1
|
Ham CH, Kim Y, Kwon WK, Sun W, Kim JH, Kim HJ, Moon HJ. Single-cell analysis reveals fibroblast heterogeneity and myofibroblast conversion in ligamentum flavum hypertrophy. Spine J 2025; 25:1263-1275. [PMID: 39653186 DOI: 10.1016/j.spinee.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND CONTEXT The ligamentum flavum (LF) is a crucial structure in maintaining spinal stability; however, hypertrophy of the LF is a significant contributor to lumbar spinal canal stenosis (LSCS). The mechanisms linking LF hypertrophy to the exacerbation of LSCS remain incompletely understood. PURPOSE This study aimed to investigate the cellular proportions and signaling pathways observed in the hypertrophied LF. STUDY DESIGN LF tissues were obtained from 3 patients undergoing lumbar decompressive surgery. These patients had been diagnosed with LSCS prior to surgery and had an LF thickness exceeding 3.5 mm. METHODS Single-cell RNA sequencing was performed following LF tissue dissociation, and data were processed for quality control, dimensional reduction, and clustering. Differential gene expression and gene ontology analyses revealed key molecular pathways driving LF hypertrophy. Cell-cell communication analysis was analyzed to elucidate interactions among various cell types within the LF tissues. RESULTS Fibroblasts accounted for 75% of the total cells, followed by endothelial cells, T cells, macrophages, and B cells. Among heterogeneous types of fibroblasts, we identified that a subset of fibroblasts trans-differentiated into myofibroblasts. Two types of macrophages that exhibited phenotypic plasticity akin to M1 and M2 states were observed. We also identified novel signaling pathways involved in fibroblast and immune cell interaction in the hypertrophied LF, such as GAS and GRN, as well as known signaling pathways, such as TGF-β, PDGF, CXCL, and ANGPTL. CONCLUSION Our study shows the changing cellular composition and pathogenic signaling pathways involved during the process of chronic inflammation highlighting the transdifferentiation process from fibroblasts to myofibroblasts in the hypertrophied LF. CLINICAL SIGNIFICANCE The identification of pathways such as GAS, GRN, TGF-β, ANGPTL, and CXCL, which appear to potentially contribute to LF hypertrophy, could significantly enhance our understanding of the pathogenesis of LSCS.
Collapse
Affiliation(s)
- Chang Hwa Ham
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yiseul Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sun
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Hong Joo Moon
- Department of Neurosurgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Chen Y, Zhang J, Feng X, Ma Q, Sun C. Single-cell RNA-seq uncovers lineage-specific regulatory alterations of fibroblasts and endothelial cells in ligamentum flavum hypertrophy. Front Immunol 2025; 16:1569296. [PMID: 40443657 PMCID: PMC12119296 DOI: 10.3389/fimmu.2025.1569296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Background Lumbar spinal stenosis (LSS) represents a major global healthcare burden resulting in back pain and disorders of the limbs among the elderly population. The hypertrophy of ligamentum flavum (HLF), marked by fibrosis and inflammation, significantly contributes to LSS. Fibroblasts and endothelial cells are two important cells in the pathological process of ligamentum flavum (LF) fibrosis and inflammation. These two cells exhibit heterogeneity in various fibrotic diseases, yet their heterogeneity in LF fibrosis remains poorly defined. Methods Using single-cell RNA-seq, we examined the alterations of fibroblasts, endothelial cells, and key genes in the hypertrophic LF, aiming to establish a comprehensive single-cell atlas of LF to identify high-priority targets for pharmaceutical treatment of LSS. Results Here, we find there are five distinct subpopulations of LF fibroblasts: secretory-papillary, secretory-reticular, mesenchymal, pro-inflammatory, and unknown. Importantly, in HLF, the proportion of mesenchymal fibroblast subpopulations increases significantly compared to normal LF (NLF), reflecting their close association with the pathogenesis of HLF. Furthermore, critical target genes that might be involved in HLF and fibrosis, such as MGP, ASPN, OGN, LUM, and CTSK, are identified. In addition, we also investigate the heterogeneity of endothelial cells and highlight the critical role of AECs subpopulation in LF fibrosis. Conclusion This study will contribute to our understanding of the pathogenesis of HLF and offer possible targets for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ma Q, Feng X, Chen Y, Zhang J, Sun C. Mechanical stress contributes to ligamentum flavum hypertrophy by inducing local inflammation and myofibroblast transition in the innovative surgical rabbit model. Front Immunol 2025; 