1
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025; 994:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Kosugiyama H, Asai S, Terabe K, Kobayakawa T, Yoshioka Y, Watanabe T, Kojima T, Sobue Y, Kato T, Fujibayashi T, Hirano Y, Nishiume T, Kato M, Kanayama Y, Takemoto T, Hanabayashi M, Matsubara H, Suzuki M, Sato R, Hasegawa J, Ohno Y, Sugiura T, Takahashi N, Imagama S. Comparable Clinical Effectiveness of Baricitinib and Filgotinib in Patients With Rheumatoid Arthritis. Int J Rheum Dis 2025; 28:e70288. [PMID: 40375443 DOI: 10.1111/1756-185x.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
AIM To compare the clinical effectiveness of baricitinib and filgotinib in the treatment of rheumatoid arthritis (RA). METHODS This retrospective study included 101 and 103 consecutive patients treated with baricitinib and filgotinib, respectively, between 2020 and 2023. Drug retention was analyzed using Kaplan-Meier curves, with the log-rank test for between-group comparisons. Differences in Clinical Disease Activity Index (CDAI) score from baseline were assessed using paired t-tests, and generalized estimating equations were used to compare the treatment groups. RESULTS Baseline characteristics were similar between the baricitinib and filgotinib groups. Drug retention rates due to ineffectiveness or adverse events did not differ significantly between the two groups. In the baricitinib group, the estimated mean CDAI score significantly decreased from 17.8 at baseline to 9.1 at 4 weeks, 6.6 at 12 weeks, and 6.3 at 24 weeks (p < 0.001 for all comparisons). In the filgotinib group, the estimated mean CDAI score significantly decreased from 16.5 at baseline to 7.8 at 4 weeks, 6.2 at 12 weeks, and 6.1 at 24 weeks (p < 0.001 for all comparisons). No significant differences were observed between the two groups in CDAI score at any time point evaluated, or in the proportion of patients who achieved CDAI remission (CDAI ≤ 2.8) at baseline (7% vs. 5%) and after 4 (23% vs. 21%), 12 (33% vs. 33%), and 24 weeks (33% vs. 37%). CONCLUSION Baricitinib and filgotinib demonstrated comparable drug retention rates and effectiveness in reducing disease activity among patients with RA over a 24-week follow-up period.
Collapse
Affiliation(s)
- Hironobu Kosugiyama
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Rheumatology, Shizuoka Kosei Hospital, Shizuoka, Shizuoka, Japan
| | - Shuji Asai
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenya Terabe
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Yutaka Yoshioka
- Department of Rheumatology, Handa City Hospital, Handa, Aichi, Japan
| | - Tatsuo Watanabe
- Department of Orthopedic Surgery, Daido Hospital, Nagoya, Aichi, Japan
| | - Toshihisa Kojima
- Department of Orthopedic Surgery and Rheumatology, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yasumori Sobue
- Department of Orthopedic Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | | | | | - Yuji Hirano
- Department of Rheumatology, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Tsuyoshi Nishiume
- Department of Orthopedic Surgery, Okazaki City Hospital, Okazaki, Aichi, Japan
| | - Mihoko Kato
- Department of Rheumatology, Shizuoka Kosei Hospital, Shizuoka, Shizuoka, Japan
| | - Yasuhide Kanayama
- Department of Orthopedic Surgery, Toyota Kosei Hospital, Toyota, Aichi, Japan
| | - Toki Takemoto
- Department of Orthopedic Surgery, Anjo Kosei Hospital, Anjo, Aichi, Japan
| | - Masahiro Hanabayashi
- Department of Orthopedic Surgery, Ichinomiya Municipal Hospital, Ichinomiya, Aichi, Japan
| | - Hiroyuki Matsubara
- Department of Orthopedic Surgery, Hekinan Municipal Hospital, Hekinan, Aichi, Japan
| | - Mochihito Suzuki
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryo Sato
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Junya Hasegawa
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Ohno
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takaya Sugiura
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobunori Takahashi
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery and Rheumatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Tatikola SP, Natarajan V, Amaravadi SK, Desai VK, Asirvatham AR, Nagaraja R. Effect of pain neuroscience education + (PNE +) in people with different mechanisms of chronic pain: A systematic review and meta-analysis. J Bodyw Mov Ther 2025; 41:215-237. [PMID: 39663091 DOI: 10.1016/j.jbmt.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Chronic pain poses a multifaceted and prevalent challenge that significantly affects an individual's quality of life. Sensory mechanisms, behavioural components (kinesiophobia and catastrophising), and social factors can influence pain perception in both younger and older populations. Moreover, the mechanisms underlying these altered pain phenotypes require further investigation in order to plan appropriate treatment. While Pain Neuroscience Education (PNE) has proven effective in managing chronic pain and previous research has been conducted on PNE physiotherapeutic techniques, there remains insufficient evidence on the efficacy of these adjunctive treatments. OBJECTIVE The objective of the present systematic review and meta-analysis was to evaluate the evidence for the efficacy of PNE + PT (PNE+) on pain as a primary outcome and 12 other psychosocial variables as secondary outcomes in patients with different pain mechanisms, and whether PNE+ could be applied to painful diabetic neuropathy. METHODS A thorough literature search was conducted in the database Scopus, MEDLINE/PubMed, ScienceDirect, CINAHL, and Web of Science, using keywords like "Pain Neuroscience Education", and "Chronic Pain" from 2010 to 2024 based on inclusion and exclusion criteria. Twenty of the 2558 studies that underwent screening qualified for a meta-analysis and 24 of them for a systematic review. Cochrane Risk of Bias 2 was used to assess the quality of the studies. Forest plots were generated using the Revman 5.3 software. RESULTS Studies that predominantly addressed central sensitization and neuropathic pain demonstrated moderate-to good-quality evidence. The review findings indicate that PNE+ is effective in reducing experienced pain intensity and experienced pain interference on the Visual Analogue Scale (VAS: SMD -0.70, 95% CI -1.26 to -0.14), Numerical Pain Rating Scale (NPRS SMD -1.71, 95% CI -2.34 to -1.08), reduced kinesiophobia (Tampa scale of Kinesiophobia: SMD -5.29, 95% CI -7.33 to -3.25), and catastrophizing (pain catastrophizing scale: -3.82, 95% CI -6.44 to -1.21). CONCLUSION PNE + has been found to be an effective intervention for reducing perceived pain experience, pain interference and other psychosocial variables in the management of chronic pain with different pain mechanisms. Most studies have focused on central sensitization, urging future research to explore PNE+ efficacy in neuropathic pain, such as painful diabetic neuropathy. PROSPERO REGISTRATION NUMBER CRD42023451101.
Collapse
Affiliation(s)
- Sripada Pallavi Tatikola
- Faculty of Physiotherapy, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu State, India; Apollo College of Physiotherapy, Apollo Institute of Medical Sciences and Research, Hyderabad, Telangana State, India.
| | - Venkatesh Natarajan
- Faculty of Physiotherapy, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu State, India.
| | - Sampath Kumar Amaravadi
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Venkata Krishnaveni Desai
- Department of Biochemistry, Apollo Institute of Medical Sciences and Research, Hyderabad, Telangana State, India
| | - Adlyne Reena Asirvatham
- Department of Endocrinology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu State, India
| | - Ravishankar Nagaraja
- Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
5
|
Gonçalves de Queiroz BF, Cristina de Sousa Fonseca F, Pinto Barra WC, Viana GB, Irie AL, de Castro Perez A, Lima Romero TR, Gama Duarte ID. Interaction between the dopaminergic and endocannabinoid systems promotes peripheral antinociception. Eur J Pharmacol 2025; 987:177195. [PMID: 39662656 DOI: 10.1016/j.ejphar.2024.177195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Dopamine has been widely related to pain modulation, at central and peripheral levels. In this study we aimed to investigate the mechanisms involved in peripheral antinociception, evaluating the interaction between the dopaminergic and endocannabinoid systems in this event. METHODS Male Swiss mice (30-40 g) were pre-sensitized by administration of the hyperalgesic PGE2 (2 μg/paw). The nociceptive threshold was measured using the paw withdrawal test. RESULTS Dopamine (80 ng/paw) promoted antinociception. This effect was reversed by the CB1 and CB2 cannabinoid receptor antagonists AM251 (20, 40, and 80 μg/paw) and AM630 (25, 50, and 100 μg/paw). JZL (4 μg/paw), an inhibitor of the degradation of the 2-arachidonylglycerol (2-AG), potentiated the antinociceptive action of the submaximal dose of dopamine (5 ng/paw). While anandamide degradation and reuptake inhibitors (MAFP 0.5 μg/paw and VDM11 2.5 μg/paw) did not promote changes in intermediate antinociception induced by dopamine. Anandamide at a submaximal dose (12.5 ng/paw) promoted intermediate antinociception that was not potentiated by the administration of the dopamine reuptake inhibitor GBR 12783 (16 μg/paw). In contrast, the administration of GBR potentiated the intermediate antinociception induced by a submaximal dose of 2-AG (10 μg/paw). Furthermore, the dopaminergic receptor antagonists D2 Remoxipride (4 μg/paw) and D3 U99194 (16 μg/paw) reversed the antinociception mediated by the maximum dose of this endocannabinoid (20 μg/paw). In contrast, the D4 receptor antagonist L-745,870 (16 μg/paw) did not change the nociceptive threshold. CONCLUSIONS In this way, we demonstrate the interaction between the dopaminergic and endocannabinoid systems to promote analgesia peripherally.
