1
|
Schaap CM, Klanderman RB, Peters AL, Vlaar APJ, Müller MCA. Ultra-Restrictive Transfusion Thresholds in Critically Ill Adults: Are We Ready for the Next Step? Transfus Med Rev 2025; 39:150893. [PMID: 40068327 DOI: 10.1016/j.tmrv.2025.150893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 05/25/2025]
Abstract
Anemia is almost universal in critically ill patients, with 25% receiving blood transfusions as clinicians aim to prevent insufficient oxygen delivery. The current 'restrictive' hemoglobin (Hb) threshold of 7 g/dL for the nonbleeding critically ill population is supported by several landmark transfusion trials. While some trials have investigated lower transfusion thresholds, these were not conducted in this specific population. Transfusion is associated with various risks including transfusion-associated circulatory overload, transfusion-related acute lung injury, and hemolytic reactions. Moreover, transfusion products are scarce and expensive as they are produced from voluntary blood donations. Therefore, it is essential to limit blood transfusion to when absolutely necessary. Research indicates that several patient categories tolerate lower Hb levels than 7 g/dL. For instance, studies on acute hemodilution in healthy volunteers have shown that lower Hb levels do not lead to organ ischemia. Similarly, studies involving patients who refuse transfusions, often report lower Hb levels down to 5g/dL or less. These lower Hb levels appear to have limited impact on mortality or morbidity related outcomes. In patients with severe burns or hematological disorders, Hb levels below 7 g/dL are not associated with significant adverse outcomes. These findings suggest that the transfusion threshold for critically ill patients could potentially be lowered, as Hb levels under 7 g/dL do not inherently lead to increased mortality or morbidity. An individualized approach to deciding whether to transfuse or not might be best. This shift in transfusion practice could help reduce costs and minimize the risks associated with blood transfusions.
Collapse
Affiliation(s)
- Caroline M Schaap
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Robert B Klanderman
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna-Linda Peters
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcella C A Müller
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Wang W, Sun C, Zhao L, Han X, Luan X, Zhang X, Niu P, Zhao D, Chen Y. Blood transfusion might not be recommended for gastric cancer patients with pretransfusion minimum hemoglobin values higher than 90 g/l: a real-world study covering 20 years of 13 470 patients. Int J Surg 2024; 110:7020-7033. [PMID: 38759693 PMCID: PMC11573064 DOI: 10.1097/js9.0000000000001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND There was no consistent evidence of whether perioperative blood transfusion (PBT) affects the long-term survival of gastric cancer (GC) patients after undergoing gastrectomy. This study aimed to investigate the effects of PBT on the long-term survival of GC patients, as well as to determine the threshold of PBT and provide evidence for future surgical practice. METHODS We performed this real-world study of GC patients undergoing gastrectomy at China National Cancer Center from January 1, 2000 to December 30, 2019. Overall survival (OS) curves were plotted using the Kaplan-Meier method and compared statistically using the log-rank test. Univariate and multivariate Cox proportional hazard models were used to determine the risk factors for OS. RESULTS In total, 13 470 GC patients undergoing gastrectomy from 2000 to 2019 were included, of whom 3465 (34.6%) GC patients received PBT. PBT ratios declined from 29.1% (114/392) in 2000 to 11.2% in 2019 (149/1178), with the highest blood transfusion ratio in 2005 at 43.7% (220/504). For patients transfused with red blood cells, the median value of hemoglobin (Hb) before transfusion in the PBT group decreased from 110 g/l in 2000 to 87 g/l in 2019. Compared with patients who not receiving PBT, PBT group are more likely to be older (≥65, 39.1% vs. 30.1%, P <0.001), open operation (89.7% vs. 78.1%, P <0.001), higher American Society of Anesthesiologists score (>2, 25.3% vs. 14.9%, P <0.001) and in the later pTNM stage (pTNM stage III, 68.5% vs. 51.5%, P <0.001). Results of multivariable Cox regression analysis showed that PBT was an independent prognostic factor for worse OS in GC patients undergoing gastrectomy [HR=1.106, 95% confidence interval (CI): 1.01-1.211, P =0.03). After stratified according to tumor stage, we found that PBT group had a worse prognosis only in pTNM stage III (HR=1.197, 95% CI: 1.119-1.281, P <0.001). OS was obviously poor in the PBT group when Hb levels were higher than 90 g/l (90 g/l120 g/l: HR=1.207, 95% CI: 1.098-1.327, P <0.001), while there was no difference between the two groups when Hb levels were lower than or equal to 90 g/l (Hb≤90 g/l: HR=1.162, 95% CI: 0.985-1.370, P =0.075). CONCLUSION In conclusion, PBT was an independent prognostic factor for worse OS. Blood transfusion might not be recommended for GC patients with perioperative minimum Hb values higher than 90 g/l.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yingtai Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Cavalcante dos Santos E, Bakos P, Orbegozo D, Creteur J, Vincent JL, Taccone FS. Transfusion increased skin blood flow when initially low in volume-resuscitated patients without acute bleeding. Front Med (Lausanne) 2023; 10:1218462. [PMID: 37859856 PMCID: PMC10582983 DOI: 10.3389/fmed.2023.1218462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Background Alterations in skin blood flow is a marker of inadequate tissue perfusion in critically ill patients after initial resuscitation. The effects of red blood cell transfusions (RBCT) on skin perfusion are not described in this setting. We evaluated the effects of red blood cell transfusions on skin tissue perfusion in critically ill patients without acute bleeding after initial resuscitation. Methods A prospective observational study included 175 non-bleeding adult patients after fluid resuscitation requiring red blood cell transfusions. Using laser Doppler, we measured finger skin blood flow (SBF) at skin basal temperature (SBFBT), together with mean arterial pressure (MAP), heart rate (HR), hemoglobin (Hb), central venous pressure (CVP), lactate, and central or mixed venous oxygen saturation before and 1 h after RBCT. SBF responders were those with a 20% increase in SBFBT after RBCT. Results Overall, SBFBT did not significantly change after RBCT [from 79.8 (4.3-479.4) to 83.4 (4.9-561.6); p = 0.67]. A relative increase equal to or more than 20% in SBFBT after RBCT (SBF responders) was observed in 77/175 of RBCT (44%). SBF responders had significantly lower SBFBT [41.3 (4.3-279.3) vs. 136.3 (6.5-479.4) perfusion units; p < 0.01], mixed or central venous oxygen saturation (62.5 ± 9.2 vs. 67.3% ± 12.0%; p < 0.01) and CVP (8.3 ± 5.1 vs. 10.3 ± 5.6 mmHg; p = 0.03) at baseline than non-responders. SBFBT increased in responders [from 41.3 (4.3-279.3) to 93.1 (9.8-561.6) perfusion units; p < 0.01], and decreased in the non-responders [from 136.3 (6.5-479.4) to 80.0 (4.9-540.8) perfusion units; p < 0.01] after RBCT. Pre-transfusion SBFBT was independently associated with a 20% increase in SBFBT after RBCT. Baseline SBFBT had an area under receiver operator characteristic of 0.73 (95% CI, 0.68-0.83) to predict SBFBT increase; A SBFBT of 73.0 perfusion units (PU) had a sensitivity of 71.4% and a specificity of 70.4% to predict SBFBT increase after RBCT. No significant differences in SBFBT were observed after RBCT in different subgroup analyses. Conclusion The skin blood flow is globally unaltered by red blood cell transfusions in non-bleeding critically ill patients after initial resuscitation. However, a lower SBFBT at baseline was associated with a relative increase in skin tissue perfusion after RBCT.
Collapse
Affiliation(s)
- Elaine Cavalcante dos Santos
- Department of Intensive Care Medecine, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
4
|
The Relevance of Fluid and Blood Management Using Microcirculatory Parameters in Children Undergoing Craniofacial Surgery. J Craniofac Surg 2021; 33:264-269. [PMID: 34406155 DOI: 10.1097/scs.0000000000008080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Perioperative management of bleeding in children can be challenging. Microvascular imaging techniques have allowed evaluating the effect of blood transfusion on the microcirculation, but little is known about these effects in children. We aimed to investigate the effects of blood management using macro- and micro-hemodynamic parameters measurement in children undergoing craniofacial surgery. This is a prospective observational repeated measurement study including fourteen children. The indications for blood transfusion were changes of hemoglobin/hematocrit (Hct) levels, the presence of signs of altered tissue perfusion and impaired microcirculation images. Total and perfused vessel densities, proportion of perfused vessels, microvascular flow index, and systemic parameters (hemoglobin, Hct, lactate, mixed venous oxygen saturation, K+, heart rate, mean arterial blood pressure) were evaluated baseline (T1), at the end of the surgical bleeding (T2) and end of the operation (T3). Four patients did not need a blood transfusion. In the other 10 patients who received a blood transfusion, capillary perfusion was higher at T3 (13[9-16]) when compared with the values of at T2 (11[8-12]) (P < 0.05) but only 6 patients reached their baseline values. Although blood transfusions increased Hct values (17 ± 2.4 [T2]-19 ± 2.8 [T3]) (P < 0.05), there was no correlation between microvascular changes and systemic hemodynamic parameters (P > 0.05). The sublingual microcirculation could change by blood transfusion but there was not any correlation between microcirculation changes, hemodynamic, and tissue perfusion parameters even with Hct values. The indication, guidance, and timing of fluid and blood therapy may be assessed by bedside microvascular analysis in combination with standard hemodynamic and biochemical monitoring for intraoperative bleeding in children.
Collapse
|
5
|
Cooper ES, Silverstein DC. Fluid Therapy and the Microcirculation in Health and Critical Illness. Front Vet Sci 2021; 8:625708. [PMID: 34055944 PMCID: PMC8155248 DOI: 10.3389/fvets.2021.625708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Fluid selection and administration during shock is typically guided by consideration of macrovascular abnormalities and resuscitative targets (perfusion parameters, heart rate, blood pressure, cardiac output). However, the microcirculatory unit (comprised of arterioles, true capillaries, and venules) is vital for the effective delivery of oxygen and nutrients to cells and removal of waste products from the tissue beds. Given that the microcirculation is subject to both systemic and local control, there is potential for functional changes and impacts on tissue perfusion that are not reflected by macrocirculatory parameters. This chapter will present an overview of the structure, function and regulation of the microcirculation and endothelial surface layer in health and shock states such as trauma, hemorrhage and sepsis. This will set the stage for consideration of how these microcirculatory characteristics, and the potential disconnect between micro- and macrovascular perfusion, may affect decisions related to acute fluid therapy (fluid type, amount, and rate) and monitoring of resuscitative efforts. Available evidence for the impact of various fluids and resuscitative strategies on the microcirculation will also be reviewed.
Collapse
Affiliation(s)
- Edward S Cooper
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Deborah C Silverstein
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Wei TJ, Wang CH, Chan WS, Huang CH, Lai CH, Wang MJ, Chen YS, Ince C, Lin TY, Yeh YC. Microcirculatory Response to Changes in Venoarterial Extracorporeal Membrane Oxygenation Pump Flow: A Prospective Observational Study. Front Med (Lausanne) 2021; 8:649263. [PMID: 33898485 PMCID: PMC8058194 DOI: 10.3389/fmed.2021.649263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) pump flow is crucial for maintaining organ perfusion in patients with cardiogenic shock, but VA-ECMO pump flow optimization remains as a clinical challenge. This study aimed to investigate the response of sublingual microcirculation to changes in VA-ECMO pump flow. Methods: Sublingual microcirculation was measured before and after changing VA-ECMO pump flow according to the treatment plan of ECMO team within 24 h and at 24-48 h after VA-ECMO placement. In clinical events of increasing VA-ECMO pump flow, those events with increased perfused vessel density (PVD) were grouped into group A, and the others were grouped into group B. In clinical events of decreasing VA-ECMO pump flow, those events with increased PVD were grouped into group C, and the others were grouped into group D. Results: Increased PVD was observed in 60% (95% CI, 38.5-81.5%) of the events with increasing VA-ECMO pump flow. The probability of increasing PVD after increasing VA-ECMO pump flow were higher in the events with a PVD < 15 mm/mm2 at baseline than those with a PVD ≥ 15 mm/mm2 [100% (95% CI, 54.1-100%) vs. 42.9% (95% CI, 17.7-71.1%), P = 0.042]. Other microcirculatory and hemodynamic parameters at baseline did not differ significantly between group A and B or between group C and D. Conclusion: This study revealed contradictory and non-contradictory responses of sublingual microcirculation to changes in VA-ECMO pump flow. Tandem measurements of microcirculation before and after changing VA-ECMO pump flow may help to ensure a good microcirculation.
Collapse
Affiliation(s)
- Tzu-Jung Wei
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsien Wang
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wing-Sum Chan
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Chi-Hsiang Huang
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Heng Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Jiuh Wang
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Can Ince
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Liu W, He H, Ince C, Long Y. The effect of blood transfusion on sublingual microcirculation in critically ill patients: A scoping review. Microcirculation 2021; 28:e12666. [PMID: 33091957 DOI: 10.1111/micc.12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effects of red blood cell (RBC) transfusion on sublingual microcirculation in critically ill patients. METHODS Systematic strategy was conducted to search studies that measured sublingual microcirculation before and after transfusion in critically ill patients. This review was reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyses Scoping Review Extension. RESULTS The literature search yielded 114 articles. A total of 11 studies met the inclusion criteria. Observational evidence showed diffusive capacity of the microcirculation significantly improved in intraoperative and anemic hematologic patients after transfusion, while the convective parameters significantly improved in traumatic patients. RBC transfusion improved both diffusive and convective microcirculatory parameters in hypovolemic hemorrhagic shock patients. Most of the studies enrolled septic patients showed no microcirculatory improvements after transfusion. The positive effects of the leukoreduction were insufficiently supported. The effects of the storage time of the RBCs were not conclusive. The majority of the evidence supported a negative correlation between baseline proportion of perfused vessels (PPV) and changes in PPV. CONCLUSIONS This scoping review has catalogued evidence that RBC transfusion differently improves sublingual microcirculation in different populations. The existing evidence is not sufficient to conclude the effects of the leukoreduction and storage time of RBCs.
Collapse
Affiliation(s)
- Wanglin Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
8
|
David M, Levy E, Barshtein G, Livshits L, Arbell D, Ben Ishai P, Feldman Y. The dielectric spectroscopy of human red blood cells during 37-day storage: β-dispersion parameterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183410. [PMID: 32687816 DOI: 10.1016/j.bbamem.2020.183410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022]
Abstract
This study exploits dielectric spectroscopy to monitor the kinetics of red blood cells (RBC) storage lesions, focusing on those processes linked to cellular membrane interface known as β-dispersion. The dielectric response of RBC suspensions, exposed to blood-bank cold storage for 37 days, was studied using time-domain dielectric spectroscopy in the frequency range 500 kHz to 200 MHz. The measured dielectric processes are characterized by their dielectric strength (Δε) and their relaxation times (τ). Changes in the dielectric properties of the RBC suspensions, due to storage-related biophysical changes, were evaluated. For a quantitative characterization of RBC vitality, we characterized the shape of fresh and stored RBC and measured their deformability as expressed by their average elongation ratio, which was achieved under a shear stress of 3.0 Pa. During the second week of storage, an increment in the evolution of the relaxation times and in the dielectric permittivity strength of about 25% was observed. We propose that the characteristic increment of ATP, during the second and third weeks of storage, is responsible for the raise of the specific capacitance of cell membrane, which in turn explains the changes observed in the dielectric response when combined with the influence of the shape changes.
Collapse
Affiliation(s)
- Marcelo David
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel.
| | - Evgeniya Levy
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel
| | - Gregory Barshtein
- The Hebrew University of Jerusalem, Faculty of Medicine, Department of Biochemistry & Molecular Biology, Jerusalem, Israel
| | - Leonid Livshits
- The Hebrew University of Jerusalem, Faculty of Medicine, Department of Biochemistry & Molecular Biology, Jerusalem, Israel
| | - Dan Arbell
- Pediatric Surgery, Hadassah Medical Center, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, P.O.B. 3, Ariel 40700, Israel
| | - Yuri Feldman
- The Hebrew University of Jerusalem, Applied Physics Department, Jerusalem, Israel.
| |
Collapse
|
9
|
Dilken O, Ergin B, Ince C. Assessment of sublingual microcirculation in critically ill patients: consensus and debate. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:793. [PMID: 32647718 PMCID: PMC7333125 DOI: 10.21037/atm.2020.03.222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Collapse
Affiliation(s)
- Olcay Dilken
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bulent Ergin
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Sublingual microcirculation does not reflect red blood cell transfusion thresholds in the intensive care unit-a prospective observational study in the intensive care unit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:18. [PMID: 31952555 PMCID: PMC6969438 DOI: 10.1186/s13054-020-2728-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/01/2020] [Indexed: 01/28/2023]
Abstract
Purpose Hemoglobin (Hb) transfusion thresholds are established in intensive care units. A restrictive transfusion threshold (Hb 70–75 g/l) is recommended in septic patients, and a liberal transfusion threshold (Hb 90 g/l) for cardiogenic shock. It is unclear whether these historically adopted transfusion thresholds meet the challenges of individual patients. Methods We evaluated microvascular flow index (MFI) and proportion of perfused vessels (PPV) in the sublingual microcirculation with CytoCam-IDF microscopy and near-infrared spectroscopy (NIRS). A study team-independent, treating intensivist assigned a total of 64 patients to 1 of 2 two transfusion thresholds, 43 patients to the Hb 75 g/l threshold and 21 patients to the Hb 90 g/l threshold, at a surgical intensive care unit. We performed microcirculatory measurements 1 h before and 1 h after transfusion of 1 unit of red blood cells. Results Microcirculatory flow variables correlated negatively with pre-transfusion flow variables (ΔMFI: ρ = − 0.821, p < 0.001; ΔPPV: ρ = − 0.778, p < 0.001). Patients with good initial microcirculation (cutoffs: MFI > 2.84, PPV > 88%) showed a deteriorated microcirculation after red blood cell transfusion. An impaired microcirculation improved after transfusion. At both transfusion thresholds, approximately one third of the patients showed an initially impaired microcirculation. In contrast, one third in every group had good microcirculation above the cutoff variables and did not profit from the transfusion. Conclusion The data suggest that the established transfusion thresholds and other hemodynamic variables do not reflect microcirculatory perfusion of patients. Blood transfusion at both thresholds 75 g/l and 90 g/l hemoglobin can either improve or harm the microcirculatory blood flow, questioning the concept of arbitrary transfusion thresholds.
Collapse
|
11
|
Hariri G, Bourcier S, Marjanovic Z, Joffre J, Lemarié J, Lavillegrand JR, Charue D, Duflot T, Bigé N, Baudel JL, Maury E, Mohty M, Guidet B, Bellien J, Blanc-Brude O, Ait-Oufella H. Exploring the microvascular impact of red blood cell transfusion in intensive care unit patients. Crit Care 2019; 23:292. [PMID: 31470888 PMCID: PMC6717366 DOI: 10.1186/s13054-019-2572-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Red blood cell (RBC) transfusion is a common treatment for hospitalized patients. However, the effects of RBC transfusion on microvascular function remain controversial. METHODS In a medical ICU in a tertiary teaching hospital, we prospectively included anemic patients requiring RBC transfusion. Skin microvascular reactivity was measured before and 30 min after RBC transfusion. Plasma was collected to analyze intravascular hemolysis and draw the lipidomic and cytokine profiles. RESULTS In a cohort of 59 patients, the median age was 66 [55-81] years and SAPS II was 38 [24-48]. After RBC transfusion, endothelium-dependent microvascular reactivity improved in 35 (59%) patients, but worsened in 24 others (41%). Comparing clinical and biological markers revealed that baseline blood leucokyte counts distinguished improving from worsening patients (10.3 [5.7; 19.7] vs. 4.6 [2.1; 7.3] × 109/L; p = 0.001) and correlated with variations of microvascular reactivity (r = 0.36, p = 0.005). Blood platelet count was also higher in improving patients (200 [97; 280] vs 160 [40; 199] × 103/mL, p = 0.03) but did not correlate with variations of microvascular reactivity. We observed no intravascular hemolysis (HbCO, heme, bilirubin, LDH), but recorded a significant increase in RBC microparticle levels specific to improving patients after transfusion (292 [108; 531] vs. 53 [34; 99] MP/μL; p = 0.03). The improvement in microvascular dilation was positively correlated with RBC microparticle levels (R = 0.83, p < 0.001) and conversion of arachidonic acid into vasodilating eicosanoids. CONCLUSIONS Patients displaying an improved microvascular reactivity after RBC transfusion had high blood leukocyte counts, increased RBC microparticle formation, and enhanced metabolism of arachidonic acid into vasodilating lipids. Our data suggested a contribution of recipient leukocytes to the vascular impact of RBC transfusion.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Simon Bourcier
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Zora Marjanovic
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Jérémie Joffre
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Jérémie Lemarié
- Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Jean-Rémi Lavillegrand
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Dominique Charue
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Thomas Duflot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Laboratory of Pharmacokinetics, Toxicology and Pharmacogenomics, Rouen University Hospital, 76000 Rouen, France
| | - Naïke Bigé
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Jean-Luc Baudel
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Eric Maury
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Mohamad Mohty
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Bertrand Guidet
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U1136, F-75012 Paris, France
| | - Jeremy Bellien
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Department of Pharmacology, Rouen University Hospital, 76000 Rouen, France
| | - Olivier Blanc-Brude
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Hafid Ait-Oufella
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| |
Collapse
|
12
|
Tezcan B, Bölükbaşı D, Şaylan A, Turan S, Yakın SS, Kazancı D, Özgök A, Yazıcıoğlu H. Effect of dilutional anemia that can be treated with only one unit of red blood cell transfusion on tissue oxygenation in cardiac surgery patients. Turk J Med Sci 2019; 49:1102-1108. [PMID: 31408294 PMCID: PMC7018202 DOI: 10.3906/sag-1901-213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background/aim Cardiac surgery, especially in the presence of cardiopulmonary bypass (CPB), is associated with an inflammatory reaction that may promote microcirculatory alterations, in addition to the general impact on system hemodynamics. Anemia and transfusion make patients more susceptible to the deleterious effects of CPB. In this study, it was aimed to evaluate the effect of dilutional anemia, which is caused by CPB and can be treated with 1–2 units of red blood cell (RBC) transfusion, on global tissue oxygenation parameters in cardiac surgery patients. Materials and methods This prospective observational study comprised 127 patients who had a relatively stable operation period without any major anesthetic or surgical complications (e.g., operation duration >5 h, bleeding or hemodilution requiring more than 1–2 units of RBCs, or unstable hemodynamics, requiring inotropic support of more than 5 µg/kg/min dopamine). Patients were observationally divided into two groups: minimally transfused (Group Tr) and nontransfused (Group NTr). Global tissue oxygenation parameters were evaluated after anesthesia induction (T1) and at the end of the operation (T3) and compared between the groups. Results Group Tr consisted of patients who had significantly lower preoperative hemoglobin values than Group NTr patients. The dilutional anemia of all Group Tr patients could be corrected with 1 unit of RBCs. The lactate levels at T3, increment rates of lactate, and venoarterial carbon dioxide pressure difference (ΔpCO2) levels [(T3 – T1) : T1] in Group Tr were significantly higher than those in Group NTr. Conclusion Dilutional anemia as a result of CPB mostly occurs in patients with borderline preoperative hemoglobin concentrations and its correction with RBC transfusion does not normalize the degree of microcirculatory and oxygenation problems, which the patients are already prone to because of the nature of CPB. Preventing dilutional anemia and transfusion, especially in patients with preoperative borderline hemoglobin levels, may therefore reduce the burden of impaired microcirculation-associated organ failure in on-pump cardiac surgery.
Collapse
Affiliation(s)
- Büşra Tezcan
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Demet Bölükbaşı
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Alev Şaylan
- Department of Anesthesiology and Reanimation, İstanbul Lütfi Kırdar Education and Research Hospital, İstanbul, Turkey
| | - Sema Turan
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Sultan Sevim Yakın
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Kazancı
- Department of Intensive Care, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ayşegül Özgök
- Department of Anesthesiology and Reanimation, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Hija Yazıcıoğlu
- Department of Anesthesiology and Reanimation, Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
13
|
González R, Urbano J, Solana MJ, Hervías M, Pita A, Pérez R, Álvarez R, Teigell E, Gil-Jaurena JM, Zamorano J, Sobrino A, López-Herce J. Microcirculatory Differences in Children With Congenital Heart Disease According to Cyanosis and Age. Front Pediatr 2019; 7:264. [PMID: 31312623 PMCID: PMC6613439 DOI: 10.3389/fped.2019.00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Congenital heart disease (CHD) is one of the main causes of morbidity and mortality in children. Microcirculatory changes in CHD patients have previously been investigated using a variety of techniques. Handheld videomicroscopy enables non-invasive direct visualization of the microcirculatory bed. The aim of our study was to determine if there are microcirculatory differences among CHD patients based on age and the presence of cyanosis. Methods: A prospective observational study was carried out. Patients with CHD undergoing corrective surgery were evaluated after anesthetic induction prior to surgery. Microcirculation was evaluated using sidestream dark field (SDF) imaging. Hemodynamics and respiratory, biochemical, and tissue perfusion parameters were analyzed. Results: A total of 30 patients were included, of whom 14 were classified as cyanotic and 16 as non-cyanotic. Cyanotic patients had a higher total vessel density (TVD) (p = 0.016), small vessel density (p = 0.004), and perfused small vessel density (p = 0.013), while their microvascular flow index (MFI) was lower (p = 0.013). After adjustment for age and PaO2, cyanotic patients showed increased TVD (p = 0.023), and small vessel density (p = 0.025) compared to non-cyanotic patients but there were no differences on the MFI. Age was directly correlated with total MFI (spearman's rho = 0.499, p = 0.005) and small vessel MFI (spearman's rho = 0.420, p = 0.021). After adjustment for the type of CHD (cyanotic vs. non-cyanotic) patients with MFI and small MFI vessels <3 were younger than those with values ≥3 (p = 0.033 and p = 0.037). Conclusions: SDF-based evaluation of microcirculation in CHD patients showed that patients with cyanotic defects had higher vascular density, as compared to patients with non-cyanotic defects. Younger patients were more likely to have a low MFI regardless of their type of CHD.
Collapse
Affiliation(s)
- Rafael González
- Service of Paediatric Intensive Care, Gregorio Marañón General University Hospital, Madrid, Spain.,Mother and Child Health and Development Network (REDSAMID), Madrid, Spain
| | - Javier Urbano
- Service of Paediatric Intensive Care, Gregorio Marañón General University Hospital, Madrid, Spain.,Mother and Child Health and Development Network (REDSAMID), Madrid, Spain.,Department of Paediatrics, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Solana
- Service of Paediatric Intensive Care, Gregorio Marañón General University Hospital, Madrid, Spain.,Mother and Child Health and Development Network (REDSAMID), Madrid, Spain
| | - Mónica Hervías
- Paediatric Anaesthesia, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Ana Pita
- Paediatric Cardiac Surgery, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Rosario Pérez
- Paediatric Hemoperfusionist, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Reyes Álvarez
- Paediatric Cardiology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Enrique Teigell
- Paediatric Anaesthesia, Gregorio Marañón General University Hospital, Madrid, Spain
| | | | - José Zamorano
- Paediatric Hemoperfusionist, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Adolfo Sobrino
- Paediatric Cardiology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Jesús López-Herce
- Service of Paediatric Intensive Care, Gregorio Marañón General University Hospital, Madrid, Spain.,Mother and Child Health and Development Network (REDSAMID), Madrid, Spain.,Department of Paediatrics, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Scolletta S, Marianello D, Isgrò G, Dapoto A, Terranova V, Franchi F, Baryshnikova E, Carlucci C, Ranucci M. Microcirculatory changes in children undergoing cardiac surgery: a prospective observational study. Br J Anaesth 2018; 117:206-13. [PMID: 27440632 DOI: 10.1093/bja/aew187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The effects of cardiac surgery on the microcirculation of children are unknown. The aim of this study was to assess the microcirculatory changes in children undergoing surgery for correction of congenital heart disease. METHODS We used a videomicroscope (Sidestream Dark Field, SDF) in a convenience sample of 24 children <five yr old. Total vascular density (TVD, vessels mm(-2)), microvascular flow index (MFI, arbitrary units), proportion of perfused small vessels (PPV, percentage), and perfused vessel density (PVD) were obtained after induction of anaesthesia (T1), at the end of the surgical procedure (T2), after intensive care unit (ICU) admission (T3), and at six h (T4) and 12h (T5) after ICU admission. RESULTS Microcirculatory variables did not significantly change over time. Haemodynamic parameters and microcirculatory variables were not correlated. In a subanalysis conducted for cyanotic (n=7) and acyanotic (n=17) children, repeated measures ANOVA showed a significant interaction between time and the presence of cyanosis for PPV (P=0.03), TVD (P=0.03), and PVD (P=0.03). Weak inverse correlations were found between storage time of transfused red blood cell (RBCs) and MFI at T3 (r=-0.63, P=0.01) and T4 (r=-0.53, P=0.03). CONCLUSIONS Microcirculatory variables have a different time-related trend in cyanotic and acyanotic children undergoing cardiac surgery. The storage time of transfused RBCs seems to negatively impact the microcirculation. Further and larger studies are warranted to prove the potential implications of this study.
Collapse
Affiliation(s)
- S Scolletta
- Department of Medical Biotechnologies, Anesthesiology and Intensive Care, University Hospital of Siena, Via Bracci 1, Siena 53100, Italy
| | - D Marianello
- Department of Medical Biotechnologies, Anesthesiology and Intensive Care, University Hospital of Siena, Via Bracci 1, Siena 53100, Italy
| | - G Isgrò
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, Milan, Italy
| | - A Dapoto
- Department of Medical Biotechnologies, Anesthesiology and Intensive Care, University Hospital of Siena, Via Bracci 1, Siena 53100, Italy
| | - V Terranova
- Department of Medical Biotechnologies, Anesthesiology and Intensive Care, University Hospital of Siena, Via Bracci 1, Siena 53100, Italy
| | - F Franchi
- Department of Medical Biotechnologies, Anesthesiology and Intensive Care, University Hospital of Siena, Via Bracci 1, Siena 53100, Italy
| | - E Baryshnikova
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, Milan, Italy
| | - C Carlucci
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, Milan, Italy
| | - M Ranucci
- Department of Cardiothoracic and Vascular Anesthesia and ICU, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
15
|
Wagener BM, Hu PJ, Oh JY, Evans CA, Richter JR, Honavar J, Brandon AP, Creighton J, Stephens SW, Morgan C, Dull RO, Marques MB, Kerby JD, Pittet JF, Patel RP. Role of heme in lung bacterial infection after trauma hemorrhage and stored red blood cell transfusion: A preclinical experimental study. PLoS Med 2018; 15:e1002522. [PMID: 29522519 PMCID: PMC5844517 DOI: 10.1371/journal.pmed.1002522] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood. METHODS AND FINDINGS We developed a murine model of trauma hemorrhage (TH) followed by resuscitation with plasma and leukoreduced RBCs (in a 1:1 ratio) that were banked for 0 (fresh) or 14 (stored) days. Two days later, lungs were infected with Pseudomonas aeruginosa K-strain (PAK). Resuscitation with stored RBCs significantly increased the severity of lung injury caused by P. aeruginosa, as demonstrated by higher mortality (median survival 35 h for fresh RBC group and 8 h for stored RBC group; p < 0.001), increased pulmonary edema (mean [95% CI] 106.4 μl [88.5-124.3] for fresh RBCs and 192.5 μl [140.9-244.0] for stored RBCs; p = 0.003), and higher bacterial numbers in the lung (mean [95% CI] 1.2 × 10(7) [-1.0 × 10(7) to 2.5 × 10(7)] for fresh RBCs and 3.6 × 10(7) [2.5 × 10(7) to 4.7 × 10(7)] for stored RBCs; p = 0.014). The mechanism underlying this increased infection susceptibility and severity was free-heme-dependent, as recombinant hemopexin or pharmacological inhibition or genetic deletion of toll-like receptor 4 (TLR4) during TH and resuscitation completely prevented P. aeruginosa-induced mortality after stored RBC transfusion (p < 0.001 for all groups relative to stored RBC group). Evidence from studies transfusing fresh and stored RBCs mixed with stored and fresh RBC supernatants, respectively, indicated that heme arising both during storage and from RBC hemolysis post-resuscitation plays a role in increased mortality after PAK (p < 0.001). Heme also increased endothelial permeability and inhibited macrophage-dependent phagocytosis in cultured cells. Stored RBCs also increased circulating high mobility group box 1 (HMGB1; mean [95% CI] 15.4 ng/ml [6.7-24.0] for fresh RBCs and 50.3 ng/ml [12.3-88.2] for stored RBCs), and anti-HMGB1 blocking antibody protected against PAK-induced mortality in vivo (p = 0.001) and restored macrophage-dependent phagocytosis of P. aeruginosa in vitro. Finally, we showed that TH patients, admitted to the University of Alabama at Birmingham ER between 1 January 2015 and 30 April 2016 (n = 50), received high micromolar-millimolar levels of heme proportional to the number of units transfused, sufficient to overwhelm endogenous hemopexin levels early after TH and resuscitation. Limitations of the study include lack of assessment of temporal changes in different products of hemolysis after resuscitation and the small sample size precluding testing of associations between heme levels and adverse outcomes in resuscitated TH patients. CONCLUSIONS We provide evidence that large volume resuscitation with stored blood, compared to fresh blood, in mice increases mortality from subsequent pneumonia, which occurs via mechanisms sensitive to hemopexin and TLR4 and HMGB1 inhibition.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Parker J. Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cilina A. Evans
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jillian R. Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela P. Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Judy Creighton
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shannon W. Stephens
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Charity Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Randal O. Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Marisa B. Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey D. Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (J-FP); (RPP)
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (J-FP); (RPP)
| |
Collapse
|
16
|
Barshtein G, Arbell D, Yedgar S. Hemodynamic Functionality of Transfused Red Blood Cells in the Microcirculation of Blood Recipients. Front Physiol 2018; 9:41. [PMID: 29441026 PMCID: PMC5797635 DOI: 10.3389/fphys.2018.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023] Open
Abstract
The primary goal of red blood cell (RBC) transfusion is to supply oxygen to tissues and organs. However, due to a growing number of studies that have reported negative transfusion outcomes, including reduced blood perfusion, there is rising concern about the risks in blood transfusion. RBC are characterized by unique flow-affecting properties, specifically adherence to blood vessel wall endothelium, cell deformability, and self-aggregability, which define their hemodynamic functionality (HF), namely their potential to affect blood circulation. The role of the HF of RBC in blood circulation, particularly the microcirculation, has been documented in numerous studies with animal models. These studies indicate that the HF of transfused RBC (TRBC) plays an important role in the transfusion outcome. However, studies with animal models must be interpreted with reservations, as animal physiology may not reflect human physiology. To test this concept in humans, we have directly examined the effect of the HF of TRBC, as expressed by their deformability and adherence to vascular endothelium, on the transfusion-induced effect on the skin blood flow and hemoglobin increment in β-thalassemia major patients. The results demonstrated, for the first time in humans, that the TRBC HF is a potent effector of the transfusion outcome, expressed by the transfusion-induced increase in the recipients' hemoglobin level, and the change in the skin blood flow, indicating a link between the microcirculation and the survival of TRBC in the recipients' vascular system. The implication of these findings for blood transfusion practice and to vascular function in blood recipients is discussed.
Collapse
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dan Arbell
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
17
|
Nielsen ND, Martin-Loeches I, Wentowski C. The Effects of red Blood Cell Transfusion on Tissue Oxygenation and the Microcirculation in the Intensive Care Unit: A Systematic Review. Transfus Med Rev 2017; 31:205-222. [PMID: 28800876 DOI: 10.1016/j.tmrv.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
The transfusion of red blood cells (RBCs) is a common intervention in intensive care unit (ICU) patients, yet the benefits are far from clear in patients with moderate anemia (eg, hemoglobin (Hb) levels of 7-10 g/dL). Determining which of these patients benefit, and how to even define benefit, from transfusion is challenging. As the intended physiological benefit underpinning RBC transfusion is to improve tissue oxygenation, several studies utilizing a wide range of assessment techniques have attempted to study the effects of transfusion on tissue oxygenation and microcirculatory function. The objective of this systematic review was to determine whether RBC transfusion improves tissue oxygenation/microcirculatory indices in the ICU population, and to provide an introduction to the techniques used in these studies. Eligible studies published between January 1996 and February 2017 were identified from searches of PubMed, Embase, Cinahl, ScienceDirect, Web of Science, and The Cochrane Library. Seventeen studies met inclusion criteria, though there was significant heterogeneity in study design, patient population, assessment techniques and outcomes reported. Overall, the majority of studies (11 of 17) concluded that transfusion did not generally improve tissue oxygenation or microcirculation. Inter-individual effects were highly variable, however, and closer review of sub-groups available in 9 studies revealed that patients with abnormal tissue oxygenation or microcirculatory indices prior to transfusion had improvement in these indices with transfusion, irrespective of assessment method. This finding suggests a new strategy for future trials in the ICU: utilizing tissue oxygenation/microcirculatory parameters to determine the need for transfusion rather than largely arbitrary hemoglobin concentrations.
Collapse
Affiliation(s)
- Nathan D Nielsen
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's University Hospital, Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Catherine Wentowski
- Division of Pulmonary and Critical Care Medicine, Ochsner Clinic Foundation, New Orleans, LA, USA
| |
Collapse
|
18
|
Effect of RBC Transfusion on Sublingual Microcirculation in Hemorrhagic Shock Patients: A Pilot Study. Crit Care Med 2017; 45:e154-e160. [PMID: 27635767 DOI: 10.1097/ccm.0000000000002064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The effects of RBC transfusion on microvascular perfusion are not well documented. We investigated the effect of RBC transfusion on sublingual microcirculation in hemorrhagic shock patients. DESIGN Prospective, preliminary observational study. SETTINGS A 28-bed, surgical ICU in a university hospital. PATIENTS Fifteen hemorrhagic shock patients requiring RBC transfusion. INTERVENTION Transfusion of one unit of RBCs. MEASUREMENTS AND MAIN RESULTS The sublingual microcirculation was assessed with a Sidestream Dark Field imaging device before and after RBC transfusion. After transfusion of one unit of RBC, hemoglobin concentration increased from 8.5 g/dL (7.6-9.5 g/dL) to 9.6 g/dL (9.1-10.3 g/dL) g/dL (p = 0.02) but no effect on macrocirculatory parameters (arterial pressure, cardiac index, heart rate, and pulse pressure variations) was observed. Transfusion of RBC significantly increased microcirculatory flow index (from 2.3 [1.6-2.5] to 2.7 [2.6-2.9]; p < 0.003), the proportion of perfused vessels (from 79% [57-88%] to 92% [88-97%]; p < 0.004), and the functional capillary density (from 21 [19-22] to 24 [22-26] mm/mm; p = 0.003). Transfusion of RBC significantly decreased the flow heterogeneity index (from 0.51 [0.34-0.62] to 0.16 [0.04-0.29]; p < 0.001). No correlations were observed between other macrovascular parameters and microvascular changes after transfusion. The change in microvascular perfusion after transfusion correlated negatively with baseline microvascular perfusion. CONCLUSIONS RBC transfusion improves sublingual microcirculation independently of macrocirculation and the hemoglobin level in hemorrhagic shock patients. The change in microvascular perfusion after transfusion correlated negatively with baseline microvascular perfusion. Evaluation of microcirculation perfusion is critical for optimization of microvascular perfusion and to define which patients can benefit from RBC transfusion during cardiovascular resuscitation.
Collapse
|
19
|
Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock. Intensive Care Med Exp 2017; 5:24. [PMID: 28432665 PMCID: PMC5400770 DOI: 10.1186/s40635-017-0136-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023] Open
Abstract
Background The microvascular reperfusion injury after retransfusion has not been completely characterized. Specifically, the question of heterogeneity among different microvascular beds needs to be addressed. In addition, the identification of anaerobic metabolism is elusive. The venoarterial PCO2 to arteriovenous oxygen content difference ratio (Pv-aCO2/Ca-vO2) might be a surrogate for respiratory quotient, but this has not been validated. Therefore, our goal was to characterize sublingual and intestinal (mucosal and serosal) microvascular injury after blood resuscitation in hemorrhagic shock and its relation with O2 and CO2 metabolism. Methods Anesthetized and mechanically ventilated sheep were assigned to stepwise bleeding and blood retransfusion (n = 10) and sham (n = 7) groups. We performed analysis of expired gases, arterial and mixed venous blood gases, and intestinal and sublingual videomicroscopy. Results In the bleeding group during the last step of hemorrhage, and compared to the sham group, there were decreases in oxygen consumption (3.7 [2.8–4.6] vs. 6.8 [5.8–8.0] mL min−1 kg−1, P < 0.001) and increases in respiratory quotient (0.96 [0.91–1.06] vs. 0.72 [0.69–0.77], P < 0.001). Retransfusion normalized these variables. The Pv-aCO2/Ca-vO2 increased in the last step of bleeding (2.4 [2.0–2.8] vs. 1.1 [1.0–1.3], P < 0.001) and remained elevated after retransfusion, compared to the sham group (1.8 [1.5–2.0] vs. 1.1 [0.9–1.3], P < 0.001). Pv-aCO2/Ca-vO2 had a weak correlation with respiratory quotient (Spearman R = 0.42, P < 0.001). All the intestinal and sublingual microcirculatory variables were affected during hemorrhage and improved after retransfusion. The recovery was only complete for intestinal red blood cell velocity and sublingual total and perfused vascular densities. Conclusions Although there were some minor differences, intestinal and sublingual microcirculation behaved similarly. Therefore, sublingual mucosa might be an adequate window to track intestinal microvascular reperfusion injury. Additionally, Pv-aCO2/Ca-vO2 was poorly correlated with respiratory quotient, and its physiologic behavior was different. Thus, it might be a misleading surrogate for anaerobic metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s40635-017-0136-3) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Walz JM, Stundner O, Girardi FP, Barton BA, Koll-Desrosiers AR, Heard SO, Memtsoudis SG. Microvascular response to transfusion in elective spine surgery. World J Orthop 2017; 8:49-56. [PMID: 28144579 PMCID: PMC5241545 DOI: 10.5312/wjo.v8.i1.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/19/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the microvascular (skeletal muscle tissue oxygenation; SmO2) response to transfusion in patients undergoing elective complex spine surgery.
METHODS After IRB approval and written informed consent, 20 patients aged 18 to 85 years of age undergoing > 3 level anterior and posterior spine fusion surgery were enrolled in the study. Patients were followed throughout the operative procedure, and for 12 h postoperatively. In addition to standard American Society of Anesthesiologists monitors, invasive measurements including central venous pressure, continual analysis of stroke volume (SV), cardiac output (CO), cardiac index (CI), and stroke volume variability (SVV) was performed. To measure skeletal muscle oxygen saturation (SmO2) during the study period, a non-invasive adhesive skin sensor based on Near Infrared Spectroscopy was placed over the deltoid muscle for continuous recording of optical spectra. All administration of fluids and blood products followed standard procedures at the Hospital for Special Surgery, without deviation from usual standards of care at the discretion of the Attending Anesthesiologist based on individual patient comorbidities, hemodynamic status, and laboratory data. Time stamps were collected for administration of colloids and blood products, to allow for analysis of SmO2 immediately before, during, and after administration of these fluids, and to allow for analysis of hemodynamic data around the same time points. Hemodynamic and oxygenation variables were collected continuously throughout the surgery, including heart rate, blood pressure, mean arterial pressure, SV, CO, CI, SVV, and SmO2. Bivariate analyses were conducted to examine the potential associations between the outcome of interest, SmO2, and each hemodynamic parameter measured using Pearson’s correlation coefficient, both for the overall cohort and within-patients individually. The association between receipt of packed red blood cells and SmO2 was performed by running an interrupted time series model, with SmO2 as our outcome, controlling for the amount of time spent in surgery before and after receipt of PRBC and for the inherent correlation between observations. Our model was fit using PROC AUTOREG in SAS version 9.2. All other analyses were also conducted in SAS version 9.2 (SAS Institute Inc., Cary, NC, United States).
RESULTS Pearson correlation coefficients varied widely between SmO2 and each hemodynamic parameter examined. The strongest positive correlations existed between ScvO2 (P = 0.41) and SV (P = 0.31) and SmO2; the strongest negative correlations were seen between albumin (P = -0.43) and cell saver (P = -0.37) and SmO2. Correlations for other laboratory parameters studied were weak and only based on a few observations. In the final model we found a small, but significant increase in SmO2 at the time of PRBC administration by 1.29 units (P = 0.0002). SmO2 values did not change over time prior to PRBC administration (P = 0.6658) but following PRBC administration, SmO2 values declined significantly by 0.015 units (P < 0.0001).
CONCLUSION Intra-operative measurement of SmO2 during large volume, yet controlled hemorrhage, does not show a statistically significant correlation with either invasive hemodynamic, or laboratory parameters in patients undergoing elective complex spine surgery.
Collapse
|
21
|
Stowell CP, Whitman G, Granger S, Gomez H, Assmann SF, Massey MJ, Shapiro NI, Steiner ME, Bennett-Guerrero E. The impact of red blood cell storage duration on tissue oxygenation in cardiac surgery. J Thorac Cardiovasc Surg 2016; 153:610-619.e2. [PMID: 28027790 DOI: 10.1016/j.jtcvs.2016.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although storage alters red blood cells, several recent, randomized trials found no differences in clinical outcomes between patients transfused with red blood cells stored for shorter versus longer periods of time. The objective of this study was to see whether storage impairs the in vivo ability of erythrocytes to traverse the microcirculation and deliver oxygen at the tissue level. METHODS A subset of subjects from a clinical trial of cardiac surgery patients randomized to receive transfusions of red blood cells stored ≤10 days or ≥21 days were assessed for thenar eminence and cerebral tissue hemoglobin oxygen saturation (StO2) via the use of near-infrared spectroscopy and sublingual microvascular blood flow via side-stream darkfield videomicroscopy. RESULTS Among 55 subjects, there was little change in the primary endpoint (thenar eminence StO2 from before to after transfusion of one unit) and the change was similar in the 2 groups: +1.7% (95% confidence interval, -0.3, 3.8) for shorter-storage and +0.8% (95% confidence interval, -1.1, 2.9) for longer-storage; P = .61). Similarly, no significant differences were observed for cerebral StO2 or sublingual microvascular blood flow. These parameters also were not different from preoperatively to 1 day postoperatively, reflecting the absence of a cumulative effect of all red blood cell units transfused during this period. CONCLUSIONS There were no differences in thenar eminence or cerebral StO2, or sublingual microcirculatory blood flow, in cardiac surgery patients transfused with red blood cells stored ≤10 days or ≥21 days. These results are consistent with the clinical outcomes in the parent study, which also did not differ, indicating that storage may not impair oxygen delivery by red blood cells in this setting.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Glenn Whitman
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Md
| | | | - Hernando Gomez
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pa
| | | | - Michael J Massey
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Nathan I Shapiro
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Marie E Steiner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | | |
Collapse
|
22
|
Weinberg JA, Patel RP. Red blood cell transfusion and its effect on microvascular dysfunction in shock states. Best Pract Res Clin Anaesthesiol 2016; 30:491-498. [PMID: 27931652 DOI: 10.1016/j.bpa.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023]
Abstract
Among critically ill patients, red blood cell (RBC) transfusion is often prescribed for anemia in the absence of active or recent bleeding. The failure of RBC transfusion to improve physiological parameters and clinical outcomes in this setting may be explained by current understanding of the relationship between the RBCs and the microcirculation. It is now evident that the circulating RBCs contribute to microcirculatory hypoxic vasodilation by regulated nitric oxide (NO)-dependent vasodilation, thereby facilitating delivery of oxygen to oxygen-deprived tissue. The structural and functional changes in RBCs during storage, collectively known as the storage lesion, result in circulating RBCs that may not function as expected after transfusion. In recent years, there has been a significant focus on the dysfunctional interaction between stored RBCs and the microcirculation, with emphasis on understanding the mechanisms that drive erythrocyte NO-mediated vasodilation. The development of technology that allows noninvasive observation of the microcirculation in humans has allowed for direct observation of the microcirculation immediately before and after RBC transfusion. The current understanding of RBC NO-mediated vasodilation and the results of direct observation of the microcirculation in the setting of RBC transfusion are reviewed.
Collapse
Affiliation(s)
- Jordan A Weinberg
- Creighton University School of Medicine Phoenix Campus, St. Joseph's Hospital and Medical Center, Trauma Administration, 350 W. Thomas Road, Phoenix, AZ 85013, USA.
| | - Rakesh P Patel
- University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Barshtein G, Pries AR, Goldschmidt N, Zukerman A, Orbach A, Zelig O, Arbell D, Yedgar S. Deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient's blood flow. Microcirculation 2016; 23:479-486. [DOI: 10.1111/micc.12296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | | | - Neta Goldschmidt
- Department of Hematology; Hadassah University Hospital; Jerusalem Israel
| | - Ayelet Zukerman
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | - Ariel Orbach
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| | - Orly Zelig
- Blood Bank; Hadassah-Hebrew University Hospital; Jerusalem Israel
| | - Dan Arbell
- Department of Pediatric Surgery; Hadassah- Hebrew University Hospital; Jerusalem Israel
| | - Saul Yedgar
- Department of Biochemistry; Hebrew University Faculty of Medicine; Jerusalem Israel
| |
Collapse
|
24
|
Lee YLL, Simmons JD, Gillespie MN, Alvarez DF, Gonzalez RP, Brevard SB, Frotan MA, Schneider AM, Richards WO. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury. Am Surg 2015. [DOI: 10.1177/000313481508101231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R2 = 0.525, De Backer R2 = 0.576, P < 0.05). Mean arterial pressure, heart rate, oxygen saturation, pH, bicarbonate, base deficit, hematocrit, and coagulation parameters correlated poorly with both TVD and De Backer score. Direct measurement of sublingual microvascular perfusion is technically feasible in trauma patients, and seems to provide real-time assessment of micro-circulatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.
Collapse
Affiliation(s)
- Yann-Leei L. Lee
- Departments of Surgery, University of South Alabama, Mobile, Alabama
- Departments of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Jon D. Simmons
- Departments of Surgery, University of South Alabama, Mobile, Alabama
| | - Mark N. Gillespie
- Departments of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Diego F. Alvarez
- Departments of Pharmacology, University of South Alabama, Mobile, Alabama
| | | | - Sidney B. Brevard
- Departments of Surgery, University of South Alabama, Mobile, Alabama
| | | | | | | |
Collapse
|
25
|
Moore J, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: why, when, and how. Br J Anaesth 2015; 115:366-75. [DOI: 10.1093/bja/aev163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
26
|
Stapley R, Rodriguez C, Oh JY, Honavar J, Brandon A, Wagener BM, Marques MB, Weinberg JA, Kerby JD, Pittet JF, Patel RP. Red blood cell washing, nitrite therapy, and antiheme therapies prevent stored red blood cell toxicity after trauma-hemorrhage. Free Radic Biol Med 2015; 85:207-18. [PMID: 25933588 PMCID: PMC4508223 DOI: 10.1016/j.freeradbiomed.2015.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage. A murine (C57BL/6) model of trauma-hemorrhage and resuscitation with 1 or 3 units of RBCs stored for 0-10 days was used. Tested variables included washing RBCs to remove lower MW components that scavenge NO, NO-repletion therapy using nitrite, or mitigation of free heme toxicity by heme scavenging or preventing TLR4 activation. Stored RBC toxicity was determined by assessment of acute lung injury indices (airway edema and inflammation) and survival. Transfusion with 5 day RBCs increased acute lung injury indexed by BAL protein and neutrophil accumulation. Washing 5 day RBCs prior to transfusion did not decrease this injury, whereas nitrite therapy did. Transfusion with 10 day RBCs elicited a more severe injury resulting in ~90% lethality, compared to <15% with 5 day RBCs. Both washing and nitrite therapy significantly protected against 10 day RBC-induced lethality, suggesting that washing may be protective when the injury stimulus is more severe. Finally, a spectral deconvolution assay was developed to simultaneously measure free heme and hemoglobin in stored RBC supernatants, which demonstrated significant increases of both in stored human and mouse RBCs. Transfusion with free heme partially recapitulated the toxicity mediated by stored RBCs. Furthermore, inhibition of TLR4 signaling, which is stimulated by heme, using TAK-242, or hemopexin-dependent sequestration of free heme significantly protected against both 5 day and 10 day mouse RBC-dependent toxicity. These data suggest that RBC washing, nitrite therapy, and/or antiheme and TLR4 strategies may prevent stored RBC toxicities.
Collapse
Affiliation(s)
- Ryan Stapley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cilina Rodriguez
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jaideep Honavar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela Brandon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brant M Wagener
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marisa B Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jordan A Weinberg
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Oh JY, Stapley R, Harper V, Marques MB, Patel RP. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements. Transfusion 2015. [PMID: 26202471 DOI: 10.1111/trf.13248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. STUDY DESIGN AND METHODS RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. RESULTS Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. CONCLUSION Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh P Patel
- Department of Pathology.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Transfusion requirements in surgical oncology patients: a prospective, randomized controlled trial. Anesthesiology 2015; 122:29-38. [PMID: 25401417 DOI: 10.1097/aln.0000000000000511] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several studies have indicated that a restrictive erythrocyte transfusion strategy is as safe as a liberal one in critically ill patients, but there is no clear evidence to support the superiority of any perioperative transfusion strategy in patients with cancer. METHODS In a randomized, controlled, parallel-group, double-blind (patients and outcome assessors) superiority trial in the intensive care unit of a tertiary oncology hospital, the authors evaluated whether a restrictive strategy of erythrocyte transfusion (transfusion when hemoglobin concentration <7 g/dl) was superior to a liberal one (transfusion when hemoglobin concentration <9 g/dl) for reducing mortality and severe clinical complications among patients having major cancer surgery. All adult patients with cancer having major abdominal surgery who required postoperative intensive care were included and randomly allocated to treatment with the liberal or the restrictive erythrocyte transfusion strategy. The primary outcome was a composite endpoint of mortality and morbidity. RESULTS A total of 198 patients were included as follows: 101 in the restrictive group and 97 in the liberal group. The primary composite endpoint occurred in 19.6% (95% CI, 12.9 to 28.6%) of patients in the liberal-strategy group and in 35.6% (27.0 to 45.4%) of patients in the restrictive-strategy group (P = 0.012). Compared with the restrictive strategy, the liberal transfusion strategy was associated with an absolute risk reduction for the composite outcome of 16% (3.8 to 28.2%) and a number needed to treat of 6.2 (3.5 to 26.5). CONCLUSION A liberal erythrocyte transfusion strategy with a hemoglobin trigger of 9 g/dl was associated with fewer major postoperative complications in patients having major cancer surgery compared with a restrictive strategy.
Collapse
|
29
|
Transfusion de concentrés globulaires en réanimation : moins, c’est mieux ! MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-014-1015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
|
31
|
The deleterious effect of red blood cell storage on microvascular response to transfusion. J Trauma Acute Care Surg 2014; 75:807-12. [PMID: 24158198 DOI: 10.1097/ta.0b013e3182a74a9b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The transfusion of relatively older red blood cells (RBCs) has been associated with both morbidity and mortality in trauma patients in observational studies. Although the mechanisms responsible for this phenomenon remain unclear, alterations in the microcirculation as a result of the transfusion of relatively older blood may be a causative factor. To assess this hypothesis, we evaluated microvascular perfusion in trauma patients during RBC transfusion. METHODS Anemic but otherwise stable trauma intensive care unit patients with orders for transfusion were identified. Thenar muscle tissue oxygen saturation (StO(2)) was measured continuously by near-infrared spectroscopy during the course of transfusion of one RBC unit. Sublingual microcirculation was observed by sidestream dark-field illumination microscopy before and after transfusion of one RBC unit. Thenar muscle StO(2) was recorded during the course of transfusion. Pretransfusion and posttransfusion perfused capillary vascular density (PCD) was determined by semiquantitative image analysis. Changes in StO(2) and PCD relative to age of RBC unit were evaluated using mixed models that adjusted for baseline StO(2) and Spearman correlation, respectively. RESULTS Overall, 93 patients were recruited for study participation, 69% were male, and average Injury Severity Score (ISS) was 26.4. The average pretransfusion hemoglobin was 7.5 mg/dL, and the average age of RBC unit transfused was 29.4 days. The average peritransfusion StO(2) was negatively associated with increasing RBC age (slope, -0.11; p = 0.0014). Change in PCD from pretransfusion to posttransfusion period was found to correlate negatively with RBC storage age (Spearman correlation, -0.27; p = 0.037). CONCLUSION The transfusion of relatively older RBC units was associated with a decline in both StO(2) and PCD. Collectively, these observations demonstrate that transfusions of older RBC units are associated with the inhibition of regional microvascular perfusion. In patients requiring multiple units of RBCs, alteration of the microcirculation by relatively older units could potentially contribute to adverse outcomes. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
32
|
Hurcombe SD, Welch BR, Williams JM, Cooper ES, Russell D, Mudge MC. Dark‐field microscopy in the assessment of large colon microperfusion and mucosal injury in naturally occurring surgical disease of the equine large colon. Equine Vet J 2014; 46:674-80. [DOI: 10.1111/evj.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- S. D. Hurcombe
- Department of Veterinary Clinical Sciences College of Veterinary Medicine The Ohio State University USA
| | - B. R. Welch
- Department of Veterinary Clinical Sciences College of Veterinary Medicine The Ohio State University USA
| | - J. M. Williams
- Department of Veterinary Clinical Sciences College of Veterinary Medicine The Ohio State University USA
| | - E. S. Cooper
- Department of Veterinary Clinical Sciences College of Veterinary Medicine The Ohio State University USA
| | - D. Russell
- Department of Veterinary Biosciences College of Veterinary Medicine The Ohio State University USA
| | - M. C. Mudge
- Department of Veterinary Clinical Sciences College of Veterinary Medicine The Ohio State University USA
| |
Collapse
|
33
|
Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusion-related toxicity. Biochem J 2012; 446:499-508. [PMID: 22720637 DOI: 10.1042/bj20120675] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25 days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.
Collapse
|
34
|
|