) function and structure impairment after 2 weeks in CAL mice. YQFM administration also decreased LDH and CK activities, circulating levels of MDA, PIIINP, NT-proBNP, and HYP contents. Moreover, YQFM ameliorated cardiac injury and fibrosis. Furthermore, YQFM (0.53g/kg) inhibited the myocardial phosphorylation of MAPKs in HF mice. CONCLUSION Our findings suggest that YQFM attenuates CAL-induced HF via improving cardiac function, attenuating structure damage, oxidative stress, necrosis, collagen deposition, and fibrosis. In addition, YQFM ameliorates cardiac remodeling and HF, partially through inhibiting the MAPKs signaling pathways. These data provide insights and mechanisms into the widely application of YQFM in patients with HF, MI and other ischemic heart diseases.
Collapse
Affiliation(s)
- Li-Zhi Pang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ai-Chun Ju
- Department of Technology Development, TianJin Tasly Pride Pharmaceutical Co., Ltd., Tianjin 300410, China
| | - Xian-Jie Zheng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yun-Fei Song
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yan Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuan-Feng Gu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fei-Leng Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Chun-Hua Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zhen Gao
- Department of Medicine-Ather&Lipo, Baylor Colledge of Medicine, One Baylor Plaza, Houston 77030, TX, USA
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
20
|
Meng F, Su X, Li W, Zheng Y. Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Exp Ther Med 2017; 13:2551-2557. [PMID: 28565878 DOI: 10.3892/etm.2017.4280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
Ginsenoside Rb3 is one of the major active components in protopanaxdiol type ginsenosides, and has demonstrated anti-diabetic activity. However, the mechanism of this action has yet to be elucidated. The present study investigated the effects of ginsenoside Rb3 on the AMP-activated protein kinase (AMPK) gluconeogenesis pathway. The present study involved the use of HepG2 cells and western blot analysis to systematically evaluate the effect of ginsenoside Rb3 on AMPK signaling proteins and key factors of gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, forkhead transcription factor 1 (FOXO1) and hepatic nuclear receptor 4α (HNF4α)]. The results indicated that 25 µM ginsenoside Rb3 significantly activated AMPK activity, increased the ratio of p-AMPK/total-AMPK, and had synergistic effects with the activator of AICAR on the activation of AMPK. Further analysis indicated that the expression of the transcription factor FOXO1 and HNF4α protein, two important factors in the pathway of HepG2 cell gluconeogenesis, was significantly suppressed by ginsenoside Rb3. PEPCK and G6Pase were subsequently inhibited, which led to the suppression of gluconeogenesis. These effects were partially blocked by the AMPK inhibitor, Compound C, which indicated that the inhibition effects of ginsenoside Rb3 on hepatic gluconeogenesis were predominantly due to the activation of the AMPK signaling pathway. These data suggested that ginsenoside Rb3 can suppress hepatic gluconeogenesis, at least partially through stimulation of AMPK activity.
Collapse
Affiliation(s)
- Fanli Meng
- Department of Agronomy and Horticulture, Liaoning Agricultural Technology College, Yingkou, Liaoning 115009, P.R. China
| | - Xiaotian Su
- Department of Biological Technology, Liaoning Agricultural Technology College, Yingkou, Liaoning 115009, P.R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
21
|
Zhang LP, Jiang YC, Yu XF, Xu HL, Li M, Zhao XZ, Sui DY. Ginsenoside Rg3 Improves Cardiac Function after Myocardial Ischemia/Reperfusion via Attenuating Apoptosis and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:6967853. [PMID: 28105061 PMCID: PMC5220470 DOI: 10.1155/2016/6967853] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022]
Abstract
Objectives. Ginsenoside Rg3 is one of the ginsenosides which are the main constituents isolated from Panax ginseng. Previous study demonstrated that ginsenoside Rg3 had a protective effect against myocardial ischemia/reperfusion- (I/R-) induced injury. Objective. This study was designed to evaluate the effect of ginsenoside Rg3 on cardiac function impairment induced by myocardial I/R in rats. Methods. Sprague-Dawley rats were subjected to myocardial I/R. Echocardiographic and hemodynamic parameters and histopathological examination were carried out. The expressions of P53, Bcl-2, Bax, and cleaved caspase-3 and the levels of TNF-α and IL-1β in the left ventricles were measured. Results. Ginsenoside Rg3 increased a left ventricular fractional shortening and left ventricular ejection fraction. Treatment with ginsenoside Rg3 also alleviated increases of left ventricular end diastolic pressure and decreases of left ventricular systolic pressure and ±dp/dt in myocardial I/R-rats. Ginsenoside Rg3 decreased apoptosis cells through inhibiting the activation of caspase-3. Ginsenoside Rg3 also caused significant reductions of the contents of TNF-α and IL-1β in left ventricles of myocardial I/R-rats. Conclusion. The findings suggested that ginsenoside Rg3 possessed the effect of improving myocardial I/R-induced cardiac function impairment and that the mechanism of pharmacological action of ginsenoside Rg3 was related to its properties of antiapoptosis and anti-inflammation.
