1
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
2
|
Hagos B, Brasov I, Branscome H, Rashid S, Bradford R, Leonelli J, Kashanchi F, Ben Mamoun C, Molestina RE. Activation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells. Infect Immun 2025; 93:e0033324. [PMID: 40172538 PMCID: PMC12070731 DOI: 10.1128/iai.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Babesia microti is the primary cause of human babesiosis in North America. Despite the emergence of the disease in recent years, the pathogenesis and immune response to B. microti infection remain poorly understood. Studies in laboratory mice have shown a critical role for macrophages in the elimination of parasites and infected red blood cells (iRBCs). Importantly, the underlying mechanisms that activate macrophages are still unknown. Recent evidence identified the release of extracellular vesicles (EVs) from Babesia iRBCs. EVs are spherical particles released from cell membranes under natural or pathological conditions that have been suggested to play roles in host-pathogen interactions among diseases caused by protozoan parasites. The present study examined whether EVs released from cultured Babesia iRBCs could activate macrophages and alter cytokine secretion. An analysis of vesicle size in EV fractions from Babesia iRBCs showed diverse populations in the <100 nm size range compared to EVs from uninfected RBCs. In co-culture experiments, EVs released by B. microti iRBCs appeared to be associated with macrophage membranes and cytoplasm, indicating uptake of these vesicles in vitro. Interestingly, the incubation of macrophages with EVs isolated from Babesia iRBC culture supernatants resulted in the activation of NF-κB and modulation of pro-inflammatory cytokines. These results support a role for Babesia-derived EVs in macrophage activation and provide new insights into the mechanisms involved in the induction of the innate immune response during babesiosis.
Collapse
Affiliation(s)
- Biniam Hagos
- American Type Culture Collection, Manassas, Virginia, USA
| | - Ioana Brasov
- American Type Culture Collection, Manassas, Virginia, USA
| | | | - Sujatha Rashid
- American Type Culture Collection, Manassas, Virginia, USA
| | | | | | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
3
|
Cruz-Bustos T, Feix AS, Hummel K, Schlosser S, Razzazi-Fazeli E, Joachim A. The proteomic landscape of Toxoplasma gondii extracellular vesicles across diverse host cell types. Front Cell Infect Microbiol 2025; 15:1565684. [PMID: 40171158 PMCID: PMC11958994 DOI: 10.3389/fcimb.2025.1565684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) are emerging as powerful tools used by pathogens to manipulate host cells, delivering molecular cargo that rewires cellular processes and the immune response. Toxoplasma gondii, a globally distributed parasite capable of infecting nearly all nucleated animal cells, uses this strategy to thrive in diverse host species and tissue environments. Methods Here, we reveal the adaptability of T. gondii EVs through proteomic analysis of vesicles released from tachyzoites cultured in four different host cell types: human fibroblasts, green monkey kidney epithelial cells, mouse myoblasts and porcine intestinal epithelial cells. Results A core set of 1,244 proteins was consistently identified across TgEVs, defining a conserved signature. Beyond this conserved cargo, host-cell specific variation revealed how T. gondii fine-tunes EV content to exploit different cellular environments. Functional enrichment analyses revealed roles for TgEVs in targeting host protein synthesis and stress response pathways, with implications for immune evasion and infection spread. Discussion These findings provide insight into the potential role of EVs in host-pathogen interactions and help us understand the adaptive strategies used by T. gondii to survive and spread.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Sophia Feix
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ghani MU, Zhao G, Pei D, Ma T, Zhao Y, Qu X, Cui H. Inter-species dynamics of non-coding RNAs: Impact on host immunomodulation and pathogen survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105318. [PMID: 39809336 DOI: 10.1016/j.dci.2025.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Non-coding RNAs (ncRNAs) are composed of nucleotides that do not encode proteins but instead serve as guides. It interacts with amino acids at precise genomic sites, influencing chromatin structure and gene expression. These ncRNAs contribute to numerous inter-species dynamics, including those within the vector-host-pathogen triad. Vector-associated ncRNAs are released into hosts to combat the host immune system and sustain arthropod viability. Conversely, hosts may utilize specific ncRNAs as part of their defences to counteract pathogen-carrying vectors. Moreover, pathogens transmitted through vectors' saliva into hosts carry ncRNAs that enhances their virulence. While recent investigations have primarily focused on vector-associated ncRNAs in animal hosts, only a few have explored the functions of pathogen-associated ncRNAs and their role in initiating infections. Our review delves into the historical prospects of ncRNAs, mechanisms by which pathogen-derived ncRNAs influence host-pathogen interactions, regulate gene expression, and evade host defences. Ultimately, it underscores the importance ncRNAs mediated regulatory network in vector-host-pathogen dynamics, offering new strategies to combat vector-borne diseases and enhance public health outcomes.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Dakun Pei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Tao Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuhan Zhao
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaoxuan Qu
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
5
|
Yin J, Zhu X, Chen Y, Lv Y, Shan J, Liu Y, Liu W, Miao W, Li X. The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity. J Fungi (Basel) 2025; 11:73. [PMID: 39852492 PMCID: PMC11767214 DOI: 10.3390/jof11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied. To verify the functions of the exocyst in powdery mildew fungus, we identified two exocyst subunits, EqSec5 and EqSec6, from Erysiphe quercicola, a powdery mildew fungus that infects the rubber tree Hevea brasiliensis. When GFP-fused EqSec5 and EqSec6 were introduced into E. quercicola and another phytopathogenic fungus, Magnaporthe oryzae, they primarily localized to the hyphal tip region. Inducing gene silencing of EqSec5 or EqSec6 caused growth and infection defects, and those defects could not be fully restored under the NADPH oxidase inhibitor treatment to the plant. The silenced strains also induced the host defense response including reactive oxygen species accumulation and callose deposition. The silencing of EqSec5 or EqSec6 also inhibited the secretion of the effector protein EqIsc1, interrupting plant salicylic acid biosynthesis. Yeast two-hybrid and gene overexpression assays suggested that EqSec5 and EqSec6 interact with each other and can complement each other's function during host infection. Overall, our study provides evidence that the exocyst in this powdery mildew fungus facilitates effector secretion, hyphal growth, and infection.