16:1541577. [PMID: 40303410 PMCID: PMC12037363 DOI: 10.3389/fimmu.2025.1541577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background Lumbar spinal canal stenosis (LSCS) ranks as a prevalent spinal disorder in senior populations. Ligamentum flavum hypertrophy (LFH) is a significant feature of LSCS, yet its cause is unclear. The purpose of this study was to create a novel animal model for LFH and explore the pathological mechanisms involved. Methods A novel rabbit model for intervertebral mechanical stress concentration was established through posterolateral fusion using steel wire. Radiological analysis and biological validation were used to determine the crucial role of mechanical stress in LFH and explore the effect of this animal model. Results After 12 weeks, the LF subjected to mechanical stress concentration exhibited a disruption and reduction in elastic fibers, collagen accumulation, increased thickness of LF, elevated LF cells, and increased levels of certain factors related to fibrosis and inflammation. These findings were histologically consistent to those found in human LFH. Furthermore, in vitro, mechanical stretch was discovered to enhance the conversion of fibroblasts into myofibroblasts by boosting TGF-β1 secretion in LF fibroblasts. In addition, compared to conventional internal fixation, this new surgical model provided advantages such as minor damage, decreased bleeding, and reduced technical difficulty and molding costs. Conclusion This novel rabbit model is able to replicate the moderate pathological features of human LFH. Mechanical stress is an independent factor leading to LFH, which can promote the TGF-β1 secretion in LF cells and some inflammatory cells, subsequently induce the myofibroblast transition, and finally result in collagen accumulation and LF fibrosis.
Collapse
Affiliation(s)
| | | | | | - Jue Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhang H, Hong Z, Jiang Z, Hu W, Hu J, Zhu R. miR-29b-3p Affects the Hypertrophy of Ligamentum Flavum in Lumbar Spinal Stenosis and its Mechanism. Biochem Genet 2025; 63:1824-1838. [PMID: 38625592 DOI: 10.1007/s10528-024-10811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
To explore the effect of miR-29b-3p on fibrosis and hypertrophy of ligamentum flavum (LF) in lumbar spinal stenosis (LSS) and its underlying mechanism. Patients with LSS and lumbar disc herniation (LDH) (control) undergoing posterior lumbar laminectomy were included in this study. Human LF samples were obtained for LF cell isolation, RNA, and protein extraction. Histomorphological analysis of LF was performed using hematoxylin-eosin (HE) staining. After isolation, culture, and transfection of primary LF cells, different transfection groups were constructed: NC-mimic, miR-29b-3p-mimic, NC-inhibitor, and miR-29b-3p-inhibitor. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29b-3p in LF and LF cells. Western blot analysis detected the protein expressions of P16 and CyclinD1. ELISA detected the protein expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, and Type III collagen. Finally, LF cell viability was detected using the Cell Counting Kit-8 (CCK8) assay. The thickness of LF was significantly thicker in the LSS group compared to the LDH group (p < 0.05), accompanied by a higher calcification degree, more fibroblasts, and a larger area of collagen fiber proliferation. miR-29b-3p expression was significantly lower in LSS-derived LF tissues and cells than in LDH-derived tissues and cells (both p < 0.05). Compared to the NC-mimic group, the miR-29b-3p-mimic group exhibited significantly higher miR-29b-3p expression, decreased protein expressions of Type I collagen, Type III collagen, TGF-β1, Smad2, Smad3, TLR4, P16, and CyclinD1, and inhibited LF cell proliferation (all p < 0.05). As expected, the miR-29b-3p-inhibitor group displayed contrasting expression patterns (all p < 0.05). Compared to the phosphate buffer saline (PBS) group, the Trimethylamine-N-Oxide (TMAO) group showed significantly increased expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, Type III collagen, P16, and CyclinD1, as well as enhanced LF cell proliferation (all p < 0.05). However, there was no significant difference between the TMAO group and the Ang II group (all p > 0.05). Upregulation of miR-29b-3p expression may play a role in improving LF fibrosis and hypertrophy in LSS by inhibiting P16 expression and suppressing the activation of the TGF-β/Smad signaling pathway. This finding offers new insights into future gene modification therapy for this patient population.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Zhixiong Hong
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Zehua Jiang
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Jiashao Hu
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China.