Collapse
Affiliation(s)
- Li-ping Zhang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun 130021, China
| | - Yi-chuan Jiang
- Departments of Pharmacology, College of Pharmacy, Jilin University, Changchun 130021, China
| | - Xiao-feng Yu
- Departments of Pharmacology, College of Pharmacy, Jilin University, Changchun 130021, China
| | - Hua-li Xu
- Departments of Pharmacology, College of Pharmacy, Jilin University, Changchun 130021, China
| | - Min Li
- Departments of Pharmacology, College of Pharmacy, Jilin University, Changchun 130021, China
| | - Xue-zhong Zhao
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun 130021, China
| | - Da-yuan Sui
- Departments of Pharmacology, College of Pharmacy, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Flavonoids Extraction from Propolis Attenuates Pathological Cardiac Hypertrophy through PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6281376. [PMID: 27213000 PMCID: PMC4860246 DOI: 10.1155/2016/6281376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
Propolis, a traditional medicine, has been widely used for a thousand years as an anti-inflammatory and antioxidant drug. The flavonoid fraction is the main active component of propolis, which possesses a wide range of biological activities, including activities related to heart disease. However, the role of the flavonoids extraction from propolis (FP) in heart disease remains unknown. This study shows that FP could attenuate ISO-induced pathological cardiac hypertrophy (PCH) and heart failure in mice. The effect of the two fetal cardiac genes, atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), on PCH was reversed by FP. Echocardiography analysis revealed cardiac ventricular dilation and contractile dysfunction in ISO-treated mice. This finding is consistent with the increased heart weight and cardiac ANF protein levels, massive replacement fibrosis, and myocardial apoptosis. However, pretreatment of mice with FP could attenuate cardiac dysfunction and hypertrophy in vivo. Furthermore, the cardiac protection of FP was suppressed by the pan-PI3K inhibitor wortmannin. FP is a novel cardioprotective agent that can attenuate adverse cardiac dysfunction, hypertrophy, and associated disorder, such as fibrosis. The effects may be closely correlated with PI3K/AKT signaling. FP may be clinically used to inhibit PCH progression and heart failure.
Collapse
|
23
|
Korkmaz-Icöz S, Atmanli A, Radovits T, Li S, Hegedüs P, Ruppert M, Brlecic P, Yoshikawa Y, Yasui H, Karck M, Szabó G. Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes. J Physiol Sci 2016; 66:113-25. [PMID: 26497333 PMCID: PMC10717564 DOI: 10.1007/s12576-015-0403-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 01/20/2023]
Abstract
We recently demonstrated that the pre-treatment of rats with zinc and acetylsalicylic acid complex in the form of bis(aspirinato)zinc(II) [Zn(ASA)2] is superior to acetylsalicylic acid in protecting the heart from acute myocardial ischemia. Herein, we hypothesized that Zn(ASA)2 treatment after the onset of an acute myocardial injury could protect the heart. The rats were treated with a vehicle or Zn(ASA)2 after an isoproterenol injection. Isoproterenol-induced cardiac damage [inflammatory infiltration into myocardial tissue, DNA-strand breakage evidenced by TUNEL-assay, increased 11-dehydro thromboxane (TX)B2-levels, elevated ST-segment, widened QRS complex and prolonged QT-interval] was prevented by the Zn(ASA)2 treatment. In isoproterenol-treated rats, load-independent left ventricular contractility parameters were significantly improved after Zn(ASA)2. Furthermore, Zn(ASA)2 significantly increased the myocardial mRNA-expression of superoxide dismutase-1, glutathione peroxidase-4 and decreased the level of Na(+)/K(+)/ATPase. Postconditioning with Zn(ASA)2 protects the heart from acute myocardial ischemia. Its mechanisms of action might involve inhibition of pro-inflammatory prostanoids and upregulation of antioxidant enzymes.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany.
| | - Ayhan Atmanli
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122, Budapest, Hungary
| | - Shiliang Li
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| | - Peter Hegedüs
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
- Heart and Vascular Center, Semmelweis University, 1122, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, INF 326 (2. OG), 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Oh SJ, Oh Y, Ryu IW, Kim K, Lim CJ. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes. Biosci Biotechnol Biochem 2016; 80:95-103. [DOI: 10.1080/09168451.2015.1075862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties.