Collapse
Affiliation(s)
- Bárbara Formiga Gonçalves de Queiroz
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Flávia Cristina de Sousa Fonseca
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Walace Cassio Pinto Barra
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Giovanna Bauer Viana
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Audrey Lopes Irie
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Andrea de Castro Perez
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago Roberto Lima Romero
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Igor Dimitri Gama Duarte
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Samy EM, Radwan RR, Mosallam FM, Mohamed HA. Nano-pregabalin effectively mitigates Glut, CGRP and NE neurotransmitters abnormalities in the brain of gamma irradiated rats with reserpine-induced fibromyalgia model: Behavioral and neurochemical studies. Neuropharmacology 2024; 261:110162. [PMID: 39299572 DOI: 10.1016/j.neuropharm.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
AIMS Fibromyalgia (FM) is an idiopathic syndrome with painful burdensome symptoms. Radiotherapy is one of the main therapeutic modalities for treating various malignancies and there is a probable association between FM exacerbation and exposure to ionizing radiation. Based on that nanomedicines progressively being explored for their promising applications in medicine, the aim of the current study is to assess the possible therapeutic benefits of nanoform of pregabalin (N-PG) in managing FM symptoms during being exposed to ionizing radiation. MAIN METHODS Rats were allocated into four groups. First group served as control, the other three groups received gamma radiation (2 Gy/day) after 1 h of reserpine administration (1 ml/kg per day, s.c.) to induce FM for three successive days. On the next day, third and fourth groups received (30 mg/kg, p.o.) of PG and N-PG, respectively once daily for ten consecutive days. Tail flick test was performed and von Frey filaments were used to assess mechanical allodynia/hyperalgesia, and then rats were sacrificed to obtain brains. KEY FINDINGS N-PG effectively replenished reserpine effects and treated both allodynia and hyperalgesia, improved thermal allodynia, effectively recovered all neurotransmitters near to normal baseline, inhibited oxidative stress status via decreasing malondialdehyde (MDA), increasing glutathione (GSH) and superoxide dismutase (SOD), it had strong anti-inflammatory effect as verified by reducing both cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-kB) in addition to inhibition of intrinsic apoptosis through caspase-3 (casp-3) decrease and B-cell lymphoma-2 (Bcl-2) increase. Histopathological and immunohistochemical results confirmed the biochemical findings. SIGNIFICANCE N-PG could be a promising drug for treating FM especially when there is urgent need to expose patient to ionizing radiation.
Collapse
Affiliation(s)
- Esraa M Samy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
7
|
Barkai O, Zhang B, Turnes BL, Arab M, Yarmolinsky DA, Zhang Z, Barrett LB, Woolf CJ. ARBEL: A Machine Learning Tool with Light-Based Image Analysis for Automatic Classification of 3D Pain Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.625907. [PMID: 39677681 PMCID: PMC11642810 DOI: 10.1101/2024.12.01.625907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A detailed analysis of pain-related behaviors in rodents is essential for exploring both the mechanisms of pain and evaluating analgesic efficacy. With the advancement of pose-estimation tools, automatic single-camera video animal behavior pipelines are growing and integrating rapidly into quantitative behavioral research. However, current existing algorithms do not consider an animal's body-part contact intensity with- and distance from- the surface, a critical nuance for measuring certain pain-related responses like paw withdrawals ('flinching') with high accuracy and interpretability. Quantifying these bouts demands a high degree of attention to body part movement and currently relies on laborious and subjective human visual assessment. Here, we introduce a supervised machine learning algorithm, ARBEL: Automated Recognition of Behavior Enhanced with Light, that utilizes a combination of pose estimation together with a novel light-based analysis of body part pressure and distance from the surface, to automatically score pain-related behaviors in freely moving mice in three dimensions. We show the utility and accuracy of this algorithm for capturing a range of pain-related behavioral bouts using a bottom-up animal behavior platform, and its application for robust drug-screening. It allows for rapid objective pain behavior scoring over extended periods with high precision. This open-source algorithm is adaptable for detecting diverse behaviors across species and experimental platforms.
Collapse
Affiliation(s)
- Omer Barkai
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Biyao Zhang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bruna Lenfers Turnes
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maryam Arab
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Yarmolinsky
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zihe Zhang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lee B Barrett
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
9
|
Lee PR, Ha T, Choi HS, Lee SE, Kim C, Hong GS. Piezo1 mediates mechanical signals in TRPV1-positive nociceptors in mice. Acta Physiol (Oxf) 2024; 240:e14236. [PMID: 39324481 DOI: 10.1111/apha.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
AIM This investigation addresses Piezo1's expression and mechanistic role in dorsal root ganglion (DRG) neurons and delineates its participation in mechanical and inflammatory pain modulation. METHODS We analyzed Piezo1's expression patterns in DRG neurons and utilized Piezo1-specific shRNA to modulate its activity. Electrophysiological assessments of mechanically activated (MA) currents in DRG neurons and behavioral analyses in mouse models of inflammatory pain were conducted to elucidate Piezo1's functional implications. Additionally, we investigated the excitability of TRPV1-expressing DRG neurons, particularly under inflammatory conditions. RESULTS Piezo1 was preferentially expressed in DRG neurons co-expressing the TRPV1 nociceptor marker. Knockdown of Piezo1 attenuated intermediately adapting MA currents and lessened tactile pain hypersensitivity in models of inflammatory pain. Additionally, silencing Piezo1 modified the excitability of TRPV1-expressing neurons under inflammatory stress. CONCLUSION Piezo1 emerges as a key mediator in the transmission of mechanical and inflammatory pain, indicating its potential as a novel target for pain management therapies. Our finding not only advances the understanding of nociceptive signaling but also emphasizes the therapeutic potential of modulating Piezo1 in the treatment of pain.
Collapse
Affiliation(s)
- Pa Reum Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, KIST, Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, KIST, Seoul, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Wu J, Chen G, Quan X, Shu H, Duan G, Shu B, Wang T, Huang H, Chen Y, Nie M. Combination of different local anesthetic adjunct for supraclavicular brachial plexus block after arthroscopic shoulder surgery: a prospective randomized controlled trial. BMC Musculoskelet Disord 2024; 25:844. [PMID: 39448947 PMCID: PMC11515582 DOI: 10.1186/s12891-024-07982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Acute pain is a major concern after arthroscopic shoulder surgery, supraclavicular brachial plexus blockade has shown favorable postoperative analgesic effects. However, its duration of analgesia does not meet clinical needs. We aimed to explore whether the combination of different local anesthetic adjunct can prolong the analgesic duration of supraclavicular brachial plexus block for arthroscopic shoulder surgery. METHODS In this prospective randomized controlled trial, we allocated 80 patients into four groups: Group DMD (dexamethasone 10 mg + ropivacaine 100 mg + dexmedetomidine 50 µg + magnesium sulfate 250 mg), Group DM (ropivacaine 100 mg + dexmedetomidine 50 µg + magnesium sulfate 250 mg), Group M (ropivacaine 100 mg + magnesium sulfate 250 mg) and Group D (ropivacaine 100 mg + dexmedetomidine 50 µg). The primary outcome was the time to first request for analgesia. Secondary outcome measures included cumulative opioid consumption at 6, 12, 18, 24, and 48 h postoperatively, VAS scores at 6, 12, 18, 24, and 48 h postoperatively and so on. RESULTS The time to first request for analgesia in Group DMD was significantly longer than Group DM (P = 0.011) and Group M (P = 0.003). The cumulative opioid consumption at 18 h postoperatively in Group DMD was significantly lower than in Group DM (P = 0.002) and Group M (P = 0.007). The cumulative opioid consumption at 24 h postoperatively in Group DMD was significantly lower than in Group DM (P = 0.016). The VAS score at 6 h postoperatively in Group DMD was significantly lower than in Group DM and Group M. The VAS score at 12 h postoperatively in Group DMD was significantly lower than in Group M. For American Shoulder and Elbow Surgeons Score, Group DMD had a better score than Group DM and Group D. CONCLUSIONS The analgesic efficacy of supraclavicular brachial plexus blockade combined with dexamethasone, magnesium sulfate, and dexmedetomidine is significantly superior to the combination of magnesium sulfate and dexmedetomidine, and significantly superior to the use of magnesium sulfate alone. TRIAL REGISTRATION This trial was registered in Chinese Clinical Trial Registry. (ChiCTR2200061181, Date of registration: June 15, 2022, http://www.chictr.org.cn ).
Collapse
Affiliation(s)
- Jiangping Wu
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China
| | - Guizhen Chen
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaolin Quan
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China
| | - Han Shu
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China
| | - Guangyou Duan
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Shu
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China
| | - He Huang
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanjing Chen
- Department of Anaesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Mao Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China.
| |
Collapse
|
11
|
Braga AV, Morais MÍ, Delfino DGS, Costa SOAM, Barbosa BCM, Rodrigues FF, Melo ISF, Matos RC, Castro BFM, Cunha Júnior AS, Braga TC, de Fátima Â, Coelho MM, Machado RR. Nicorandil antiallodynic activity in a model of neuropathic pain is associated with the activation of ATP-dependent potassium channels and opioidergic pathways, and reduced production of cytokines and neutrophils recruitment in paw, sciatic nerve, and dorsal root ganglia. Pharmacol Rep 2024; 76:1067-1078. [PMID: 39179890 DOI: 10.1007/s43440-024-00640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recently, we demonstrated that nicorandil inhibits mechanical allodynia induced by paclitaxel. In the present study, we evaluated the effect induced by nicorandil in a model of neuropathic pain induced by chronic constriction injury (CCI) in mice. We also investigated putative mechanisms underlying such an effect. METHODS CCI was induced by three ligatures of the left sciatic nerve. Mechanical allodynia was evaluated by measuring the paw withdrawal threshold with an electronic von Frey apparatus. Concentrations of cytokines and myeloperoxidase activity were determined in the paw tissue, sciatic nerve, and dorsal root ganglia (DRG). RESULTS Oral administration of two doses of nicorandil (150 mg/kg po), but not equimolar doses of nicotinamide or nicotinic acid, attenuated mechanical allodynia induced by CCI. Nicorandil activity was reduced by previous administration of glibenclamide (40 mg/kg) or naltrexone (5 mg/kg or 10 mg/kg). Two doses of nicorandil (150 mg/kg, po) reduced tumor necrosis factor-α, interleukin-1β and interleukin-6, but not CXCL-1, concentrations in the paw tissue of CCI mice. Two doses of nicorandil (150 mg/kg, po) reduced concentrations of all these mediators in the sciatic nerve and DRG. Two doses of nicorandil (150 mg/kg, po) also reduced the myeloperoxidase activity in the paw tissue, sciatic nerve, and DRG. CONCLUSIONS Nicorandil exhibits antiallodynic activity in a model of neuropathic pain induced by CCI. Inhibition of cytokines production and reduction of neutrophils recruitment in paw tissue, sciatic nerve, and DRG as well as activation of ATP-dependent potassium channels and opioidergic pathways, underlie nicorandil antiallodynic activity.
Collapse
Affiliation(s)
- Alysson V Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Marcela Í Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Darly G S Delfino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Bárbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rafael C Matos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Brenda F M Castro
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Armando S Cunha Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Taniris C Braga
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
12
|
Oweidat A, Kalagara H, Sondekoppam RV. Current concepts and targets for preventing the transition of acute to chronic postsurgical pain. Curr Opin Anaesthesiol 2024; 37:588-596. [PMID: 39087396 DOI: 10.1097/aco.0000000000001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW It is estimated that approximately a third of patients undergoing certain surgeries may report some degree of persistent pain postoperatively. Chronic postsurgical pain (CPSP) reduces quality of life, is challenging to treat, and has significant socio-economic impact. RECENT FINDINGS From an epidemiological perspective, factors that predispose patients to the development of CPSP may be considered in relation to the patient, the procedure or, the care environment. Prevention or management of transition from acute to chronic pain often need a multidisciplinary approach beginning early in the preoperative period and continuing beyond surgical admission. The current concepts regarding the role of central and peripheral nervous systems in chronification of pain may provide targets for future therapies but, the current evidence seems to suggest that a multimodal analgesic approach of preventive analgesia along with a continued follow-up and treatment after hospital discharge may hold the key to identify and manage the transitioning of acute to chronic pain. SUMMARY A comprehensive multidisciplinary approach with prior identification of risk factors, minimizing the surgical insult and a culture of utilizing multimodal analgesia and continued surveillance beyond the period of hospitalization is an important step towards reducing the development of chronic pain. A transitional pain service model may accomplish many of these goals.
Collapse
Affiliation(s)
- Adeeb Oweidat
- Department of Anesthesia, University of Iowa Healthcare, Iowa City, Iowa
| | - Hari Kalagara
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
13
|
Patil G, Patil S, Hosur P. Ayurveda management of migraine - a case report. J Ayurveda Integr Med 2024; 15:100983. [PMID: 39454285 PMCID: PMC11539406 DOI: 10.1016/j.jaim.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is one of the most prevalent causes of functional disability worldwide. Migraine patients experience headaches of varying degrees, which are related with a higher level of disability and are triggered by psychological and physiological stressors. Migraine is estimated to affect 16.6% of the world's population, with women being three times more likely to experience it than men. Despite considerable advancements in modern and traditional medicine, a complete cure remains uncertain. In Ayurvedic treatises, migraine headache is referred to as Ardhavabedhaka under the classification of Shiroroga (diseases related to the head region). 35-year-old Indian male police inspector, suffering from recurrent right hemi-cranial headaches once in three days for the last three months, presented symptoms of Tridhoshaja Ardhvabhedaka (Migraine) associated with Amlapitta (hyperacidity). After a thorough assessment of the patient, the treatment was meticulously planned based on the patient's Dosha pradhanyatha and Vyadhi avastha(stage of disease). For the proper Samprapti vighatana, Nidana parivarjana (abstinance from the eitiological factors), Deepana, Paachana, Siravyadha, Nasya and Dosha ShamanaChikitsa principles were adopted. Further, the severity of the migraine was assessed by MIDAS and NPR score, which subsequently decreased from 19 to 4, and the NPR scale decreased from 8 to 2 till completion of the therapeutic intervention. This case report unequivocally highlights the pivotal role of the Ayurveda treatment regimen in effectively managing migraine. Overall, effective treatment of migraine cases requires the correct assessment of Dosha status and Vyadhi avastha and the correct selection of the appropriate medicine and procedures like Siravyadha and Nasya at that appropriate stage of the disease.
Collapse
Affiliation(s)
- Giramalla Patil
- All India Institute of Ayurveda, Sarita Vihar, New Delhi, 110076, India.
| | - Shivanand Patil
- All India Institute of Ayurveda, Dargalim, Goa, 403519, India
| | - Prateek Hosur
- SGES's Dr N A Magdum Ayurvedic Medical College, Ankali, Belgaum, Karnataka, 591213, India
| |
Collapse
|
14
|
Takeda M, Sashide Y, Toyota R, Ito H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024; 29:3957. [PMID: 39203035 PMCID: PMC11357422 DOI: 10.3390/molecules29163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (Y.S.); (R.T.); (H.I.)
| | | | | | | |
Collapse
|
15
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. Sci Rep 2024; 14:9051. [PMID: 38643253 PMCID: PMC11032389 DOI: 10.1038/s41598-024-59424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
17
|
Salib AMN, Crane MJ, Lee SH, Wainger BJ, Jamieson AM, Lipscombe D. Interleukin-1α links peripheral Ca V2.2 channel activation to rapid adaptive increases in heat sensitivity in skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.17.572072. [PMID: 38585803 PMCID: PMC10996502 DOI: 10.1101/2023.12.17.572072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurons have the unique capacity to adapt output in response to changes in their environment. Within seconds, sensory nerve endings can become hypersensitive to stimuli in response to potentially damaging events. The underlying behavioral response is well studied, but several of the key signaling molecules that mediate sensory hypersensitivity remain unknown. We previously discovered that peripheral voltage-gated CaV2.2 channels in nerve endings in skin are essential for the rapid, transient increase in sensitivity to heat, but not to mechanical stimuli, that accompanies intradermal capsaicin. Here we report that the cytokine interleukin-1α (IL-1α), an alarmin, is necessary and sufficient to trigger rapid heat and mechanical hypersensitivity in skin. Of 20 cytokines screened, only IL-1α was consistently detected in hind paw interstitial fluid in response to intradermal capsaicin and, similar to behavioral sensitivity to heat, IL-1α levels were also dependent on peripheral CaV2.2 channel activity. Neutralizing IL-1α in skin significantly reduced capsaicin-induced changes in hind paw sensitivity to radiant heat and mechanical stimulation. Intradermal IL-1α enhances behavioral responses to stimuli and, in culture, IL-1α enhances the responsiveness of Trpv1-expressing sensory neurons. Together, our data suggest that IL-1α is the key cytokine that underlies rapid and reversible neuroinflammatory responses in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Sang Hun Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian J Wainger
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
18
|
Sashide Y, Toyota R, Takeda M. Local Administration of the Phytochemical, Quercetin, Attenuates the Hyperexcitability of Rat Nociceptive Primary Sensory Neurons Following Inflammation Comparable to lidocaine. THE JOURNAL OF PAIN 2024; 25:755-765. [PMID: 37832900 DOI: 10.1016/j.jpain.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Although in vivo local injection of quercetin into the peripheral receptive field suppresses the excitability of rat nociceptive trigeminal ganglion (TG) neurons, under inflammatory conditions, the acute effects of quercetin in vivo, particularly on nociceptive TG neurons, remain to be determined. The aim of this study was to examine whether acute local administration of quercetin into inflamed tissue attenuates the excitability of nociceptive TG neurons in response to mechanical stimulation. The mechanical escape threshold was significantly lower in complete Freund's adjuvant (CFA)-inflamed rats compared to before CFA injection. Extracellular single-unit recordings were made from TG neurons of CFA-induced inflammation in anesthetized rats in response to orofacial mechanical stimulation. The mean firing frequency of TG neurons in response to both non-noxious and noxious mechanical stimuli was reversibly inhibited by quercetin in a dose-dependent manner (1-10 mM). The mean firing frequency of inflamed TG neurons in response to mechanical stimuli was reversibly inhibited by the local anesthetic, 1% lidocaine (37 mM). The mean magnitude of inhibition on TG neuronal discharge frequency with 1 mM quercetin was significantly greater than that of 1% lidocaine. These results suggest that local injection of quercetin into inflamed tissue suppresses the excitability of nociceptive primary sensory TG neurons. PERSPECTIVE: Local administration of the phytochemical, quercetin, into inflamed tissues is a more potent local analgesic than voltage-gated sodium channel blockers as it inhibits the generation of both generator potentials and action potentials in nociceptive primary nerve terminals. As such, it contributes to the area of complementary and alternative medicines.
Collapse
Affiliation(s)
- Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
19
|
Yu N, Cui H, Jin S, Liu P, Fang Y, Sun F, Cao Y, Yuan B, Xie Y, Duan W, Ma C. IL-6 from cerebrospinal fluid causes widespread pain via STAT3-mediated astrocytosis in chronic constriction injury of the infraorbital nerve. J Neuroinflammation 2024; 21:60. [PMID: 38419042 PMCID: PMC10900663 DOI: 10.1186/s12974-024-03049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The spinal inflammatory signal often spreads to distant segments, accompanied by widespread pain symptom under neuropathological conditions. Multiple cytokines are released into the cerebrospinal fluid (CSF), potentially inducing the activation of an inflammatory cascade at remote segments through CSF flow. However, the detailed alteration of CSF in neuropathic pain and its specific role in widespread pain remain obscure. METHODS A chronic constriction injury of the infraorbital nerve (CCI-ION) model was constructed, and pain-related behavior was observed on the 7th, 14th, 21st, and 28th days post surgery, in both vibrissa pads and hind paws. CSF from CCI-ION rats was transplanted to naïve rats through intracisternal injection, and thermal and mechanical allodynia were measured in hind paws. The alteration of inflammatory cytokines in CCI-ION's CSF was detected using an antibody array and bioinformatic analysis. Pharmacological intervention targeting the changed cytokine in the CSF and downstream signaling was performed to evaluate its role in widespread pain. RESULTS CCI-ION induced local pain in vibrissa pads together with widespread pain in hind paws. CCI-ION's CSF transplantation, compared with sham CSF, contributed to vibrissa pad pain and hind paw pain in recipient rats. Among the measured cytokines, interleukin-6 (IL-6) and leptin were increased in CCI-ION's CSF, while interleukin-13 (IL-13) was significantly reduced. Furthermore, the concentration of CSF IL-6 was correlated with nerve injury extent, which gated the occurrence of widespread pain. Both astrocytes and microglia were increased in remote segments of the CCI-ION model, while the inhibition of astrocytes in remote segments, but not microglia, significantly alleviated widespread pain. Mechanically, astroglial signal transducer and activator of transcription 3 (STAT3) in remote segments were activated by CSF IL-6, the inhibition of which significantly mitigated widespread pain in CCI-ION. CONCLUSION IL-6 was induced in the CSF of the CCI-ION model, triggering widespread pain via activating astrocyte STAT3 signal in remote segments. Therapies targeting IL-6/STAT3 signaling might serve as a promising strategy for the widespread pain symptom under neuropathological conditions.
Collapse
Affiliation(s)
- Ning Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Huan Cui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Sixuan Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Penghao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, 100053, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengrun Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Yan Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Bo Yuan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Yikuan Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, 100053, China.
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China.
| | - Chao Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5 DongDanSanTiao, Dongcheng District, Beijing, 100005, China.
- National Human Brain Bank for Development and Function, Beijing, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
20
|
Waheed S, Ramzan K, Ahmad S, Khan MS, Wajid M, Ullah H, Umar A, Iqbal R, Ullah R, Bari A. Identification and In-Silico study of non-synonymous functional SNPs in the human SCN9A gene. PLoS One 2024; 19:e0297367. [PMID: 38394191 PMCID: PMC10889873 DOI: 10.1371/journal.pone.0297367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.
Collapse
Affiliation(s)
- Sana Waheed
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Kainat Ramzan
- Faculty of Life Science, Department of Biochemistry, University of Okara, Okara, Pakistan
| | - Sibtain Ahmad
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saleem Khan
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Muhammad Wajid
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Ali Umar
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Rashid Iqbal
- Faculty of Agriculture and Environment, Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Watanuki Y, Yajima S, Sashide Y, Takeda M. Effect of theanine on the hyperexcitability of trigeminal secondary nociceptive neurons following orofacial inflammation in rats. Eur J Oral Sci 2024; 132:e12961. [PMID: 37984410 DOI: 10.1111/eos.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
The present in vivo study investigated whether systemic administration of theanine attenuates the inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis (SpVc) neurons associated with hyperalgesia. Complete Freund's adjuvant (CFA) was injected into the whisker pads of 24 rats to induce inflammation, and then mechanical stimulation was applied to the orofacial area to assess the threshold of escape. The mechanical threshold was statistically significantly lower in CFA-inflamed rats compared to uninjected naïve rats, and this lowered threshold returned to control levels after 2 days of theanine administration. The mean discharge frequency of SpVc wide-dynamic range (WDR) neurons to mechanical stimuli in anesthetized CFA-inflamed rats was statistically significantly lower after two days of theanine administration. In addition, the increased mean spontaneous discharge of SpVc WDR neurons in CFA-inflamed rats statistically significantly decreased after theanine administration. Similarly, theanine restored the expanded mean receptive field size in CFA-inflamed rats to control levels. Taken together, these results suggest that administration of theanine attenuates inflammatory hyperalgesia associated with hyperexcitability of nociceptive SpVc WDR neurons. These findings support the potential of theanine as a therapeutic agent in complementary alternative medicine strategies to prevent inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yui Watanuki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Sora Yajima
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
22
|
Wei D, Birla H, Dou Y, Mei Y, Huo X, Whitehead V, Osei-Owusu P, Feske S, Patafio G, Tao Y, Hu H. PGE2 Potentiates Orai1-Mediated Calcium Entry Contributing to Peripheral Sensitization. J Neurosci 2024; 44:e0329232023. [PMID: 37952941 PMCID: PMC10851687 DOI: 10.1523/jneurosci.0329-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.
Collapse
Affiliation(s)
- Dongyu Wei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Yixiao Mei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Xiaodong Huo
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Victoria Whitehead
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Patrick Osei-Owusu
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, New York 10016
| | - Giovanna Patafio
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yuanxiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| |
Collapse
|
23
|
Staud R, Godfrey MM, Stroman PW. Fibromyalgia is associated with hypersensitivity but not with abnormal pain modulation: evidence from QST trials and spinal fMRI. FRONTIERS IN PAIN RESEARCH 2023; 4:1284103. [PMID: 38116188 PMCID: PMC10728773 DOI: 10.3389/fpain.2023.1284103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Melyssa M. Godfrey
- Division of Rheumatology and Clinical Immunology, University of Florida, Gainesville, FL, United States
| | - Patrick W. Stroman
- Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
24
|
Lei M, Wang Y, Chen Q, Huang P, Li Y, Jia Y, Meng D. Changes in serum levels of pain mediators in hemiplegic shoulder pain. Brain Behav 2023; 13:e3289. [PMID: 37864374 PMCID: PMC10726773 DOI: 10.1002/brb3.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE To provide a new insight into the diagnosis and treatment of hemiplegic shoulder pain (HSP) by investigating changes in serum pain mediators. DESIGN Cross-sectional study. SUBJECTS/PATIENTS Shoulder pain group (n = 34) and control group (n = 21). METHODS Pain-free shoulder mobility, anxiety status, depression status, and shoulder pain were measured by passive range of motion (PROM), self-rating anxiety scale, self-rating depression scale (SDS), and visual analog scale, respectively. The enzyme-linked immunosorbent assay was used to test the serum pain mediators, including interleukin (IL)-1β, IL-2, IL-6, IL-10, nerve growth factor (NGF), tumor necrosis factor-α (TNF-α), substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), 5-hydroxytryptamine (5-HT), prostaglandin E2 (PGE2), and lysophosphatidic acid (LPA). RESULTS Shoulder pain group pain-free PROM significantly lower than control (p < .01), and SDS index score of shoulder pain group was significantly higher than control (p < .05). The rate of spasticity in the flexor elbow muscles is higher in shoulder pain group (p < .01). CGRP, IL-10, and IL-2 were significantly upregulated in shoulder pain group compared with control (p < .01), whereas NGF, TNF-α, IL-6, 5-HT, PGE2, SP, LPA, BK, and IL-1β were significantly decreased (p < .01). CONCLUSION Patients with HSP have a higher risk of joint mobility disorders and depression; spasticity may be an important factor in the development of shoulder pain; CGRP is thought to be the major pain mediator in HSP, and HSP may not be inflammatory.
Collapse
Affiliation(s)
- Mincong Lei
- Rehabilitation CenterThe first Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Children's Hospital Affiliated to Zhejiang University School of MedicineHangzhouChina
| | - Yidi Wang
- Department of EpidemiologySchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Qian Chen
- Department of Rehabilitation MedicineNanjing Qixia District HospitalNanjingChina
| | - Peng Huang
- Department of EpidemiologySchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Yige Li
- The Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuanyuan Jia
- Rehabilitation CenterThe first Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Dianhuai Meng
- Rehabilitation CenterThe first Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| |
Collapse
|
25
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 PMCID: PMC11410024 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Tonello R, Silveira Prudente A, Hoon Lee S, Faith Cohen C, Xie W, Paranjpe A, Roh J, Park CK, Chung G, Strong JA, Zhang JM, Berta T. Single-cell analysis of dorsal root ganglia reveals metalloproteinase signaling in satellite glial cells and pain. Brain Behav Immun 2023; 113:401-414. [PMID: 37557960 PMCID: PMC10530626 DOI: 10.1016/j.bbi.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.
Collapse
Affiliation(s)
- Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jueun Roh
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Gehoon Chung
- Department of Oral Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Labanca M, Gianò M, Franco C, Rezzani R. Orofacial Pain and Dentistry Management: Guidelines for a More Comprehensive Evidence-Based Approach. Diagnostics (Basel) 2023; 13:2854. [PMID: 37685392 PMCID: PMC10486623 DOI: 10.3390/diagnostics13172854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Orofacial pain represents one of the most common health problems that negatively affects the activities of daily living. However, the mechanisms underlying these conditions are still unclear, and their comprehensive management is often lacking. Moreover, even if pain is a common symptom in dentistry, differential diagnostic procedures are needed to exclude other pain origins. Misinterpretation of the pain origin, in fact, can lead to misdiagnosis and to subsequent mismanagement. Pain in the orofacial area is the most common reason for patients to visit the dentist, but this area is complex, and the pain could be associated with the hard and soft tissues of the head, face, oral cavity, or to a dysfunction of the nervous system. Considering that the origins of orofacial pain can be many and varied, a thorough assessment of the situation is necessary to enable the most appropriate diagnostic pathway to be followed to achieve optimal clinical and therapeutic management.
Collapse
Affiliation(s)
- Mauro Labanca
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (R.R.)
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (R.R.)
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (R.R.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (R.R.)
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
28
|
Varrassi G, Tamburin S, Zis P, Guardamagna VA, Paladini A, Rekatsina M. What's New in Neuropathy? Cureus 2023; 15:e44952. [PMID: 37818524 PMCID: PMC10561699 DOI: 10.7759/cureus.44952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Neuropathic pain presents diagnostic and treatment challenges. Despite recent advances in our understanding of the diagnosis and treatment of neuropathy, much remains to be elucidated. Familiar with neuropathy is the paradox that aberrant nerve signaling causes both sensory loss and pain. Voltage-gated sodium channels play an important role in neuronal electrogenesis and communication among neurons, and their dysregulation leads to hyperexcitability and pain. While numerous validated diagnostic assessment tools are available for neuropathy, patients often experience a diagnostic delay about the cause of their neuropathy. New research is defining more specific types of neuropathy beyond peripheral and central forms. The prevalence of pain varies by type of neuropathy, with chronic idiopathic axonal polyneuropathy associated with the highest proportion of patients experiencing pain. In the majority of types, it exceeds 50%. Gluten neuropathy, a form of peripheral neuropathy, is a new diagnostic consideration. It may require electrochemical conductance testing of hands and feet to test for sudomotor dysfunction. Among those with serologically confirmed gluten sensitivity or celiac disease, gluten neuropathy is a common neurological manifestation and may be addressed at least partially by a gluten-free diet. In Greece, a new neuropathic pain registry was created in 2014 in order to help gather data from real-world neuropathic pain patients. While still in its earliest phase, this registry has already produced demographic and treatment data that suggest suboptimal prescribing and less than recommended use of interventional procedures. Awareness campaigns are underway to encourage more Greek pain clinics to participate in this important registry.
Collapse
Affiliation(s)
| | | | - Panagiotis Zis
- Department of Neurology, University of Cyprus, Nicosia, CYP
| | | | - Antonella Paladini
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Martina Rekatsina
- Department of Anesthesiology and Pain Management, University of Athens, Athens, GRC
| |
Collapse
|
29
|
Mousavi T, Sharifnia M, Nikfar S, Abdollahi M. Pharmacotherapy for gastric and intestinal cramping pain: current and emerging therapies. Expert Opin Pharmacother 2023; 24:2021-2033. [PMID: 37788098 DOI: 10.1080/14656566.2023.2265830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Acute gastrointestinal cramping pain (GICP) is a debilitating condition that affects many people worldwide, significantly reducing their quality of life. As such, prompt treatment is crucial. AREAS COVERED This article will explore relevant literature from databases such as PubMed, Scopus, Google Scholar, Cochrane Library, and Web of Science. Additionally, we searched ClinicalTrials.gov and the WHO ICTRP database for the latest clinical trials. EXPERT OPINION Consensus dictates that antispasmodics such as hyoscine-N-butyl bromide and mebeverine should be the primary treatment for GICP. If these prove ineffective, patients can switch to an antispasmodic with a different mode of action or add acetaminophen/NSAIDs for more severe cases. Currently, several antispasmodics are undergoing clinical trials, including drotaverine, alverine, pinaverium, otilonium bromide, fenoverine, tiropramide, otilonium bromide, trimebutine, and peppermint oil. Well-designed head-to-head studies are necessary to evaluate current antispasmodics' safety, efficacy, pharmacokinetic, and pharmacoeconomics profiles. Recent studies have shown that fixed-dose combinations of antispasmodics + NSAIDs or two different antispasmodics can improve patient compliance and synergistically reduce GICP. Therefore, it is recommended that the global availability and accessibility of these products be enhanced.
Collapse
Affiliation(s)
- Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadhossein Sharifnia
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lu G, Zhang S, Wang R, Zhang Z, Wang W, Wen Q, Zhang F, Li P. Global Trends in Research of Pain-Gut-Microbiota Relationship and How Nutrition Can Modulate This Link. Nutrients 2023; 15:3704. [PMID: 37686738 PMCID: PMC10490108 DOI: 10.3390/nu15173704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The link between gut microbiota and chronic painful conditions has recently gained attention. Nutrition, as a common intervention in daily life and medical practice, is closely related to microbiota and pain. However, no published bibliometric reports have analyzed the scientific literature concerning the link. METHODS AND RESULTS We used bibliometrics to identify the characteristics of the global scientific output over the past 20 years. We also aimed to capture and describe how nutrition can modulate the abovementioned link. Relevant papers were searched in the Web of Science database. All necessary publication and citation data were acquired and exported to Bibliometrix for further analyses. The keywords mentioned were illustrated using visualization maps. In total, 1551 papers shed light on the relationship from 2003 to 2022. However, only 122 papers discussed how nutritional interventions can modulate this link. The citations and attention were concentrated on the gut microbiota, pain, and probiotics in terms of the pain-gut relationship. Nutritional status has gained attention in motor themes of a thematic map. CONCLUSIONS This bibliometric analysis was applied to identify the scientific literature linking gut microbiota, chronic painful conditions, and nutrition, revealing the popular research topics and authors, scientific institutions, countries, and journals in this field. This study enriches the evidence moving boundaries of microbiota medicine as a clinical medicine.
Collapse
Affiliation(s)
- Gaochen Lu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Sheng Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rui Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Zulun Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
31
|
Berta T, Strong JA, Zhang JM, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain: an update. Expert Opin Ther Targets 2023; 27:665-678. [PMID: 37574713 PMCID: PMC10530032 DOI: 10.1080/14728222.2023.2247563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
32
|
Galvez-Sánchez CM, Montoro CI. Psychoeducation for Fibromyalgia Syndrome: A Systematic Review of Emotional, Clinical and Functional Related-Outcomes. Behav Sci (Basel) 2023; 13:bs13050415. [PMID: 37232652 DOI: 10.3390/bs13050415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Fibromyalgia Syndrome (FMS) is a chronic condition of widespread pain accompanied by several symptoms such as stiffness, fatigue, sleep problems, depression, anxiety, and cognitive deficits. To date, there is no specific treatment for FMS. The European League Against Rheumatism, and the majority of the international recommendations for managing FMS, has claimed psychoeducational intervention as the first step in FMS treatment for adequate symptoms management. However, scientific studies in this regard are scarce, diverse, and with contradictory findings. Results integration from analogous studies could provide a clear presentation of the real clinical value of psychoeducation in FMS. Therefore, the current systematic review aims at exploring the effect of psychoeducation on emotional, clinical, and functional symptoms of FMS patients and encourages researchers towards psychoeducation's procedure optimization and systematization. The systematic review was conducted according to the guidelines of the Cochrane Collaboration and PRISMA statements. The selected articles were evaluated using the Cochrane risk of bias (ROB) assessment tool. The selected articles were extracted from PubMed, Scopus, and Web of Science databases. The literature search identified 11 studies eligible for the systematic review. The ROB evaluation revealed that 2 of the 11 studies showed a low quality, the other 2 had a moderate quality, and the remaining 7 studies exhibited a high quality. Results showed that psychoeducation is generally included as an important first therapeutic step in multicomponent treatments for FMS. Moreover, psychoeducation generally seems to be quite beneficial in reducing emotional (i.e., number of days feeling emotionally well, general anxiety, depression levels, etc.) and clinical symptoms (levels of fatigue, morning stiffness, pain intensity, etc.), as well as increasing functional status (i.e., general physical function, morning fatigue, stiffness, etc.). Despite that psychoeducation´s clinical benefits are highlighted, there is scarce amount of research on psychoeducation beyond its usefulness as part of multicomponent treatments.
Collapse
|
33
|
Qin H, Wei A, Wang Y, Wang L, Xu H, Zhan Y, Tian X, Zheng Y, Gao Z, Hu Y. Discovery of selective Na V1.8 inhibitors based on 5-chloro-2-(4,4-difluoroazepan-1-yl)-6-methyl nicotinamide scaffold for the treatment of pain. Eur J Med Chem 2023; 254:115371. [PMID: 37084597 DOI: 10.1016/j.ejmech.2023.115371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The NaV1.8 channel is a genetically validated target for pain and it is mostly expressed in the peripheral nervous system. Based on the disclosed structures of NaV1.8-selective inhibitors, we designed and synthesized a series of compounds by introducing bicyclic aromatic fragments based on the nicotinamide scaffold. In this research, a systematic structure-activity relationship study was carried out. While compound 2c possessed moderate inhibitory activity (IC50 = 50.18 ± 0.04 nM) in HEK293 cells stably expressing human NaV1.8 channels, it showed potent inhibitory activity in DRG neurons and isoform selectivity (>200-fold against human NaV1.1, NaV1.5 and NaV1.7 channels). Moreover, the analgesic potency of compound 2c was identified in a post-surgical mouse model. These data demonstrate that compound 2c can be further evaluated as a non-addictive analgesic agent with reduced cardiac liabilities.
Collapse
Affiliation(s)
- Hui Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
| | - Aihuan Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yunqi Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linlin Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xuechen Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China.
| |
Collapse
|
34
|
Bressan GN, Cardoso PM, Reckziegel J, Fachinetto R. Reserpine and PCPA reduce heat tolerance in Drosophila melanogaster. Life Sci 2023; 318:121497. [PMID: 36780938 DOI: 10.1016/j.lfs.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Drosophila melanogaster is a model organism to study molecular mechanisms and the role of the genes and proteins involved in thermal nociception. Monoamines (i.e. dopamine) have been involved in temperature preference behavior in D. melanogaster. Therefore, we investigated whether the monoamines, particularly dopamine and serotonin, participate in the response to thermal nociceptive stimuli in D. melanogaster. Flies were treated with reserpine (an inhibitor of vesicular monoamines transporter, 3-300 μM), 3-Iodo-L-tyrosine (3-I-T, an inhibitor of tyrosine hydroxylase, 16.28-65.13 mM), and para-Chloro-DL-phenylalanine (PCPA, an inhibitor of tryptophan hydroxylase, 20-80 mM); then, the flies were subjected to tests of thermal tolerance and avoidance of noxious heat. Climbing behavior was used as a test to evaluate locomotor activity. Reserpine reduces the thermal tolerance profile of the D. melanogaster, as well as the avoidance of noxious heat and locomotor activity depending on the concentration. PCPA, but not 3-I-T, decreased heat tolerance and avoidance of noxious heat. These data suggest that monoamines, particularly serotonin, are associated with the impaired avoidance of noxious heat which could be related to the reduction of heat tolerance in D. melanogaster.
Collapse
Affiliation(s)
- Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Guedes JB, do Nascimento AL, Costa WK, de Veras BO, de Aguiar JCRDOF, Navarro DMDAF, Napoleão TH, da Silva MV, de Oliveira AM, Correia MTDS. Eugenia gracillima essential oil has pharmaceutical applications in pain and inflammation without toxic effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115941. [PMID: 36442761 DOI: 10.1016/j.jep.2022.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia gracillima is widely used by the population in the manufacture of pulps and jellies, with popular reports of its use in the treatment of infections in the urinary system, respiratory and dermatological problems. A previous study reports that EO from E. gracillima leaves proved to be a promising antioxidant agent in combating the promastigote forms of protozoa. Despite this, this species has been little studied due to its pharmacological properties. STUDY OBJECTIVE In this study, an essential oil extracted (EO) from Eugenia gracillima leaves was evaluated for its acute toxicity and anti-inflammatory, antinociceptive and behavioral effects in mice. METHODS The EO was obtained by hydrodistillation, and the composition analysis was performed by gas chromatography coupled to mass spectrometry. Acute toxicity assessment was performed with observation of hematological parameters and histopathological evaluation, as well as tests to investigate antinociceptive, anti-inflammatory activities and behavioral effects. RESULTS Chromatographic analysis showed D-germacrene (16.10%), γ-muurolene-g (15.60%) and bicyclogermacrene (8.53%) as the majority of compounds. In the toxicity evaluation, no death or physiological changes were observed in mice treated with a single oral dose of up to 5000 mg/kg, and it did not lyse erythrocytes in vitro. The hematological parameters evaluated were not changed after treatment; however, 5,000 mg/kg promoted an increase in transaminase levels. In the histopathological evaluation, only the animals that received the dose of 5000 mg/kg showed discrete leukocyte infiltration around the centrilobular vein in the liver. Antinociceptive activity was detected through tests of acetic acid-induced writhing, formalin, and tail flick, promoted in part by the opioid receptor pathway. In the evaluation of anti-inflammatory activity, a reduction in inflammation was observed in the paw edema test and a decrease in the migration of leukocytes and neutrophils in the peritonitis test. The open field and elevated plus maze tests showed that EO did not affect the animals' motor functions or exploratory activity. CONCLUSION It was concluded that the essential oil of E. gracillima has potential for the development of pharmaceutical formulations with analgesic and anti-inflammatory actions in non-toxic concentrations.