Collapse
Affiliation(s)
- Jinyao Yin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Xuehuan Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Yalong Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Yanyang Lv
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Jiaxin Shan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Yuhan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| | - Xiao Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China; (J.Y.); (X.Z.); (Y.C.); (Y.L.); (J.S.); (Y.L.); (W.L.)
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou 571737, China
| |
Collapse
|
6
|
Rodríguez-Mera IB, Rojas-Hernández S, Barrón-Graciano KA, Carrasco-Yépez MM. Analysis of virulence factors in extracellular vesicles secreted by Naegleria fowleri. Parasitol Res 2024; 123:357. [PMID: 39432113 PMCID: PMC11493829 DOI: 10.1007/s00436-024-08378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Naegleria fowleri is the etiological agent of primary amebic meningoencephalitis (PAM), a rapidly progressive acute and fulminant infection that affects the central nervous system, particularly of children and young adults, which has a mortality rate greater than 95%, and its symptomatologic similarity with other meningitis caused by virus or bacteria makes it difficult to make a quick and timely diagnosis that prevents the progression of the infection. It is necessary to know the antigenic determinants as well as the pathogenicity mechanisms of this amoeba to implement strategies that allow for better antiamoebic therapeutic and diagnostic targets that directly impact the health sector. Therefore, the aim of this work was to analyze some virulence factors as part of extracellular vesicle (EV) cargo secreted by N. fowleri. The EV secretion to the extracellular medium was evaluated in trophozoites fixed and incubated with anti-N. fowleri antibody while molecular identification of EV cargo was performed by SDS-PAGE, Western blot, and RT-PCR. Our results showed that N. fowleri secretes a wide variety of vesicle sizes ranging from 0.2 to > 2 μm, and these EVs were recognized by antibodies anti-Naegleropore B, anti-19 kDa polypeptide band, anti-membrane protein Mp2CL5, anti-protease cathepsin B, and anti-actin. Furthermore, these vesicles were localized in the trophozoites cytoplasm or secreted into the extracellular medium. Specifically in relation to small vesicles, our purified exosomes were recognized by CD63 and Hsp70 markers, along with the previously mentioned proteins. RT-PCR analysis was made through the isolation of EVs from N. fowleri trophozoite culture by concentration, filtration, and ultracentrifugation. Interestingly, we obtained PCR products for Nfa1, NPB, Mp2CL5, and CatB genes as part of exosomes cargo. This suggests that the molecules identified in this work could play an important role in communication as well as in infectious processes caused by this amoeba. Therefore, the study and characterization of the pathogenicity mechanisms, as well as the virulence factors released by N. fowleri remains a key point to provide valuable information for the development of therapeutic treatments, vaccine design, or biomarkers for a timely diagnosis against infections caused by protozoa.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular y de Mucosas, Instituto Politécnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico.
| | - Karla Alejandra Barrón-Graciano
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico
| | - María Maricela Carrasco-Yépez
- Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Laboratorio de Microbiología Ambiental, Estado de México, Tlalnepantla de Baz, Mexico.
| |
Collapse
|
7
|
Zhang Y, He X, Ge Z, Wang B, Ni M, Cai G. Investigating the differential therapeutic efficacy and mechanisms of human umbilical cord mesenchymal stem cells at various passages in osteoarthritis treatment. Tissue Cell 2024; 90:102499. [PMID: 39126832 DOI: 10.1016/j.tice.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to assess the clinical efficacy of umbilical cord mesenchymal stem cells (hUC-MSCs) from different passages (P3, P8, and P13) in the treatment of knee osteoarthritis (OA) and explore the underlying mechanisms. The hUC-MSCs from each passage were characterized and evaluated for their stemness, migration, proliferation, and marker expression. Rats with OA were treated with hUC-MSCs from each passage, and the therapeutic effects were assessed based on knee swelling, discomfort, and pathological examination of the knee joint. Co-culture experiments were conducted to examine the ability of hUC-MSCs to stimulate type II collagen synthesis and inhibit MMP13 expression in chondrocytes. Telomere length and telomerase activity of hUC-MSCs from each passage were measured to investigate the reasons for the observed differences in clinical efficacy. The results revealed that P3 and P8 hUC-MSCs exhibited superior osteogenic and chondrogenic differentiation potential compared to P13, while P13 demonstrated stronger adipogenic differentiation. The wound healing rate was significantly higher in the P3 and P8 groups compared to P13. All hUC-MSC groups expressed high levels of CD90 and CD105, indicating their mesenchymal stem cell characteristics, while CD31 and CD45 were not expressed. CD105 expression was significantly reduced in the P13 group. In the treatment of rat osteoarthritis, there were no significant differences in knee swelling, discomfort, Mankin scores, and pathological findings between P3 and P8 hUC-MSC treatments. However, there was a significant difference between the 8th and 13th passages. Co-culture experiments showed that hUC-MSCs from P3 and P8 enhanced type II collagen synthesis and reduced MMP13 expression in chondrocytes. Although no significant difference was observed between the P3 and P8 groups, a significant difference was found between the P13 and P8 groups. Telomere length analysis revealed that P13 samples had significantly shorter telomeres compared to both P3 and P8. The telomerase activity was positive in P3 and P8 hUC-MSCs, indicating no significant difference between these passages, while it was negative in P13 hUC-MSCs. In conclusion, P3 and P8 hUC-MSCs exhibited superior therapeutic potential for knee osteoarthritis compared to P13, possibly due to their enhanced differentiation capacity and telomerase activity.