| |
Collapse
|
5
|
Chen Y, Wang Z, Ma Q, Sun C. The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 2025; 55:61. [PMID: 39950330 PMCID: PMC11878481 DOI: 10.3892/ijmm.2025.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
Collapse
Affiliation(s)
| | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
6
|
Tu T, Hsu Y, Yang C, Shyong Y, Kuo C, Liu Y, Shih S, Lin C. Variations in ECM Topography, Fiber Alignment, Mechanical Stiffness, and Cellular Composition Between Ventral and Dorsal Ligamentum Flavum Layers: Insights Into Hypertrophy Pathogenesis. JOR Spine 2025; 8:e70033. [PMID: 39886656 PMCID: PMC11780719 DOI: 10.1002/jsp2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Background Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood. This study aimed to bridge the existing knowledge gap concerning the intricate relationships between ECM characteristics, mechanical properties, and myofibroblast expression in LFH. Methods Histological staining, scanning electron microscopy, and atomic force microscopy were used to analyze the components, alignment, and mechanical properties of the ECM. Immunostaining and western blot analyses were performed to assess the distribution of myofibroblasts in LF tissues. Results There were notable differences between the dorsal and ventral layers of the hypertrophic ligamentum flavum. Specifically, the dorsal layer exhibited higher collagen content and disorganized fibrous alignment, resulting in reduced stiffness. Immunohistochemistry analysis revealed a significantly greater presence of α-smooth muscle actin (αSMA)-stained cells, a marker for myofibroblasts, in the dorsal layer. Conclusions This study offers comprehensive insights into LFH by elucidating the distinctive ECM characteristics, mechanical properties, and cellular composition disparities between the ventral and dorsal layers. These findings significantly enhance our understanding of the pathogenesis of LFH and may inform future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ting‐Yuan Tu
- Department of Biomedical Engineering, College of EngineeringNational Cheng Kung UniversityTainanTaiwan
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Chia Hsu
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chia‐En Yang
- Department of Biomedical Engineering, College of EngineeringNational Cheng Kung UniversityTainanTaiwan
| | - Yan‐Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Cheng‐Hsiang Kuo
- International Center for Wound Repair and RegenerationNational Cheng Kung UniversityTainanTaiwan
- Department of Biochemistry and Molecular Biology, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yuan‐Fu Liu
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Shu‐Shien Shih
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
| | - Cheng‐Li Lin
- Medical Device Innovation CenterNational Cheng Kung UniversityTainanTaiwan
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Musculoskeletal Research Center, Innovation HeadquartersNational Cheng Kung UniversityTainanTaiwan
- Skeleton Materials and Bio‐Compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
7
|
Fei C, Chen Y, Tan R, Yang X, Wu G, Li C, Shi J, Le S, Yang W, Xu J, Wang L, Zhang Z. Single-cell multi-omics analysis identifies SPP1 + macrophages as key drivers of ferroptosis-mediated fibrosis in ligamentum flavum hypertrophy. Biomark Res 2025; 13:33. [PMID: 40001138 PMCID: PMC11863437 DOI: 10.1186/s40364-025-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Ligamentum flavum hypertrophy (LFH) is a primary contributor to lumbar spinal stenosis. However, a thorough understanding of the cellular and molecular mechanisms driving LFH fibrotic progression remains incomplete. METHODS Single-cell RNA sequencing (scRNA-seq) was performed to construct the single-cell map of human ligamentum flavum (LF) samples. An integrated multi-omics approach, encompassing scRNA-seq, bulk RNA sequencing (bulk RNA-seq), and Mendelian randomization (MR), was applied to conduct comprehensive functional analysis. Clinical tissue specimens and animal models were employed to further confirm the multi-omics findings. RESULTS ScRNA-seq provided a single-cell level view of the fibrotic microenvironment in LF, revealing significantly increased proportions of fibroblasts, myofibroblasts, and macrophages in LFH. Using transmission electron microscopy, single-cell gene set