Collapse
Affiliation(s)
- Joyce Bezerra Guedes
- Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | | | - Wêndeo Kennedy Costa
- Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Bruno Oliveira de Veras
- Department of Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | | | | | - Thiago Henrique Napoleão
- Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Márcia Vanusa da Silva
- Department of Biochemistry, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | | | | |
Collapse
|
36
|
Park J, Farmer M, Casson C, Kalashnikova I, Kolpek D. Therapeutic Potential of Combinative shRNA-Encoded Lentivirus-Mediated Gene Silencing to Accelerate Somatosensory Recovery After Spinal Cord Trauma. Neurotherapeutics 2023; 20:564-577. [PMID: 36401079 PMCID: PMC10121969 DOI: 10.1007/s13311-022-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain following spinal cord injury (SCI) remains a difficult problem that affects more than 80% of SCI patients. Growing evidence indicates that neuroinflammatory responses play a key role in neuropathic pain after SCI. Short hairpin RNA (shRNA) interference is an efficient tool for the knockdown of disease-related specific gene expression after SCI, yet insufficient data is available to establish guidelines. In this study, we have constructed the transient receptor potential ankyrin 1 (TRPA1) shRNA encoded-lentiviral vector (LV-shTRPA1) and P38 MAPK shRNA encoded-lentiviral vector (LV-shP38) to investigate the silencing effects of shRNAs and their ability to reprogram the neuroinflammatory responses, thereby enhancing somatosensory recovery after SCI. Our in vitro data employing HEK293-FT and activated macrophages demonstrated that delivered LV-shRNAs showed high transduction efficacy with no cytotoxicity. Furthermore, a combination of LV-shP38 and LV-shTRPA1 was found to be most effective at suppressing target genes, cutting the expression of pro-inflammatory and pro-nociceptive factors in the dorsal horn of the spinal cord and dorsal root ganglia, thus contributing to the alleviation of neuronal hypersensitivities after SCI. Overall, our data demonstrated that the combination LV-shP38/shTRPA1 produced a synergistic effect for immunomodulation and reduced neuropathic pain with a favorable risk-to-benefit ratio. Collectively, our LV-mediated shRNA delivery will provide an efficient tool for gene silencing therapeutic approaches to treat various incurable disorders.
Collapse
Affiliation(s)
- Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone, Lexington, KY, 40506, USA.
| | - Matthew Farmer
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Camara Casson
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| |
Collapse
|
37
|
Effects of intra-nasal melanocortin-4 receptor antagonist on trigeminal neuropathic pain in male and female rats. Neurosci Lett 2023; 796:137054. [PMID: 36610589 DOI: 10.1016/j.neulet.2023.137054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Treatment of chronic orofacial pain remains a major therapeutic challenge despite available medications. Melanocortins have been implicated in pathologic pain. Intrathecal administration of MC4R antagonists has been shown to alleviate neuropathic pain (NP) in male rats. However, intrathecal delivery is very invasive and requires surgeon's intervention. Intra-nasal rout offers a non-invasive drug delivery method that can be self-administered making it very attractive clinically. In this study, we investigated the effects of intra-nasally delivered MC4R antagonist (HS014) on trigeminal neuropathic pain (TNP) in male and female rats. We also measured the MC4R protein levels in the trigeminal ganglia (TG) and infraorbital nerve (ION) of rats. We used ION chronic constriction injury (ION-CCI) to induce TNP in rats. We used von Frey and pinprick assays to measure the development of hypersensitivity in the face following ION-CCI. At 22 days post-ION-CCI, we delivered HS014 intra-nasally to measure its effects on TNP in rats. We used enzyme linked immunosorbent assay to measure MC4R protein levels in the TG and ION. ION-CCI resulted in a significant increase of MC4R protein levels in the ipsilateral TG and ION of male and female rats. Intra-nasal delivered HS014 resulted in a significant reduction of ION-CCI induced hypersensitivity in male and female rats. These results demonstrate that intranasal delivery of MC4R antagonist alleviated TNP in male and female rats and suggest that such treatment could be beneficial therapeutically for individuals with chronic NP.
Collapse
|
38
|
Brusco I, Fialho MFP, Becker G, Brum ES, Favarin A, Marquezin LP, Serafini PT, Oliveira SM. Kinins and their B 1 and B 2 receptors as potential therapeutic targets for pain relief. Life Sci 2023; 314:121302. [PMID: 36535404 DOI: 10.1016/j.lfs.2022.121302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
39
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
40
|
Desulfovibrio confers resilience to the comorbidity of pain and anxiety in a mouse model of chronic inflammatory pain. Psychopharmacology (Berl) 2023; 240:87-100. [PMID: 36441221 DOI: 10.1007/s00213-022-06277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with chronic pain frequently suffer from anxiety symptoms. It has been well established that gut microbiota is associated with the pathogenesis of pain and anxiety. However, it is unknown whether the gut microbiota, particularly the specific bacteria, play a role in the comorbidity of chronic pain and anxiety. METHODS Chronic inflammatory pain was induced in mice by a single injection of complete Freund's adjuvant (CFA). Mice were then separated into anxiety-susceptible and anxiety-resilient phenotypes by hierarchical clustering analysis of behaviors. Fecal samples were collected to perform 16S rRNA gene sequencing. Chronic diazepam intervention served as a therapeutic strategy and its effect on the composition of gut microbiota was also determined. RESULTS α-Diversity and β-diversity both showed significant differences among the groups. A total of 12 gut bacteria were both altered after CFA injection and reversed by chronic diazepam treatment. More importantly, the pain hypersensitivity and anxiety-like behaviors were relieved by chronic diazepam treatment. Interestingly, we also found that Desulfovibrio was increased in anxiety-resilient group compared to control and anxiety-susceptible groups. CONCLUSION Abnormal composition of gut microbiota plays an essential role in chronic pain as well as in anxiety. Besides, the increased level of Desulfovibrio in anxiety-resilient mice indicated its therapeutic effects on the comorbidity of pain and anxiety. Collectively, targeting gut microbiota, especially increasing the Desulfovibrio level, might be effective in the alleviation of chronic pain-anxiety comorbidity.
Collapse
|
41
|
Revand R, Singh SK, Muthu MS. Subthreshold Doses of Inflammatory Mediators potentiate One Another to Elicit Reflex Cardiorespiratory Responses in Anesthetized Rats. Cardiovasc Hematol Agents Med Chem 2023; 22:90-99. [PMID: 37032504 DOI: 10.2174/1871525721666230407103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Reflex cardio-vascular and respiratory (CVR) alterations evoked by intraarterial instillation of nociceptive agents are termed vasosensory reflexes. Such responses elicited by optimal doses of inflammatory mediators have been described in our earlier work. OBJECTIVE The present study was designed to evaluate the interactions between subthreshold doses of inflammatory mediators on perivascular nociceptive afferents in urethane anesthetized rats. METHODS Healthy male adult rats (Charles-Foster strain) were anesthetized with an intraperitoneal injection of urethane. After anesthesia, the right femoral artery was cannulated. Respiratory movements, blood pressure, and electrocardiogram were recorded. The interactions between subthreshold doses of algogens in the elicitation of vasosensory reflex responses were studied by instillation of bradykinin (1 nM) and histamine (100 μM) into the femoral artery one after the other, in either temporal combination in separate groups of rats. The CVR responses obtained in these groups were then compared with the responses produced by 100 μM histamine and 1 nM bradykinin in saline-pretreated groups, which served as control. RESULTS Subthreshold doses of histamine elicited transient tachypnoeic, hyperventilatory, hypotensive, and bradycardiac responses, in rats pretreated with subthreshold doses of bradykinin [p < 0.01, two-sided Dunnett's test] but not in saline pretreated groups [p > 0.05, two-sided Dunnett's test]. Similar responses were elicited by bradykinin after histamine pretreatment compared to the saline-pretreated group. Furthermore, CVR responses produced by histamine in the bradykininpretreated group were greater in magnitude as compared to bradykinin-induced responses in the histamine-pretreated group [p < 0.05, two-sided Dunnett's test]. CONCLUSION The present study demonstrates that both bradykinin and histamine potentiate one another in the elicitation of vasosensory reflex responses, and bradykinin is a better potentiator than histamine at the level of perivascular nociceptive afferents in producing reflex CVR changes.
