1
|
Macchia E, Bollella P, Torsi L. Bioelectronic Large-Area Transistors for High-Performance Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:407-425. [PMID: 40009741 DOI: 10.1146/annurev-anchem-061522-034729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bioelectronics, originating from Galvani's eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in optimizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concentrations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.
Collapse
Affiliation(s)
- Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| |
Collapse
|
2
|
Scandurra C, Björkström K, Caputo M, Sarcina L, Genco E, Modena F, Viola FA, Brunetti C, Kovács‐Vajna ZM, Franco CD, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Wheeler M, Caironi M, Cantatore E, Torricelli F, Esposito I, Macchia E, Torsi L. Analysis of Clinical Samples of Pancreatic Cyst's Lesions with A Multi-Analyte Bioelectronic Simot Array Benchmarked Against Ultrasensitive Chemiluminescent Immunoassay. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308141. [PMID: 38234100 PMCID: PMC11251558 DOI: 10.1002/advs.202308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Collapse
Affiliation(s)
- Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Kim Björkström
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Enrico Genco
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Francesco Modena
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
- Present address:
Dipartimento di Ingegneria Elettrica ed ElettronicaUniversità degli Studi di CagliariVia Marengo 3Cagliari09123Italy
| | | | - Zsolt M. Kovács‐Vajna
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | | | - Lena Haeberle
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Piero Larizza
- Masmec Biomed – Masmec SpA divisionModugno (BA)70026Italy
| | | | - Ronald Österbacka
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | | | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Eugenio Cantatore
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Eleonora Macchia
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
3
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
5
|
Di Franco C, Piscitelli M, Macchia E, Scandurra C, Catacchio M, Torsi L, Scamarcio G. Kelvin probe force microscopy on patterned large-area biofunctionalized surfaces: a reliable ultrasensitive platform for biomarker detection. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 12:73-79. [PMID: 38143451 PMCID: PMC10734678 DOI: 10.1039/d3tc03110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Kelvin probe force microscopy (KPFM) allows the detection of single binding events between immunoglobulins (IgM, IgG) and their cognate antibodies (anti-IgM, anti-IgG). Here an insight into the reliability and robustness of the methodology is provided. Our method is based on imaging the surface potential shift occurring on a dense layer of ∼5 × 107 antibodies physisorbed on a 50 μm × 90 μm area when assayed with increasing concentrations of antigens in phosphate buffer saline (PBS) standard solutions, in air and at a fixed scanning location. A comprehensive investigation of the influence of the main experimental parameters that may interfere with the outcomes of KPFM immune-assay is provided, showing the robustness and reliability of our approach. The data are supported also by a thorough polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) analysis of the physisorbed biolayer, in the spectral region of the amide I, amide II and amide A bands. Our findings demonstrate that a 10 min incubation in 500 μL PBS encompassing ≈ 30 antigens (100 zM) triggers an extended surface potential shift that involves the whole investigated area. Such a shift quickly saturates at increasing ligand concentration, showing that the developed sensing platform works as an OFF/ON detector, capable of assessing the presence of a few specific biomarkers in a given assay volume. The reliability of the developed methodology KPFM is an important asset in single molecule detections at a wide electrode interface.
Collapse
Affiliation(s)
- Cinzia Di Franco
- CNR - Institute of Photonics and Nanotechnologies, Via Amendola 173 70126 Bari Italy
| | - Matteo Piscitelli
- CNR - Institute of Photonics and Nanotechnologies, Via Amendola 173 70126 Bari Italy
- Dipartimento Interateneo di Fisica ''M. Merlin'', Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
- The Faculty of Science and Engineering, Åbo Akademi University 20500 Turku Finland
| | - Cecilia Scandurra
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Michele Catacchio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Gaetano Scamarcio
- CNR - Institute of Photonics and Nanotechnologies, Via Amendola 173 70126 Bari Italy
- Dipartimento Interateneo di Fisica ''M. Merlin'', Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| |
Collapse
|
6
|
Genco E, Modena F, Sarcina L, Björkström K, Brunetti C, Caironi M, Caputo M, Demartis VM, Di Franco C, Frusconi G, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Scandurra C, Wheeler M, Cantatore E, Esposito I, Macchia E, Torricelli F, Viola FA, Torsi L. A Single-Molecule Bioelectronic Portable Array for Early Diagnosis of Pancreatic Cancer Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304102. [PMID: 37452695 DOI: 10.1002/adma.202304102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.
Collapse
Affiliation(s)
- Enrico Genco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Kim Björkström
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Virginia Maria Demartis
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | | | - Giulia Frusconi
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Lena Haeberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Piero Larizza
- Masmec Biomed - Masmec SpA division, Modugno (BA), 70026, Italy
| | | | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Gaetano Scamarcio
- CNR IFN, Bari, 70126, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - May Wheeler
- FlexEnable Technology Ltd, Cambridge, CB4 0FX, UK
| | - Eugenio Cantatore
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
7
|
Sharova AS, Modena F, Luzio A, Melloni F, Cataldi P, Viola F, Lamanna L, Zorn NF, Sassi M, Ronchi C, Zaumseil J, Beverina L, Antognazza MR, Caironi M. Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics. NANOSCALE 2023; 15:10808-10819. [PMID: 37334549 PMCID: PMC10311466 DOI: 10.1039/d3nr01051a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 μm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.
Collapse
Affiliation(s)
- Alina S Sharova
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Alessandro Luzio
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Filippo Melloni
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Pietro Cataldi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Fabrizio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Leonardo Lamanna
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Nicolas F Zorn
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mauro Sassi
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Carlotta Ronchi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Luca Beverina
- Department of Materials Science, Università degli Studi di Milano-Bicocca, via Cozzi, 55, 20125, Milano, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino, 81, 20134 Milano, Italy.
| |
Collapse
|
8
|
Parmeggiani M, Ballesio A, Battistoni S, Carcione R, Cocuzza M, D’Angelo P, Erokhin VV, Marasso SL, Rinaldi G, Tarabella G, Vurro D, Pirri CF. Organic Bioelectronics Development in Italy: A Review. MICROMACHINES 2023; 14:460. [PMID: 36838160 PMCID: PMC9966652 DOI: 10.3390/mi14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Alberto Ballesio
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Silvia Battistoni
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Rocco Carcione
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Matteo Cocuzza
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Victor V. Erokhin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Simone Luigi Marasso
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Giorgia Rinaldi
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Davide Vurro
- Camlin Italy Srl, Via Budellungo 2, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|