Collapse
Affiliation(s)
- Sun-Joo Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yuri Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - In Wang Ryu
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyunghoon Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
25
|
Variya BC, Patel SS, Trivedi JI, Gandhi HP, Rathod S. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies. Eur J Pharmacol 2015; 764:283-291. [DOI: 10.1016/j.ejphar.2015.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 01/14/2023]
|
26
|
Korkmaz S, Atmanli A, Li S, Radovits T, Hegedűs P, Barnucz E, Hirschberg K, Loganathan S, Yoshikawa Y, Yasui H, Karck M, Szabó G. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction. Exp Biol Med (Maywood) 2015; 240:1247-55. [PMID: 25670850 PMCID: PMC4935359 DOI: 10.1177/1535370215570184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/10/2014] [Indexed: 01/25/2023] Open
Abstract
The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17-22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical, mechanical, and histological changes after acute myocardial ischemia. The induction of antioxidant enzymes and the anti-inflammatory cytokine TGF-β1 may play a pivotal role in the mechanism of action of Zn(ASA)2.
Collapse
Affiliation(s)
- Sevil Korkmaz
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ayhan Atmanli
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tamás Radovits
- Heart Center, Semmelweis University, 1122 Budapest, Hungary
| | - Peter Hegedűs
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Heart Center, Semmelweis University, 1122 Budapest, Hungary
| | - Enikő Barnucz
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Heart Center, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Hirschberg
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Yutaka Yoshikawa
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 607-8414 Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 607-8414 Kyoto, Japan
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Wang Y, Dong J, Liu P, Lau CW, Gao Z, Zhou D, Tang J, Ng CF, Huang Y. Ginsenoside Rb3 attenuates oxidative stress and preserves endothelial function in renal arteries from hypertensive rats. Br J Pharmacol 2015; 171:3171-81. [PMID: 24571453 DOI: 10.1111/bph.12660] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Panax ginseng is commonly used to treat cardiovascular conditions in Oriental countries. This study investigated the mechanisms underlying the vascular benefits of ginsenoside Rb3 (Rb3) in hypertension. EXPERIMENTAL APPROACH Rings of renal arteries were prepared from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats and were cultured ex vivo for 8 h. Contractile responses of the rings were assessed with myograph techniques. Expression of NADPH oxidases was assessed by Western blotting and immunohistochemistry. Reactive oxygen species (ROS) were measured using dihydroethidium fluorescence imaging and production of NO was determined using the fluorescent NO indicator DAF-FM diacetate in human umbilical vein endothelial cells. KEY RESULTS Ex vivo treatment with Rb3 concentration-dependently augmented endothelium-dependent relaxations, suppressed endothelium-dependent contractions and reduced ROS production and expressions of NOX-2, NOX-4 and p67(phox) in arterial rings from SHR. Rb3 treatment also normalized angiotensin II (Ang II)-stimulated elevation in ROS and expression of NOX-2 and NOX-4 in arterial rings from WKY rats. Rb3 inhibited Ang II-induced reduction of NO production and phosphorylation of endothelial NOS in cultures of human umbilical vein endothelial cells. Rb3 also inhibited oxidative stress in renal arterial rings from hypertensive patients or in Ang II-treated arterial rings from normotensive subjects. CONCLUSION AND IMPLICATIONS Ex vivo Rb3 treatment restored impaired endothelial function in arterial rings from hypertensives by reversing over-expression of NADPH oxidases and over-production of ROS, and improved NO bioavailability. Our findings suggest that medicinal plants containing Rb3 could decrease oxidative stress and protect endothelial function in hypertension.