Collapse
Affiliation(s)
- Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP, India
| |
Collapse
|
42
|
Tu Y, Muley MM, Beggs S, Salter MW. Microglia-independent peripheral neuropathic pain in male and female mice. Pain 2022; 163:e1129-e1144. [PMID: 35384869 PMCID: PMC9578531 DOI: 10.1097/j.pain.0000000000002643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The dominant view in the field of pain is that peripheral neuropathic pain is driven by microglia in the somatosensory processing region of the spinal dorsal horn. Here, to the contrary, we discovered a form of neuropathic pain that is independent of microglia. Mice in which the nucleus pulposus (NP) of the intervertebral disc was apposed to the sciatic nerve developed a constellation of neuropathic pain behaviours: hypersensitivity to mechanical, cold, and heat stimuli. However, NP application caused no activation of spinal microglia nor was pain hypersensitivity reversed by microglial inhibition. Rather, NP-induced pain hypersensitivity was dependent on cells within the NP which recruited macrophages to the adjacent nerve. Eliminating macrophages systemically or locally prevented NP-induced pain hypersensitivity. Pain hypersensitivity was also prevented by genetically disrupting the neurotrophin brain-derived neurotrophic factor selectively in macrophages. Moreover, the behavioural phenotypes as well as the molecular mechanisms of NP-induced pain hypersensitivity were not different between males and females. Our findings reveal a previously unappreciated mechanism for by which a discrete peripheral nerve lesion may produce pain hypersensitivity, which may help to explain the limited success of microglial inhibitors on neuropathic pain in human clinical trials.
Collapse
Affiliation(s)
- YuShan Tu
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Milind M. Muley
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Simon Beggs
- Developmental Neurosciences, UCL GOSH Institute of Child Health, London, United Kingdom
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
44
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
45
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
47
|
Khan FA, Ali G, Rahman K, Khan Y, Ayaz M, Mosa OF, Nawaz A, Hassan SSU, Bungau S. Efficacy of 2-Hydroxyflavanone in Rodent Models of Pain and Inflammation: Involvement of Opioidergic and GABAergic Anti-Nociceptive Mechanisms. Molecules 2022; 27:5431. [PMID: 36080199 PMCID: PMC9457732 DOI: 10.3390/molecules27175431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The current work examined the pharmacological potential of a selected flavanone derivative 2-hydroxyflavanone as a promising remedy for the treatment and management of pain. The selected flavanone derivative (2-HF) was evaluated for its analgesic and anti-inflammatory potentials following standard pharmacological protocols including hot plate, acetic acid-induced writhing and tail immersion tests. Naloxone and pentylenetetrazol were used to evaluate the potential implication of GABAergic and opioidergic mechanisms. The anti-inflammatory potential of 2-HF was confirmed using carrageenan-, serotonin- and histamine-induced paw edema models as well as a xylene-induced ear edema model. Furthermore, the anti-neuropathic potential of 2-HF was tested using a cisplatin-induced neuropathic pain model. Our sample, at the tested concentrations of 15, 30 and 45 mg kg-1, showed considerable analgesic, anti-inflammatory effects, as well as efficacy against neuropathic pain. Naloxone and pentylenetetrazol at 1 and 15 mg kg-1 antagonized the anti-nociceptive activities of 2-hydroxyflavanone indicating the involvement of opioidergic and GABAergic mechanisms. In the static allodynia model, combination of gabapentin 75 mg kg-1 with 2-HF at 15, 30, 45 mg kg-1 doses exhibited considerable efficacy. In cold allodynia, 2-hydroxyflavanone, at doses of 15, 30 and 45 mg kg-1 and in combination with gabapentin (75 mg kg-1), demonstrated prominent anti-allodynic effects. The paw withdrawal latency was considerably increased in gabapentin + cisplatin treated groups. Moreover, cisplatin + 2-hydroxyflavanone 15, 30, 45 mg kg-1 showed increases in paw withdrawal latency. Likewise, considerable efficacy was observed for 2-hydroxyflavanone in thermal hyperalgesia and dynamic allodynia models. Our findings suggest that 2-hydroxyflavanone is a potential remedy for pain syndrome, possibly mediated through opioidergic and GABAergic mechanisms.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Khista Rahman
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Yahya Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Osama F. Mosa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah 24231, Saudi Arabia
- Biochemistry Department, Bukhara State Medical Institute Named after Abu Ali Ibn Sino, Bukhara 281403, Uzbekistan
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
48
|
Faouzi M, Wakano C, Monteilh-Zoller MK, Neupane RP, Starkus JG, Neupane JB, Cullen AJ, Johnson BE, Fleig A, Penner R. Acidic Cannabinoids Suppress Proinflammatory Cytokine Release by Blocking Store-operated Calcium Entry. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac033. [PMID: 35910331 PMCID: PMC9334010 DOI: 10.1093/function/zqac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined. In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines. Store-operated Ca2+ entry is one of the most significant Ca2+ influx mechanisms in immune cells, and it is critical for the activation of T lymphocytes, leading to the release of proinflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain. While the two major cannabinoids cannabidiol and trans-Δ9-tetrahydrocannabinol were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly cannabigerolic acid, demonstrated high potency against SOCE by blocking calcium release-activated calcium currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of nuclear factor of activated T-cells activation and Interleukin 2 production in human T lymphocytes. Taken together, these results indicate that cannabinoid-mediated inhibition of a proinflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.
Collapse
Affiliation(s)
| | | | | | - Ram P Neupane
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - John G Starkus
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Brandon E Johnson
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA,Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | |
Collapse
|
49
|
Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities? Biomedicines 2022; 10:biomedicines10061373. [PMID: 35740395 PMCID: PMC9219608 DOI: 10.3390/biomedicines10061373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain (NP) is a common chronic condition that severely affects patients with spinal cord injuries (SCI). It impairs the overall quality of life and is considered difficult to treat. Currently, clinical management of NP is often limited to drug therapy, primarily with opioid analgesics that have limited therapeutic efficacy. The persistence and intractability of NP following SCI and the potential health risks associated with opioids necessitate improved treatment approaches. Nanomedicine has gained increasing attention in recent years for its potential to improve therapeutic efficacy while minimizing toxicity by providing sensitive and targeted treatments that overcome the limitations of conventional pain medications. The current perspective begins with a brief discussion of the pathophysiological mechanisms underlying NP and the current pain treatment for SCI. We discuss the most frequently used nanomaterials in pain diagnosis and treatment as well as recent and ongoing efforts to effectively treat pain by proactively mediating pain signals following SCI. Although nanomedicine is a rapidly growing field, its application to NP in SCI is still limited. Therefore, additional work is required to improve the current treatment of NP following SCI.
Collapse
|
50
|
Mechanisms of bone pain: Progress in research from bench to bedside. Bone Res 2022; 10:44. [PMID: 35668080 PMCID: PMC9170780 DOI: 10.1038/s41413-022-00217-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
AbstractThe field of research on pain originating from various bone diseases is expanding rapidly, with new mechanisms and targets asserting both peripheral and central sites of action. The scope of research is broadening from bone biology to neuroscience, neuroendocrinology, and immunology. In particular, the roles of primary sensory neurons and non-neuronal cells in the peripheral tissues as important targets for bone pain treatment are under extensive investigation in both pre-clinical and clinical settings. An understanding of the peripheral mechanisms underlying pain conditions associated with various bone diseases will aid in the appropriate application and development of optimal strategies for not only managing bone pain symptoms but also improving bone repairing and remodeling, which potentially cures the underlying etiology for long-term functional recovery. In this review, we focus on advances in important preclinical studies of significant bone pain conditions in the past 5 years that indicated new peripheral neuronal and non-neuronal mechanisms, novel targets for potential clinical interventions, and future directions of research.
Collapse
|