Collapse
Affiliation(s)
- Yingkai Zhang
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China; Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai City 200032, PR China
| | - Xianwei He
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Zhe Ge
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Bingnan Wang
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Miaozhong Ni
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Guoping Cai
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China.
| |
Collapse
|
8
|
Alvarado-Ocampo J, Abrahams-Sandí E, Retana-Moreira L. Overview of extracellular vesicles in pathogens with special focus on human extracellular protozoan parasites. Mem Inst Oswaldo Cruz 2024; 119:e240073. [PMID: 39319874 PMCID: PMC11421424 DOI: 10.1590/0074-02760240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered membrane-delimited particles secreted by almost any cell type, involved in different functions according to the cell of origin and its state. From these, cell to cell communication, pathogen-host interactions and modulation of the immune response have been widely studied. Moreover, these vesicles could be employed for diagnostic and therapeutic purposes, including infections produced by pathogens of diverse types; regarding parasites, the secretion, characterisation, and roles of EVs have been studied in particular cases. Moreover, the heterogeneity of EVs presents challenges at every stage of studies, which motivates research in this area. In this review, we summarise some aspects related to the secretion and roles of EVs from several groups of pathogens, with special focus on the most recent research regarding EVs secreted by extracellular protozoan parasites.
Collapse
Affiliation(s)
- Johan Alvarado-Ocampo
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
| | - Elizabeth Abrahams-Sandí
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| | - Lissette Retana-Moreira
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| |
Collapse
|
9
|
Menezes SA, Tasca T. Extracellular vesicles in parasitic diseases - from pathogenesis to future diagnostic tools. Microbes Infect 2024; 26:105310. [PMID: 38316376 DOI: 10.1016/j.micinf.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.
Collapse
Affiliation(s)
- Saulo Almeida Menezes
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
10
|
Santana de Andrade JC, Benchimol M, de Souza W. Stimulation of microvesicle secretion in Trichomonas vaginalis. Exp Parasitol 2024; 259:108722. [PMID: 38395187 DOI: 10.1016/j.exppara.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Trichomonas vaginalis is an extracellular flagellate protozoan and the etiological agent of human trichomoniasis, a sexually transmitted infection (STI) with a high incidence. Several reports have shown that this protozoan releases microvesicles into the culture medium, which show high potential in modulating cell-to-cell communication and the host response to infections. However, the biogenesis of these vesicles has not been analyzed in detail. In the present study, high-resolution ion scanning microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the surface of control cells and cells incubated in the presence of Ca2+ alone or with A 23187 calcium ionophore. Two different strains of T. vaginalis were analyzed. Most control cells displayed relatively smooth surfaces, whereas cells incubated with Ca2+ had many surface projections of variable shape and size (from 40 nm to around 1 μm). Quantitative analyses were performed directly in the scanning electron microscope and showed a significant increase in the number of cells with surface projections after incubation in the presence of calcium. TEM showed that treated cells presented several cytoplasmic multivesicular structures, suggesting membrane fusion and exosomes in the extracellular medium. The amount and size of the released vesicles were quantitatively analyzed using light scattering and TEM on negatively stained samples. The observations show that incubation of both parasite strains in the presence of Ca2+ significantly increased the release of microvesicles into the extracellular medium in a time-dependent process. Sequential incubation in the presence of Ca2+ and the calcium ionophore A23187 increases the presence of vesicles on the parasite surface only at a short incubation time (5 min). Transmission electron microscopy showed that at least part of the vesicles are originated from cytoplasmic multivesicular structures. This information contributes to a better understanding of the biogenesis of extracellular vesicles secreted by T. vaginalis.
Collapse
Affiliation(s)
- Júlio César Santana de Andrade
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil; BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro, 96200-000, Brazil.
| | - Marlene Benchimol
- BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro, 96200-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
11
|
Imparato M, Maione A, Buonanno A, Gesuele R, Gallucci N, Corsaro MM, Paduano L, Casillo A, Guida M, Galdiero E, de Alteriis E. Extracellular Vesicles from a Biofilm of a Clinical Isolate of Candida albicans Negatively Impact on Klebsiella pneumoniae Adherence and Biofilm Formation. Antibiotics (Basel) 2024; 13:80. [PMID: 38247639 PMCID: PMC10812662 DOI: 10.3390/antibiotics13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The opportunistic human fungal pathogen Candida albicans produces and releases into the surrounding medium extracellular vesicles (EVs), which are involved in some processes as communication between fungal cells and host-pathogen interactions during infection. Here, we have conducted the isolation of EVs produced by a clinical isolate of C. albicans during biofilm formation and proved their effect towards the ability of the Gram-negative bacterial pathogen Klebsiella pneumoniae to adhere to HaCaT cells and form a biofilm in vitro. The results represent the first evidence of an antagonistic action of fungal EVs against bacteria.
Collapse
Affiliation(s)
- Marianna Imparato
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Annalisa Buonanno
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Renato Gesuele
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy; (N.G.); (M.M.C.); (L.P.); (A.C.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.I.); (A.M.); (A.B.); (R.G.); (M.G.); (E.d.A.)
| |
Collapse
|
12
|
de Souza Teles ER, de Araujo Portes J, de Souza W. New morphological observations on the initial events of Toxoplasma gondii entry into host cells. Vet Parasitol 2023; 322:110006. [PMID: 37633244 DOI: 10.1016/j.vetpar.2023.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan of worldwide distribution. It is effective in the infection of various homoeothermic animals of economic importance. The process of T. gondii invasion of host cells occurs in less than 20 s by the active mechanism of penetration. First, a mobile junction is formed due to the association between the apical end of the parasite and the host cell surface. Then, the secretion of invasive and docking proteins allows the formation of the mobile junction before the complete internalization of the parasite. Here, using high-resolution microscopy, it was described new morphological observations of the early events of host cell invasion by tachyzoites of T. gondii. Attempts were made to synchronize the interaction process using low temperatures and treatment of the host cells with cytochalasin D, a drug that interferes with the actin dynamics. Images were obtained showing that the parasite and the host cells seem to release small vesicles with diameters varying from 25 to 100 nm. Furthermore, tunneling nanotubes emerge from the host cell surface and interact with the parasite even at long distance. These observations add new details of adhesion and entry events, such as surface projections of the host cell plasma membrane, pseudopods, and nanotubes radiating from the host cell toward the parasite. In addition, scanning microscopy revealed intense vesiculation, with a morphological characteristic of extracellular microvesicles, during the entry of the tachyzoite into the host cell.