Collapse
Affiliation(s)
- Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
LIU XIAOMIN, JIANG YICHUAN, YU XIAOFENG, FU WENWEN, ZHANG HONG, SUI DAYUN. Ginsenoside-Rb3 protects the myocardium from ischemia-reperfusion injury via the inhibition of apoptosis in rats. Exp Ther Med 2014; 8:1751-1756. [PMID: 25371727 PMCID: PMC4218709 DOI: 10.3892/etm.2014.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/11/2014] [Indexed: 01/13/2023] Open
Abstract
Ginsenoside-Rb3 (G-Rb3) has been previously demonstrated to attenuate myocardial ischemia-reperfusion injury (MIRI). The aim of the present study was to investigate this further and determine whether G-Rb3 protects the myocardium from ischemia-reperfusion injury via the inhibition of apoptosis. Adult male Sprague Dawley rats were randomly divided into four groups: Sham, MIRI, G-Rb3 treatment (orally, 20 mg/kg) and ischemic postconditioning (as the positive control). The drug or placebo treatment was administered to the rats once a day for three consecutive days, and MIRI was then induced by subjecting the rats to left anterior descending coronary artery ligation for 30 min and reperfusion for 2 h. The results showed that G-Rb3 treatment significantly reduced the number of apoptotic cells in the myocardium and the expression of B-cell lymphoma 2-associated X protein, and increased the expression of B-cell lymphoma 2. The activities of aspartate aminotransferase, lactate dehydrogenase and creatine kinase-MB in the serum were also reduced significantly by the G-Rb3 treatment. These findings suggest that G-Rb3 inhibits apoptosis in the early stage of MIRI, and attenuates MIRI when the reperfusion continues. G-Rb3 was also shown to significantly reduce the level of malondialdehyde and increase the activity of superoxide dismutase in the myocardium, which suggests that attenuating reactive oxygen species accumulation and oxidative stress may be the major mechanism underlying the anti-apoptotic effects of G-Rb3. The release of inflammatory factors was significantly attenuated by G-Rb3, which may also be associated with its anti-apoptotic effects.
Collapse
Affiliation(s)
- XIAOMIN LIU
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, P.R. China
| | - YICHUAN JIANG
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - XIAOFENG YU
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - WENWEN FU
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - HONG ZHANG
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - DAYUN SUI
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
Lim KH, Cho JY, Kim B, Bae BS, Kim JH. Red ginseng (Panax ginseng) decreases isoproterenol-induced cardiac injury via antioxidant properties in porcine. J Med Food 2014; 17:111-8. [PMID: 24456361 DOI: 10.1089/jmf.2013.2768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Red ginseng (RG, Panax ginseng) has been shown to possess various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The present study was designed to evaluate the cardioprotective potential of RG against isoproterenol (ISO)-induced myocardial infarction (MI), by assessing electrocardiographic, hemodynamic, and biochemical parameters. Male porcines were orally administered with RG (250 and 500 mg/kg) or with vehicle for 9 days, with concurrent intraperitoneal injections of ISO (20 mg/kg) on the 8th and 9th day. RG significantly attenuated ISO-induced cardiac dysfunctions as evidenced by improved ventricular hemodynamic functions and reduced ST segment and QRS complex intervals. Also, RG significantly ameliorated myocardial injury parameters such as antioxidants. Malonaldialdehyde formation was also inhibited by RG. Based on the results, it is concluded that RG possesses significant cardioprotective potential through the inhibition of oxidative stress and may serve as an adjunct in the treatment and prophylaxis of MI.
Collapse
Affiliation(s)
- Kyu Hee Lim
- 1 Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University , Jeonju City, Jeollabuk-Do, Korea
| | | | | | | | | |
Collapse
|
30
|
Cho SH. Red ginseng for atopic dermatitis. World J Dermatol 2014; 3:58-63. [DOI: 10.5314/wjd.v3.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/14/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Red ginseng is known for its significant biological activities which include anti-inflammation. Red ginseng may be used for the management and prevention of atopic dermatitis based on its effect on an atopic dermatitis animal model. More therapeutic efficacies other than atopic dermatitis are also reviewed briefly.
Collapse
|
31
|
Cardioprotective effects of an aminothiazole compound on isoproterenol-induced myocardial injury in mice. Cell Biochem Biophys 2014; 67:287-95. [PMID: 21948074 DOI: 10.1007/s12013-011-9296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dendrodoine analogue (DA), an aminothiazole compound derived from dendrodoine, present in a marine tunicate, has been shown to possess many beneficial properties. This study was aimed to evaluate its cardioprotective effect against isoproterenol (ISO)-induced myocardial damage in mice. Swiss mice were pretreated with DA for 7 days and then treated with ISO (5 mg/kg BW, for 2 consecutive days). Biochemical assessment of myocardial injury was carried out by measuring marker enzymes, antioxidant enzymes and levels of lipid peroxidation. Histological studies of hearts were also carried out. ISO administration increased the activities of creatine kinase-MB, lactate dehydrogenase and aspartate aminotranferase (AST) in serum. Prior administration of DA restored the levels of these enzymes and the heart coefficient close to normal levels. DA at a concentration of 5 mg/kg BW was most effective in reducing AST, and this concentration was used for further studies. DA also gave significant protection against lipid peroxidation in the heart besides restoring histopathological alterations. DA showed significant reactivity towards superoxide radicals. In conclusion our study indicates that DA can protect mouse myocardium against damage and one of the possible reasons behind this protective effect can be attributed to its antioxidant property.
