1
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Rodriguez M, Xu H, Hernandez A, Ingraham J, Canizales J, Arce FT, Camp SM, Briggs S, Ooi A, Burke JM, Song JH, Garcia JGN. NEDD4 E3 ligase-catalyzed NAMPT ubiquitination and autophagy activation are essential for pyroptosis-independent NAMPT secretion in human monocytes. Cell Commun Signal 2025; 23:157. [PMID: 40159488 PMCID: PMC11956250 DOI: 10.1186/s12964-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
NAMPT is an important intracellular metabolic enzyme (iNAMPT) regulating the NAD+ salvage pathway. However, increased cellular stress (infection, inflammation, hypoxia) promotes the secretion of extracellular NAMPT (eNAMPT), a TLR4 ligand and damage-associated molecular pattern protein (DAMP) that directly drives amplification of innate immune-mediated inflammatory, fibrotic, and neoplastic responses to influence disease severity. We sought to examine the mechanisms underlying pyroptotic eNAMPT release from human monocytic THP-1 cells, evoked by Nigericin, and non-pyroptotic eNAMPT secretion elicited by lipopolysaccharide (LPS). Our data indicate eNAMPT secretion/release requires NLRP3 inflammasome activation with substantial attenuation by either NLRP3 inhibition (MCC-950) or targeted genetic deletion of key inflammasome components, including NLRP3, caspase-1, or gasdermin D (GSDMD). Pyroptosis-associated eNAMPT release involved cleavage of the pore-forming GSDMD protein resulting in plasma membrane rupture (PMR) whereas non-pyroptotic LPS-induced eNAMPT secretion involved neither GSDMD cleavage nor PMR, verified utilizing non-cleavable GSDMD mutant constructs. LPS-induced eNAMPT secretion, however, was highly dependent upon NAMPT ubiquitination catalyzed by a complex containing the NEDD4 E3 ligase, Hsp90 (a selective chaperone), and intact GSDMD verified by enzymatic inhibition or silencing of NEDD4, GSDMD, or Hsp90. NAMPT ubiquitination and secretion involves autophagy activation as super-resolution microscopy analyses demonstrate NAMPT co-localization with autophagosome marker LC3B and eNAMPT secretion was significantly reduced by targeted ATG5 and ATG7 inhibition, critical components of the autophagy E3-like complex. These studies provide key insights into eNAMPT secretion that may accelerate the development of therapeutic strategies that address unmet therapeutic needs in inflammatory, fibrotic and neoplastic disorders.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Annie Hernandez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Julia Ingraham
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jason Canizales
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Fernando Teran Arce
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Skyler Briggs
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Aikseng Ooi
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - James M Burke
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Jin H Song
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
3
|
Ratajczak-Pawłowska AE, Szymczak-Tomczak A, Hryhorowicz S, Zawada A, Skoracka K, Rychter AM, Skrzypczak-Zielińska M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Relationship of visfatin with obesity and osteoporosis in patients with inflammatory bowel disease: a narrative review. Front Immunol 2025; 16:1533955. [PMID: 40170859 PMCID: PMC11959099 DOI: 10.3389/fimmu.2025.1533955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is an increasingly prevalent condition in developed countries. Alongside the growing number of patients, there is a rising incidence of disease-related complications, including osteoporosis. While well-established risk factors for low bone mineral density in IBD-such as low body mass or steroid therapy-are widely recognized, other contributing factors warrant further investigation. One such factor is visfatin, a proinflammatory adipokine encoded by the NAMPT gene. Objectives This review aimed to explore the association between visfatin level, bone health, and obesity among patients with inflammatory bowel disease. Key findings Although visfatin is primarily associated with metabolic syndrome, it may also influence bone mineral density by affecting osteoblast and osteoclast differentiation and function. Additionally, some studies have identified a correlation between visfatin levels and bone mineral density. A deeper understanding of visfatin's role in osteoporosis development may contribute to the identification of novel therapeutic strategies. Therefore, lower bone mineral density in inflammatory bowel disease may be associated with obesity and visfatin levels. However, visfatin concentrations depend on many factors, including genetics, immunology, and nutritional factors, which may affect visfatin levels. Implications Current research highlights visfatin as both a potential biomarker and a therapeutic target for osteoporosis treatment. Nevertheless, limited studies have specifically examined the relationship between visfatin and bone mineral density in IBD. Further research is required to clarify this association and to explore how variations in visfatin levels impact bone density in IBD patients.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Medical Sciences, College of Social and Media Culture in Torun, Torun, Poland
- Laboratory of Molecular Genetics, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Ziqubu K, Mazibuko-Mbeje SE, Dludla PV. Regulation of adipokine and batokine secretion by dietary flavonoids, as a prospective therapeutic approach for obesity and its metabolic complications. Biochimie 2025; 230:95-113. [PMID: 39551425 DOI: 10.1016/j.biochi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity. However, understanding their mechanisms of action remains largely insufficient to formulate therapeutic theories. This review critically discusses scientific evidence highlighting the role of flavonoids in ameliorating obesity-related metabolic complications, including adipose tissue dysfunction, inflammation, insulin resistance, hepatic steatosis, and cardiovascular comorbidities in part by modulating the release of adipokines and batokines. Further discussion advocates for the use of therapeutics targeting these bioactive molecules as a potential avenue for developing effective treatment for obesity and its adverse metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
5
|
Tajik Z, Mehrafarid H, Bayani M, Almasi-Hashiani A. Comparison of visfatin levels before and after non-surgical periodontal therapy: A systematic review and meta-analysis. PLoS One 2025; 20:e0315035. [PMID: 39970162 PMCID: PMC11838901 DOI: 10.1371/journal.pone.0315035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 02/21/2025] Open
Abstract
Periodontitis is an inflammatory disease and involves a severe inflammation of the periodontium. On the other hand, visfatin is known as one of the inflammatory markers and can probably preserve inflammation in immune cells. Therefore, the purpose of this systematic review and meta-analysis is to compare the mean visfatin level before and after non-surgical periodontal treatment (NSPT). In this systematic review and meta-analysis, to find relevant studies, PubMed, Web of Science and Scopus were searched. Google Scholar was used to review gray literature. Standardized mean difference (SMD) along with 95% confidence interval (95%CI) was calculated. To perform the meta-analysis, in cases where there was significant heterogeneity between the studies, the random-effects model was used, otherwise the fixed-effects model was used. Sixteen studies were included in the meta-analysis. The results show that one month after the NSPT, there was no significant difference in the mean visfatin level of GCF (SMD: -3.91, 95%CI: -9.83, 2.01, p = 0.195, I-square, 96.6%, random effect model, n = 2) and serum (SMD: -0.33, 95%CI: -0.98, 0.33, p = 0.332, fixed effect model, n = 1), but 2, 3 and 6 months after NSPT, the mean visfatin level of GCF and serum decreased significantly. There is no significant difference one month after NSPT in diabetic patients (SMD: -5.83, 95%CI: -15.5, 3.83, p = 0.237, I-square, 97.4%, random effects model, n = 2), but three (SMD: -2.44, 95%CI: -3.37, -1.15, p = 0.001, I-square, 75.9%, random effects model, n = 3) and six months (SMD: -2.41, 95%CI: -3.81, -1.01, p = 0.001, I-square, 78.7%, random effects model, n = 2) after the treatment, a significant decrease is observed in the mean GCF visfatin level. Following the NSPT, the mean visfatin level of GCF, serum and saliva decreases, and in longer follow up time, the level of visfatin decreases significantly. Also, the mean GCF level of diabetic patients decreased after NSPT. Therefore, visfatin level may be used as a diagnostic and therapeutic noninvasive biomarker in patients with periodontitis, which requires further studies.