scoring, and MR analysis, ferroptosis was identified as a critical risk factor and pathway within LFH. Subcluster analysis of fibroblasts revealed functional heterogeneity among distinct subpopulations, highlighting the functional characteristics and the metabolic dynamics of fibroblast with a high ferroptosis score (High Ferro-score FB). The quantification of gene expression at single-cell level revealed that ferroptosis increased along with fibrosis in LFH specimens, a finding further validated in both human and mice tissue sections. Consistently, bulk RNA-seq confirmed increased proportions of fibroblasts and macrophages in LFH specimens, underscoring a strong correlation between these cell types through Spearman correlation analysis. Notably, subcluster analysis of the mononuclear phagocytes identified a specific subset of SPP1+ macrophages (SPP1+ Mac) enriched in LFH, which exhibited activation of fibrosis and ferroptosis-related metabolic pathways. Cell-cell communication analysis highlighted that SPP1+ Mac exhibited the strongest outgoing and incoming interactions among mononuclear phagocytes in the LFH microenvironment. Ligand-receptor analysis further revealed that the SPP1-CD44 axis could serve as a key mediator regulating the activity of High Ferro-score FB. Multiplex immunofluorescence confirmed substantial Collagen I deposition and reduced Ferritin Light Chain expression in regions with SPP1-CD44 co-localization in LFH specimens. CONCLUSIONS Our findings indicated that SPP1+ Mac may contribute to LFH fibrosis by regulating ferroptosis in High Ferro-score FB through the SPP1-CD44 axis. This study enhances our understanding of the cellular and molecular mechanisms underlying LFH progression, potentially improving early diagnostic strategies and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Chengshuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruiqian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinxing Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guanda Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Shi
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiyong Le
- Division of Spine Surgery, Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Wenjie Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liang Wang
- Division of Spine Surgery, Department of Orthopaedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Strojny D, Sobański D, Wojdyła R, Skóra K, Hoczela M, Wyczarska-Dziki K, Miller M, Masternak M, Staszkiewicz R, Wieczorek J, Wieczorek-Olcha W, Waltoś-Tutak B, Gogol P, Grabarek BO. Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine. J Clin Med 2025; 14:1252. [PMID: 40004784 PMCID: PMC11857044 DOI: 10.3390/jcm14041252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Degenerative lumbo-sacral spinal stenosis is characterized by spinal canal narrowing, often linked to ligamentum flavum hypertrophy. This study evaluated the elemental composition of ligamentum flavum tissue in DLSS patients compared to healthy controls. Methods: This study involved 180 patients diagnosed with degenerative lumbo-sacral spinal stenosis and 102 healthy controls. Ligamentum flavum samples were analyzed for concentrations of magnesium (Mg), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu), iron (Fe), sodium (Na), potassium (K), manganese (Mn), and lead (Pb) using inductively coupled plasma optical emission spectrometry (ICP-OES). Statistical analyses were conducted using Student's t-test, ANOVA, and Pearson's correlation, with a significance threshold of p < 0.05. Results: The study group exhibited significantly elevated levels of Mg (p < 0.001), Ca (p = 0.014), and P (p = 0.006), along with reduced concentrations of Zn (p = 0.021) and Cu (p = 0.038) compared to controls. No statistically significant differences were observed for Na, K, Mn, or Fe (p > 0.05). Elemental imbalances were more pronounced in individuals with higher body mass index (BMI) and varied by gender. Pain intensity demonstrated a significant correlation with Zn (p = 0.012) and Na (p = 0.045), but no consistent associations with Mg, Ca, or P. Conclusions: Altered Mg, Ca, P, and Zn levels in ligamentum flavum suggest their involvement in degenerative lumbo-sacral spinal stenosis pathophysiology. These elements may serve as potential biomarkers and therapeutic targets for mitigating spinal canal narrowing.