Collapse
|
32
|
Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK. Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 2014; 53:57-66. [DOI: 10.1016/j.exger.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
|
33
|
Xing L, Xie L, Liang Y, Xing R, Rao T, Zhou L, Wang Q, Fu H, Ye W, Wang G. Evaluation of liquid chromatography-ion trap-time of flight hybrid mass spectrometry on the quantitative analysis for ginsenosides. Biomed Chromatogr 2014; 28:1003-10. [PMID: 24420027 DOI: 10.1002/bmc.3108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/03/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022]
Abstract
It is ideal and desirable for a single instrument to meet the requirement of both qualitative and quantitative analysis of complicated components in pharmacokinetic research for herbal medicine. Liquid chromatography combined with hybrid ion trap and time-of-flight mass spectrometry (LCMS-IT-TOF) was recently confirmed as a very powerful tool for the qualitative analysis of both target and nontarget components in herbal medicines. The present study was designed to investigate the feasibility of LCMS-IT-TOF on quantitative analysis of ginsenosides in biological matrices. A simple liquid-liquid extraction procedure was followed by injection of the extracts onto a C₁₈ column with gradient elution and detection based on LCMS-IT-TOF system in negative scan mode. The developed method was validated with respect to the limit of quantification, linear dynamic range, precision, accuracy, matrix effects and stabilities. All the results suggested that the presently developed method was sufficiently sensitive and robust enough to simultaneously monitor 15 ginsenosides with diverse properties and a large range of concentration differences. Therefore, this method would be expected to be highly useful for comprehensive studies of ginsenosides in complicated matrix.
Collapse
Affiliation(s)
- Lu Xing
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang YQ, Liu CH, Zhang JQ, Zhu DN, Yu BY. Protective effects and active ingredients of yi-qi-fu-mai sterile powder against myocardial oxidative damage in mice. J Pharmacol Sci 2013; 122:17-27. [PMID: 23685804 DOI: 10.1254/jphs.12261fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study aims to evaluate the protective effects of Yi-Qi-Fu-Mai sterile powder (YQFM) on myocardial oxidative damage and tries to identify the active components responsible for its pharmacological benefits. YQFM and the n-butanol extract of YQFM (YQFM-Bu) were administered to ISO-induced myocardial injury mice. Left ventricle weight index and histopathological analyses were conducted. Serum enzymatic activities of lactate dehydrogenase (LDH), creatine kinase (CK) and superoxide dismutase (SOD), myeloperoxidase (MPO), and the levels of malondialdehyde (MDA) were also measured. Our results demonstrated that both YQFM and YQFM-Bu significantly restored the abnormal activities of CK, LDH, MPO, SOD, and the levels of MDA in ISO-induced myocardial injury mice, and these biochemical results were further supported by histopathological data. Our in vitro findings also confirmed that both YQFM and YQFM-Bu exhibit significant radical scavenging activity. Furthermore, the major active fractions of YQFM were identified by UPLC-MS/MS. Twenty-five ginsenosides and three lignans were identified from YQFM-Bu. These findings suggested YQFM-Bu is the major active fraction of YQFM with the ginsenosides and lignans as potential active components responsible for its protective effect against myocardial injury, and YQFM exerted its beneficial effects on myocardial injury mainly through inhibiting oxidative damage and maintaining the functional integrity of myocardial tissue.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Department of Complex Prescription of TCM, China Pharmaceutical University, China
| | | | | | | | | |
Collapse
|
35
|
Fu Y, Yin Z, Wu L, Yin C. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products. World J Microbiol Biotechnol 2013; 30:1019-1025. [DOI: 10.1007/s11274-013-1520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
36
|
Jiang P, Fu P, Xiang L, Wang S, Liu X, Yang L, Tao J, Chen Z, Zhan C, Huang X, Liu R, Zhang W. The effectiveness of borneol on pharmacokinetics changes of four ginsenosides in Shexiang Baoxin Pill in vivo. Biomed Chromatogr 2013; 28:419-27. [PMID: 24123182 DOI: 10.1002/bmc.3037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022]
Abstract
Shexiang Baoxin Pill (SBP) is a traditional Chinese medicine, widely used for cardiovascular diseases in the clinic. Ginsenosides are important effective components in SBP, but their pharmacokinetic characteristics are still not known. In this paper, we studied the pharmacokinetics of ginsenoside Rb1, Rc, Re and Rg1 in SBP and investigated the effect of borneol on the pharmacokinetic characteristic of ginsenosides based on an Agilent G6410A triple quadrupole LC/MS system. Results showed that the pharmacokinetic parameters of ginsenoside Rb1, Rc, Re and Rg1 in rat plasma after oral administration of SBP are significantly different with oral administration of SBP without Borneolum Syntheticum. Plasma pharmacokinetic profiles after oral administration of ginsenoside Rb1, Rc, Re, Rg1 and co-administration with borneol at three different ratios (10:1, 1:1 and 1:10 ginsenoside vs borneol, w/w) were also determined. It was demonstrated that borneol can elevate the plasma concentration of ginsenosides after co-admininstration.
Collapse
Affiliation(s)
- Peng Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Shanghai Hutchison Pharmaceuticals Company, Shanghai, 200331, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang YQ, Zhang JQ, Liu CH, Zhu DN, Yu BY. Screening and identifying the myocardial-injury protective ingredients from Sheng-Mai-San. PHARMACEUTICAL BIOLOGY 2013; 51:1219-1227. [PMID: 23767690 DOI: 10.3109/13880209.2013.784920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Sheng-Mai-San (SMS) has been used for the treatment of cardiovascular disease for many years in China. OBJECTIVES This study investigated the protective effects and active ingredients of SMS on myocardial injury (MI) in mice. MATERIALS AND METHODS SMS and n-butanol extraction of SMS (SMS-Bu) were prepared and administered to ISO-treated mice once a day for 7 consecutive days. The doses were equivalent to the raw medicinal herbs of SMS 5.72, 2.86 and 1.43 g/kg/d, respectively. Propranolol was used as positive control. Serum biomarkers, histopathological and electrocardiographic were evaluated. RESULTS Serum lactate dehydrogenase, creatine kinase and myeloperoxidase increased to 4473.6 ± 322.5, 950.0 ± 35.0 and 90.4 ± 12.2 U/L in the model group. SMS and SMS-Bu groups showed a decrease from 10 to 29% for lactate dehydrogenase and from 17 to 42% for creatine kinase, respectively. Both SMS and SMS-Bu significantly attenuated the myeloperoxidase activities (from 42 to 56%) and malondialdehyde levels (from 25 to 45%) compared with the model group. Decreased superoxide dismutase activities in ISO-treated mice were elevated from 19 to 59% when treated with SMS and SMS-Bu. These biochemical results were supported by electrocardiogram (ECG) and histopathological observations. Furthermore, 8 ginsenosides and 16 lignans were identified in SMS-Bu. CONCLUSION These findings suggested that SMS-Bu was the mainly active fraction of SMS which exerted its beneficial effects on MI mainly through protecting myocardial tissue and reducing oxidative damage, and the ginsenosides and lignans may serve as active ingredients of SMS for the treatment of MI.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing , P R China
| | | | | | | | | |
Collapse
|
38
|
Amelioration of cardiac hypertrophy induced by abdominal aortic banding in ferulic acid treated rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.biomag.2013.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2013; 35:389-98. [PMID: 23717084 PMCID: PMC3659559 DOI: 10.5142/jgr.2011.35.4.389] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
A total of 470 papers directly related to research on the Panax species were retrieved by performing internet searches with the keywords Panax and ginseng as the search terms. The publications were categorized as follows: 399 research articles, 30 reviews, 30 meeting abstracts, 7 proceedings, and 4 letters. The majority of these publications were published by scientists from Korea (35.7%), China (32.3%), and the USA (11.3%). Scientists from a total of 29 nations were actively involved in conducting ginseng research. A total of 43.6% of the publications were categorized as pharmacodynamic studies. The effects of ginseng on cerebrovascular function and cancer were the two most common topics considered in the pharmacodynamic studies. More than half of the ginseng studies assessed the use of P. ginseng. A total of 23 countries participated in studies specifically related to P. ginseng, and more than 80% of these studies originated from Korea and China. A total of 50 topics within the pharmacodynamics category were examined in association with the use of P. ginseng.
Collapse
Affiliation(s)
- Si-Kwan Kim
- Department of Life Sciences, College of Biomedical and Health Sciences, Konkuk University, Chungju 380-701, Korea
| | | |
Collapse
|
40
|
Lin G, Yu X, Wang J, Qu S, Sui D. Beneficial effects of 20(S)-protopanaxadiol on antitumor activity and toxicity of cyclophosphamide in tumor-bearing mice. Exp Ther Med 2012; 5:443-447. [PMID: 23407364 PMCID: PMC3570184 DOI: 10.3892/etm.2012.820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023] Open
Abstract
20(S)-protopanaxadiol (PPD) is an extract of Panax quinquefolius L. The aim of this study was to investigate the effect of PPD on the antitumor activity and toxicity of cyclophosphamide (CTX) in tumor-bearing mice. C57BL/6 mice bearing Lewis lung carcinoma cells were treated with PPD (50 mg/kg) alone, CTX (20 mg/kg) alone or PPD (50 mg/kg) in combination with CTX (20 mg/kg), respectively. The results showed that PPD alone has no significant antitumor activity but synergistically enhanced the antitumor activity of CTX. PPD significantly increased the peripheral white blood cell count, bone marrow cell count, interleukin-2 and interferon-γ in CTX-treated tumor-bearing mice. The lowered levels of spleen index, splenocyte proliferation and natural killer cell activity in tumor-bearing mice following CTX treatment were also increased by PPD administration. PPD may be a beneficial supplement during CTX chemotherapy for enhancing the antitumor efficacy and reducing the toxicity of CTX.
Collapse
Affiliation(s)
- Guangzhu Lin
- Department of Pharmacology, School of Pharmacy; China-Japan Union Hospital, Jilin University, Changchun 130021, P.R. China ; Department of Cardiovascular Medicine, First Hospital; China-Japan Union Hospital, Jilin University, Changchun 130021, P.R. China
| | | | | | | | | |
Collapse
|
41
|
Cheng D, Zhu C, Cao J, Jiang W. The protective effects of polyphenols from jujube peel (Ziziphus Jujube Mill) on isoproterenol-induced myocardial ischemia and aluminum-induced oxidative damage in rats. Food Chem Toxicol 2012; 50:1302-8. [DOI: 10.1016/j.fct.2012.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
42
|
Zhang MY, Ji XF, Wang S, Li CS. Shen-fu injection attenuates postresuscitation lung injury in a porcine model of cardiac arrest. Resuscitation 2012; 83:1152-8. [PMID: 22353645 DOI: 10.1016/j.resuscitation.2012.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the effects of Shen-Fu injection (SFI) on postresuscitation lung injury in a porcine model of cardiac arrest. METHODS Twenty-four anaesthetised male Landrace pigs were subjected to 4 min of untreated ventricular fibrillation (VF), followed by standard cardiopulmonary resuscitation. Sixteen successfully resuscitated pigs were randomised into two groups (eight pigs per group); one group received an SFI infusion and the other group received a normal saline infusion, at an infusion rate of 0.24 mg/min from 15 min after the return of spontaneous circulation (ROSC) until 6h after ROSC. RESULTS Oxygenation index, respiratory index, oxygen delivery, oxygen consumption, oxygen extraction, dynamic lung compliance, airway resistance, external vascular lung water index, and pulmonary vascular permeability index at 15 min, 30 min, 1h, 2h, 4h, and 6h after ROSC were all worse than baseline in the saline group, and were all better in the SFI group than in the saline group. The pulmonary protective effects of SFI were further confirmed by histopathological and ultrastructural observations of lung tissue. SFI infusion resulted in lower apoptosis index, caspase-3 protein expression, and malondialdehyde content of lung tissue after ROSC, and increased Bcl-2 protein expression and superoxide dismutase, Na+ -K+ -ATPase, and Ca2+ -ATPase activity compared with the saline group. CONCLUSION Shen-Fu injection can attenuate postresuscitation lung injury through suppression of lung cell apoptosis and improvement of energy metabolism and antioxidant capacity.
Collapse
Affiliation(s)
- Ming-Yue Zhang
- Emergency Department, Beijing Chaoyang Hospital, Capital Medical University, 8# Baijiazhuang Road, Chaoyang District, Beijing 100020, China
| | | | | | | |
Collapse
|
43
|
Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 2011; 47:77-84. [PMID: 22075532 DOI: 10.1016/j.exger.2011.10.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/28/2011] [Accepted: 10/24/2011] [Indexed: 01/19/2023]
Abstract
The intracellular levels of oxidant and antioxidant balances are gradually distorted during the aging process. An age associated elevation of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The present study was undertaken to evaluate the putative antioxidant activity of the fermented Panax ginseng extract (GINST) on lipid peroxidation and antioxidant status of major organs of aged rats compared to young rats. Increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine were observed in the serum of aged rats. Increased levels of malondialdehyde (MDA) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) were observed in the liver, kidneys, heart and lungs of aged rats, when compared with those in young rats. Quantitative analysis of the non-enzymatic antioxidants such as reduced glutathione (GSH), ascorbic acid and α-tocopherol levels showed significantly lower values in the liver, kidneys, heart and lungs of aged rats. On the other hand, administration of the fermented Panax ginseng extract (GINST) to aged rats resulted in increased activities of SOD, CAT, GPx, GR and GST as well as elevation in GSH, ascorbic acid and α-tocopherol levels. Besides, the level of MDA, AST, ALT, urea and creatinine were reduced on administration of GINST to aged rats. These results suggested that treatment of GINST can improve the antioxidant status during aging, thereby minimizing the oxidative stress and occurrence of age-related disorders associated with free radicals.