Collapse
Affiliation(s)
- Zahra Tajik
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Mehrafarid
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Dawid M, Pich K, Respekta-Długosz N, Gieras W, Opydo M, Milewicz T, Froment P, Dupont J, Rak A. Visfatin exerts an anti-proliferative and pro-apoptotic effect in the human placenta cells†. Biol Reprod 2025; 112:375-391. [PMID: 39561117 PMCID: PMC11833490 DOI: 10.1093/biolre/ioae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Visfatin regulates energy homeostasis, metabolism, inflammation, and reproduction via the hypothalamus-pituitary-ovary axis. Our previous study showed the visfatin gene and protein expression in the human placenta. This study aimed to investigate the in vitro effect of visfatin on the proliferation and apoptosis of placental JEG-3 and BeWo cells but also in villous explants collected from normal pregnancies and complicated by intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM). We studied placenta cells viability, proliferation, cell cycle, proliferation/apoptotic factors and insulin receptor (INSR) expression, DNA fragmentation, CASP3/7 activity, and phosphorylation of ERK1/2, AKT, AMPKα, STAT3 with their involvement after pharmacological inhibition in visfatin action on proliferation and apoptosis. Visfatin (1, 10, 100 ng/mL) decreased the viability and proliferation of JEG-3 after 48 h, and a similar effect was observed via co-administration of visfatin (10 ng/mL) and insulin (10 ng/mL) in JEG-3 and BeWo after 48 h and 72 h, respectively. Visfatin reduced the transition from the G2/M phase, and expression of PCNA or cyclins D, E, A, and B in JEG-3 and PCNA in normal, IUGR, PE, and GDM placentas. It increased DNA fragmentation, CASP3/7 activity, P53, BAX/BCL2, CASP9, CASP 8, CASP3 levels in BeWo, and CASP3 expression in tested placentas. Furthermore, visfatin modulated INSR, ERK1/2, AKT, AMPKα, and STAT3 expression in JEG-3 and BeWo, and its anti-proliferative and pro-apoptotic effects occurred via mentioned factors. In conclusion, visfatin, by affecting the proliferation and apoptosis of human placenta cells, may be an important factor in the development and function of the organ.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Wiktoria Gieras
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
| | - Małgorzata Opydo
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
| | - Tomasz Milewicz
- Department of Gynecological Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, Poland
| | - Pascal Froment
- INRAE, Unité Physiologie de la Reproduction et des Comportements, France
| | - Joëlle Dupont
- INRAE, Unité Physiologie de la Reproduction et des Comportements, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Poland
| |
Collapse
|
7
|
Marini D, Cappai MG, Palmioli E, Battacone G, Maranesi M, Dobrzyń K, Mercati F, Dall'Aglio C. Morphological digital assessment and transcripts of gastric and duodenal visfatin in growing piglets fed with increasing amounts of polyphenols from olive mill waste extract. Ann Anat 2025; 258:152369. [PMID: 39647718 DOI: 10.1016/j.aanat.2024.152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Visfatin is an adipokine with mediatory effects on inflammation. It is expressed at low levels in the pig stomach, but its role in the gastrointestinal (GI) tract is not well understood. This study explored visfatin expression and localisation in the stomach and duodenum of piglets fed varying levels of polyphenols derived from olive mill waste extract, known for their antioxidant and immunomodulatory properties. Twenty-seven piglets were assigned to three dietary groups: control (commercial feed), low polyphenol (120 ppm), and high polyphenol (240 ppm) groups. After 14 days of feeding, samples from the glandular stomach and duodenum were collected from 13 piglets. Immunohistochemistry (IHC), digital image analysis (DIA) using QuPath software, and double-labelled immunofluorescence were performed to detect visfatin-positive cells and co-localise them with serotonin. Additionally, relative gene expression of visfatin was assessed via RT-qPCR. Visfatin-positive cells were identified in 5 out of 13 piglets, localised mainly in the basal portion of gastric and intestinal glands. The morphology of those cells was consistent with neuroendocrine cells and confirmed by co-localisation of visfatin and serotonin. No significant differences were found in cell positivity or morphology between dietary groups or between tissues. However, visfatin transcript levels increased with the dose of polyphenolic extract. These findings suggest that dietary polyphenols may modulate visfatin gene expression in the GI tract. The study also highlights the value of digital anatomy for enhancing the accuracy and reproducibility of anatomical research. Further studies are needed to elucidate the functional role of visfatin transcript and protein in the porcine GI tract.
Collapse
Affiliation(s)
- Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, Uppsala 752 36, Sweden.
| | | | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy; Department of FISSUF, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, Perugia 06123, Italy
| | - Gianni Battacone
- Department of Agricultural Sciences, University of Sassari, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
| | - Kamil Dobrzyń
- Faculty of Biology and Biotechnology, Department of Zoology, University of Warmia and Mazury in Olsztyn, Poland
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| |
Collapse
|
8
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
10
|
Su M, Qiu F, Li Y, Che T, Li N, Zhang S. Mechanisms of the NAD + salvage pathway in enhancing skeletal muscle function. Front Cell Dev Biol 2024; 12:1464815. [PMID: 39372950 PMCID: PMC11450036 DOI: 10.3389/fcell.2024.1464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy production, serving as a coenzyme in oxidation-reduction reactions. It also supports enzymes involved in processes such as DNA repair, aging, and immune responses. Lower NAD+ levels have been associated with various diseases, highlighting the importance of replenishing NAD+. Nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage pathway, which helps sustain NAD+ levels, particularly in high-energy tissues like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage pathway influences skeletal muscle health and functionality in aging, type 2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers insights into enhancing the salvage pathway through exercise and NAD+ boosters as strategies to improve muscle performance. The findings suggest significant potential for using this pathway in the diagnosis, monitoring, and treatment of skeletal muscle conditions.