Collapse
Affiliation(s)
- Everson Reili de Souza Teles
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro de Estudos Biomédicos-CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
13
|
Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, Naegleria fowleri. Front Microbiol 2023; 14:1264348. [PMID: 37808283 PMCID: PMC10558758 DOI: 10.3389/fmicb.2023.1264348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction As global temperatures rise to unprecedented historic levels, so too do the latitudes of habitable niches for the pathogenic free-living amoeba, Naegleria fowleri. This opportunistic parasite causes a rare, but >97% fatal, neurological infection called primary amoebic meningoencephalitis. Despite its lethality, this parasite remains one of the most neglected and understudied parasitic protozoans. Methods To better understand amoeboid intercellular communication, we elucidate the structure, proteome, and potential secretion mechanisms of amoeba-derived extracellular vesicles (EVs), which are membrane-bound communication apparatuses that relay messages and can be used as biomarkers for diagnostics in various diseases. Results and Discussion Herein we propose that N. fowleri secretes EVs in clusters from the plasma membrane, from multivesicular bodies, and via beading of thin filaments extruding from the membrane. Uptake assays demonstrate that EVs are taken up by other amoebae and mammalian cells, and we observed a real-time increase in metabolic activity for mammalian cells exposed to EVs from amoebae. Proteomic analysis revealed >2,000 proteins within the N. fowleri-secreted EVs, providing targets for the development of diagnostics or therapeutics. Our work expands the knowledge of intercellular interactions among these amoebae and subsequently deepens the understanding of the mechanistic basis of PAM.
Collapse
Affiliation(s)
- A. Cassiopeia Russell
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Peter Bush
- School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, Davis, CA, United States
| | - Dennis E. Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
15
|
Ashbolt NJ. Conceptual model to inform Legionella-amoebae control, including the roles of extracellular vesicles in engineered water system infections. Front Cell Infect Microbiol 2023; 13:1200478. [PMID: 37274310 PMCID: PMC10232903 DOI: 10.3389/fcimb.2023.1200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Extracellular vesicles (EVs or exosomes) are well described for bacterial pathogens associated with our gastrointestinal system, and more recently as a novel mechanism for environmental persistence, dissemination and infection for human enteric viruses. However, the roles played by EVs in the ancient arms race that continues between amoebae and one of their prey, Legionella pneumophila, is poorly understood. At best we know of intracellular vesicles of amoebae containing a mix of bacterial prey species, which also provides an enhanced niche for bacteriophage infection/spread. Free-living amoeba-associated pathogens have recently been recognized to have enhanced resistance to disinfection and environmental stressors, adding to previously understood (but for relatively few species of) bacteria sequestered within amoebal cysts. However, the focus of the current work is to review the likely impacts of large numbers of respiratory-sized EVs containing numerous L. pneumophila cells studied in pure and biofilm systems with mixed prey species. These encapsulated pathogens are orders of magnitude more resistant to disinfection than free cells, and our engineered systems with residual disinfectants could promote evolution of resistance (including AMR), enhanced virulence and EV release. All these are key features for evolution within a dead-end human pathogen post lung infection. Traditional single-hit pathogen infection models used to estimate the probability of infection/disease and critical environmental concentrations via quantitative microbial risk assessments may also need to change. In short, recognizing that EV-packaged cells are highly virulent units for transmission of legionellae, which may also modulate/avoid human host immune responses. Key data gaps are raised and a previous conceptual model expanded upon to clarify where biofilm EVs could play a role promoting risk as well as inform a more wholistic management program to proactively control legionellosis.
Collapse
|
16
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Lai H, Li J, Kou X, Mao X, Zhao W, Ma L. Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics 2023; 15:282. [PMID: 36678909 PMCID: PMC9862817 DOI: 10.3390/pharmaceutics15010282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention. In this review, the main characteristics of EVs are described, including their classification, biogenesis, biomarkers, and components. Moreover, the therapeutic mechanism of EVs in tissue regeneration is discussed. We further summarize the current status of EVs in pulp/periodontal tissue regeneration and discuss the potential mechanisms. The therapeutic potential of EVs in pulp and periodontal regeneration might involve the promotion of tissue regeneration and immunomodulatory capabilities. Furthermore, we highlight the current challenges in the translational use of EVs. This review would provide valuable insights into the potential therapeutic strategies of EVs in dental pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Hongbin Lai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiaqi Li
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lan Ma
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
18
|
Esteves S, Costa I, Luelmo S, Santarém N, Cordeiro-da-Silva A. Leishmania Vesicle-Depleted Exoproteome: What, Why, and How? Microorganisms 2022; 10:microorganisms10122435. [PMID: 36557688 PMCID: PMC9781507 DOI: 10.3390/microorganisms10122435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis, a vector-borne parasitic protozoan disease, is among the most important neglected tropical diseases. In the absence of vaccines, disease management is challenging. The available chemotherapy is suboptimal, and there are growing concerns about the emergence of drug resistance. Thus, a better understanding of parasite biology is essential to generate new strategies for disease control. In this context, in vitro parasite exoproteome characterization enabled the identification of proteins involved in parasite survival, pathogenesis, and other biologically relevant processes. After 2005, with the availability of genomic information, these studies became increasingly feasible and revealed the true complexity of the parasite exoproteome. After the discovery of Leishmania extracellular vesicles (EVs), most exoproteome studies shifted to the characterization of EVs. The non-EV portion of the exoproteome, named the vesicle-depleted exoproteome (VDE), has been mostly ignored even if it accounts for a significant portion of the total exoproteome proteins. Herein, we summarize the importance of total exoproteome studies followed by a special emphasis on the available information and the biological relevance of the VDE. Finally, we report on how VDE can be studied and disclose how it might contribute to providing biologically relevant targets for diagnosis, drug, and vaccine development.