Collapse
|
44
|
Sulfur dioxide inhibits excessively activated endoplasmic reticulum stress in rats with myocardial injury. Heart Vessels 2011; 27:505-16. [DOI: 10.1007/s00380-011-0192-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/09/2011] [Indexed: 01/12/2023]
|
45
|
Lee NJ, Lee JW, Sung JH, Lee YJ, Kang JK. In vitro antioxidant properties of a ginseng intestinal metabolite IH-901. Lab Anim Res 2011; 27:227-34. [PMID: 21998612 PMCID: PMC3188730 DOI: 10.5625/lar.2011.27.3.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023] Open
Abstract
IH-901 (20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol or compound K) is a final intestinal bacterial metabolite of ginseng in humans. It has various pharmacologic effects such as antiaging, immunopotentiation, antistress, and antimetastatic activities. We analyzed the antioxidant activities of IH-901 using several assays including: total antioxidant activity, reductive potential, 1,1-diphenyl-2-picryl-hydrazyl, hydroxyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, a nitric oxide scavenging assay and a lipid peroxidation assay. At concentrations of 25 and 100 µg/mL, IH-901 inhibited lipid peroxidation of a linoleic acid emulsion with a potency comparable to ascorbic acid and butylated hydroxyanisole. The reductive potential of IH-901 increased in a concentration-dependent manner. IH-901 exhibited strong DPPH, hydroxyl, superoxide and ABTS radical scavenging activities. IH-901 was also an effective inhibitor of lipid peroxidation, although IH-901 had only a mild scavenging activity against nitric oxide. These results suggest that IH-901 may be a useful antioxidant agent against reactive oxygen species.
Collapse
Affiliation(s)
- Nam-Jin Lee
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jung Won Lee
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jong Hwan Sung
- Central Research Institute, Ilhwa Co., Ltd., Guri, Korea
| | - Young-Jung Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jong-Koo Kang
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
46
|
Lee SI, Kwon HJ, Lee YM, Lee JH, Hong SP. Simultaneous analysis method for polar and non-polar ginsenosides in red ginseng by reversed-phase HPLC-PAD. J Pharm Biomed Anal 2011; 60:80-5. [PMID: 22119615 DOI: 10.1016/j.jpba.2011.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/18/2011] [Indexed: 12/29/2022]
Abstract
The paper describes the development of a simultaneous determination method for polar and non-polar ginsenosides in red ginseng with a reversed-phase high-performance liquid chromatography-pulsed amperometric detection method. This method could be applied directly without any pretreatment steps and enabled the performance of highly sensitive analysis within 1h. The detection (S/N=3) and quantification (S/N=10) limits for the ginsenosides ranged 0.02-0.10 ng and 0.1-0.3 ng, respectively. The linear regression coefficients ranged 0.9975-0.9998. Intra- and inter-day precisions were <9.91%. The mean recoveries ranged 98.08-103.06%. The total amount of ginsenosides in the hairy root of red ginseng was higher than that in the main root.
Collapse
Affiliation(s)
- Sa-Im Lee
- Department of Oriental Pharmaceutical Sciences, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemoon-gu, Seoul 130-701, South Korea
| | | | | | | | | |
Collapse
|
47
|
Shen-Fu Injection Attenuates Postresuscitation Myocardial Dysfunction in a Porcine Model of Cardiac Arrest. Shock 2011; 35:530-6. [PMID: 21263380 DOI: 10.1097/shk.0b013e31820e2058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Hu C, Wei H, Kong H, Bouwman J, Gonzalez-Covarrubias V, van der Heijden R, Reijmers TH, Bao X, Verheij ER, Hankemeier T, Xu G, van der Greef J, Wang M. Linking biological activity with herbal constituents by systems biology-based approaches: effects of Panax ginseng in type 2 diabetic Goto-Kakizaki rats. MOLECULAR BIOSYSTEMS 2011; 7:3094-103. [DOI: 10.1039/c1mb05254c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|