Collapse
Affiliation(s)
- Damian Strojny
- Department of Neurology, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-060 Rzeszow, Poland; (R.W.); (K.W.-D.)
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, 37-700 Przemyśl, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
- Department of Neurosurgery, St. Raphael Hospital, 30-693 Krakow, Poland
| | - Roman Wojdyła
- Department of Neurology, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-060 Rzeszow, Poland; (R.W.); (K.W.-D.)
- Department of Cardiology and Cardiovascular Interventions, University Hospital in Cracow, 30-668 Cracow, Poland
| | - Klaudia Skóra
- Department of Neurological Rehabilitation, District Hospital of St. Padre Pio in Sędziszów Małopolski, 39-120 Sędziszów Małopolski, Poland;
| | - Martyna Hoczela
- Nursing Faculty, Medical College, Universityof Information Technology and Managment in Rzeszow, 35-225 Rzeszow, Poland;
| | - Katarzyna Wyczarska-Dziki
- Department of Neurology, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-060 Rzeszow, Poland; (R.W.); (K.W.-D.)
- Nursing Faculty, Medical College, Universityof Information Technology and Managment in Rzeszow, 35-225 Rzeszow, Poland;
| | - Mateusz Miller
- Department of Neurology, Independent Public Healthcare Institution of the Ministry of Internal Affairs and Administration in Rzeszów, 35-111 Rzeszów, Poland;
| | - Mateusz Masternak
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
- Silesian Center for Rehabilitation and Manual Therapy ReVita in Mysłowice, 41-412 Mysłowice, Poland
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 40-555 Katowice, Poland
| | - Jerzy Wieczorek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, 31-120 Krakow, Poland;
| | - Weronika Wieczorek-Olcha
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
| | | | - Paweł Gogol
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
- Department of Anesthesiology and Intensive Care, Our Lady of Perpetual Help Hospital in Wołomin, 05-200 Wołomin, Poland
- Department of Trauma and Orthopedic Surgery, Our Lady of Perpetual Help Hospital in Wołomin, 05-200 Wołomin, Poland
- Pain Treatment Clinic, Our Lady of Perpetual Help Hospital in Wołomin, 05-200 Wołomin, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dąbrowa Górnicza, Poland; (M.M.); (R.S.); (W.W.-O.); (P.G.); (B.O.G.)
| |
Collapse
|
9
|
Chen L, Zhang Z, Li N, Zhang W, Zheng Z, Zhang Y. Innovative surgical and stress-stimulated rat model of ligamentum flavum hypertrophy. Front Vet Sci 2025; 11:1490769. [PMID: 39885841 PMCID: PMC11780313 DOI: 10.3389/fvets.2024.1490769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
Background and purpose Animal models of LFH are still in the exploratory stage. This study aimed to establish a reliable, efficient, and economical model of LFH in rats for the study of human ligamentum flavum (LF) pathological mechanisms, drug screening, development, improvement of surgical treatment, disease prevention, and other aspects. Methods and materials Forty rats were divided into an experimental group and a sham group of 20 rats. The experimental group (n = 20) was treated with an innovative operation combined with stress stimulation at the L5-L6 segments, the L5 and L6 spinous processes, transverse processes, and supraspinous ligaments were excised, along with removal of the paraspinal muscles at the L5-L6 level. One week after surgery, the rats were subjected to slow treadmill running daily. In the experimental group (n = 20), the spinous process, transverse process, supraspinous ligament and paraspinous muscle of L5 and L6 were excised. And for a week after the surgery, the rats ran on a treadmill at a slow pace every day. While the sham group (n = 20) was treated with sham operation only. