1
|
Wieruszewski PM, Radosevich MA, Nei SD, Kashani KB, Normand SE, Schaff HV, Wittwer ED. Ascorbic acid and microcirculation in cardiothoracic surgery: a pilot feasibility trial and matched cohort study. J Cardiothorac Surg 2025; 20:234. [PMID: 40400032 PMCID: PMC12096601 DOI: 10.1186/s13019-025-03486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/18/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Ascorbic acid is an essential cofactor of catecholamine synthesis that increases capillary bed density and improves microcirculation perfusion. We hypothesized early ascorbic acid administration in cardiothoracic surgery would preserve the microcirculatory integrity and minimize postoperative vasoplegia. METHODS This was a single-arm pilot feasibility study of adults undergoing septal myectomy combined with valve intervention or alone using cardiopulmonary bypass. Intravenous ascorbic acid 1,500 mg was administered before and immediately following cardiopulmonary bypass and every 6 h after for 12 doses. Three historical controls were identified and matched to each trial participant on age, gender, body mass index, preoperative ejection fraction, surgery performed, and time on cardiopulmonary bypass. The feasibility endpoint was a composite of successful and timely 1) ascorbic acid administration, 2) laboratory assessment, and 3) microcirculation measurements across the perioperative phases of care. Clinical endpoints included vasoplegia incidence, acute kidney injury, and lengths of stay compared to controls. RESULTS Fifteen patients were enrolled and compared to 45 historically matched controls. Participants' median baseline plasma ascorbic acid concentration was 0.5 (0.3, 0.9) mg/dL. Four (27%) patients had suboptimal concentrations. Eleven participants (75%) did not meet the feasibility composite endpoint due to the inability of microcirculation measurement. Incidence of vasoplegia and acute kidney injury, vasopressor duration, and lengths of stay were similar between participants and historical controls. No drug-related adverse events were noted. CONCLUSIONS Timely microcirculation measurements were challenging in the complex cardiothoracic surgery environment. Compared to historical controls, no meaningful differences in clinical endpoints were noted with ascorbic acid treatment. The utility of ascorbic acid on post-cardiopulmonary bypass vasoplegia remains unclear. TRIAL REGISTRATION ClinicalTrials.gov (NCT03744702, registered on November 14, 2018).
Collapse
Affiliation(s)
- Patrick M Wieruszewski
- Department of Pharmacy, Mayo Clinic, 200 First Street SW, RO_MB_GR_722PH, Rochester, MN, 55905, USA.
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, RO_MB_GR_722PH, Rochester, MN, USA.
| | - Misty A Radosevich
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, RO_MB_GR_722PH, Rochester, MN, USA
| | - Scott D Nei
- Department of Pharmacy, Mayo Clinic, 200 First Street SW, RO_MB_GR_722PH, Rochester, MN, 55905, USA
| | - Kianoush B Kashani
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Erica D Wittwer
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, RO_MB_GR_722PH, Rochester, MN, USA
| |
Collapse
|
2
|
Nam K, Chung J, Ju JW, Cho YJ, Jeon Y. Intraoperative Oxygenation and Microcirculatory Changes Following Off-pump Coronary Artery Bypass Grafting: An Exploratory Secondary Analysis of a Randomized Clinical Trial. J Cardiothorac Vasc Anesth 2025; 39:1188-1196. [PMID: 39988503 DOI: 10.1053/j.jvca.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES The effect of perioperative hyperoxia on microcirculation after cardiac surgery remains inconclusive. We evaluated the relationship between intraoperative fractional inspired oxygen and microcirculation after off-pump coronary artery bypass grafting (OPCAB). DESIGN Exploratory secondary analysis of a multicenter cluster-randomized trial. SETTING Three teaching hospitals. PARTICIPANTS Adult patients who underwent OPCAB. INTERVENTIONS Seven postoperative microcirculatory parameters, including De Backer scores and the proportion of perfused vessels via sublingual microscopy (from all and small vessels), and thenar muscle tissue oxygenation, occlusion slope, and recovery slope via the vascular occlusion test, were compared between patients receiving 30% and 80% oxygen intraoperatively. Generalized estimating equations were used to account for intracluster correlation. MEASUREMENTS AND MAIN RESULTS The analysis included 52 and 51 patients from the 30% and 80% oxygen groups, respectively, for sublingual microscopy and 59 and 53 patients for the vascular occlusion test. Although all microcirculatory parameters were similar between groups, the 80% oxygen group had higher De Backer scores for all vessels (mean, 9.8 ± 2.9 mm-1 vs. 8.7 ± 2.0 mm-1; p = 0.011) and small vessels (4.0 ± 1.8 mm-1 vs. 3.4 ± 1.1 mm-1; p = 0.024) than the 30% oxygen group at the end of surgery. The 80% oxygen group also exhibited greater thenar muscle tissue oxygenation immediately before vascular occlusion (78.4% ± 10.5 vs. 74.0% ± 9.3; p = 0.031) and a higher recovery score (4.1%·s-1 ± 1.7 vs. 3.2%·s-1 ± 1.4; p = 0.001). CONCLUSIONS Patients receiving 80% oxygen during OPCAB had significantly better postoperative microcirculatory profiles than those receiving 30% oxygen. These findings highlight the potential for optimizing perioperative oxygenation to improve or mitigate microcirculatory impairment, thereby reducing postoperative complications.
Collapse
Affiliation(s)
- Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeyeon Chung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Woo Ju
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Hahn RG, Tlapakova K, Koudelova H, Knoblochova V, Rehak D, Cerny V, Astapenko D. Low-grade hemodilution improves the microcirculatory function in surgical patients. Microvasc Res 2025; 158:104781. [PMID: 39740739 DOI: 10.1016/j.mvr.2024.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Excess fluid in the interstitium can adversely affect the microcirculation. We studied how gradual dilution of the blood plasma by crystalloid fluid influences microcirculatory variables and capillary filtration in 20 patients undergoing surgery. METHODS Video recordings of the sublingual mucosal were made on four occasions during the surgery and compared with quasi-measurements of the capillary filtration rate using retrospective volume kinetic data collected over 5-10-minute periods during 262 infusion experiments with crystalloid fluid. RESULTS The number of crossings (vessel density) increased up to plasma dilution of 15-20 % whereafter it decreased. The proportion of the vessels that were perfused (PPV) decreased and reached a nadir of -15 % at a dilution of 20-30 %. Changes in the number of crossings and the PPV correlated (r = 0.62, P < 0.001) but the curve was displaced so that crossings showed no change when PPV had decreased by approximately 10 %. However, the PPV of vessels with a thickness of ≤25 μm increased or remained constant in the dilution range of up to 20 %. The volume kinetic analysis showed that the capillary filtration was greater than expected from proportionality with the volume expansion up to a plasma dilution of 15 %, the greatest difference (+89 %) being for plasma dilution up to 5 %. CONCLUSION Plasma dilution of up to 15 % increased the vessel density, and the capillary filtration increased by more than suggested by the volume expansion. Dilution >15 % had a negative influence on these variables.
Collapse
Affiliation(s)
- Robert G Hahn
- Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden.
| | - Katerina Tlapakova
- Dept. of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic
| | - Hana Koudelova
- Dept. of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic
| | | | - David Rehak
- Faculty of Medicine Hradec Kralove, Charles University, Czech Republic
| | - Vladimir Cerny
- Faculty of Medicine Hradec Kralove, Charles University, Czech Republic; Faculty of Health Sciences, Technical University in Liberec, Czech Republic; Department of Anesthesiology, Perioperative and Intensive Care Medicine, University of J. E. Purkyne in Usti nad Labem, Masaryk Hospital in Usti nad Labem, Czech Republic; Dept. of Anaesthesia and Intensive Care Medicine, Charles University in Prague, 3rd Faculty of Medicine, Czech Republic; Dept. of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - David Astapenko
- Dept. of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Hradec Kralove, Czech Republic; Faculty of Medicine Hradec Kralove, Charles University, Czech Republic; Faculty of Health Sciences, Technical University in Liberec, Czech Republic
| |
Collapse
|
4
|
Morin A, Missri L, Urbina T, Bonny V, Gasperment M, Bernier J, Baudel JL, Kattan E, Maury E, Joffre J, Ait-Oufella H. Relationship between skin microvascular blood flow and capillary refill time in critically ill patients. Crit Care 2025; 29:57. [PMID: 39905546 PMCID: PMC11792347 DOI: 10.1186/s13054-025-05285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Capillary refill time (CRT) and skin blood flow (SBF) have been reported to be strong predictors of mortality in critically ill patients. However, the relationship between both parameters remains unclear. METHODS We conducted a prospective observational study in a tertiary teaching hospital. All patients older than 18 years admitted in the intensive care unit (ICU) with circulatory failure and a measurable CRT were included. We assessed index SBF by laser doppler flowmetry and CRT on the fingertip, at T0 (Within the first 48 h from admission) and T1 (4 to 6 h later). Correlation was computed using Spearman or Pearson's formula. RESULTS During a 2-month period, 50 patients were included, 54% were admitted for sepsis. At baseline median CRT was 2.0 [1.1-3.9] seconds and median SBF was 46 [20-184] PU. At baseline SBF strongly correlated with CRT (R2 = 0.89; p < 0.0001, curvilinear relationship), this correlation was maintained whether patients were septic or not (R2 = 0.94; p = 0.0013; R2 = 0.87; p < 0.0001, respectively), and whether they received norepinephrine or not (R2 = 0.97; p = 0.0035; R2 = 0.92; p < 0.0001, respectively). Between T0 and T1, changes in SBF also significantly correlated with changes in CRT (R2 = 0.34; p < 0.0001). SBF was related to tissue perfusion parameters such as arterial lactate level (p = 0.02), whilst no correlation was found with cardiac output. In addition, only survivors significantly improved their SBF between T0 and T1. SBF was a powerful predictor of day-28 mortality as the AUROC at T0 was 85% [95% IC [76-91]] and at T1 90% [95% IC [78-100]]. CONCLUSION We have shown that index CRT and SBF were correlated, providing evidence that CRT is a reliable marker of microvascular blood flow. Trial registration Comité de protection des personnes Ouest II N° 2023-A02046-39.
Collapse
Affiliation(s)
- Alexandra Morin
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Louai Missri
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Tomas Urbina
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Vincent Bonny
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Maxime Gasperment
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Juliette Bernier
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Jean-Luc Baudel
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Eric Maury
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
| | - Jérémie Joffre
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France
- Centre de Recherche Saint-Antoine Inserm UMR-S 938, Sorbonne University, 75012, Paris, France
| | - Hafid Ait-Oufella
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France.
- Paris Cardiovascular Research Center, Inserm U970, University Paris-Cité, Paris, France.
| |
Collapse
|
5
|
Xu J, Wang Y, Shu C, Chang W, Guo F. Dexmedetomidine Improves Microcirculatory Alterations in Patients With Initial Resuscitated Septic Shock. J Intensive Care Med 2025; 40:137-144. [PMID: 39193773 DOI: 10.1177/08850666241267860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Trial registration: Clinicaltrials.gov NCT02270281. Registered October 16, 2014.
Collapse
Affiliation(s)
- Jingyuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yeming Wang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chang Shu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
7
|
Peng L, Zheng Y, Guo F, Su M, Wei W. Near-infrared spectroscopy combined with vascular occlusion test to predict acute kidney injury in patients undergoing cardiac surgery: a prospective observational study. J Cardiothorac Surg 2025; 20:48. [PMID: 39780209 PMCID: PMC11715106 DOI: 10.1186/s13019-024-03312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO2) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO2 monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation. However, the implications of these measurements for patient outcomes remain inadequately understood. This study aimed to investigate the association between StO2-VOT measurements and the occurrence of postoperative acute kidney injury (AKI), in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). METHODS Between March 2020 and March 2021, 100 adult patients who scheduled to undergo cardiac surgery with mild hypothermic CPB were enrolled to this prospective observational study. StO2 was continuously monitored at the right forearm and ipsilateral VOT procedure was performed before initiation of CPB, at the time before weaning from CPB, and at the end of surgery. Preoperative and intraoperative factors, along with StO2-VOT parameters, were evaluated for their independent association with the occurrence of AKI following cardiac surgery. StO2-VOT parameters were also compared between patients with hyperlactatemia (peak blood lactate ≥ 4 mmol/L) and those without hyperlactatemia. RESULTS In our patient population (n = 87), 13.79% (12/87) patients developed AKI after surgery. Multivariable analysis revealed that CPB time and post-CPB desaturation speed (D-speed) were independently associated with AKI. Post-CPB D-speed had an area under receiver operating characteristic (ROC) curve of 0.79 (95% CI, 0.66-0.93) with a cutoff value of 0.08%·min- 1 in predicting AKI. Patients with hyperlactatemia had longer pre-CPB T1 and higher D-speed during CPB. However, ROC analysis indicated that T1 and D-speed exhibited limited predictive capacity for hyperlactatemia. Patients with AKI exhibited an increased risk of prolonged ICU stays, postoperative stroke, reoperation, and in-hospital mortality. CONCLUSIONS NIRS monitoring combined with VOT shows promise in predicting postoperative AKI in patients undergoing cardiac surgery with mild hypothermic CPB. TRIAL REGISTRATION ChiCTR1900021436 with registered date 21/02/2019.