Collapse
Affiliation(s)
- Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Tongtong Che
- School of Physical Education, Qingdao University, Qingdao, China
| | - Ningning Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Dawid M, Kurowska P, Pawlicki P, Kotula-Balak M, Milewicz T, Dupont J, Rak A. Visfatin (NAMPT) expression in human placenta cells in normal and pathological conditions and its hormonal regulation in trophoblast JEG-3 cells. PLoS One 2024; 19:e0310389. [PMID: 39292698 PMCID: PMC11410215 DOI: 10.1371/journal.pone.0310389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Visfatin is an adipokine involved in energy metabolism, insulin resistance, inflammation, and female reproduction. Due to limited data about its action in the human placenta, the aims of our studies included the analysis of visfatin expression and immunolocalization in trophoblast cell lines JEG-3 and BeWo as well as in human placentas from normal and pathological pregnancies. Moreover, we also checked the hormonal regulation of visfatin levels and the molecular mechanism of observed changes in JEG-3 cells. Cell culture and placental fragments collection along with statistical analysis were performed using standard laboratory procedures also described in our previous papers. We demonstrated an increased gene and protein expression of visfatin in JEG-3, BeWo cells, while variable expression in maternal and fetal parts of normal/ pathological pregnancy placentas. In addition, the immunolocalization of visfatin was observed in the cytoplasm of both cell lines, the capillary epithelium of the maternal part and syncytiotrophoblasts of the placental fetal part; in all tested pathologies, the signal was also detected in decidual cells. Furthermore, we demonstrated that hormones: progesterone, estradiol, human chorionic gonadotropin, and insulin increased the visfatin levels in JEG-3 cells with the involvement of specific signaling pathways. Taken together, differences in the expression and localization of visfatin between normal and pathological placentas suggested that visfatin may be a potential marker for the diagnosis of pregnancy disorders. In addition, we found that placental levels of visfatin can be regulated by hormones known to modulate the function of placental cells.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Piotr Pawlicki
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Kraków, Poland
| | - Małgorzata Kotula-Balak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Tomasz Milewicz
- Department of Gynecological Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Joelle Dupont
- INRAE, UMR0085, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| |
Collapse
|
12
|
Zhou Y, Pang N, Li W, Li Q, Luo J, Gu Y, Hu Q, Ding YJ, Sun Y, Pan J, Gao M, Xiao Y, Ma S, Hao Y, Xing H, Fang EF, Ling W, Zhang Z, Yang L. Inhibition of ethanol-induced eNAMPT secretion attenuates liver ferroptosis through BAT-Liver communication. Redox Biol 2024; 75:103274. [PMID: 39059204 PMCID: PMC11327441 DOI: 10.1016/j.redox.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND & AIMS Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) has long been recognized as an adipokine. However, the exact role of eNAMPT in alcoholic liver disease (ALD) and its relevance to brown adipose tissue (BAT) remain largely unknown. This study aimed to evaluate the impact of eNAMPT on liver function and the underlying mechanisms involved in BAT-Liver communication. METHODS Serum eNAMPT levels were detected in the serum of both ALD patients and mice. Chronic and binge ethanol feeding was used to induce alcoholic liver injury in mice. An eNAMPT antibody, a coculture model of brown adipocytes and hepatocytes, and BAT-specific Nampt knockdown mice were used to investigate the role of eNAMPT in ALD. RESULTS Serum eNAMPT levels are elevated in ALD patients and are significantly positively correlated with the liver injury index. In ALD mice, neutralizing eNAMPT reduced the elevated levels of circulating eNAMPT induced by ethanol and attenuated liver injury. In vitro experiments revealed that eNAMPT induced hepatocyte ferroptosis through the TLR4-dependent mitochondrial ROS-induced ferritinophagy pathway. Furthermore, ethanol stimulated eNAMPT secretion from brown adipocytes but not from other adipocytes. In the coculture model, ethanol-induced release of eNAMPT from brown adipocytes promoted hepatocyte ferroptosis. In BAT-specific Nampt-knockdown mice, ethanol-induced eNAMPT secretion was significantly reduced, and alcoholic liver injury were attenuated. These effects can be reversed by intraperitoneal injection of eNAMPT. CONCLUSION Inhibition of ethanol-induced eNAMPT secretion from BAT attenuates liver injury and ferroptosis. Our study reveals a previously uncharacterized critical role of eNAMPT-mediated BAT-Liver communication in ALD and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yujia Zhou
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nengzhi Pang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenli Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Immunization Programs, Guangzhou Huadu District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qiuyan Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Luo
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Gu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianrong Hu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Women Health Care, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Yi Jie Ding
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Sun
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Pan
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Gao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Xiao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sixi Ma
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Peking University Ditan Teaching Hospital, Beijing, China
| | - Evendro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center and Guangdong Provincial Education Department, Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Lin CY, Law YY, Yu CC, Wu YY, Hou SM, Chen WL, Yang SY, Tsai CH, Lo YS, Fong YC, Tang CH. NAMPT enhances LOX expression and promotes metastasis in human chondrosarcoma cells by inhibiting miR-26b-5p synthesis. J Cell Physiol 2024; 239:e31345. [PMID: 38940190 DOI: 10.1002/jcp.31345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Chondrosarcoma is a malignant bone tumor that emerges from abnormalities in cartilaginous tissue and is related with lung metastases. Nicotinamide phosphoribosyltransferase (NAMPT) is an adipocytokine reported to enhance tumor metastasis. Our results from clinical samples and the Gene Expression Omnibus data set reveal that NAMPT levels are markedly higher in chondrosarcoma patients than in normal individuals. NAMPT stimulation significantly increased lysyl oxidase (LOX) production in chondrosarcoma cells. Additionally, NAMPT increased LOX-dependent cell migration and invasion in chondrosarcoma by suppressing miR-26b-5p generation through the c-Src and Akt signaling pathways. Overexpression of NAMPT promoted chondrosarcoma metastasis to the lung in vivo. Furthermore, knockdown of LOX counteracted NAMPT-facilitated metastasis. Thus, the NAMPT/LOX axis presents a novel target for treating the metastasis of chondrosarcoma.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yat-Yin Law
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chieh Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Ying Wu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedics, Penghu Hospital, Ministry of Health and Welfare, Penghu, Taiwan
| | - Sheng-Mou Hou
- The Director's Office, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Research, Taiwan Blood Services Foundation, Taipei, Taiwan
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Shun Lo
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
14
|
Apsan J, Lekarev O, Thomas C, Zhu YS, Cohan K, Lin-Su K. Relationship between adipokines and androgens in children and young adults with congenital adrenal hyperplasia. Front Endocrinol (Lausanne) 2024; 15:1433378. [PMID: 39175574 PMCID: PMC11338854 DOI: 10.3389/fendo.2024.1433378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Children and young adults with congenital adrenal hyperplasia (CAH) are at increased risk of obesity and insulin resistance. There is evidence that children with CAH have increased visceral adiposity, which has been linked to metabolic syndrome and cardiovascular disease (CVD). The adipokine adiponectin has been shown to correlate with reduced metabolic risk, whereas the adipokines visfatin and leptin have been linked to visceral fat and adipocyte inflammation and can serve as biomarkers of increased metabolic risk. Few studies to date have characterized adipokine levels in children and young adults with congenital adrenal hyperplasia. We sought to investigate the relationship between adiponectin, leptin and visfatin levels to metabolic risk factors and androgen levels in children and young adults with CAH. Methods Fasting blood was obtained for visfatin, leptin, adiponectin, glucose, insulin, CRP, lipid panel, total cholesterol (TC), triglycerides (TG) and HbA1c, as well as standard laboratory tests to assess adrenal control, from children with CAH due to 21-hydroxylase deficiency. HOMA-IR was calculated based on fasting glucose and insulin. Anthropomorphic measurements of BMI and waist-to-hip ratio were also obtained. Results Adiponectin and androstenedione were inversely correlated (R = -0.57, p =0.016). There was a positive correlation between leptin and BMI percentile (R = 0.63, p <0.001) as well as leptin and HOMA-IR (R = 0.63, p <0.01). Glucocorticoid dose had a positive correlation with HOMA-IR (R=0.56, p = 0.021). Visfatin was inversely correlated with HDL cholesterol (R = -0.54, p = 0.026) and total cholesterol (R = -0.49, p <0.05). Overweight children and young adults had a significantly higher leptin (p = 0.02) and HOMA-IR (p=0.001) than non-overweight children and young adults. Conclusion The inverse relationship between adiponectin and androstenedione suggests that better CAH control can reduce the risk of insulin resistance and metabolic syndrome. However, a high glucocorticoid dose appears to increase the risk of insulin resistance, underscoring the delicate balance required when treating CAH.