Collapse
Affiliation(s)
- Sofia Esteves
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Inês Costa
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Sara Luelmo
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Nuno Santarém
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.S.); (A.C.-d.-S.)
| | - Anabela Cordeiro-da-Silva
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (N.S.); (A.C.-d.-S.)
| |
Collapse
|
19
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR, Castillo-Ramírez DA, Rosales-Cruz É, Rojas-Hernández S. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res 2022; 121:3287-3303. [PMID: 36125528 PMCID: PMC9485797 DOI: 10.1007/s00436-022-07660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Naegleria fowleri causes primary amoebic meningoencephalitis in humans and experimental animals. It has been suggested that cysteine proteases of parasites play key roles in metabolism, nutrient uptake, host tissue invasion, and immune evasion. The aim of this work was to evaluate the presence, expression, and role of cathepsin B from N. fowleri in vitro and during PAM. Rabbit-specific polyclonal antibodies against cathepsin B were obtained from rabbit immunization with a synthetic peptide obtained by bioinformatic design. In addition, a probe was designed from mRNA for N. fowleri cathepsin B. Both protein and messenger were detected in fixed trophozoites, trophozoites interacted with polymorphonuclear and histological sections of infected mice. The main cathepsin B distribution was observed in cytoplasm or membrane mainly pseudopods and food-cups while messenger was in nucleus and cytoplasm. Surprisingly, both the messenger and enzyme were observed in extracellular medium. To determine cathepsin B release, we used trophozoites supernatant recovered from nasal passages or brain of infected mice. We observed the highest release in supernatant from recovered brain amoebae, and when we analyzed molecular weight of secreted proteins by immunoblot, we found 30 and 37 kDa bands which were highly immunogenic. Finally, role of cathepsin B during N. fowleri infection was determined; we preincubated trophozoites with E-64, pHMB or antibodies with which we obtained 60%, 100%, and 60% of survival, respectively, in infected mice. These results suggest that cathepsin B plays a role during pathogenesis caused by N. fowleri mainly in adhesion and contributes to nervous tissue damage.
Collapse
Affiliation(s)
- Itzel Berenice Rodríguez-Mera
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Estado de México, Universidad Nacional Autónoma de México, Grupo CyMA, UIICSE, FES Iztacala, Tlalnepantla de Baz, México
| | - Ismael Vásquez-Moctezuma
- Laboratorio de Bioquímica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Gema Ramírez- Salinas
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de Mexico, México
| | - Diego Arturo Castillo-Ramírez
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México
| | - Érika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CDMX, 11340, México.
| |
Collapse
|
21
|
Universal platform for accurately damage-free mapping of sEVs cargo information. Anal Chim Acta 2022; 1232:340432. [DOI: 10.1016/j.aca.2022.340432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
|
22
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
23
|
Olajide JS, Xiong L, Yang S, Qu Z, Xu X, Yang B, Wang J, Liu B, Ma X, Cai J. Eimeria falciformis secretes extracellular vesicles to modulate proinflammatory response during interaction with mouse intestinal epithelial cells. Parasit Vectors 2022; 15:245. [PMID: 35804396 PMCID: PMC9270845 DOI: 10.1186/s13071-022-05364-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protozoan parasite secretions can be triggered by various modified media and diverse physicochemical stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemical components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. falciformis extracellular vesicles (EVs). METHODS Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporozoite EV on MIECs were then investigated. RESULTS During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as classical EV marker. Refractile body-associated aspartyl proteinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and VF proteins are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 inflammasomes with the concomitant secretion of lactate dehydrogenase. CONCLUSIONS Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and antigenic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
24
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
25
|
Palomo-Ligas L, Estrada-Camacho J, Garza-Ontiveros M, Vargas-Villanueva JR, Gutiérrez-Gutiérrez F, Nery-Flores SD, Cañas Montoya JA, Ascacio-Valdés J, Campos-Muzquiz LG, Rodriguez-Herrera R. Polyphenolic extract from Punica granatum peel causes cytoskeleton-related damage on Giardia lamblia trophozoites in vitro. PeerJ 2022; 10:e13350. [PMID: 35502204 PMCID: PMC9055998 DOI: 10.7717/peerj.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Background Diarrheal diseases caused by protozoa have a great impact on human health around the world. Giardia lamblia is one of the most common flagellates in the intestinal tract. Factors such as adverse effects to first-line drugs or the appearance of drug-resistant strains, make it necessary to identify new treatment alternatives. Agroindustry waste, like pomegranate peel, are a source of phenolic compounds, which possess antiparasitic activities. In vivo studies demonstrated antigiardiasic potential by reducing cyst shedding and protecting intestinal cells; however, they did not identify the compounds or elucidate any mechanism of action in the parasite. The objective of this study is to identify potential molecular targets and to test the in vitro effects of polyphenols from Punica granatum on Giardia lamblia. Methods The in vitro antigiardial potential of polyphenolic extract from pomegranate peel (Punica granatum L.) obtained using microwave-ultrasound methodology was evaluated on Giardia lamblia trophozoites. Extract phytochemical identification was performed by HPLC/MS analysis. The effect of polyphenolic extract on growth and adhesion capacity was determined by parasite kinetics; morphological damage was evaluated by SEM, alteration on α-tubulin expression and distribution were analyzed by western blot and immunofluorescence, respectively. Results The pomegranate peel extract showed the presence of ellagitannins (punicalin and punicalagin, galloyl-dihexahydroxydiphenoyl-hexoside), flavones (luteolin), and ellagic acid, that caused an inhibitory effect on growth and adhesion capacity, particularly on cells treated with 200 µg/mL, where growth inhibition of 74.36%, trophozoite adherence inhibition of 46.8% and IC50 of 179 µg/mL at 48 h were demonstrated. The most important findings were that the extract alters α-tubulin expression and distribution in Giardia trophozoites in a concentration-independent manner. Also, an increase in α-tubulin expression at 200 µg/mL was observed in western blot and diffuse or incomplete immunolabeling pattern, especially in ventral disk. In addition, the extract caused elongation, disturbance of normal shape, irregularities in the membrane, and flagella abnormalities. Discussion The pomegranate peel extract affects Giardia trophozoites in vitro. The damage is related to the cytoskeleton, due to expression and distribution alterations in α-tubulin, particularly in the ventral disk, a primordial structure for adhesion and pathogenesis. Microtubule impairment could explain morphological changes, and inhibition of adhesion capacity and growth. Besides, this is the first report that suggests that ellagic acid, punicalin, punicalagin and luteolin could be interactioning with the rich-tubulin cytoskeleton of Giardia. Further investigations are needed in order to elucidate the mechanisms of action of the isolated compounds and propose a potential drug alternative for the giardiasis treatment.
Collapse
Affiliation(s)
- Lissethe Palomo-Ligas
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Job Estrada-Camacho
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Mariana Garza-Ontiveros
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - José Roberto Vargas-Villanueva
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Filiberto Gutiérrez-Gutiérrez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sendar Daniel Nery-Flores
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Jorge Arturo Cañas Montoya
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Juan Ascacio-Valdés
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Lizeth Guadalupe Campos-Muzquiz
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Raul Rodriguez-Herrera
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
26
|
Ren Y, Ge K, Sun D, Hong Z, Jia C, Hu H, Shao F, Yao B. Rapid enrichment and sensitive detection of extracellular vesicles through measuring the phospholipids and transmembrane protein in a microfluidic chip. Biosens Bioelectron 2021; 199:113870. [PMID: 34915212 DOI: 10.1016/j.bios.2021.113870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) have attracted tremendous attention in recent years and quantification of EVs is a key issue in the evaluation of vesicle-based diagnostics and therapeutic development, but it's quite challenging to determine whether higher protein expression signals are due to larger vesicle amount or higher protein content within each vesicle. To solve this problem, herein, we proposed a strategy based on staining phospholipid bilayers of EVs with lipophilic dyes to evaluate their lipid amount, which was subsequently normalized as an internal standard for studying the expression of transmembrane protein (i.e., CD63) on EVs in different samples. In addition, a microfluidic platform based on electrophoresis technology was invented to effectively enrich and detect EVs. Small fluorescent labeling molecules (i.e., uncombined aptamers) were on-chip removed from EVs without pre-separation via ultracentrifugation or ultrafiltration which were indispensable in nanoparticle tracking analysis (NTA) and flow cytometry techniques and the performance of this assay is comparable to NTA. Finally, it was found obvious difference in the expression of CD63 on EVs before and after normalization based on lipid amount in plasma samples. This method is expected to provide more accurate information when comparing the expression levels of EVs biomarkers in different samples.
Collapse
Affiliation(s)
- Yongan Ren
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Danyang Sun
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Huan Hu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining, China
| | - Fangwei Shao
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Huang K, Huang L, Zhang X, Zhang M, Wang Q, Lin H, Yu Z, Li X, Liu XB, Wu Q, Wang Y, Wang J, Jin X, Gao H, Han X, Lin R, Cen S, Liu Z, Huang B. Mast cells-derived exosomes worsen the development of experimental cerebral malaria. Acta Trop 2021; 224:106145. [PMID: 34562426 DOI: 10.1016/j.actatropica.2021.106145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Cerebral malaria (CM) is the most severe neurological complication caused by Plasmodium falciparum infection. The accumulating evidence demonstrated that mast cells (MCs) and its mediators played a critical role in mediating malaria severity. Earlier studies identified that exosomes were emerging as key mediators of intercellular communication and can be released from several kinds of MCs. However, the potential functions and pathological mechanisms of MCs-derived exosomes (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Herein, we utilized an experimental CM (ECM) model (C57BL/6 mice infected with P. berghei ANKA strain), and then intravenously (i.v.) injected MCs-Exo into P. berghei ANKA-infected mice to unfold this mechanism and investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) co-cultured with P. berghei ANKA blood-stage soluble antigen (PbAg) after MCs-Exo treatment. The higher numbers of MCs and levels of MCs degranulation were observed in skin, cervical lymph node, and brain of ECM mice than those of the uninfected mice. Exosomes were successfully isolated from culture supernatants of mouse MCs line (P815 cells) and characterized by spherical vesicles with the diameter of 30-150 nm, and expression of typical exosomal markers (e.g., CD9, CD63, and CD81). The i.v. injection of MCs-Exo dramatically elevated incidence of ECM in the P. berghei ANKA-infected mice, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. In addition, the treatment of MCs-Exo led to the decrease of cells viability and mRNA levels of Ang-1, ZO-1, and Claudin-5, but increase of mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9 in bEnd.3 cells co-cultured with PbAg in vitro. Taken together, our data indicated that MCs-Exo could worsen pathogenesis of ECM in mice.
Collapse
|
28
|
Synthetic Poly(lactic-co-glycolic Acid) Microvesicles as a Feasible Carbon Monoxide-Releasing Platform for Cancer Treatment. MEMBRANES 2021; 11:membranes11110818. [PMID: 34832047 PMCID: PMC8625701 DOI: 10.3390/membranes11110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Biogenic microvesicles (MVs) play a pivotal role in intercellular signal communication, thus initiating critical biological responses such as the proliferation of cancer cells, gene and protein transport, and chemo-drug resistance. In addition, they have been recognized as having great potential in drug delivery applications. However, the productivity of biologically produced MVs is not sufficient for clinical applications. In this study, synthetic poly(lactic-co-glycolic acid) (PLGA) MVs were prepared via a double emulsion method. The PLGA MVs had a biogenic MV-mimic vesicular structure with a hydrophilic core/surface and hydrophobic interior of the shell, showing great potential for drug delivery. We successfully embedded hydrophobic iron carbonyl (IC), a carbon monoxide (CO) donor, in the PLGA shell region, enabling the delivery of IC in an aqueous solution. Because of the intrinsic properties of PLGA, it was susceptible to temperature, and the MVs could easily collapse in a warm environment, leading to the decomposition of IC into CO. The in vitro result indicated that the cell viability of A549 lung carcinoma cells significantly decreased to 14% after treatment with IC-loaded PLGA MVs for 24 h, suggesting that these synthetic PLGA MVs constitute an excellent drug delivery platform.