Collapse
Affiliation(s)
- Ling Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeying Zheng
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, 643099, China
| | - Fei Guo
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, 643099, China
| | - Mengdan Su
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Wei Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
8
|
Chen PY, Huang HH, Chan WS, Liu CM, Wu TT, Chen JH, Chao A, Tien YW, Chiu CT, Yeh YC. Comparison of dexmedetomidine versus propofol sedation on microcirculation and organ injuries in critically ill surgical patients: A randomized controlled pilot study. Clin Hemorheol Microcirc 2025; 89:43-53. [PMID: 38788060 DOI: 10.3233/ch-232093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND Recent studies have shown that dexmedetomidine may improve microcirculation and prevent organ failure. However, most evidence was obtained from experimental animals and patients receiving cardiac surgery with cardiopulmonary bypass. This study aimed to investigate the effect of dexmedetomidine on microcirculation and organ injuries in critically ill general surgical patients. METHODS In this prospective randomized trial, patients admitted to the surgical intensive care unit after general surgery were enrolled and randomly allocated to the dexmedetomidine or propofol groups. Patients received continuous dexmedetomidine or propofol infusions to meet their requirement of sedation according to their grouping. At each time point, sublingual microcirculation images were obtained using the incident dark field video microscope. RESULTS Overall, 60 patients finished the trial and were analyzed. Microcirculation parameters did not differ significantly between two groups. Heart rate at 4 h after ICU admission and mean arterial pressures at 12 h and 24 h after ICU admission were lower in the dexmedetomidine group than in the propofol group. At 24 h, serum aspartate aminotransferase (41 (25-118) vs 86 (34-129) U/L, p = 0.035) and alanine aminotransferase (50 (26-160) vs 68 (35-172) U/L, p = 0.019) levels were significantly lower in the dexmedetomidine group than in the propofol group. CONCLUSION Microcirculation parameters did not differ significantly between the dexmedetomidine and propofol groups. At 24 h after ICU admission, serum liver enzyme levels were lower in patients receiving dexmedetomidine as compared to propofol.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsing-Hao Huang
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wing-Sum Chan
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Chih-Min Liu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Ta Wu
- Department of Anesthesiology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Jyun-Han Chen
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Anne Chao
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Tang Chiu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Chen YH, Kao KC, Hsieh MJ, Leu SW, Huang CC. The Prognostic Value of the Muscle Regional Oxygen Saturation Index in Patients with Acute Respiratory Distress Syndrome. J Clin Med 2024; 13:7612. [PMID: 39768535 PMCID: PMC11678462 DOI: 10.3390/jcm13247612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Impaired systemic tissue oxygenation and microvascular perfusion are associated with adverse outcomes in patients with acute respiratory distress syndrome (ARDS). Tissue oxygenation and microvascular reactivity, assessed by using near-infrared spectroscopy (NIRS), are correlated with disease severity in critically ill populations. This study aimed to detect alterations in these factors and their ability to predict outcomes in patients with ARDS. Methods: We performed NIRS measurements on the first (Day 1) and third (Day 3) days after ARDS diagnosis in 29 patients. We recorded the baseline forearm muscle oxygen saturation (StO2) and calculated the deoxygenation slope (Deoxy) and reoxygenation (Reoxy) slope. We divided the subjects into 28-day survival and non-survival subgroups to compare microcirculatory and oxygenation status differences. Results: The Day 1 StO2 values were significantly higher for the survival subgroup (60.1 ± 13.5%) than the non-survival subgroup (47.2 ± 6.9%) (p = 0.025). The ROC curve showed that Day 1 StO2 was a significant predictor of 28-day mortality (p = 0.025). There was no significant difference between the Deoxy and Reoxy slopes of the two groups (p > 0.05). The ROC of the Day 1 Reoxy slope for survival prediction (AUC0.74) was not statistically significant (p = 0.074). Conclusions: Our study showed poor survival outcomes in patients who had lower skeletal muscle StO2 values in early-stage ARDS. NIRS measurements may provide prognostic value for the survival outcomes in patients with this syndrome.
Collapse
Affiliation(s)
- Yen-Huey Chen
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kuo-Chin Kao
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Meng-Jer Hsieh
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Shaw-Woei Leu
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| |
Collapse
|
10
|
Tang A, Shi Y, Dong Q, Wang S, Ge Y, Wang C, Gong Z, Zhang W, Chen W. Prognostic Value of Sublingual Microcirculation in Sepsis: A Systematic Review and Meta-analysis. J Intensive Care Med 2024; 39:1221-1230. [PMID: 38748542 DOI: 10.1177/08850666241253800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Objectives: To investigate the relationship between sublingual microcirculation and the prognosis of sepsis. Data sources: The PubMed, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) databases were searched to identify studies published from January 2003 to November 2023. Study selection: Clinical studies examining sublingual microcirculation and the prognosis of sepsis were included. Data extraction: Sublingual microcirculation indices included the microvascular blood index (MFI), total vascular density (TVD), perfusion vascular density (PVD), perfusion vascular vessel (PPV), and heterogeneity index (HI). Prognostic outcomes included mortality and severity. Funnel plots and Egger's test were used to detect publication bias. The ability of the small vessel PPV (PPVs) to predict sepsis-related mortality was analyzed based on the summary receiver operating characteristic (SROC) curve, pooled sensitivity, and pooled specificity. Data synthesis: Twenty-five studies involving 1750 subjects were included. The TVD (95% CI 0.11-0.39), PVD (95% CI 0.42-0.88), PPV (95% CI 6.63-13.83), and MFI (95% CI 0.13-0.6) of the survival group were greater than those of the nonsurvival group. The HI in the survival group was lower than that in the nonsurvival group (95% CI -0.49 to -0.03). The TVD (95% CI 0.41-0.83), PVD (95% CI 0.83-1.17), PPV (95% CI 14.49-24.9), and MFI (95% CI 0.25-0.66) of the nonsevere group were greater than those of the severe group. Subgroup analysis revealed no significant difference in TVD between the survival group and the nonsurvival group in the small vessel subgroup. The area under the SROC curve (AUC) was 0.88. Conclusions: Sublingual microcirculation was worse among patients who died and patients with severe sepsis than among patients who survived and patients with nonsevere sepsis. PPV has a good predictive value for the mortality of sepsis patients. This study was recorded in PROSPERO (registration number: CRD42023486349).
Collapse
Affiliation(s)
- Aling Tang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingqing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sihui Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Ge
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyan Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Gong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weizhen Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Ding X, Zhou Y, Zhang X, Sun T, Cui N, Wang S, Su D, Yu Z. Application of microcirculatory indicators in predicting the prognosis of patients with septic shock. Heliyon 2024; 10:e38035. [PMID: 39524826 PMCID: PMC11550762 DOI: 10.1016/j.heliyon.2024.e38035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The aim of this study is to investigate the predictive value of indicators associated with microcirculation, capillary refill time (CRT), perfusion index (PI), and mottling score, on the prognosis of patients with septic shock. Method A retrospective clinical study was conducted encompassing 78 patients diagnosed with septic shock and admitted to the Department of Critical Care Medicine at our hospital from January 2019 to January 2022. The study collated the clinical data of these patients, focusing on macrocirculatory hemodynamic parameters and microcirculatory indices. The parameters of interest were recorded at 0, 6, 24, and 48 h post-admission, including heart rate, mean arterial pressure (MAP), venous-to-arterial carbon dioxide partial pressure difference, superior vena cava oxygen saturation, lactic acid (LAC), CRT, PI, and mottling score. The enrolled patients were stratified into two cohorts based on the 28-day mortality rate: a survival group and a mortality group. A non-parametric statistical test was employed to compare the CRT, PI, and mottling score between the two groups. Furthermore, the predictive value of these microcirculatory indicators for mortality in septic shock patients was assessed using receiver operating characteristic (ROC) curve analysis. This methodology allowed for the evaluation of the prognostic accuracy of CRT, PI, and mottling score as indicators for mortality in the context of septic shock. Results The vasoactive drug dose, PI, LAC, mottling score, and CRT upon admission in the survival group were significantly better than those in the mortality group at hour 6 of treatment, hour 24 of treatment, and hour 48 of treatment (P < 0.05). The predictive value of the three microcirculatory indicators at various time points was highest for the Perfusion Index (PI) at 48 h of treatment, the mottling score at 24 h of treatment, and the Capillary Refill Time (CRT) upon admission. The Area Under the Curve (AUC) for PI at 48 h of treatment was 0.941 (0.885-0.996), with a sensitivity of 90.9 % and a specificity of 94.1 %. For the mottling score at 24 h of treatment, the AUC was 0.889 (0.805-0.972), with a sensitivity of 82.4 % and a specificity of 88.6 %. The AUC for CRT upon admission was 0.872 (0.788-0.956), with a sensitivity of 91.2 % and a specificity of 77.3 %. Among the three indicators: PI, mottling score, and CRT, PI at hour 48 of treatment had the highest predictive value for the prognosis of patients with septic shock. Conclusion Microcirculatory indicators have specific predictive value for the prognosis of patients with septic shock.
Collapse
Affiliation(s)
- Xiaoxu Ding
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yuanlong Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Xin Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tao Sun
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Na Cui
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Shenghai Wang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Dan Su
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Zhanbiao Yu
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
12
|
Aksu U, Yavuz-Aksu B, Goswami N. Microcirculation: Current Perspective in Diagnostics, Imaging, and Clinical Applications. J Clin Med 2024; 13:6762. [PMID: 39597906 PMCID: PMC11595220 DOI: 10.3390/jcm13226762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
This review discusses the pivotal role of microcirculation in maintaining tissue oxygenation and waste removal and highlights its significance in various pathological conditions. It delves into the cellular mechanisms underlying hemodynamic coherence, elucidating the roles of the endothelium, glycocalyx, and erythrocytes in sustaining microcirculatory integrity. Furthermore, the review gives comprehensive information about microcirculatory changes observed in cardiac surgery, sepsis, shock, and COVID-19 disease. Through comprehensive exploration, the review underscores the intricate relationship between microcirculation, disease states, and clinical outcomes, emphasizing the importance of understanding and monitoring microvascular dynamics in critical care settings.
Collapse
Affiliation(s)
- Ugur Aksu
- Biology Department, Science Faculty, Istanbul University, Istanbul 34459, Turkey
| | - Berna Yavuz-Aksu
- Duzen Laboratory Group, Biochemistry Section, Istanbul 34394, Turkey;
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 3810 Graz, Austria
- Center for Space and Aviation Health, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| |
Collapse
|
13
|
Guo Q, Lian H, Wang G, Zhang H, Wang X. Prospective Evaluation of the Peripheral Perfusion Index in Assessing the Organ Dysfunction and Prognosis of Adult Patients With Sepsis in the ICU. J Intensive Care Med 2024; 39:1109-1119. [PMID: 38748544 DOI: 10.1177/08850666241252758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: The peripheral perfusion index (PI) reflects microcirculatory blood flow perfusion and indicates the severity and prognosis of sepsis. Method: The cohort comprised 208 patients admitted to the intensive care unit (ICU) with infection, among which 117 had sepsis. Demographics, medication history, ICU variables, and laboratory indexes were collected. Primary endpoints were in-hospital mortality and 28-day mortality. Secondary endpoints included organ function variables (coagulation function, liver function, renal function, and myocardial injury), lactate concentration, mechanical ventilation time, and length of ICU stay. Univariate and multivariate analyses were conducted to assess the associations between the PI and clinical outcomes. Sensitivity analyses were performed to explore the associations between the PI and organ functions in the sepsis and nonsepsis groups. Result: The PI was negatively associated with in-hospital mortality (odds ratio [OR] 0.29, 95% confidence interval [CI] 0.15 to 0.55), but was not associated with 28-day mortality. The PI was negatively associated with the coagulation markers prothrombin time (PT) (β -0.36, 95% CI -0.59 to 0.13) and activated partial thromboplastin time (APTT) (β -1.08, 95% CI -1.86 to 0.31), and the myocardial injury marker cardiac troponin I (cTnI) (β -2085.48, 95% CI -3892.35 to 278.61) in univariate analysis, and with the PT (β -0.36, 95% CI -0.60 to 0.13) in multivariate analysis. The PI was negatively associated with the lactate concentration (β -0.57, 95% CI -0.95 to 0.19), mechanical ventilation time (β -23.11, 95% CI -36.54 to 9.69), and length of ICU stay (β -1.28, 95% CI -2.01 to 0.55). Sensitivity analyses showed that the PI was significantly associated with coagulation markers (PT and APTT) and a myocardial injury marker (cTnI) in patients with sepsis, suggesting that the associations between the PI and organ function were stronger in the sepsis group than the nonsepsis group. Conclusion: The PI provides new insights for assessing the disease severity, short-term prognosis, and organ function damage in ICU patients with sepsis, laying a theoretical foundation for future research.
Collapse
Affiliation(s)
- Qirui Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Orbegozo D, Stringari G, Damazio R, De Backer D, Vincent JL, Creteur J. Altered Microvascular Reactivity During a Skin Thermal Challenge Is Associated With Organ Dysfunction and Slow Recovery After Cardiac Surgery. J Cardiothorac Vasc Anesth 2024; 38:2684-2692. [PMID: 39034163 DOI: 10.1053/j.jvca.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To assess microvascular reactivity during a skin thermal challenge early post-cardiac surgery and its association with outcomes. DESIGN Noninvasive physiological study. SETTING Thirty-five-bed department of intensive care. PARTICIPANTS Patients admitted to the intensive care unit post-cardiac surgery. INTERVENTIONS Thermal challenge. MEASUREMENTS AND MAIN RESULTS A total of 46 patients were included; 14 needed vasoactive or ventilatory support for at least 48 hours (slow recovery), and 32 had a more rapid recovery. Skin blood flow (SBF) was measured on the anterior proximal forearm using skin laser Doppler. A thermal challenge was performed by abruptly increasing local skin temperature from 37°C to 43°C while monitoring SBF. The ratio between SBFs at 43°C and 37°C was calculated to measure microvascular reactivity. SBF at 37°C was not significantly different in patients with a slow recovery and those with a rapid recovery, but SBF after 9 minutes at 43°C was lower (48.5 [17.3-69.0] v 85.1 [45.2-125.7], p < 0.01), resulting in a lower SBF ratio (2.8 [1.5-4.7] v 4.8 [3.7-7.8], p < 0.01). Patients with lower SBF ratios were more likely to have dysfunction of at least one organ (assessed using the sequential organ dysfunction score) 48 hours post-cardiac surgery than those with higher ratios: 88% versus 40% versus 27% (p < 0.01), respectively, for the lowest, middle, and highest tertiles of SBF ratio. In multivariable analysis, a lower SBF ratio was an independent risk factor for slow recovery. CONCLUSIONS Early alterations in microvascular reactivity, evaluated by a skin thermal challenge, are correlated with organ dysfunction. These observations may help in the development of new, simple, noninvasive monitoring systems in postoperative patients.
Collapse
Affiliation(s)
- Diego Orbegozo
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Gianni Stringari
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Rafael Damazio
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel De Backer
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
15
|
Volleman C, Raasveld SJ, Jamaludin FS, Vlaar APJ, van den Brom CE. Microcirculatory Perfusion Disturbances During Veno-Arterial Extracorporeal Membrane Oxygenation: A Systematic Review. Microcirculation 2024; 31:e12891. [PMID: 39387210 DOI: 10.1111/micc.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used in case of potentially reversible cardiac failure and restores systemic hemodynamics. However, whether this is followed by improvement of microcirculatory perfusion is unknown. Moreover, critically ill patients have possible pre-existing microcirculatory perfusion disturbances. Therefore, this review provides an overview of alterations in sublingual microcirculatory perfusion in critically ill adult patients receiving VA-ECMO support. Pubmed, Embase (Ovid), Cochrane Central Register of Controlled Trials, and Web of Science were systematically searched according to PRISMA guidelines. Studies reporting sublingual microcirculatory perfusion measurements in adult patients supported by VA-ECMO were included. Outcome parameters included small vessel density (SVD), perfused vessel density (PVD), perfused small vessel density (PSVD), proportion of perfused vessels (PPV), microvascular flow index (MFI) and the heterogeneity index (HI). The protocol was registered at PROSPERO (CRD42021243930). The search identified 1215 studies of which 11 were included. Cardiogenic shock was the most common indication for VA-ECMO (n=8). Three studies report increased PSVD, PPV, and MFI 24 hours after initiation of ECMO compared to pre-ECMO. Nonetheless, microcirculatory perfusion stabilized thereafter. Four out of four studies showed higher PSVD and PPV in survivors compared to non-survivors. Over time, survivors showed recovery of microcirculatory perfusion within hours of initiation of ECMO, whereas this was absent in non-survivors. Notwithstanding the limited sample, VA-ECMO seems to improve microcirculatory perfusion shortly after initiation of ECMO, especially in survivors. Further research in larger cohorts is needed to clarify the longitudinal effects of ECMO on microcirculatory perfusion.
Collapse
Affiliation(s)
- Carolien Volleman
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S Jorinde Raasveld
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Roberts CJ, Popies JA, Razzak AN, Fang X, Falcucci OA, Pearson PJ, Szabo A. Skin injury: Associations with variables related to perfusion and pressure. Anaesth Intensive Care 2024; 52:386-396. [PMID: 39394874 PMCID: PMC11816658 DOI: 10.1177/0310057x241264575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Skin injuries are a major healthcare problem that are not well understood or prevented in the critically ill, suggesting that underappreciated variables are contributing. This pilot study tested the hypothesis that perfusion-related factors contribute to skin injuries diagnosed as hospital-acquired pressure injuries (HAPIs). A total of 533 adult patients were followed over 2574 critical care days (mean age 62.4, standard deviation (SD) 14.3 years, mean body mass index 30.4 (SD 7.4) kg/m2, 36.4% female). This was a secondary analysis of prospective, non-randomised clinical data from an intensive care unit at a large urban teaching hospital. Factors related to perfusion, specifically two or more infusions of vasopressors/inotropes, temporary mechanical circulatory support (MCS), extracorporeal membrane oxygenation, and durable MCS, were analysed to determine whether they were more strongly associated with HAPIs than immobility due to prolonged mechanical ventilation (>72 h) or operating room time (>6 h). Patients diagnosed with a HAPI had a statistically significant higher risk of being exposed to variables related to perfusion and immobility (P < 0.05 for each variable). Perfusion-related variables, except durable MCS, had a larger effect on skin breakdown (number needed to harm (NNH) 4-10) than immobility-associated variables (NNH 12-17). The finding that perfusion-related variables predicted HAPIs may warrant consideration of alternative diagnoses, such as skin failure due to impaired perfusion as a pathophysiological process that occurs concurrently with multisystem organ failure. Differentiation of skin injuries primarily from circulatory malfunction, rather than external pressure, may guide the development of more effective treatment and prevention protocols. This pilot study suggests that the contribution of perfusion to skin injuries should be explored further.
Collapse
Affiliation(s)
- Christopher J Roberts
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Jennifer A Popies
- Department of Advanced Practice Nursing, Froedtert Hospital, Milwaukee, WI 53226, USA
| | - Abrahim N Razzak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Xi Fang
- Institute for Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Octavio A Falcucci
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Current Affiliation: Department of Anesthesiology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Paul J Pearson
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aniko Szabo
- Institute for Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Bruno RR, Schemmelmann M, Hornemann J, Moecke HME, Demirtas F, Palici L, Marinova R, Kanschik D, Binnebößel S, Spomer A, Guidet B, Leaver S, Flaatten H, Szczeklik W, Mikiewicz M, De Lange DW, Quenard S, Beil M, Kelm M, Jung C. Sublingual microcirculatory assessment on admission independently predicts the outcome of old intensive care patients suffering from shock. Sci Rep 2024; 14:25668. [PMID: 39463395 PMCID: PMC11514226 DOI: 10.1038/s41598-024-77357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Shock is a life-threatening condition. This study evaluated if sublingual microcirculatory perfusion on admission is associated with 30-day mortality in older intensive care unit (ICU) shock patients. This trial prospectively recruited ICU patients (≥ 80 years old) with arterial lactate above 2 mmol/L, requiring vasopressors despite adequate fluid resuscitation, regardless of shock cause. All patients received sequential sublingual measurements on ICU admission (± 4 h) and 24 (± 4) hours later. The primary endpoint was 30-day mortality. From September 4th, 2022, to May 30th, 2023, 271 patients were screened, and 44 included. Patients were categorized based on the median percentage of perfused small vessels (sPPV) into those with impaired and sustained microcirculation. 71% of videos were of good or acceptable quality without safety issues. Patients with impaired microcirculation had significantly shorter ICU and hospital stays (p = 0.015 and p = 0.019) and higher 30-day mortality (90.0% vs. 62.5%, p = 0.036). Cox regression confirmed the independent association of impaired microcirculation with 30-day mortality (adjusted hazard ratio 3.245 (95% CI 1.178 to 8.943, p = 0.023). Measuring sublingual microcirculation in critically ill older patients with shock on ICU admission is safe, feasible, and provides independent prognostic information about outcomes.Trial registration NCT04169204.
Collapse
Affiliation(s)
- Raphael Romano Bruno
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Mara Schemmelmann
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Johanna Hornemann
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Helene Mathilde Emilie Moecke
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Filiz Demirtas
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lina Palici
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Radost Marinova
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dominika Kanschik
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Stephan Binnebößel
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Armin Spomer
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Bertrand Guidet
- Equipe: épidémiologie hospitalière qualité et organisation des soins, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, 75012, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, service de réanimation médicale, Paris, 75012, France
| | - Susannah Leaver
- General Intensive care, St George's University Hospitals NHS Foundation trust, London, UK
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Anaestesia and Intensive Care, University of Bergen, Haukeland University Hospital, Bergen, Norway
| | - Wojciech Szczeklik
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Mikiewicz
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, the Netherlands
| | - Stanislas Quenard
- Equipe: épidémiologie hospitalière qualité et organisation des soins, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, 75012, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, service de réanimation médicale, Paris, 75012, France
| | - Michael Beil
- General and Medical Intensive Care Units, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Malte Kelm
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
- CARID (Cardiovascular Research Institute Düsseldorf), Duesseldorf, Germany
| | - Christian Jung
- Medical Faculty, Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
- CARID (Cardiovascular Research Institute Düsseldorf), Duesseldorf, Germany.
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
18
|
Napieczyńska H, Kedziora SM, Haase N, Müller DN, Heuser A, Dechend R, Kräker K. μCT imaging of a multi-organ vascular fingerprint in rats. PLoS One 2024; 19:e0308601. [PMID: 39401231 PMCID: PMC11472947 DOI: 10.1371/journal.pone.0308601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/28/2024] [Indexed: 10/17/2024] Open
Abstract
The importance of microvascular imaging in diagnosis and therapeutic targeting of various diseases is increasingly recognized. The new approach emphasizes the need for holistic studies to understand the inter-organ vascular cross-talk. Here, we report on the development of a novel perfusion protocol which consistently delivers a micro-computed tomography contrast agent to micro-vessels of multiple organs in a single experimental animal. We describe the achieved repeatability of the perfusions, as well as the image analysis steps developed individually for each organ type. We also optimize image acquisition by investigating the compromise between shortening of the scanning time and preservation of the highest possible spatial resolution. Taking together, with the multi-organ perfusion, optimized image acquisition, and the conceived image analysis steps, we provide a comprehensive and reliable experimental protocol for studying vascular morphology and pathology in multi-organ diseases.
Collapse
Affiliation(s)
- Hanna Napieczyńska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sarah M. Kedziora
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Nadine Haase
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Dominik N. Müller
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Arnd Heuser
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ralf Dechend
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Kristin Kräker
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
19
|
Supthut W, Nuding S, Wienke A, Müller-Werdan U, Werdan K, Ebelt H. [Relationship between cardiac output, heart rate and microcirculation in patients with multiorgan dysfunction syndrome]. Med Klin Intensivmed Notfmed 2024; 119:538-545. [PMID: 38038767 DOI: 10.1007/s00063-023-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) is one of the main causes of death in intensive care units. There is evidence that microcirculation in sepsis and coronary shock is regulated separately from hemodynamics. This study investigates the relationship between heart rate (HR), cardiac output (CO) and microcirculation in patients with MODS. METHODS This is a partial analysis of the "MODIFY study" (Reducing Elevated Heart Rate in Patients With Multiple Organ Dysfunction Syndrome [MODS] by Ivabradine). During the period 05/2010-09/2011, the microcirculation of 46 patients with septic and coronary MODS was measured using the sidestream dark field technique on the day of inclusion and 96 h later. Patients were randomized into a control and ivabradine treatment group. RESULTS Overall, there is a relevant improvement in microcirculation over time small perfused vessels, SPV [%] on day 0, d0:56.5 ± 34.2/d4:73.2 ± 22.1 (p = 0.03); perfused vessel density, PVDsmall [1/mm2] d0:7.5 ± 5.0/d4:9.8 ± 3.4 (p = 0.04); proportion of perfused vessels, PPVsmall [%] d0:51.6 ± 31.6/d4:66.7 ± 21.8 (p = 0.04); microcirculatory flow index, MFI d0:1.7 ± 1.0/d4:2.2 ± 0.7 (p = 0.05). Administration of ivabradine shows no effect. In patients with coronary MODS, there is a relevant correlation between microcirculatory parameters and cardiac output (SPV [%]: r = 0.98, p = 0.004). Patients with coronary MODS show better microcirculation values at high heart rates (> 100 bpm), while patients with septic MODS show an opposite relationship. CONCLUSION The results indicate that in critically ill patients, depending on the genesis of the MODS, there are different relationships between HF or CO values, on the one hand, and the parameters of the microcirculation, on the other.