Collapse
Affiliation(s)
- Jennifer Apsan
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Oksana Lekarev
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlene Thomas
- Division of Biostatistics, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Yuan-Shan Zhu
- Clinical and Translational Science Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Kaela Cohan
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Karen Lin-Su
- Division of Pediatric Endocrinology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Paukszto L, Rak A, Smolinska N, Kaminski T. Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle. J Anim Sci Biotechnol 2024; 15:96. [PMID: 38978053 PMCID: PMC11232246 DOI: 10.1186/s40104-024-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle. RESULTS RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis. CONCLUSIONS The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
17
|
Ismail H, Pathak AK, Lal N, Rastogi P, Ahmad K, Khan MA. Effect of non-surgical periodontal therapy on salivary and gingival crevicular fluid concentration of visfatin in periodontal health and disease. J Oral Biol Craniofac Res 2024; 14:430-434. [PMID: 38832289 PMCID: PMC11144723 DOI: 10.1016/j.jobcr.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Background and objective Visfatin, a pleotropic mediator mostly produced by visceral fat, is crucial in controlling the immunological and defensive systems. It serves the roles of a cytokine, an enzyme involved in energy metabolism, and a growth factor. The objective of the present study was to assess the impact of non-surgical periodontal therapy (scaling and root planing) on visfatin concentrations in saliva and gingival crevicular fluid in individuals with Periodontitis (stage-II grade-A). Materials and methods 54 individuals were divided into Group A (Periodontally Healthy) and Group B1(Periodontitis baseline) based on periodontal parameters including plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), and radiographic parameters. After NSPT (SRP), Group B1 patients were recalled after 4 weeks, constituting Group B2 (post NSPT group B1). At baseline and 4 weeks after non-surgical periodontal therapy (SRP), all clinical parameters, salivary and GCF samples were recorded. An ELISA kit was used to measure the levels of visfatin. Using the paired t-test, unpaired t-test, and Pearson's correlation coefficient, data were analysed using SPSS 15. Results After non-surgical periodontal treatment (SRP), the mean salivary and gingival crevicular fluid concentration of visfatin considerably decreased to a level comparable to periodontal health. In all groups, GCF visfatin concentration was higher than salivary concentration of visfatin. In periodontitis patients, visfatin concentration in GCF was 1.5 times higher than in saliva. Conclusion The results of this investigation suggest a direct correlation between salivary and gingival crevicular fluid visfatin concentration and periodontal tissue inflammation and disease activity.
Collapse
Affiliation(s)
- Hira Ismail
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Anjani Kumar Pathak
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Nand Lal
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Pavitra Rastogi
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Mohd. Aamir Khan
- Department of Periodontology, Faculty of Dental Sciences, King George's Medical University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
18
|
Kopij G, Kiezun M, Gudelska M, Dobrzyn K, Zarzecka B, Rytelewska E, Zaobidna E, Swiderska B, Malinowska A, Rak A, Kaminski T, Smolinska N. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci Rep 2024; 14:14625. [PMID: 38918475 PMCID: PMC11199572 DOI: 10.1038/s41598-024-65577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
19
|
Sun Y, Yin Y, Yang S, Ai D, Qin H, Xia X, Xu X, Song J. Lipotoxicity: The missing link between diabetes and periodontitis? J Periodontal Res 2024; 59:431-445. [PMID: 38419425 DOI: 10.1111/jre.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
Lipotoxicity refers to the accumulation of lipids in tissues other than adipose tissue (body fat). It is one of the major pathophysiological mechanisms responsible for the progression of diabetes complications such as non-alcoholic fatty liver disease and diabetic nephropathy. Accumulating evidence indicates that lipotoxicity also contributes significantly to the toxic effects of diabetes on periodontitis. Therefore, we reviewed the current in vivo, in vitro, and clinical evidence of the detrimental effects of lipotoxicity on periodontitis, focusing on its molecular mechanisms, especially oxidative and endoplasmic reticulum stress, inflammation, ceramides, adipokines, and programmed cell death pathways. By elucidating potential therapeutic strategies targeting lipotoxicity and describing their associated mechanisms and clinical outcomes, including metformin, statins, liraglutide, adiponectin, and omega-3 PUFA, this review seeks to provide a more comprehensive and effective treatment framework against diabetes-associated periodontitis. Furthermore, the challenges and future research directions are proposed, aiming to contribute to a more profound understanding of the impact of lipotoxicity on periodontitis.
Collapse
Affiliation(s)
- Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
20
|
Magnan C. The adipocyte speaks to the brain: Beyond leptin. ANNALES D'ENDOCRINOLOGIE 2024; 85:206-209. [PMID: 38871501 DOI: 10.1016/j.ando.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Christophe Magnan
- Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, université Paris Cité, 75013 Paris, France.
| |
Collapse
|
21
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
22
|
Annie L, Pankaj PP, Kharwar RK, Singh A, Roy VK. Status of visfatin in female reproductive function under normal and pathological conditions: a mini review. Mol Biol Rep 2024; 51:631. [PMID: 38722405 DOI: 10.1007/s11033-024-09461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/20/2024] [Indexed: 02/06/2025]
Abstract
Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Lalrawngbawli Annie
- Department of Zoology, Banaras Hindu University, Varanasi, U.P., 221005, India.
| | - Pranay Punj Pankaj
- Department of Zoology, Nagaland University, Lumami, Nagaland, 798627, India.
| | | | - Ajit Singh
- Department of Zoology, Banaras Hindu University, Varanasi, U.P., 221005, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Tanhril, Mizoram, 796004, India.
| |
Collapse
|
23
|
Xiao K, Chen L, Mao Y, Bao H, Chen W, Li X, Wu Y. Expression of visfatin in gingival crevicular fluid and gingival tissues in different periodontal conditions: a cross-sectional study. BMC Oral Health 2024; 24:514. [PMID: 38698364 PMCID: PMC11064311 DOI: 10.1186/s12903-024-04299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Studies have shown that visfatin is an inflammatory factor closely related to periodontitis. We examined the levels of visfatin in gingival crevicular fluid (GCF) and gingival tissues under different periodontal conditions, in order to provide more theoretical basis for exploring the role of visfatin in the pathogenesis of periodontitis. METHODS We enrolled 87 subjects, with 43 in the chronic periodontitis (CP) group, 21 in the chronic gingivitis (CG) group, and 23 in the periodontal health (PH) group. Periodontal indexes (PD, AL, PLI, and BI) were recorded. GCF samples were collected for visfatin quantification, and gingival tissues were assessed via immunohistochemical staining. RESULTS Visfatin levels in GCF decreased sequentially from CP to CG and PH groups, with statistically significant differences (P < 0.05). The CP group exhibited the highest visfatin levels, while the PH group had the lowest. Gingival tissues showed a similar trend, with significant differences between groups (P < 0.001). Periodontal indexes were positively correlated with visfatin levels in both GCF and gingival tissues (P < 0.001). A strong positive correlation was observed between visfatin levels in GCF and gingival tissues (rs = 0.772, P < 0.001). CONCLUSION Greater periodontal destruction corresponded to higher visfatin levels in GCF and gingival tissues, indicating their potential collaboration in damaging periodontal tissues. Visfatin emerges as a promising biomarker for periodontitis and may play a role in its pathogenesis.
Collapse
Affiliation(s)
- Kang Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Stomatological Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Stomatological Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yudian Mao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Han Bao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Weirong Chen
- Stomatological Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Stomatological Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiang Li
- Stomatological Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Stomatological Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yun Wu
- Stomatological Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Stomatological Center, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
24
|
Frielitz-Wagner IV, Mattutat J, Frielitz FS, Scheuermann K, Gesing J, Marheineke D, Löffler D, Kiess W, Körner A. Diurnal rythm of Nampt is gender and weight dependent. Obes Res Clin Pract 2024; 18:181-188. [PMID: 38960771 DOI: 10.1016/j.orcp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
RESEARCH AIM Nicotinamide phosphoribosyltransferase (Nampt) is an adipocytokine that is elevated in obesity, type 2 diabetes and increased levels are associated with inflammatory processes. Nampt serum concentrations have been suggested to follow a diurnal rhythm peaking in the afternoon in lean males. However, no data exists regarding the effects of gender and body weight. MATERIAL AND METHODS We measured Nampt serum levels over 24 h in a cohort of healthy individuals living with either normal weight or obesity. Furthermore, effects of meals, oral glucose tolerance test and physical exercise on Nampt concentrations were evaluated. Correlation analyses to other hormonal- and lab parameters and anthropometric measurements were performed. RESULTS Nampt showed a diurnal rhythm with increased levels at daytime and a peak in the early afternoon. This diurnal rhythm was significant for all groups but obese males. The Nampt amplitude, measured both relatively and absolutely, was significantly higher in females than in males. Meals did not influence Nampt serum levels, whereas physical exercise and an OGTT did significantly influence Nampt serum levels. CONCLUSION In conclusion, we found gender specific differences in Nampt amplitude and coefficient variation with both being higher in females. The circadian rhythm of Nampt was independent of gender in healthy lean individuals, whereas it was disturbed in men with obesity.
Collapse
Affiliation(s)
- I V Frielitz-Wagner
- Department of Paediatrics, Medical Faculty, UKSH, University of Lübeck, Lübeck, Germany; University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - J Mattutat
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - F S Frielitz
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - K Scheuermann
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - J Gesing
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - D Marheineke
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - D Löffler
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - W Kiess
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - A Körner
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
25
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
27
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Tahergorabi Z, Lotfi H, Rezaei M, Aftabi M, Moodi M. Crosstalk between obesity and cancer: a role for adipokines. Arch Physiol Biochem 2024; 130:155-168. [PMID: 34644215 DOI: 10.1080/13813455.2021.1988110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Adipose tissue is a complex organ that is increasingly being recognised as the largest endocrine organ in the body. Adipocytes among multiple cell types of adipose tissue can secrete a variety of adipokines, which are involved in signalling pathways and these can be changed by obesity and cancer. There are proposed mechanisms to link obesity/adiposity to cancer development including adipocytokine dysregulation. Among these adipokines, leptin acts through multiple pathways including the STAT3, MAPK, and PI3K pathways involved in cell growth. Adiponectin has the opposite action from leptin in tumour growth partly because of increased apoptotic responses of p53 and Bax. Visfatin increases cancer cell proliferation through ERK1/2, PI3K/AKT, and p38 which are stimulated by proinflammatory cytokines. Omentin through the PI3K/Akt-Nos pathway is involved in cancer-tumour development. Apelin might be involved through angiogenesis in tumour progressions. PAI-1 via its anti-fibrinolytic activity on cell adhesion and uPA/uPAR activity influence cancer cell growth.
Collapse
Affiliation(s)
- Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Physiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Lotfi
- Khatamolanbia Hospital, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Department of Internal Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Aftabi
- Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
29
|
Li Y, Xin C, Xie J, Sun X. Association between visfatin and periodontitis: a systematic review and meta-analysis. PeerJ 2024; 12:e17187. [PMID: 38560458 PMCID: PMC10981885 DOI: 10.7717/peerj.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory disease caused by bacterial infection in the periodontal support tissue. Visfatin, a hormone secreted mainly by adipocytes and macrophages, plays an important role in immune regulation and defense. Although studies have indicated that patients with periodontitis have significantly high serum and gingival crevicular fluid levels of visfatin, the relationship between this adipocytokine and periodontal disease remains unclear. Aim The aim of this study was to systematically evaluate the association between visfatin levels and periodontitis. Methods The PubMed, Web of Science, ScienceDirect, EBSCO, and Wiley Online Library databases were searched for potential studies, using "periodontitis" and "visfatin" as the keywords in the title and abstract search fields. Standardized mean difference (SMD) values with corresponding 95% confidence intervals (CIs) were determined from the results of this meta-analysis. Results In total, 22 articles involving 456 patients with periodontitis and 394 healthy individuals (controls) were included in the meta-analysis. Visfatin levels were significantly higher in the patients with periodontitis than in the healthy individuals (SMD: 3.82, 95% CI [3.01-4.63]). Moreover, the visfatin levels were significantly lowered after periodontitis treatment (SMD: -2.29, 95% CI [-3.33 to -1.26]). Conclusion This first-ever meta-analysis comparing visfatin levels between patients with periodontitis and healthy individuals suggests that this adipocytokine can be a diagnostic and therapeutic biomarker for periodontal disease.
Collapse
Affiliation(s)
- Yaoqin Li
- Department of Stomatology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caihong Xin
- Department of Endocrinology and Metabolism, Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Jing Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Sun
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Kärberg K, Forbes A, Lember M. Unlocking the Dietary Puzzle: How Macronutrient Intake Shapes the Relationship between Visfatin and Atherosclerosis in Type 2 Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:438. [PMID: 38541164 PMCID: PMC10972461 DOI: 10.3390/medicina60030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Background and Objectives. Optimal nutrition for type 2 diabetes (T2DM) aims to improve glycemic control by promoting weight loss and reducing adipose tissue, consequently improving cardiovascular health. Dietary alterations can influence adipose tissue metabolism and potentially impact adipocytokines like visfatin, thereby affecting atherosclerosis development. This study aimed to investigate dietary habits and adherence to recommendations among individuals with T2DM and to examine how dietary adherence influences the association between visfatin and subclinical atherosclerosis. Materials and Methods: This cross-sectional multicenter study involved 216 adults (30-70 years) with T2DM, assessing dietary habits, adherence to recommendations (carbohydrates, fats, protein, fiber, saturated fatty acid, polyunsaturated and monounsaturated fatty acid (PUFA and MUFA) and salt), and the association between visfatin and subclinical atherosclerosis. Participants completed 24 h dietary recalls; dietary misreporting was assessed using the Goldberg cut-off method. Carotid intima-media thickness (IMT) and plaque occurrence were evaluated with ultrasound, while visfatin levels were measured using Luminex's xMAP technology. Results: Three of the eight recommendations were followed in 31% of subjects, two in 26%, and four in 20%, with the highest adherence to MUFA and protein intake. Significant correlations between IMT and visfatin were observed in individuals with specific dietary patterns. The association between IMT and visfatin persisted when PUFA and MUFA intake aligned with recommendations. PUFA intake ≤ 10% and MUFA ≤ 20% of total energy significantly correlated with carotid artery IMT (p = 0.010 and p = 0.006, respectively). Visfatin's associations with IMT remained significant (p = 0.006) after adjusting for common risk factors, medication use, and dietary nonadherence. No association was observed with carotid artery plaque. Conclusions: Dietary compliance was limited, as only 31% adhered even to three of eight recommendations. A common dietary pattern characterized by low carbohydrate and fiber but high fat, total fat, saturated fat, and salt intake was identified. This pattern amplifies the statistical association between visfatin and subclinical atherosclerosis.
Collapse
Affiliation(s)
- Kati Kärberg
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia; (A.F.); (M.L.)
- Internal Medicine Clinic, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
| | - Alastair Forbes
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia; (A.F.); (M.L.)
- Internal Medicine Clinic, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
| | - Margus Lember
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia; (A.F.); (M.L.)
- Internal Medicine Clinic, Tartu University Hospital, L. Puusepa 8, 50406 Tartu, Estonia
| |
Collapse
|
31
|
Patil JD, Fredericks S. The role of adipokines in osteoporosis management: a mini review. Front Endocrinol (Lausanne) 2024; 15:1336543. [PMID: 38516409 PMCID: PMC10956128 DOI: 10.3389/fendo.2024.1336543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.
Collapse
Affiliation(s)
| | - Salim Fredericks
- The Royal College of Surgeons in Ireland – Medical University of Bahrain, Al Sayh, Bahrain
| |
Collapse
|
32
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
33
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
34
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
35
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
36
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
37
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
38
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Iwatani Y, Hayashi H, Yamamoto H, Minamikawa H, Ichikawa M, Orikawa H, Masuda A, Tada N, Moriyama Y, Takagi N. Pathogenic role of NAMPT in the perivascular regions after ischemic stroke in mice with type 2 diabetes mellitus. Exp Neurol 2024; 371:114584. [PMID: 37884188 DOI: 10.1016/j.expneurol.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke in patients with abnormal glucose tolerance results in poor outcomes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, exerts neuroprotective effects. However, the pathophysiological role of NAMPT after ischemic stroke with diabetes and the relationship of NAMPT with cerebrovascular lesions are unclear. The purpose of this study was to clarify the pathophysiological role of NAMPT in cerebral ischemia with diabetes, using db/db mice as a type 2 diabetes animal model. The number of degenerating neurons increased after middle cerebral artery occlusion and reperfusion (MCAO/R) in db/db mice compared with the degenerating neurons in db/+ mice. Extracellular NAMPT (eNAMPT) levels, especially monomeric eNAMPT, increased significantly in db/db MCAO/R mice but not db/+ mice in isolated brain microvessels. The increased eNAMPT levels were associated with increased expression of inflammatory cytokine mRNA. Immunohistochemical analysis demonstrated that NAMPT colocalized with GFAP-positive cells after MCAO/R. In addition, both dimeric and monomeric eNAMPT levels increased in the conditioned medium of primary cortical astrocytes under high glucose conditions subsequent oxygen/glucose deprivation. Our findings are the first to demonstrate the ability of increased monomeric eNAMPT to induce inflammatory responses in brain microvessels, which may be located near astrocyte foot processes.
Collapse
Affiliation(s)
- Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruna Yamamoto
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Minamikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Ichikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Orikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Aya Masuda
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Natsumi Tada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Moriyama
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
40
|
Monsalve FA, Delgado-López F, Fernández-Tapia B, González DR. Adipose Tissue, Non-Communicable Diseases, and Physical Exercise: An Imperfect Triangle. Int J Mol Sci 2023; 24:17168. [PMID: 38138997 PMCID: PMC10743187 DOI: 10.3390/ijms242417168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/24/2023] Open
Abstract
The study of adipose tissue has received considerable attention due to its importance not just in maintaining body energy homeostasis but also in playing a role in a number of other physiological processes. Beyond storing energy, adipose tissue is important in endocrine, immunological, and neuromodulatory functions, secreting hormones that participate in the regulation of energy homeostasis. An imbalance of these functions will generate structural and functional changes in the adipose tissue, favoring the secretion of deleterious adipocytokines that induce a pro-inflammatory state, allowing the development of metabolic and cardiovascular diseases and even some types of cancer. A common theme worldwide has been the development of professional guidelines for the control and treatment of obesity, with emphasis on hypocaloric diets and exercise. The aim of this review is to examine the pathophysiological mechanisms of obesity, considering the relationship among adipose tissue and two aspects that contribute positively or negatively to keeping a healthy body homeostasis, namely, exercise and noninfectious diseases. We conclude that the relationship of these aspects does not have homogeneous effects among individuals. Nevertheless, it is possible to establish some common mechanisms, like a decrease in pro-inflammatory markers in the case of exercise, and an increase in chronic inflammation in non-communicable diseases. An accurate diagnosis might consider the particular variables of a patient, namely their molecular profile and how it affects its metabolism, routines, and lifestyle; their underling health conditions; and probably even the constitution of their microbiome. We foresee that the development and accessibility of omics approaches and precision medicine will greatly improve the diagnosis, treatment, and successful outcomes for obese patients.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| | - Fernando Delgado-López
- Laboratories of Biomedical Research, Department of Preclinical Sciences, Faculty of Medicine, Universidad Católica del Maule, Talca 3466706, Chile;
| | | | - Daniel R. González
- Department of Basic Biomedical Science, Faculty of Health Sciences, Universidad de Talca, Talca 3465548, Chile;
| |
Collapse
|
41
|
Li S, Li H, Kong H, Wu SY, Cheng CK, Xu J. Endogenous and microbial biomarkers for periodontitis and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1292596. [PMID: 38149100 PMCID: PMC10750125 DOI: 10.3389/fendo.2023.1292596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
It has been well documented that there is a two-way relationship between diabetes mellitus and periodontitis. Diabetes mellitus represents an established risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely modulates serum glucose levels in diabetic patients. Activated immune and inflammatory responses are noted during diabetes and periodontitis, under the modulation of similar biological mediators. These activated responses result in increased activity of certain immune-inflammatory mediators including adipokines and microRNAs in diabetic patients with periodontal disease. Notably, certain microbes in the oral cavity were identified to be involved in the occurrence of diabetes and periodontitis. In other words, these immune-inflammatory mediators and microbes may potentially serve as biomarkers for risk assessment and therapy selection in diabetes and periodontitis. In this review, we briefly provide an updated overview on different potential biomarkers, providing novel diagnostic and therapeutic insights on periodontal complications and diabetes mellitus.