Collapse
|
29
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Lipoproteins Are Responsible for the Pro-Inflammatory Property of Staphylococcus aureus Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22137099. [PMID: 34281154 PMCID: PMC8268867 DOI: 10.3390/ijms22137099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Staphylococcal aureus
(S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.
Collapse
|
31
|
Quiarim TM, Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Pereira-Chioccola VL. Characterization of extracellular vesicles isolated from types I, II and III strains of Toxoplasma gondii. Acta Trop 2021; 219:105915. [PMID: 33861971 DOI: 10.1016/j.actatropica.2021.105915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022]
Abstract
This study investigated the participation extracellular vesicles (EVs) in Toxoplasma gondii-host interaction. EVs of three T. gondii strains (RH, ME-49 and VEG) were purified by chromatography and ELISA. Results of "nanoparticle tracking analysis" and scanning electron microscopy showed that RH strain released more EVs than other strains. Images of transmission electron microscopy showed that in beginning of incubation (culture medium), EVs were inside of tachyzoites preparing to be released. After 24 hours, they were largely produced inside tachyzoites and were released through plasma membrane. The parasite burden of mice infected with RH strain plus EVs was increased and with early death of 1-2 days compared of those that received only parasites. EV proteins of ME-49 and VEG strains were poorly reactive to sera of infected patients in imunoblot. However, those from RH strain were reactive against sera of patients with cerebral toxoplasmosis. EVs stimulated murine splenocytes caused similar production of IFN-γ and IL-10 levels. RH strain derived EVs stimulated more TNF-α than those stimulated by other strains. T. gondii and infected hosts can express the same miRNAs (miR-155-5p, miR-125b-5p, miR-423-3p). In conclusion, T. gondii derived EVs promote host-parasite interactions, modulate host immune responses, carry virulent factors and cause an imbalance in cellular immune response.
Collapse
Affiliation(s)
- Talita Motta Quiarim
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | - Marta Marques Maia
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | - Allecineia Bispo da Cruz
- Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
32
|
Alcantara CL, de Souza W, Cunha E Silva NL. The cytostome-cytopharynx complex of intracellular and extracellular amastigotes of Trypanosoma cruzi exhibit structural and functional differences. Cell Microbiol 2021; 23:e13346. [PMID: 33900003 DOI: 10.1111/cmi.13346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 01/01/2023]
Abstract
Endocytosis in Trypanosoma cruzi is mainly performed through a specialised membrane domain called cytostome-cytopharynx complex. Its ultrastructure and dynamics in endocytosis are well characterized in epimastigotes, being absent in trypomastigotes, that lack endocytic activity. Intracellular amastigotes also possess a cytostome-cytopharynx but participation in endocytosis of these forms is not clear. Extracellular amastigotes can be obtained from the supernatant of infected cells or in vitro amastigogenesis. These amastigotes share biochemical and morphological features with intracellular amastigotes but retain trypomastigote's ability to establish infection. We analysed and compared the ultrastructure of the cytostome-cytopharynx complex of intracellular amastigotes and extracellular amastigotes using high-resolution tridimensional electron microscopy techniques. We compared the endocytic ability of intracellular amastigotes, obtained through host cell lysis, with that of extracellular amastigotes. Intracellular amastigotes showed a cytostome-cytopharynx complex similar to epimastigotes'. However, after isolation, the complex undergoes ultrastructural modifications that progressively took to an impairment of endocytosis. Extracellular amastigotes do not possess a cytostome-cytopharynx complex nor the ability to endocytose. Those observations highlight morpho functional differences between intra and extracellular amastigotes regarding an important structure related to cell metabolism. TAKE AWAYS: T. cruzi intracellular amastigotes endocytose through the cytostome-cytopharynx complex. The cytostome-cytopharynx complex of intracellular amastigotes is ultrastructurally similar to the epimastigote. Intracellular amastigotes, once outside the host cell, disassembles the cytostome-cytopharynx membrane domain. Extracellular amastigotes do not possess a cytostome-cytopharynx either the ability to endocytose.
Collapse
Affiliation(s)
- Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo de Biologia Estrutural e Bioimagens (CENABIO)-Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo de Biologia Estrutural e Bioimagens (CENABIO)-Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narcisa L Cunha E Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo de Biologia Estrutural e Bioimagens (CENABIO)-Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
He F, Li L, Fan R, Wang X, Chen X, Xu Y. Extracellular Vesicles: An Emerging Regenerative Treatment for Oral Disease. Front Cell Dev Biol 2021; 9:669011. [PMID: 34079801 PMCID: PMC8165191 DOI: 10.3389/fcell.2021.669011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular Vesicles (EVs) are small lipid-enclosed particles containing biological molecules such as RNA and proteins that have emerged as vital modulators of intercellular communication. Increasingly, studies have shown that EVs play an essential role in the occurrence and prognosis of oral diseases. EVs are increasingly considered a research hotspot of oral diseases. In addition, the characteristics of carrying active molecules have also been studied in oral tissue regeneration. Evidence has shown that EVs regulate the homeostasis of the inflammatory microenvironment, promote angiogenesis, and repair damaged tissues. In this review, we summarized the characteristics of EVs and highlighted the role of EVs in oral tissue regeneration, including dental pulp, periodontal tissue, cartilage, and bone. We also discussed their deficiencies and prospects as a potential therapeutic role in the regeneration treatment of oral disease.
Collapse
Affiliation(s)
- Fanzhen He
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ruyi Fan
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Papadaki A, Tziouvara O, Kotopouli A, Koumarianou P, Doukas A, Rios P, Tardieux I, Köhn M, Boleti H. The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Front Cell Infect Microbiol 2021; 11:591868. [PMID: 33842381 PMCID: PMC8027504 DOI: 10.3389/fcimb.2021.591868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The intracellular protozoan parasites of the Leishmania genus are responsible for Leishmaniases, vector borne diseases with a wide range of clinical manifestations. Leishmania (L.) donovani causes visceral leishmaniasis (kala azar), the most severe of these diseases. Along their biological cycle, Leishmania parasites undergo distinct developmental transitions including metacyclogenesis and differentiation of metacyclic promastigotes (MPs) to amastigotes. Metacyclogenesis inside the phlebotomine sandfly host's midgut converts the procyclic dividing promastigotes to non-dividing infective MPs eventually injected into the skin of mammalian hosts and phagocytosed by macrophages where the MPs are converted inside modified phagolysosomes to the intracellular amastigotes. These developmental transitions involve dramatic changes in cell size and shape and reformatting of the flagellum requiring thus membrane and cytoskeleton remodeling in which phosphoinositide (PI) signaling and metabolism must play central roles. This study reports on the LDBPK_220120.1 gene, the L. donovani ortholog of LmjF.22.0250 from L. major that encodes a phosphatase from the "Atypical Lipid Phosphatases" (ALPs) enzyme family. We confirmed the expression of the LDBPK_220120.1 gene product in both L. donovani promastigotes and axenic amastigotes and showed that it behaves in vitro as a Dual Specificity P-Tyr and monophosphorylated [PI(3)P and PI(4)P] PI phosphatase and therefore named it LdTyrPIP_22 (Leishmaniad onovani Tyrosine PI Phosphatase, gene locus at chromosome 22). By immunofluorescence confocal microscopy we localized the LdTyrPIP_22 in several intracellular sites in the cell body of L. donovani promastigotes and amastigotes and in the flagellum. A temperature and pH shift from 25°C to 37°C and from pH 7 to 5.5, induced a pronounced recruitment of LdTyrPIP_22 epitopes to the flagellar pocket and a redistribution around the nucleus. These results suggest possible role(s) for this P-Tyr/PI phosphatase in the regulation of processes initiated or upregulated by this temperature/pH shift that contribute to the developmental transition from MPs to amastigotes inside the mammalian host macrophages.
Collapse
Affiliation(s)
- Amalia Papadaki
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Olympia Tziouvara
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasia Kotopouli
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Doukas
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pablo Rios
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Tardieux
- Team «Biomechanics of Host Parasite Interactions», Institut for Advanced BioSciences, Univ. Grenoble Alpes, Inserm U1209 - CNRS UMR 5309, 38700 La Tronche, France
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
35
|
Unveiling the role of EVs in anaerobic parasitic protozoa. Mol Immunol 2021; 133:34-43. [PMID: 33621941 DOI: 10.1016/j.molimm.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
The anaerobic or microaerophilic protozoan parasites such as the enteric human pathogens Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, Blastocystis hominis and urogenital tract parasites Trichomonas vaginalis are able to survival in an environment with oxygen deprivation. Despite living in hostile environments these pathogens adopted different strategies to survive within the hosts. Among them, the release of extracellular vesicles (EVs) has become an active endeavor in the study of pathogenesis for these parasites. EVs are heterogenous, membrane-limited structures that have played important roles in cellular communication, transferring information through cargo and modulating the immune system of the host. In this review, we described several aspects of the recently characterized EVs of the anaerobic protozoa, including their role in adhesion, modulation of the immune response and omics analysis to understand the potential of these EVs in the pathogenesis of these diseases caused by anaerobic parasites.
Collapse
|
36
|
Rossi IV, Ferreira Nunes MA, Vargas-Otalora S, da Silva Ferreira TC, Cortez M, Ramirez MI. Extracellular Vesicles during TriTryps infection: Complexity and future challenges. Mol Immunol 2021; 132:172-183. [PMID: 33601226 DOI: 10.1016/j.molimm.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
The trypanosomatid pathogens Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, currently grouped as TriTryps, have evolved through the time to overcome the upfront innate immune response and establish the infection in humans adapting many aspects of the parasite-cell host interaction. Extracellular vesicles (EVs) emerge as critical structures carrying different key molecules from parasites and target cells that interact continuously during infection. Current information regarding the structure and composition of these vesicles provide new insights into the primary role of TriTryps-EVs reviewed in this work. Expanding knowledge about these critical vesicular structures will promote advances in basic sciences and in translational applications controlling pathogenesis in the neglected tropical diseases caused by TriTryps.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Cell and Molecular Biology program, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Sandra Vargas-Otalora
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Marcel Ivan Ramirez
- Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil; Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
37
|
Methods for the Isolation and Study of Exovesicle DNA from Trypanosomatid Parasites. Methods Mol Biol 2021; 2369:301-317. [PMID: 34313995 DOI: 10.1007/978-1-0716-1681-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) or exovesicles are a heterogeneous group of small cell-derived membranous structures that carry complex cargoes including lipids, proteins, RNA, and DNA. Emerging evidence suggest that EVs secreted by kinetoplastid parasites play a cardinal role in the pathogenesis of diseases they cause, becoming valuable structures for understanding parasite-host interactions. Moreover, the characterization of EVs molecular cargo may provide a new approach to develop alternative tools for diagnosis and therapy of infectious diseases. EVs have a potential use as biomarkers since it contains a repertoire of DNA species that could be detected at different stages of infection by PCR-based assays. Here, we provide a detailed protocol for the isolation of Trypanosoma cruzi-derived EVs and purification of its DNA cargo for subsequent characterization. The methods described here are transferrable to other medically important parasites that are well adapted to grow in vitro and, therefore, suitable volume of EVs-containing supernatants can be obtained.
Collapse
|