Collapse
Affiliation(s)
- Wiebke Supthut
- Klinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland.
| | - Sebastian Nuding
- Medizinische Klinik II, Krankenhaus St. Elisabeth und St. Barbara, Halle (Saale), Deutschland
| | - Andreas Wienke
- Institut für Medizinische Epidemiologie, Biometrie und Informatik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Deutschland
| | - Ursula Müller-Werdan
- Klinik für Geriatrie und Altersmedizin und EGZB, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Karl Werdan
- Klinik für Innere Medizin III, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland
| | - Henning Ebelt
- Klinik für Innere Medizin II, Katholisches Krankenhaus St. Johann Nepomuk, Erfurt, Deutschland
| |
Collapse
|
20
|
Bertacchi M, Wendel-Garcia PD, Hana A, Ince C, Maggiorini M, Hilty MP. Nitroglycerin challenge identifies microcirculatory target for improved resuscitation in patients with circulatory shock. Intensive Care Med Exp 2024; 12:76. [PMID: 39222259 PMCID: PMC11369126 DOI: 10.1186/s40635-024-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Circulatory shock and multi-organ failure remain major contributors to morbidity and mortality in critically ill patients and are associated with insufficient oxygen availability in the tissue. Intrinsic mechanisms to improve tissue perfusion, such as up-regulation of functional capillary density (FCD) and red blood cell velocity (RBCv), have been identified as maneuvers to improve oxygen extraction by the tissues; however, their role in circulatory shock and potential use as resuscitation targets remains unknown. To fill this gap, we examined the baseline and maximum recruitable FCD and RBCv in response to a topical nitroglycerin stimulus (FCDNG, RBCvNG) in patients with and without circulatory shock to test whether this may be a method to identify the presence and magnitude of a microcirculatory reserve capacity important for identifying a resuscitation target. METHODS Sublingual handheld vital microscopy was performed after initial resuscitation in mechanically ventilated patients consecutively admitted to a tertiary medical ICU. FCD and RBCv were quantified using an automated computer vision algorithm (MicroTools). Patients with circulatory shock were retrospectively identified via standardized hemodynamic and clinical criteria and compared to patients without circulatory shock. RESULTS 54 patients (57 ± 14y, BMI 26.3 ± 4.9 kg/m2, SAPS 56 ± 19, 65% male) were included, 13 of whom presented with circulatory shock. Both groups had similar cardiac index, mean arterial pressure, RBCv, and RBCvNG. Heart rate (p < 0.001), central venous pressure (p = 0.02), lactate (p < 0.001), capillary refill time (p < 0.01), and Mottling score (p < 0.001) were higher in circulatory shock after initial resuscitation, while FCD and FCDNG were 10% lower (16.9 ± 4.2 and 18.9 ± 3.2, p < 0.01; 19.3 ± 3.1 and 21.3 ± 2.9, p = 0.03). Nitroglycerin response was similar in both groups, and circulatory shock patients reached FCDNG similar to baseline FCD found in patients without shock. CONCLUSION Critically ill patients suffering from circulatory shock were found to present with a lower sublingual FCD. The preserved nitroglycerin response suggests a dysfunction of intrinsic regulation mechanisms to increase the microcirculatory oxygen extraction capacity associated with circulatory shock and identifies a potential resuscitation target. These differences in microcirculatory hemodynamic function between patients with and without circulatory shock were not reflected in blood pressure or cardiac index.
Collapse
Affiliation(s)
- Massimiliano Bertacchi
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Anisa Hana
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Can Ince
- Laboratory of Translational Intensive Care, Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marco Maggiorini
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Sanderson K, Griffin R, Anderson N, South AM, Swanson JR, Zappitelli M, Steflik HJ, DeFreitas MJ, Charlton J, Askenazi D. Perinatal risk factors associated with acute kidney injury severity and duration among infants born extremely preterm. Pediatr Res 2024; 96:740-749. [PMID: 38438550 PMCID: PMC11371939 DOI: 10.1038/s41390-024-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND We evaluated time-varying perinatal risk factors associated with early (≤7 post-natal days) and late (>7 post-natal days) severe acute kidney injury (AKI) occurrence and duration. METHODS A secondary analysis of Preterm Erythropoietin Neuroprotection Trial data. We defined severe AKI (stage 2 or 3) per neonatal modified Kidney Disease: Improving Global Outcomes criteria. Adjusted Cox proportional hazards models were conducted with exposures occurring at least 72 h before severe AKI. Adjusted negative binomial regression models were completed to evaluate risk factors for severe AKI duration. RESULTS Of 923 participants, 2% had early severe AKI. In the adjusted model, gestational diabetes (adjusted HR (aHR) 5.4, 95% CI 1.1-25.8), non-steroidal anti-inflammatory drugs (NSAIDs) (aHR 3.2, 95% CI 1.0-9.8), and vancomycin (aHR 13.9, 95% CI 2.3-45.1) were associated with early severe AKI. Late severe AKI occurred in 22% of participants. Early severe AKI (aHR 2.5, 95% CI 1.1-5.4), sepsis (aHR 2.5, 95% CI 1.4-4.4), vasopressors (aHR 2.9, 95% CI 1.8-4.6), and diuretics (aHR 2.6, 95% CI 1.9-3.6) were associated with late severe AKI. Participants who had necrotizing enterocolitis or received NSAIDs had longer severe AKI duration. CONCLUSION We identified major risk factors for severe AKI that can be the focus of future research. IMPACT STATEMENT Time-dependent risk factors for severe acute kidney injury (AKI) and its duration are not well defined among infants born <28 weeks' gestation. Over 1 in 5 infants born <28 weeks' gestation experienced severe AKI, and this study identified several major time-dependent perinatal risk factors occurring within 72 h prior to severe AKI. This study can support efforts to develop risk stratification and clinical decision support to help mitigate modifiable risk factors to reduce severe AKI occurrence and duration.
Collapse
Affiliation(s)
- Keia Sanderson
- University of North Carolina Department of Medicine-Nephrology, Chapel Hill, NC, USA.
| | - Russell Griffin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nekayla Anderson
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew M South
- Department of Pediatrics, Section of Nephrology, Brenner Children's, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jonathan R Swanson
- Division of Neonatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Heidi J Steflik
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami, Miami, FL, USA
| | - Jennifer Charlton
- University of Virginia, Department of Pediatrics, Division of Nephrology, Charlottesville, VA, USA
| | - David Askenazi
- Division of Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
De Lorenzo A, Fernandes M, Tibirica E. From bench to bedside: A review of the application and potential of microcirculatory assessment by hand-held videomicroscopy. IJC HEART & VASCULATURE 2024; 53:101451. [PMID: 39050555 PMCID: PMC11266521 DOI: 10.1016/j.ijcha.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
In clinical practice, there is vast knowledge regarding the evaluation of macrocirculatory parameters, such as systemic blood pressure and cardiac output, for the hemodynamic monitoring of patients. However, assessment of the microcirculation has not yet been incorporated into the bedside armamentarium. Hand-held intravital video microscopy enables the direct, noninvasive, evaluation of the sublingual microcirculation at the bedside, offering insights into the status of the systemic microcirculation. It is easily performed and may be employed in several clinical settings, providing immediate results that may help guide patient management. Therefore, the incorporation of hand-held intravital video microscopy into clinical practice may lead to tremendous improvements in the quality of care of critical, unstable patients or offer new data in the evaluation of patients with chronic diseases, especially those with microcirculatory involvement, such as occurs in diabetes.
Collapse
|
23
|
Magnin M, Gavet M, Ngo TT, Louzier V, Victoni T, Ayoub JY, Allaouchiche B, Bonnet-Garin JM, Junot S. A multimodal tissue perfusion measurement approach for the evaluation of the effect of pimobendan, an inodilator, in a porcine sepsis model. Microvasc Res 2024; 154:104687. [PMID: 38614155 DOI: 10.1016/j.mvr.2024.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sepsis is associated with hypoperfusion and organ failure. The aims of the study were: 1) to assess the effect of pimobendan on macrocirculation and perfusion and 2) to describe a multimodal approach to the assessment of perfusion in sepsis and compare the evolution of the perfusion parameters. Eighteen anaesthetized female piglets were equipped for macrocirculation monitoring. Sepsis was induced by an infusion of Pseudomonas aeruginosa. After the occurrence of hypotension, animals were resuscitated. Nine pigs received pimobendan at the start of resuscitation maneuvers, the others received saline. Tissue perfusion was assessed using temperature gradients measured with infrared thermography (TG = core temperature - tarsus temperature), urethral perfusion index (uPI) derived from photoplethysmography and sublingual microcirculation (Sidestream dark field imaging device): De Backer score (DBs), proportion of perfused vessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI). Arterial lactate and ScvO2 were also measured. Pimobendan did not improve tissue perfusion nor macrocirculation. It did not allow a reduction in the amount of noradrenaline and fluids administered. Sepsis was associated with tissue perfusion disorders: there were a significant decrease in uPI, PPV and ScvO2 and a significant rise in TG. TG could significantly predict an increase in lactate. Resuscitation was associated with a significant increase in uPI, DBs, MFI, lactate and ScvO2. There were fair correlations between the different perfusion parameters. In this model, pimobendan did not show any benefit. The multimodal approach allowed the detection of tissue perfusion alteration but only temperature gradients predicted the increase in lactatemia.
Collapse
Affiliation(s)
- Mathieu Magnin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Morgane Gavet
- Université de Lyon, VetAgro Sup, Service d'Anesthésie, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Thien-Tam Ngo
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France
| | - Vanessa Louzier
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Tatiana Victoni
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Jean Yves Ayoub
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Bernard Allaouchiche
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Réanimation Médicale, 165 Chemin du Grand Revoyet, F-69310 Pierre-Bénite, France
| | - Jeanne-Marie Bonnet-Garin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Stéphane Junot
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup, Service d'Anesthésie, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| |
Collapse
|
24
|
Soubihe Neto N, de Almeida MCV, Couto HDO, Miranda CH. Biomarkers of endothelial glycocalyx damage are associated with microvascular dysfunction in resuscitated septic shock patients. Microvasc Res 2024; 154:104683. [PMID: 38522507 DOI: 10.1016/j.mvr.2024.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Microvascular dysfunction plays a central role in organ dysfunction during septic shock. Endothelial glycocalyx (eGC) damage could contribute to impaired microcirculation. The aim was to assess whether several eGC-damaged biomarkers are associated with microvascular dysfunction in resuscitated septic shock patients. METHODS This cross-sectional study included resuscitated septic shock patients (N = 31), and a group of healthy individuals (N = 20). The eGC damage biomarkers measured were syndecan-1 (SDC-1), soluble CD44 (CD44s), hyaluronic acid (HYAL) in blood sample; sulfated glycosaminoglycans (GAGs) in urine sample; and thrombomodulin (TBML) in blood sample as biomarker of endothelial cell damage. Microcirculation was assessed through sublingual videocapillaroscopy using the GlycoCheck™, which estimated the perfused vascular density (PVD); the perfused boundary region (PBR), an inverse parameter of the eGC thickness; and the microvascular health score (MVHS). We defined a low MVHS (<50th percentile in septic patients) as a surrogate for more impaired microvascular function. RESULTS The SDC-1, CD44s, TBML and GAGs levels were correlated with impaired microvascular parameters (PVD of vessels with diameter < 10 μm, MVHS and flow-adjusted PBR); p < 0.05 for all comparisons, except for GAGs and flow-adjusted PBR. The SDC-1 [78 ng/mL (interquartile range (IQR) 45-336) vs. 48 ng/mL (IQR 9-85); p = 0.052], CD44s [796ρg/mL (IQR 512-1995) vs. 526ρg/mL (IQR 287-750); p = 0.036], TBML [734ρg/mL (IQR 237-2396) vs. 95ρg/mL (IQR 63-475); p = 0.012] and GAGs levels [0.42 ρg/mg (IQR 0.04-1.40) vs. 0.07 ρg/mg (IQR 0.02-0.20); p = 0.024]; were higher in septic patients with more impaired sublingual microvascular function (low MVHS vs. high MVHS). CONCLUSION SDC-1, CD44s, TBML and GAGs levels were associated with impaired microvascular function in resuscitated septic shock patients.
Collapse
Affiliation(s)
- Nazir Soubihe Neto
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University (USP), Ribeirão Preto, SP, Brazil
| | - Marcela Curci Vieira de Almeida
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University (USP), Ribeirão Preto, SP, Brazil
| | - Helton de Oliveira Couto
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University (USP), Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Hof S, Untiedt H, Hübner A, Marcus C, Kuebart A, Herminghaus A, Vollmer C, Bauer I, Picker O, Truse R. Effects of remote ischemic preconditioning on early markers of intestinal injury in experimental hemorrhage in rats. Sci Rep 2024; 14:12960. [PMID: 38839819 PMCID: PMC11153647 DOI: 10.1038/s41598-024-63293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The maintenance of intestinal integrity and barrier function under conditions of restricted oxygen availability is crucial to avoid bacterial translocation and local inflammation. Both lead to secondary diseases after hemorrhagic shock and might increase morbidity and mortality after surviving the initial event. Monitoring of the intestinal integrity especially in the early course of critical illness remains challenging. Since microcirculation and mitochondrial respiration are main components of the terminal stretch of tissue oxygenation, the evaluation of microcirculatory and mitochondrial variables could identify tissues at risk during hypoxic challenges, indicate an increase of intestinal injury, and improve our understanding of regional pathophysiology during acute hemorrhage. Furthermore, improving intestinal microcirculation or mitochondrial respiration, e.g. by remote ischemic preconditioning (RIPC) that was reported to exert a sufficient tissue protection in various tissues and was linked to mediators with vasoactive properties could maintain intestinal integrity. In this study, postcapillary oxygen saturation (µHbO2), microvascular flow index (MFI) and plasmatic D-lactate concentration revealed to be early markers of intestinal injury in a rodent model of experimental hemorrhagic shock. Mitochondrial function was not impaired in this experimental model of acute hemorrhage. Remote ischemic preconditioning (RIPC) failed to improve intestinal microcirculation and intestinal damage during hemorrhagic shock.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Hendrik Untiedt
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Hübner
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Fejes R, Rutai A, Juhász L, Poles MZ, Szabó A, Kaszaki J, Boros M, Tallósy SP. Microcirculation-driven mitochondrion dysfunction during the progression of experimental sepsis. Sci Rep 2024; 14:7153. [PMID: 38531957 DOI: 10.1038/s41598-024-57855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Sepsis is accompanied by a less-known mismatch between hemodynamics and mitochondrial respiration. We aimed to characterize the relationship and time dependency of microcirculatory and mitochondrial functions in a rodent model of intraabdominal sepsis. Fecal peritonitis was induced in rats, and multi-organ failure (MOF) was evaluated 12, 16, 20, 24 or 28 h later (n = 8/group, each) using rat-specific organ failure assessment (ROFA) scores. Ileal microcirculation (proportion of perfused microvessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI)) was monitored by intravital video microscopy, and mitochondrial respiration (OxPhos) and outer membrane (mtOM) damage were measured with high-resolution respirometry. MOF progression was evidenced by increased ROFA scores; microcirculatory parameters followed a parallel time course from the 16th to 28th h. Mitochondrial dysfunction commenced with a 4-h time lag with signs of mtOM damage, which correlated significantly with PPV, while no correlation was found between HI and OxPhos. High diagnostic value was demonstrated for PPV, mtOM damage and lactate levels for predicting MOF. Our findings indicate insufficient splanchnic microcirculation to be a possible predictor for MOF that develops before the start of mitochondrial dysfunction. The adequate subcellular compensatory capacity suggests the presence of mitochondrial subpopulations with differing sensitivity to septic insults.