Collapse
Affiliation(s)
- Songjun Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Hongwen Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| | - Haiying Kong
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Shang Ying Wu
- Department of Laboratory Medicine, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Jian Xu
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| |
Collapse
|
42
|
Zhu X, Liu L, Feng Z, Zhang Y. Correlation of plasma adipokines with endometrial atypical hyperplasia and type I/II endometrial cancer. J OBSTET GYNAECOL 2023; 43:2179914. [PMID: 36815556 DOI: 10.1080/01443615.2023.2179914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of the study was to systematically explore the relationships between various adipokines and risks of endometrial atypical hyperplasia (EAH), type I endometrial cancer (EC), and type II EC. We enrolled 219 patients in this study, including 39 EAH, 87 type I EC, 38 type II EC and 55 control individuals. We subsequently explored the association of adipokine levels and the leptin-to-adiponectin (L/A) ratio with EAH, type I EC, and type II EC. The plasma leptin level and L/A ratio were significantly higher in the EAH group than in the control group (p = 0.012). Leptin, resistin, vaspin, and visfatin levels were significantly higher in the type I EC group; however, the adiponectin level was lower in the type I EC, which resulted in a higher L/A ratio. Notably, the L/A ratio and visfatin level in the type II EC group were significantly higher. Multiple logistic regression analysis revealed that a higher leptin level was significantly associated with a higher EAH risk (p = 0.012). Higher leptin level (p = 0.042) and L/A ratio (p = 0.027) were significantly associated with an increased type I EC risk. By contrast, higher leptin (p = 0.059) and visfatin (p = 0.003) levels, higher L/A ratio (p = 0.033), and lower adiponectin level (p = 0.042) were associated with an increased type II EC risk. We suggested that adipokines are potentially correlated with EAH and EC risks.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Linzhi Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Zonghao Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
43
|
Bayani M, Heidari M, Almasi-Hashiani A. Periodontal disease and visfatin level: A systematic review and meta-analysis. PLoS One 2023; 18:e0293368. [PMID: 37934738 PMCID: PMC10629655 DOI: 10.1371/journal.pone.0293368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Visfatin is considered an inflammatory biomarker in periodontal disease (PD). In this meta-analysis, we aimed to evaluate the relationship between Visfatin biomarker level with PD. In this study, Medline, Scopus, Web of Science, and Google Scholar were searched. We included studies that examined visfatin levels in samples from healthy people and periodontal disease until March 2023. The quality of the selected articles was evaluated using the Newcastle-Ottawa assessment scale. Depending on heterogeneity of studies, random-effects or fixed-effect models were used to pool results and report the standardized mean difference (SMD). After screening the retrieved papers, the related data were extracted. A total of 159 studies were identified, and 16 studies were included in the meta-analysis. In 9 studies, the SMD of visfatin level of gingival crevicular fluid (GCF) in patients with chronic periodontitis (CP) and healthy individuals was 4.32 (p<0.001). In 6 studies, the SMD of salivary visfatin level in patients with CP and healthy individuals was 2.95 (p = 0.004). In addition, in five studies, the SMD of serum visfatin level in patients with CP and healthy individuals was 7.87 (p<0.001). Therefore, Visfatin levels in serum, saliva, and GCF of patients with CP were increased in comparison to healthy individuals. Comparison of visfatin levels in saliva of gingivitis patients and healthy individuals showed a significant increase of visfatin in gingivitis patients (SMD:0.57, P = 0.018), but no significant difference was observed in the mean GCF visfatin level of gingivitis patients and healthy individuals (SMD:2.60, P = 0.090). In addition, the results suggested that there is no difference between gingivitis cases compared to CP patients (SMD:3.59, P = 0.217). Visfatin levels in GCF, serum, and saliva have the potential to be used as a diagnostic biomarker of periodontitis.
Collapse
Affiliation(s)
- Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | | | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
44
|
Mlyczyńska E, Kurowska P, Rytelewska E, Zaobina E, Pich K, Kieżun M, Dobrzyń K, Kisielewska K, Kopij G, Smolińska N, Kamiński T, Rak A. Expression of visfatin in the ovarian follicles of prepubertal and mature gilts and in vitro effect of gonadotropins, insulin, steroids, and prostaglandins on visfatin levels. Theriogenology 2023; 211:28-39. [PMID: 37562189 DOI: 10.1016/j.theriogenology.2023.07.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Recent studies have demonstrated that visfatin participates in the regulation of female reproduction. Due to the lack of data concerning the level of visfatin in the ovarian follicles of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localisation of visfatin and the follicular fluid concentration in the ovarian follicles of prepubertal and mature gilts. We also aimed to examine the in vitro effects of gonadotropins (LH, FSH), insulin, progesterone (P4), oestradiol (E2), prostaglandin E2 (PGE2) and F2α (PGF2α) on visfatin levels. In the present study, we have demonstrated that visfatin expression is dependent on the maturity of the animals and the stage of ovarian follicle development. Visfatin signal was detected in individual follicular compartments from primordial to antral follicles and even in atretic follicles. We have shown that the expression of visfatin in granulosa cells was higher than in theca cells. The level of visfatin is upregulated by LH, FSH, E2, and P4 and downregulated by insulin, while prostaglandins have modulatory effects, dependent on the dose and type of ovarian follicular cells. To summarise, our research has shown that visfatin is widely expressed in the ovarian follicles of prepubertal and mature pigs, and its expression is regulated by gonadotropins, insulin, steroids, and prostaglandins, suggesting that visfatin appears to be an important intra-ovarian factor that could regulate porcine ovarian follicular function.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Ewa Zaobina
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Kortowo, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
45
|
Rafaqat S. Adipokines and Their Role in Heart Failure: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5657-5669. [PMID: 38058391 PMCID: PMC10697129 DOI: 10.19102/icrm.2023.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/12/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a major risk factor for heart failure (HF). The relationship between adipokines and HF has been implicated in many previous studies and reviews. However, this review article summarizes the basic role of major adipokines, such as apelin, adiponectin, chemerin, resistin, retinol-binding protein 4 (RBP4), vaspin, visfatin, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, progranulin, leptin, omentin-1, lipocalin-2, and follistatin-like 1 (FSTL1), in the pathogenesis of HF. Apelin is reduced in patients with HF and upregulated following favorable left ventricular (LV) remodeling. Higher levels of adiponectin have been found in patients with HF compared to in control patients. Also, high plasma chemerin levels are linked to a higher risk of HF. Serum resistin is related to the severity of HF and associated with a high risk for adverse cardiac events. Evidence indicates that RBP4 can contribute to inflammation and damage heart muscle cells, potentially leading to HF. Vaspin might stop the progression of cardiac degeneration, fibrosis, and HF according to experiments on rats with experimental isoproterenol-induced chronic HF. The serum concentrations of visfatin are significantly lower in patients with systolic HF. Leptin levels were found to be correlated with low LV mass and myocardial stiffness, both of which are significant risk factors for the development of HF with preserved ejection fraction (HFpEF). Measuring serum omentin-1 levels appears to be a novel prognostic indicator for risk stratification in HF patients. Increased expression of neutrophil gelatinase-associated lipocalin in both systemic circulation and myocardium in clinical and experimental HF suggests that innate immune responses may contribute to the development of HF. FSTL1 was elevated in patients with HF with reduced ejection fraction and associated with an increase in the size of the left ventricle of the heart. However, other adipokines, such as plasminogen activator inhibitor-1, monocyte chemotactic protein-1, nesfatin-1, and progranulin, have not yet been studied for HF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
46
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
47
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
48
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
49
|
Jerusha FR, Raghunath V. Assessment of serum and salivary visfatin levels in newly diagnosed patients of type-II DM. J Oral Maxillofac Pathol 2023; 27:663-667. [PMID: 38304514 PMCID: PMC10829447 DOI: 10.4103/jomfp.jomfp_324_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 02/03/2024] Open
Abstract
Background Type II diabetes mellitus (T2DM) is a metabolic disorder. It is thought to be an autoinflammatory disease, as inflammatory mediators are associated with the progression of the disease. Visfatin, an adipokine, is linked to insulin resistance. Aims We aimed to study serum and salivary visfatin levels, at the time of diagnosis of T2DM, in middle-aged individuals, in the context of other diagnostic parameters like fasting blood sugar (FBS), postprandial blood sugar (PPBS), and glycated haemoglobin A1c (HbA1c). Materials and Methods Thirty newly diagnosed T2DM (Group-I, T2DM) patients and 30 healthy nondiabetic individuals (Group-II, health controls [HC]) matched for age and sex were studied. In both the groups, we assessed serum and salivary visfatin levels, and serum high-sensitivity C-reactive protein (hs-CRP) levels. We also compared serum and salivary visfatin levels and serum hs-CRP levels between Group-I and Group-II individuals. Statistical Analysis The correlation between the groups was tested using Pearson's correlation. A P- value < 0.001 was considered to be statistically significant. The data was tabulated using software MS Excel and analysed using IBM Statistical Package for the Social Sciences (SPSS) Version 22.0. Results A positive correlation with a value of 0.8836 and a P value of 0.001 was noted between serum and salivary visfatin of Group-I. Conclusion This is the first study in the Indian scenario to study the serum and salivary visfatin in newly diagnosed T2DM individuals. Serum visfatin and hs-CRP levels increased in T2DM, thus defining the link between visfatin, inflammation and T2DM, but we failed to notice a positive correlation.
Collapse
Affiliation(s)
- Faith R. Jerusha
- Post Graduate Student, Narayana Dental College, and Hospital, Chinthareddypalem, Nellore, Andhra Pradesh, India
| | - Vandana Raghunath
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Narayana Dental College, and Hospital, Chinthareddypalem, Nellore, Andhra Pradesh, India
| |
Collapse
|
50
|
Ghazizadeh F, Afshari -Moez S, Alinaghian N, Torab M, Rahimi-Moghaddam P. Association of Adiponectin 45T/G (rs2241766) and Visfatin 4689G/T (rs2110385) Gene Polymorphisms with Susceptibility to Obesity. Int J Prev Med 2023; 14:115. [PMID: 38264564 PMCID: PMC10803681 DOI: 10.4103/ijpvm.ijpvm_79_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/16/2023] [Indexed: 01/25/2024] Open
Abstract
Background This study aimed to see whether the adiponectin 45T/G (rs2241766) and visfatin 4689G/T (rs2110385) gene polymorphisms in an Iranian population are linked to obesity and/or obesity-related traits in normal and obese individuals. Methods 230 obese individuals and 169 healthy controls had their genomic DNA taken. The alleles and genotypes of the rs2241766 and rs2110385 polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Results Obese individuals had considerably greater frequencies of the G allele and GG genotypes of the rs2241766 polymorphism than healthy controls (35% vs 21%, Probability (P) <0.0001, odds ratios (OR): 1.99, 95% confidence intervals (CI): 1.45-2.75 and 21% vs 7%, P = 0.002, OR: 3.52, 95% CI: 1.81-6.85, respectively). In comparison to healthy controls, obesity patients had substantially lower frequencies of the T allele and TT genotype of the rs2241766 polymorphism (65% vs 79%, P < 0.0001, OR: 0.50, 95% CI: 0.36-0.69 and 51% vs 65%, P = 0.008, OR: 0.58, 95% CI: 0.39-0.87, respectively). Obese individuals had substantially higher frequencies of the G allele and GG genotype in the rs2110385 polymorphism than healthy controls (77% vs 69%, P = 0.01, OR: 1.47, 95% CI: 1.07-2.0 and 61% versus 51%, P = 0.047, OR: 1.5, 95% CI: 1.0-2.2, respectively). When compared to healthy controls, the frequency of the T allele in the rs2110385 polymorphism was considerably lower in obese individuals (23% vs 31%, P = 0.01, OR: 0.68, 95% CI: 0.5-0.93). Furthermore, these single nucleotide polymorphisms (SNPs) were shown to have a strong link to clinical data in obese individuals. In the case of adiponectin, 45T/G (rs2241766) genotypes, serum low-density lipoprotein, waist circumference, and diastolic blood pressure were substantially different among the rs2241766 genotypes (P = 0.007, P = 0.000, and P = 0.011, respectively). In the instance of the visfatin 4689G/T (rs2110385) gene polymorphism, serum triglycerides was substantially different among the rs2110385 genotypes (P = 0.039). Conclusions In the Iranian population, our findings revealed a strong link between adiponectin and visfatin gene polymorphisms and obesity and several obesity-related clinical characteristics. These SNPs might be used to identify those who are at risk of becoming obese.
Collapse
Affiliation(s)
- Foad Ghazizadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepideh Afshari -Moez
- Department of Toxicology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Nazila Alinaghian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Torab
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology and Physiology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|