Collapse
Affiliation(s)
- Roland Fejes
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Attila Rutai
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - László Juhász
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Marietta Zita Poles
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
27
|
Hof S, Lingens L, Michels M, Marcus C, Kuebart A, Herminghaus A, Bauer I, Picker O, Truse R, Vollmer C. Local carbachol application induces oral microvascular recruitment and improves gastric tissue oxygenation during hemorrhagic shock in dogs. Front Immunol 2024; 15:1369617. [PMID: 38566995 PMCID: PMC10985194 DOI: 10.3389/fimmu.2024.1369617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Hemorrhagic shock is characterized by derangements of the gastrointestinal microcirculation. Topical therapy with nitroglycerine or iloprost improves gastric tissue oxygenation but not regional perfusion, probably due to precapillary adrenergic innervation. Therefore, this study was designed to investigate the local effect of the parasympathomimetic carbachol alone and in combination with either nitroglycerine or iloprost on gastric and oral microcirculation during hemorrhagic shock. Methods In a cross-over design five female foxhounds were repeatedly randomized into six experimental groups. Carbachol, or carbachol in combination with either nitroglycerine or iloprost were applied topically to the oral and gastric mucosa. Saline, nitroglycerine, or iloprost application alone served as control groups. Then, a fixed-volume hemorrhage was induced by arterial blood withdrawal followed by blood retransfusion after 1h of shock. Gastric and oral microcirculation was determined using reflectance spectrophotometry and laser Doppler flowmetry. Oral microcirculation was visualized with videomicroscopy. Statistics: 2-way-ANOVA for repeated measurements and Bonferroni post-hoc analysis (mean ± SEM; p < 0.05). Results The induction of hemorrhage led to a decrease of gastric and oral tissue oxygenation, that was ameliorated by local carbachol and nitroglycerine application at the gastric mucosa. The sole use of local iloprost did not improve gastric tissue oxygenation but could be supplemented by local carbachol treatment. Adding carbachol to nitroglycerine did not further increase gastric tissue oxygenation. Gastric microvascular blood flow remained unchanged in all experimental groups. Oral microvascular blood flow, microvascular flow index and total vessel density decreased during shock. Local carbachol supply improved oral vessel density during shock and oral microvascular flow index in the late course of hemorrhage. Conclusion The specific effect of shifting the autonomous balance by local carbachol treatment on microcirculatory variables varies between parts of the gastrointestinal tract. Contrary to our expectations, the improvement of gastric tissue oxygenation by local carbachol or nitroglycerine application was not related to increased microvascular perfusion. When carbachol is used in combination with local vasodilators, the additional effect on gastric tissue oxygenation depends on the specific drug combination. Therefore, modulation of tissue oxygen consumption, mitochondrial function or alterations in regional blood flow distribution should be investigated.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, Gupta R, Durham TJ, Shaughnessy KB, Mayers JR, Hibbert KA, Baron RM, Thompson BT, Mootha VK. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 2024; 20:36. [PMID: 38446263 PMCID: PMC10917846 DOI: 10.1007/s11306-024-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
| | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik B Shah
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Rahul Gupta
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Timothy J Durham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Kelsey B Shaughnessy
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Jared R Mayers
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Behem CR, Friedheim T, Holthusen H, Rapp A, Suntrop T, Graessler MF, Pinnschmidt HO, Wipper SH, von Lucadou M, Schwedhelm E, Renné T, Pfister K, Schierling W, Trepte CJC. Goal-directed colloid versus crystalloid therapy and microcirculatory blood flow following ischemia/reperfusion. Microvasc Res 2024; 152:104630. [PMID: 38048876 DOI: 10.1016/j.mvr.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Ischemia/reperfusion can impair microcirculatory blood flow. It remains unknown whether colloids are superior to crystalloids for restoration of microcirculatory blood flow during ischemia/reperfusion injury. We tested the hypothesis that goal-directed colloid - compared to crystalloid - therapy improves small intestinal, renal, and hepatic microcirculatory blood flow in pigs with ischemia/reperfusion injury. METHODS This was a randomized trial in 32 pigs. We induced ischemia/reperfusion by supra-celiac aortic-cross-clamping. Pigs were randomized to receive either goal-directed isooncotic hydroxyethyl-starch colloid or balanced isotonic crystalloid therapy. Microcirculatory blood flow was measured using Laser-Speckle-Contrast-Imaging. The primary outcome was small intestinal, renal, and hepatic microcirculatory blood flow 4.5 h after ischemia/reperfusion. Secondary outcomes included small intestinal, renal, and hepatic histopathological damage, macrohemodynamic and metabolic variables, as well as specific biomarkers of tissue injury, renal, and hepatic function and injury, and endothelial barrier function. RESULTS Small intestinal microcirculatory blood flow was higher in pigs assigned to isooncotic hydroxyethyl-starch colloid therapy than in pigs assigned to balanced isotonic crystalloid therapy (768.7 (677.2-860.1) vs. 595.6 (496.3-694.8) arbitrary units, p = .007). There were no important differences in renal (509.7 (427.2-592.1) vs. 442.1 (361.2-523.0) arbitrary units, p = .286) and hepatic (604.7 (507.7-701.8) vs. 548.7 (444.0-653.3) arbitrary units, p = .376) microcirculatory blood flow between groups. Pigs assigned to colloid - compared to crystalloid - therapy also had less small intestinal, but not renal and hepatic, histopathological damage. CONCLUSIONS Goal-directed isooncotic hydroxyethyl-starch colloid - compared to balanced isotonic crystalloid - therapy improved small intestinal, but not renal and hepatic, microcirculatory blood flow in pigs with ischemia/reperfusion injury. Whether colloid therapy improves small intestinal microcirculatory blood flow in patients with ischemia/reperfusion needs to be investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Holthusen
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adina Rapp
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Suntrop
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Kieffer PJ, Williams JM, Shepard MK, Giguère S, Epstein KL. Effect of Hypotension and Dobutamine on Gastrointestinal Microcirculations of Healthy, Anesthetized Horses. Vet Sci 2024; 11:95. [PMID: 38393113 PMCID: PMC10891611 DOI: 10.3390/vetsci11020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Horses undergoing abdominal exploratory surgery are at risk of hypotension and hypoperfusion. Normal mean arterial pressure is used as a surrogate for adequate tissue perfusion. However, measures of systemic circulation may not be reflective of microcirculation. This study measured the mean arterial pressure, cardiac index, lactate, and four microcirculatory indices in six healthy, anesthetized adult horses undergoing elective laparotomies. The microcirculatory parameters were measured at three different sites along the gastrointestinal tract (oral mucosa, colonic serosa, and rectal mucosa) with dark-field microscopy. All macro- and microcirculatory parameters were obtained when the horses were normotensive, hypotensive, and when normotension returned following treatment with dobutamine. Hypotension was induced with increases in inhaled isoflurane. The horses successfully induced into hypotension did not demonstrate consistent, expected changes in systemic perfusion or microvascular perfusion parameters at any of the three measured gastrointestinal sites. Normotension was successfully restored with the use of dobutamine, while the systemic perfusion and microvascular perfusion parameters remained relatively unchanged. These findings suggest that the use of mean arterial pressure to make clinical decisions regarding perfusion may or may not be accurate.
Collapse
Affiliation(s)
- Philip J. Kieffer
- Evidensia Specialisthästsjukhuset Helsingborg, Bergavägen 3, 254 52 Helsingborg, Sweden
| | - Jarred M. Williams
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.W.)
| | - Molly K. Shepard
- MedVet Medical & Cancer Centers for Pets, Chicago, IL 60618, USA
| | - Steeve Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.W.)
| | - Kira L. Epstein
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (J.M.W.)
| |
Collapse
|
31
|
Jouffroy R, Gille S, Gilbert B, Travers S, Bloch-Laine E, Ecollan P, Boularan J, Bounes V, Vivien B, Gueye P. RELATIONSHIP BETWEEN SHOCK INDEX, MODIFIED SHOCK INDEX, AND AGE SHOCK INDEX AND 28-DAY MORTALITY AMONG PATIENTS WITH PREHOSPITAL SEPTIC SHOCK. J Emerg Med 2024; 66:144-153. [PMID: 38336569 DOI: 10.1016/j.jemermed.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND A relative hypovolemia occurs during septic shock (SS); the early phase is clinically reflected by tachycardia and low blood pressure. In the prehospital setting, simple objective tools to assess hypovolemia severity are needed to optimize triaging. OBJECTIVE The aim of this study was to evaluate the relationship between shock index (SI), diastolic SI (DSI), modified SI (MSI), and age SI (ASI) and 28-day mortality of patients with SS initially cared for in a prehospital setting of a mobile intensive care unit (MICU). METHODS From April 6, 2016 through December 31, 2021, 530 patients with SS cared for at a prehospital MICU were analyzed retrospectively. Initial SI, MSI, DSI, and ASI values, that is, first measurement after MICU arrival to the scene were calculated. A propensity score analysis with inverse probability of treatment weighting (IPTW) method was used to assess the relationship between SI, DSI, MSI, and ASI and 28-day mortality. RESULTS SS resulted mainly from pulmonary, digestive, and urinary infections in 44%, 25%, and 17% of patients. The 28-day overall mortality was 31%. IPTW propensity score analysis indicated a significant relationship between 28-day mortality and SI (adjusted odds ratio [aOR] 1.13; 95% CI 1.01-1.26; p = 0.04), DSI (aOR 1.16; 95% CI 1.06-1.34; p = 0.03), MSI (aOR 1.03; 95% CI 1.01-1.17; p = 0.03), and ASI (aOR 3.62; 95% CI 2.63-5.38; p < 10-6). CONCLUSIONS SI, DSI, MSI, and ASI were significantly associated with 28-day mortality among patients with SS cared for at a prehospital MICU. Further studies are needed to confirm the usefulness of SI and SI derivates for prehospital SS optimal triaging.
Collapse
Affiliation(s)
- Romain Jouffroy
- Intensive Care Unit, University Hospital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne Billancourt, France; Intensive Care Unit, Anaesthesiology, Service d'Aide Médicale Urgente, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; EA 7329-Institut de Recherche Médicale et d'Épidémiologie du Sport, Institut National du Sport, de l'Expertise et de la Performance, Paris, France
| | - Sonia Gille
- SAMU 972, University Hospital of Martinique, Pierre Zobda Quitman Hospital, Fort-de-France Martinique, France
| | - Basile Gilbert
- Department of Emergency Medicine, SAMU 31, University Hospital of Toulouse, Toulouse, France
| | | | - Emmanuel Bloch-Laine
- Emergency Department, Cochin Hospital, Paris, France; Emergency Department, Service Mobile d'Urgence et Reanimation, Hôtel Dieu Hospital, Paris, France
| | - Patrick Ecollan
- Intensive Care Unit, Service Mobile d'Urgence et Reanimation, La Pitié-Salpêtrière Hospital, Paris, France
| | | | - Vincent Bounes
- Department of Emergency Medicine, SAMU 31, University Hospital of Toulouse, Toulouse, France
| | - Benoît Vivien
- Intensive Care Unit, Anaesthesiology, Service d'Aide Médicale Urgente, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Papa Gueye
- SAMU 972, University Hospital of Martinique, Pierre Zobda Quitman Hospital, Fort-de-France Martinique, France
| |
Collapse
|
32
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
33
|
Shi Y, Ji S, Xu Y, Ji J, Yang X, Ye B, Lou J, Tao T. Global trends in research on endothelial cells and sepsis between 2002 and 2022: A systematic bibliometric analysis. Heliyon 2024; 10:e23599. [PMID: 38173483 PMCID: PMC10761786 DOI: 10.1016/j.heliyon.2023.e23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis is a systemic syndrome involving physiological, pathological, and biochemical abnormalities precipitated by infection and is a major global public health problem. Endothelial cells (ECs) dysfunction is a major contributor to sepsis-induced multiple organ failure. This bibliometric analysis aimed to identify and characterize the status, evolution of the field, and new research trends of ECs and sepsis over the past 20 years. For this analysis, the Web of Science Core Collection database was searched to identify relevant publications on ECs in sepsis published between January 1, 2002, and December 31, 2022. Microsoft Excel 2021, VOSviewer software, CiteSpace software, and the online analysis platform of literature metrology (http://bibliometric.com) were used to visualize the trends of publications' countries/regions, institutions, authors, journals, and keywords. In total, 4200 articles were identified and screened, primarily originating from 86 countries/regions and 3489 institutions. The USA was the leading contributor to this research field, providing 1501 articles (35.74 %). Harvard University's scientists were the most prolific, with 129 articles. Overall, 21,944 authors were identified, among whom Bae Jong Sup was the most prolific, contributing 129 publications. Additionally, Levi Marcel was the most frequently co-cited author, appearing 538 times. The journals that published the most articles were SHOCK, CRITICAL CARE MEDICINE, and PLOS ONE, accounting for 10.79 % of the total. The current emerging hotspots are concentrated on "endothelial glycocalyx," "NLRP3 inflammasome," "extracellular vesicle," "biomarkers," and "COVID-19," among others. In conclusion, this study provides a comprehensive overview of the scientific productivity and emerging research trends in the field of ECs in sepsis. The evidence supporting the significant role of ECs in both physiological and pathological responses to sepsis is continuously growing. More in-depth studies of the molecular mechanisms underlying sepsis-induced endothelial dysfunction and EC-targeted therapies are warranted in the future.
Collapse
Affiliation(s)
- Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Shunpan Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Jun Ji
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Xiaoming Yang
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| | - Jingsheng Lou
- Department of Anesthesiology, The General Hospital of the People's Liberation Army, Beijing, China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
- Graduate of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Dari MA, Fayaz A, Sharif S, Hernandez Galaviz S, Hernandez Galaviz E, Bataineh SM, Wei CR, Allahwala D. Comparison of High-Normal Versus Low-Normal Mean Arterial Pressure at Target on Outcomes in Sepsis or Shock Patients: A Meta-Analysis of Randomized Control Trials. Cureus 2024; 16:e52258. [PMID: 38352092 PMCID: PMC10863627 DOI: 10.7759/cureus.52258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
The objective of this meta-analysis was to compare the impact of a high-normal and a low-normal mean arterial pressure (MAP) target on outcomes in patients with sepsis or shock. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, two investigators conducted a thorough literature search across online databases, including PubMed, Cochrane Library, Web of Science, and EMBASE, spanning from inception to December 10, 2023. The assessed outcomes encompassed all-cause mortality, the need for renal replacement therapy, and the length of intensive care unit (ICU) stay. A total of four randomized controlled trials (RCTs) were included, involving 3507 participants with individual study participant counts ranging from 118 to 2463. The pooled analysis revealed no statistically significant difference in the risk of all-cause mortality between the two groups (Risk Ratio (RR): 0.94, 95% Confidence Interval (CI): 0.87 to 1.01). Furthermore, there was no disparity in the rates of renal replacement therapy and the duration of ICU stay between the high-normal and low-normal MAP groups. Our findings indicate no significant distinctions in mortality, rates of renal replacement therapy, or ICU stay duration between the two groups. However, future trials with larger sample sizes are warranted to comprehensively understand the nuanced effects of different MAP settings on outcomes in patients with sepsis and shock.
Collapse
Affiliation(s)
- Mohammedsefa A Dari
- Otolaryngology - Head and Neck Surgery, Addis Ababa University, Addis Ababa, ETH
| | - Azrung Fayaz
- Internal Medicine, College of Physicians and Surgeons, Peshawar, PAK
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Shazia Sharif
- Gastroenterology, Lahore General Hospital, Lahore, PAK
| | | | | | | | - Calvin R Wei
- Research and Development, Shing Huei Group, Taipei, TWN
| | | |
Collapse
|
35
|
Widjaja NA, Hamidah A, Purnomo MT, Ardianah E. Effect of lactoferrin in oral nutrition supplement (ONS) towards IL-6 and IL-10 in failure to thrive children with infection. F1000Res 2023; 12:897. [PMID: 38434639 PMCID: PMC10904948 DOI: 10.12688/f1000research.130176.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Growth failure due to infection in children is a major health problem throughout the world. It provokes a systemic immune response, with increased interleukin (IL)-6 and reduced IL-10. Lactoferrin (Lf) is a multifunctional iron-binding protein that can be found in whey protein inside formula milk such as oral nutrition supplement (ONS), which is able to upregulate anti-inflammatory cytokines (IL-10) and modulate pro-inflammatory cytokines. We conducted this study to investigate the effect of Lf supplementation in ONS on IL-6 and IL-10 levels in children with failure to thrive and infection. METHODS We performed a quasi-experimental pre- and post-study in children aged 12-60 months old with failure to thrive due to infectious illness. The subjects received 400 ml of oral nutritional supplements (ONS, 1 ml equivalent to 1 kcal) each day for 90 days, and their parents received dietary advice and medication based on the underlying illness. Blood was drawn to measure IL-6 and IL-10 before and after the intervention. RESULTS There were 75 subjects recruited and divided into group-1 and group-2 based on age. The incidence of undernutrition was 37.33%. Lf in ONS intervention improved body weight and body length. Lf also reduced IL-6, although there was not a significant difference before and after the intervention. However, the IL-6 reduction was significantly higher in subjects with undernutrition compared with subjects with weight faltering. Pre-intervention IL-6 levels were higher in children with stunting than in children with normal stature. There was a greater change in IL-6 in children with severe stunting than in children with normal stature or stunting. IL-10 was significantly reduced after the intervention. CONCLUSIONS In addition to improving body weight and length, Lf supplementation in ONS improved immune response homeostasis by balancing IL-6 and IL-10 levels and by improving the IL-6/IL-10 ratio.ClinicalTrials.gov number ID: NCT05289674, dated May 3 rd 2022.
Collapse
Affiliation(s)
| | - Azizah Hamidah
- Child Health, Airlangga University, Surabaya, East Java, 60286, Indonesia
| | | | - Eva Ardianah
- Child Health, Airlangga University, Surabaya, East Java, 60286, Indonesia
| |
Collapse
|
36
|
Songür HS, Kaya SA, Altınışık YC, Abanoz R, Özçelebi E, Özmen F, Kösemehmetoğlu K, Soydan G. Alamandine treatment prevents LPS-induced acute renal and systemic dysfunction with multi-organ injury in rats via inhibiting iNOS expression. Eur J Pharmacol 2023; 960:176160. [PMID: 37923157 DOI: 10.1016/j.ejphar.2023.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Sepsis is defined as the dysregulated immune response leading to multi-organ dysfunction and injury. Sepsis-induced acute kidney injury is a significant contributor to morbidity and mortality. Alamandine (ALA) is a novel endogenous peptide of the renin-angiotensin-aldosterone system. It is known for its anti-inflammatory and anti-apoptotic effects, but its functional and vascular effects on sepsis remain unclear. We aimed to investigate the effects of ALA, as a pre- and post-treatment agent, on lipopolysaccharide (LPS)-induced systemic and renal dysfunction and injury in the LPS-induced endotoxemia model in rats via functional, hemodynamic, vascular, molecular, biochemical, and histopathological evaluation. 10 mg/kg intraperitoneal LPS injection caused both hepatic and renal injury, decreased blood flow in several organs, and renal dysfunction at 20 h in Sprague-Dawley rats. Our results showed that ALA treatment ameliorated systemic and renal inflammation, reduced inflammatory cytokines, prevented the enhancement of the mortality rate, reversed vascular dysfunction, corrected decreased blood flows in several organs, and reduced renal and hepatic injury via inhibiting iNOS (inducible nitric oxide synthase) and caspase expressions in the kidney. In addition, expressions of different ALA-related receptors showed alterations in this model, and ALA treatment reversed these alterations. These data suggest that ALA's systemic and renal protective effects are achieved through its anti-inflammatory, anti-pyroptotic, and anti-apoptotic effects on hemodynamic and vascular functions via reduced iNOS expression.
Collapse
Affiliation(s)
- H Saltuk Songür
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Sinan Alperen Kaya
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | | | - Rukiye Abanoz
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Esin Özçelebi
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | | | - Güray Soydan
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
37
|
Zhao L, Hu J, Zheng P, Mi B, Chen Z, Zhao X, Wu J, Wang Y. PAR1 regulates sepsis-induced vascular endothelial barrier dysfunction by mediating ERM phosphorylation via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2023; 124:110992. [PMID: 37806106 DOI: 10.1016/j.intimp.2023.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Sepsis begins with vascular endothelial barrier breakdown and causes widespread organ failure. Protease-activated receptor 1 (PAR1) is an important target for modulating vascular endothelial permeability; however, little research has been undertaken in sepsis, and its putative molecular mechanism remains unknown. The vascular endothelial permeability was examined by detecting FITC-dextran flux. F-actin was examined by immunofluorescence (IF). PAR1, ERM phosphorylation, and RhoA/ROCK signaling pathway expression in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs) line were examined by IF and Western blot. To develop the sepsis model, cecal ligation and puncture (CLP) were conducted. The PAR1 inhibitor SCH79797 was utilized to inhibit PAR1 expression in vivo. Vascular permeability in main organs weres measured by Evans blue dye extravasation. The pathological changes in main organs were examined by HE staining. The expression of PAR1, ERM phosphorylation, and the RhoA/ROCK signaling pathway was examined using IF, immunohistochemical and WB in CLP mice. In vitro, in response to LPS stimulation of HUVECs, PAR1 mediated the phosphorylation of ERM, promoted F-actin rearrangement, and increased endothelial hyperpermeability, all of which were prevented by inhibiting PAR1 or RhoA. Additionally, inhibiting PAR1 expression reduced RhoA and ROCK expression. In vivo, we showed that inhibiting PAR1 expression will reduce ezrin/radixin/moesin (ERM) phosphorylation to relieve vascular endothelial barrier dysfunction and thereby ameliorate multiorgan dysfunction syndrome (MODS) in CLP-induced septic mice. This study revealed that PAR1-mediated phosphorylation of ERM induced endothelial barrier dysfunction, which in turn led to MODS in sepsis, and that the RhoA/ROCK signaling pathway underlay these effects.
Collapse
Affiliation(s)
- Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Jiahui Hu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou City 310052, China
| | - Pingping Zheng
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Ben Mi
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Zixi Chen
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Xu Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China
| | - Jinhong Wu
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medical, 261 Huansha Rd, Hangzhou City 310006, China.
| | - Yi Wang
- Department of Emergency, Hangzhou Tranditional Chinese Medicine Hospitial Affiliated to Zhejiang Chinese Medical University, 453 Stadium Rd, Hangzhou City 310007, China.
| |
Collapse
|
38
|
Zhang F, Mei X, Zhou P, Tian YP, Liu JX, Dong X, Yuan DS, Lin ZF, Zhang L, Lin JH, Li AJ, Deng X, Chen MZ, Yuan SY, Zha JJ, Shi B, Lin ZH, Guo SB. Anisodamine hydrobromide in the treatment of critically ill patients with septic shock: a multicenter randomized controlled trial. Ann Med 2023; 55:2264318. [PMID: 37791613 PMCID: PMC10552604 DOI: 10.1080/07853890.2023.2264318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Septic shock is the development of sepsis to refractory circulatory collapse and metabolic derangements, characterized by persistent hypotension and increased lactate levels. Anisodamine hydrobromide (Ani HBr) is a Chinese medicine used to improve blood flow in circulatory disorders. The purpose of this study was to determine the therapeutic efficacy of Ani HBr in the treatment of patients with septic shock. METHODS This was a prospective, multicenter, randomized controlled trial focusing on patients with septic shock in 16 hospitals in China. Patients were randomly assigned in a 1:1 ratio to either the treatment group or the control group. The primary endpoint was 28-day mortality. The secondary outcomes included 7-day mortality, hospital mortality, hospital length of stay, vasopressor-free days within 7 days, etc. These indicators were measured and collected at 0, 6h, 24h, 48h, 72h and 7d after the diagnosis. RESULTS Between September 2017 and March 2021, 404 subjects were enrolled. 203 subjects received Ani HBr and 201 subjects were assigned to the control group. The treated group showed lower 28-day mortality than the control group. Stratified analysis further showed significant differences in 28-day mortality between the two groups for patients with a high level of illness severity. We also observed significant differences in 7-day mortality, hospital mortality and some other clinical indicators between the two groups. CONCLUSION Ani HBr might be an important adjuvant to conventional treatment to reduce 28-day mortality in patients with septic shock. A large-scale prospective randomized multicenter trial is warranted to confirm our results.
Collapse
Affiliation(s)
- Fang Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xue Mei
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- Sichuan Provincial People’s Hospital, Chengdu, China
| | - Ying-Ping Tian
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Xu Dong
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, China
| | - Ding-Shan Yuan
- Affiliated Hospital of Nantong University, Nantong, China
| | | | - Lei Zhang
- Tongji Hospital of Tongji University, Wuhan, China
| | - Jin-Hao Lin
- Longyan People’s Hospital of Fujian, Longyan, China
| | - Ai-Jun Li
- Handan Central Hospital, Handan, China
| | - Xing Deng
- Second Hospital of Longyan, Longyan, China
| | | | | | | | - Bin Shi
- Yangpu Hospital of Tongji University, Shanghai, China
| | - Zhi-Hong Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shu-Bin Guo
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Putowski Z, Pluta MP, Rachfalska N, Krzych ŁJ, De Backer D. Sublingual Microcirculation in Temporary Mechanical Circulatory Support: A Current State of Knowledge. J Cardiothorac Vasc Anesth 2023; 37:2065-2072. [PMID: 37330330 DOI: 10.1053/j.jvca.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Cardiogenic shock causes hypoperfusion within the microcirculation, leading to impaired oxygen delivery, cell death, and progression of multiple organ failure. Mechanical circulatory support (MCS) is the last line of treatment for cardiac failure. The goal of MCS is to ensure end-organ perfusion by maintaining perfusion pressure and total blood flow. However, machine-blood interactions and the nonobvious translation of global macrohemodynamics into the microcirculation suggest that the use of MCS may not necessarily be associated with improved capillary flow. With the use of hand-held vital microscopes, it is possible to assess the microcirculation at the bedside. The paucity of literature on the use of microcirculatory assessment suggests the need for an in-depth look into microcirculatory assessment within the context of MCS. The purpose of this review is to discuss the possible interactions between MCS and microcirculation, as well as to describe the research conducted in this area. Regarding sublingual microcirculation, 3 types of MCS will be discussed: venoarterial extracorporeal membrane oxygenation, intra-aortic balloon counterpulsation, and microaxial flow pumps (Impella).
Collapse
Affiliation(s)
- Zbigniew Putowski
- University Clinical Center of the Medical University of Silesia in Katowice, Katowice, Poland.
| | - Michał P Pluta
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Natalia Rachfalska
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Łukasz J Krzych
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland; Department of Cardiac Anaesthesia and Intensive Therapy, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
41
|
Tenhunen AB, van der Heijden J, Skorup P, Maccarana M, Larsson A, Larsson A, Perchiazzi G, Tenhunen J. Fluid restrictive resuscitation with high molecular weight hyaluronan infusion in early peritonitis sepsis. Intensive Care Med Exp 2023; 11:63. [PMID: 37733256 PMCID: PMC10513979 DOI: 10.1186/s40635-023-00548-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Sepsis is a condition with high morbidity and mortality. Prompt recognition and initiation of treatment is essential. Despite forming an integral part of sepsis management, fluid resuscitation may also lead to volume overload, which in turn is associated with increased mortality. The optimal fluid strategy in sepsis resuscitation is yet to be defined. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water is an important constituent of the endothelial glycocalyx. We hypothesized that exogenously administered hyaluronan would counteract intravascular volume depletion and contribute to endothelial glycocalyx integrity in a fluid restrictive model of peritonitis. In a prospective, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with hyaluronan (n = 8) or 0.9% saline (n = 8). The animals received an infusion of 0.1% hyaluronan 6 ml/kg/h, or the same volume of saline, during the first 2 h of peritonitis. Stroke volume variation and hemoconcentration were comparable in the two groups throughout the experiment. Cardiac output was higher in the intervention group during the infusion of hyaluronan (3.2 ± 0.5 l/min in intervention group vs 2.7 ± 0.2 l/min in the control group) (p = 0.039). The increase in lactate was more pronounced in the intervention group (3.2 ± 1.0 mmol/l in the intervention group and 1.7 ± 0.7 mmol/l in the control group) at the end of the experiment (p < 0.001). Concentrations of surrogate markers of glycocalyx damage; syndecan 1 (0.6 ± 0.2 ng/ml vs 0.5 ± 0.2 ng/ml, p = 0.292), heparan sulphate (1.23 ± 0.2 vs 1.4 ± 0.3 ng/ml, p = 0.211) and vascular adhesion protein 1 (7.0 ± 4.1 vs 8.2 ± 2.3 ng/ml, p = 0.492) were comparable in the two groups at the end of the experiment. In conclusion, hyaluronan did not counteract intravascular volume depletion in early peritonitis sepsis. However, this finding is hampered by the short observation period and a beneficial effect of HMW-HA in peritonitis sepsis cannot be discarded based on the results of the present study.
Collapse
Affiliation(s)
- Annelie Barrueta Tenhunen
- Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.
| | - Jaap van der Heijden
- Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Department of Medical Sciences, Division of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Marco Maccarana
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Division of Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Belousoviene E, Pranskuniene Z, Vaitkaitiene E, Pilvinis V, Pranskunas A. Effect of high-dose intravenous ascorbic acid on microcirculation and endothelial glycocalyx during sepsis and septic shock: a double-blind, randomized, placebo-controlled study. BMC Anesthesiol 2023; 23:309. [PMID: 37700249 PMCID: PMC10496271 DOI: 10.1186/s12871-023-02265-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies indicate supplemental vitamin C improves microcirculation and reduces glycocalyx shedding in septic animals. Our randomized, double-blind, placebo-controlled trial aimed to investigate whether a high dose of intravenous ascorbic acid (AA) might improve microcirculation and affect glycocalyx in septic patients. In our study, 23 septic patients were supplemented with a high dose (50 mg/kg every 6 h) of intravenous AA or placebo for 96 h. Sublingual microcirculation was examined using a handheld Cytocam-incident dark field (IDF) video microscope. A sidestream dark field video microscope (SDF), connected to the GlycoCheck software (GlycoCheck ICU®; Maastricht University Medical Center, Maastricht, the Netherlands), was employed to observe glycocalyx. We found a significantly higher proportion of perfused small vessels (PPV) 6 h after the beginning of the trial in the experimental group compared with placebo. As an indicator of glycocalyx thickness, the perfused boundary region was lower in capillaries of the 5-9 μm diameter in the AA group than placebo after the first dose of AA. Our data suggest that high-dose parenteral AA tends to improve microcirculation and glycocalyx in the early period of septic shock. The study was retrospectively registered in the clinicaltrials.gov database on 26/02/2021 (registration number NCT04773717).
Collapse
Affiliation(s)
- Egle Belousoviene
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, LT-50161, Lithuania
| | - Zivile Pranskuniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Sukileliu pr.13, Kaunas, LT-50162, Lithuania
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu pr.13, Kaunas, LT-50162, Lithuania
| | - Egle Vaitkaitiene
- Department of Disaster Medicine and Health Research Institute, Lithuanian University of Health Sciences, Eiveniu g. 4, Kaunas, LT-50161, Lithuania
| | - Vidas Pilvinis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, LT-50161, Lithuania
| | - Andrius Pranskunas
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, LT-50161, Lithuania.
| |
Collapse
|
43
|
Jouffroy R, Gilbert B, Tourtier JP, Bloch-Laine E, Ecollan P, Boularan J, Bounes V, Vivien B, Gueye P. Prehospital pulse pressure and mortality of septic shock patients cared for by a mobile intensive care unit. BMC Emerg Med 2023; 23:97. [PMID: 37626302 PMCID: PMC10464421 DOI: 10.1186/s12873-023-00864-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Septic shock medical treatment relies on a bundle of care including antibiotic therapy and hemodynamic optimisation. Hemodynamic optimisation consists of fluid expansion and norepinephrine administration aiming to optimise cardiac output to reach a mean arterial pressure of 65mmHg. In the prehospital setting, direct cardiac output assessment is difficult because of the lack of invasive and non-invasive devices. This study aims to assess the relationship between 30-day mortality and (i) initial pulse pressure (iPP) as (ii) pulse pressure variation (dPP) during the prehospital stage among patients cared for SS by a prehospital mobile intensive care unit (MICU). METHODS From May 09th, 2016 to December 02nd, 2021, septic shock patients requiring MICU intervention were retrospectively analysed. iPP was calculated as the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the first contact between the patient and the MICU team prior to any treatment and, dPP as the difference between the final PP (the difference between SBP and DBP at the end of the prehospital stage) and iPP divided by prehospital duration. To consider cofounders, the propensity score method was used to assess the relationship between (i) iPP < 40mmHg, (ii) positive dPP and 30-day mortality. RESULTS Among the 530 patients analysed, pulmonary, digestive, and urinary infections were suspected among 43%, 25% and 17% patients, respectively. The 30-day overall mortality rate reached 31%. Cox regression analysis showed an association between 30-day mortality and (i) iPP < 40mmHg; aHR of 1.61 [1.03-2.51], and (ii) a positive dPP; aHR of 0.56 [0.36-0.88]. CONCLUSION The current study reports an association between 30-day mortality rate and iPP < 40mmHg and a positive dPP among septic shock patients cared for by a prehospital MICU. A negative dPP could be helpful to identify septic shock with higher risk of poor outcome despite prehospital hemodynamic optimization.
Collapse
Affiliation(s)
- Romain Jouffroy
- Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique Hôpitaux Paris and Paris Saclay University, 9 avenue Charles De Gaulle, Boulogne-Billancourt, 92100, France.
- Intensive Care Unit, Anaesthesiology, SAMU, Necker Enfants Malades Hospital, Assistance Publique - Hôpitaux Paris, Paris, France.
- Centre de recherche en Epidémiologie et Santé des Populations - U1018 INSERM, Paris Saclay University, Villejuif, France.
- Institut de Recherche bioMédicale et d'Epidémiologie du Sport - EA7329, INSEP - Paris University, Paris, France.
- EA 7525 Université des Antilles, Fort de France, France.
| | - Basile Gilbert
- Department of Emergency Medicine, SAMU 31, University Hospital of Toulouse, Toulouse, France
| | | | - Emmanuel Bloch-Laine
- Emergency Department, Cochin Hospital, Paris, France
- Emergency Department, SMUR, Hôtel Dieu Hospital - Assistance Publique - Hôpitaux Paris, Paris, France
| | - Patrick Ecollan
- Intensive Care Unit, SMUR, Pitie Salpêtriere Hospital, 47 Boulevard de l'Hôpital, Paris - Assistance Publique - Hôpitaux Paris, Paris, 75013, France
| | - Josiane Boularan
- SAMU 31, Centre Hospitalier Intercommunal Castres-Mazamet, Castres, France
| | - Vincent Bounes
- Department of Emergency Medicine, SAMU 31, University Hospital of Toulouse, Toulouse, France
| | - Benoit Vivien
- Intensive Care Unit, Anaesthesiology, SAMU, Necker Enfants Malades Hospital, Assistance Publique - Hôpitaux Paris, Paris, France
| | - Papa Gueye
- EA 7525 Université des Antilles, Fort de France, France
- SAMU 972, Centre Hospitalier Universitaire de Martinique, Fort-de-France Martinique, France
- EA 7525 University of the Antilles, Martinique, France
| |
Collapse
|
44
|
Damiani E, Carsetti A, Casarotta E, Domizi R, Scorcella C, Donati A, Adrario E. Microcirculation-guided resuscitation in sepsis: the next frontier? Front Med (Lausanne) 2023; 10:1212321. [PMID: 37476612 PMCID: PMC10354242 DOI: 10.3389/fmed.2023.1212321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Microcirculatory dysfunction plays a key role in the pathogenesis of tissue dysoxia and organ failure in sepsis. Sublingual videomicroscopy techniques enable the real-time non-invasive assessment of microvascular blood flow. Alterations in sublingual microvascular perfusion were detected during sepsis and are associated with poor outcome. More importantly, sublingual videomicroscopy allowed to explore the effects of commonly applied resuscitative treatments in septic shock, such as fluids, vasopressors and inotropes, and showed that the optimization of macro-hemodynamic parameters may not be accompanied by an improvement in microvascular perfusion. This loss of "hemodynamic coherence," i.e., the concordance between the response of the macrocirculation and the microcirculation, advocates for the integration of microvascular monitoring in the management of septic patients. Nonetheless, important barriers remain for a widespread use of sublingual videomicroscopy in the clinical practice. In this review, we discuss the actual limitations of this technique and future developments that may allow an easier and faster evaluation of the microcirculation at the bedside, and propose a role for sublingual microvascular monitoring in guiding and titrating resuscitative therapies in sepsis.
Collapse
Affiliation(s)
- Elisa Damiani
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
45
|
de Miranda AC, De Stefani FDC, Dal Vesco BC, Junior HC, Morello LG, Assreuy J, de Menezes IAC. Peripheral ischemic reserve in sepsis and septic shock as a new bedside prognostic enrichment tool: A Brazilian cohort study. PLoS One 2023; 18:e0288249. [PMID: 37406024 DOI: 10.1371/journal.pone.0288249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Microvascular dysfunctions are associated with poor prognosis in sepsis. However, the potential role of clinical assessment of peripheral ischemic microvascular reserve (PIMR), a parameter that characterizes the variation of peripheral perfusion index (PPI) after brief ischemia of the upper arm, as a tool to detect sepsis-induced microvascular dysfunction and for prognostic enrichment has not been established. To address this gap, this study investigated the association of high PIMR with mortality over time in patients with sepsis and its subgroups (with and without shock) and peripheral perfusion (capillary-refill time). This observational cohort study enrolled consecutive septic patients in four Intensive-care units. After fluid resuscitation, PIMR was evaluated using the oximetry-derived PPI and post-occlusive reactive hyperemia for two consecutive days in septic patients. Two hundred and twenty-six patients were included-117 (52%) in the low PIMR group and 109 (48%) in the high PIMR group. The study revealed differences in mortality between groups on the first day, which was higher in the high PIMR group (RR 1.25; 95% CI 1.00-1.55; p = 0.04) and maintained its prognostic significance after multivariate adjustment. Subsequently, this analysis was made for sepsis subgroups and showed significant differences in mortality only for the septic-shock subgroup, with was higher in the high PIMR group (RR 2.14; 95% CI 1.49-3.08; p = 0.01). The temporal ΔPPI peak values (%) analyses did not demonstrate maintenance of the predictive value over the first 48 h in either group (p > 0.05). A moderate positive correlation (r = 0.41) between ΔPPI peak (%) and capillary-refill time (s) was found within the first 24 hours of diagnosis (p < 0.001). In conclusion, detecting a high PIMR within 24 h appears to be a prognostic marker for mortality in sepsis. Furthermore, its potential as a prognostic enrichment tool seems to occur mainly in septic shock.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hipólito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
46
|
Shin MH, Hsu HS, Chien JY, Huang CK, Kuo LC, Shun TM, Lin YT, Yeh YC. Association between microcirculation in spontaneous breathing trial and extubation success. Microvasc Res 2023; 148:104552. [PMID: 37207721 DOI: 10.1016/j.mvr.2023.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE This study assessed the association between changes in sublingual microcirculation after a spontaneous breathing trial (SBT) and successful extubation. MATERIALS AND METHODS Sublingual microcirculation was assessed using an incident dark-field video microscope before and after each SBT and before extubation. Microcirculatory parameters before the SBT, at the end of the SBT, and before extubation were compared between the successful and failed extubation groups. RESULTS Forty-seven patients were enrolled and analysed in this study (34 patients in the successful extubation group and 13 patients in the failed extubation group). At the end of the SBT, the weaning parameters did not differ between the two groups. However, the total small vessel density (21.2 [20.4-23.7] versus 24.9 [22.6-26.5] mm/mm2), perfused small vessel density (20.6 [18.5-21.8] versus 23.1 [20.9-25] mm/mm2), proportion of perfused small vessels (91 [87-96] versus 95 [93-98] %), and microvascular flow index (2.8 [2.7-2.9] versus 2.9 [2.9-3]) were significantly lower in the failed extubation group than in the successful extubation group. The weaning and microcirculatory parameters did not differ significantly between the two groups before the SBT. CONCLUSIONS More patients are required to investigate the difference between baseline microcirculation before a successful SBT and the change in microcirculation at the end of the SBT between the successful and failed extubation groups. Better sublingual microcirculatory parameters at the end of SBT and before extubation are associated with successful extubation.
Collapse
Affiliation(s)
- Ming-Hann Shin
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei 112304, Taiwan; Division of Respiratory Therapy, Department of Integrated Diagnostic and Therapeutics, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei 10002, Taiwan.
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei 112304, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 11217, Taiwan.
| | - Jung-Yien Chien
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei, Taiwan.
| | - Chun-Kai Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei, Taiwan
| | - Lu-Cheng Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei, Taiwan.
| | - Tien-Mei Shun
- Division of Respiratory Therapy, Department of Integrated Diagnostic and Therapeutics, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei 10002, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei 112304, Taiwan; Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei 11217, Taiwan.
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei 10002, Taiwan.
| |
Collapse
|
47
|
Shin J, Hwang JH, Park SB, Kim SH. Prediction of renal recovery following sepsis-associated acute kidney injury requiring renal replacement therapy using contrast-enhanced ultrasonography. Kidney Res Clin Pract 2023; 42:473-486. [PMID: 37551127 PMCID: PMC10407630 DOI: 10.23876/j.krcp.22.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Microcirculatory dysfunction plays a critical role in sepsis-associated acute kidney injury (S-AKI) development; however, its impact on renal recovery remains uncertain. We investigated the association between cortical microcirculatory function assessed using contrast-enhanced ultrasonography (CEUS) and renal recovery after S-AKI needing renal replacement therapy (RRT). METHODS This retrospective study included 23 patients who underwent CEUS among those who underwent acute RRT for S-AKI. In addition, we acquired data from 17 healthy individuals and 18 patients with chronic kidney disease. Renal recovery was defined as sustained independence from RRT for at least 14 days. RESULTS Of the CEUS-derived parameters, rise time, time to peak, and fall time were longer in patients with S-AKI than in healthy individuals (p = 0.045, 0.01, and 0.096, respectively). Fourteen patients (60.9%) with S-AKI receiving RRT experienced renal recovery; and these patients had higher values of peak enhancement, wash-in area under the curve (AUC), wash-in perfusion index, and washout AUC than those without recovery (p = 0.03, 0.01, 0.03, and 0.046, respectively). We evaluated the receiver operating characteristic curve and found that the peak enhancement, wash-in AUC, wash-in perfusion index, and wash-out AUC of CEUS derivatives estimated the probability of renal recovery after S-AKI requiring RRT (p = 0.03, 0.01, 0.03, and 0.04, respectively). CONCLUSION CEUS-assessed cortical microvascular perfusion may predict renal recovery following S-AKI that requires RRT. Further studies are essential to validate the clinical utility of microcirculatory parameters obtained from CEUS to estimate renal outcomes in various etiologies and severities of kidney disease.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Sung Bin Park
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Su Hyun Kim
- Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| |
Collapse
|
48
|
Kataria S, Singh O, Juneja D, Goel A, Bhide M, Yadav D. Hypoperfusion context as a predictor of 28-d all-cause mortality in septic shock patients: A comparative observational study. World J Clin Cases 2023; 11:3765-3779. [PMID: 37383132 PMCID: PMC10294150 DOI: 10.12998/wjcc.v11.i16.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND As per the latest Surviving Sepsis Campaign guidelines, fluid resuscitation should be guided by repeated measurements of blood lactate levels until normalization. Nevertheless, raised lactate levels should be interpreted in the clinical context, as there may be other causes of elevated lactate levels. Thus, it may not be the best tool for real-time assessment of the effect of hemodynamic resuscitation, and exploring alternative resuscitation targets should be an essential research priority in sepsis. AIM To compare the 28-d mortality in two clinical patterns of septic shock: hyperlactatemic patients with hypoperfusion context and hyperlactatemic patients without hypoperfusion context. METHODS This prospective comparative observational study carried out on 135 adult patients with septic shock that met Sepsis-3 definitions compared patients with hyperlactatemia in a hypoperfusion context (Group 1, n = 95) and patients with hyperlactatemia in a non-hypoperfusion context (Group 2, n = 40). Hypoperfusion context was defined by a central venous saturation less than 70%, central venous-arterial PCO2 gradient [P(cv-a)CO2] ≥ 6 mmHg, and capillary refilling time (CRT) ≥ 4 s. The patients were observed for various macro and micro hemodynamic parameters at regular intervals of 0 h, 3 h, and 6 h. All-cause 28-d mortality and all other secondary objective parameters were observed at specified intervals. Nominal categorical data were compared using the χ2 or Fisher's exact test. Non-normally distributed continuous variables were compared using the Mann-Whitney U test. Receiver operating characteristic curve analysis with the Youden index determined the cutoff values of lactate, CRT, and metabolic perfusion parameters to predict the 28-d all-cause mortality. A P value of < 0.05 was considered significant. RESULTS Patient demographics, comorbidities, baseline laboratory, vital parameters, source of infection, baseline lactate levels, and lactate clearance at 3 h and 6 h, Sequential Organ Failure scores, need for invasive mechanical ventilation, days on mechanical ventilation, and renal replacement therapy-free days within 28 d, duration of intensive care unit stay, and hospital stay were comparable between the two groups. The stratification of patients into hypoperfusion and non-hypoperfusion context did not result in a significantly different 28-d mortality (24% vs 15%, respectively; P = 0.234). However, the patients within the hypoperfusion context with high P(cv-a)CO2 and CRT (P = 0.022) at baseline had significantly higher mortality than Group 2. The norepinephrine dose was higher in Group 1 but did not achieve statistical significance with a P > 0.05 at all measured intervals. Group 1 had a higher proportion of patients requiring vasopressin and the mean vasopressor-free days out of the total 28 d were lower in patients with hypoperfusion (18.88 ± 9.04 vs 21.08 ± 8.76; P = 0.011). The mean lactate levels and lactate clearance at 3 h and 6 h, CRT, P(cv-a)CO2 at 0 h, 3 h, and 6 h were found to be associated with 28-d mortality in patients with septic shock, with lactate levels at 6 h having the best predictive value (area under the curve lactate at 6 h: 0.845). CONCLUSION Septic shock patients fulfilling the hypoperfusion and non-hypoperfusion context exhibited similar 28-d all-cause hospital mortality, although patients with hypoperfusion displayed a more severe circulatory dysfunction. Lactate levels at 6 h had a better predictive value in predicting 28-d mortality than other parameters. Persistently high P(cv-a)CO2 (> 6 mmHg) or increased CRT (> 4 s) at 3 h and 6 h during early resuscitation can be a valuable additional aid for prognostication of septic shock patients.
Collapse
Affiliation(s)
- Sahil Kataria
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Omender Singh
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Deven Juneja
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Amit Goel
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Madhura Bhide
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| | - Devraj Yadav
- Institute of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi 110017, India
| |
Collapse
|
49
|
Chen Y, Peng JM, Hu XY, Li S, Wan XX, Liu RT, Wang CY, Jiang W, Dong R, Su LX, He HW, Long Y, Weng L, Du B. Tissue oxygen saturation is predictive of lactate clearance in patients with circulatory shock. BMC Anesthesiol 2023; 23:179. [PMID: 37231341 DOI: 10.1186/s12871-023-02139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tissue oxygen saturation (StO2) decrease could appear earlier than lactate alteration. However, the correlation between StO2 and lactate clearance was unknown. METHODS This was a prospective observational study. All consecutive patients with circulatory shock and lactate over 3 mmol/L were included. Based on the rule of nines, a BSA (body surface area) weighted StO2 was calculated from four sites of StO2 (masseter, deltoid, thenar and knee). The formulation was as follows: masseter StO2 × 9% + (deltoid StO2 + thenar StO2) × (18% + 27%)/ 2 + knee StO2 × 46%. Vital signs, blood lactate, arterial and central venous blood gas were measured simultaneously within 48 h of ICU admission. The predictive value of BSA-weighted StO2 on 6-hour lactate clearance > 10% since StO2 initially monitored was assessed. RESULTS A total of 34 patients were included, of whom 19 (55.9%) had a lactate clearance higher than 10%. The mean SOFA score was lower in cLac ≥ 10% group compared with cLac < 10% group (11 ± 3 vs. 15 ± 4, p = 0.007). Other baseline characteristics were comparable between groups. Compared to non-clearance group, StO2 in deltoid, thenar and knee were significantly higher in clearance group. The area under the receiver operating curves (AUROC) of BSA-weighted StO2 for prediction of lactate clearance (0.92, 95% CI [Confidence Interval] 0.82-1.00) was significantly higher than StO2 of masseter (0.65, 95% CI 0.45-0.84; p < 0.01), deltoid (0.77, 95% CI 0.60-0.94; p = 0.04), thenar (0.72, 95% CI 0.55-0.90; p = 0.01), and similar to knee (0.87, 0.73-1.00; p = 0.40), mean StO2 (0.85, 0.73-0.98; p = 0.09). Additionally, BSA-weighted StO2 model had continuous net reclassification improvement (NRI) over the knee StO2 and mean StO2 model (continuous NRI 48.1% and 90.2%, respectively). The AUROC of BSA-weighted StO2 was 0.91(95% CI 0.75-1.0) adjusted by mean arterial pressure and norepinephrine dose. CONCLUSIONS Our results suggested that BSA-weighted StO2 was a strong predictor of 6-hour lactate clearance in patients with shock.
Collapse
Affiliation(s)
- Yan Chen
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin-Min Peng
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Yun Hu
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shan Li
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xi-Xi Wan
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rui-Ting Liu
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chun-Yao Wang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Jiang
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Run Dong
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Long-Xiang Su
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huai-Wu He
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Bin Du
- Medical Intensive Care Unit, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
50
|
Duranteau J, De Backer D, Donadello K, Shapiro NI, Hutchings SD, Rovas A, Legrand M, Harrois A, Ince C. The future of intensive care: the study of the microcirculation will help to guide our therapies. Crit Care 2023; 27:190. [PMID: 37193993 PMCID: PMC10186296 DOI: 10.1186/s13054-023-04474-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
The goal of hemodynamic resuscitation is to optimize the microcirculation of organs to meet their oxygen and metabolic needs. Clinicians are currently blind to what is happening in the microcirculation of organs, which prevents them from achieving an additional degree of individualization of the hemodynamic resuscitation at tissue level. Indeed, clinicians never know whether optimization of the microcirculation and tissue oxygenation is actually achieved after macrovascular hemodynamic optimization. The challenge for the future is to have noninvasive, easy-to-use equipment that allows reliable assessment and immediate quantitative analysis of the microcirculation at the bedside. There are different methods for assessing the microcirculation at the bedside; all have strengths and challenges. The use of automated analysis and the future possibility of introducing artificial intelligence into analysis software could eliminate observer bias and provide guidance on microvascular-targeted treatment options. In addition, to gain caregiver confidence and support for the need to monitor the microcirculation, it is necessary to demonstrate that incorporating microcirculation analysis into the reasoning guiding hemodynamic resuscitation prevents organ dysfunction and improves the outcome of critically ill patients.
Collapse
Affiliation(s)
- J Duranteau
- Department of Anesthesiology and Intensive Care, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), INSERM UMR-S 999, Paris-Saclay University, Le Kremlin-Bicêtre, France.
| | - D De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Boulevard du Triomphe 201, 1160, Brussels, Belgium
| | - K Donadello
- Anaesthesia and Intensive Care Unit B, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, University Hospital Integrated Trust of Verona, Verona, Italy
| | - N I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center-Harvard Medical School, Boston, MA, USA
| | - S D Hutchings
- King's College Hospital NHS Foundation Trust, London, UK
- Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK
| | - A Rovas
- Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - M Legrand
- Division of Critical Care Medicine, Department of Anesthesia and Perioperative Care, UCSF, San Francisco, USA
| | - A Harrois
- Department of Anesthesiology and Intensive Care, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), INSERM UMR-S 999, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - C Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|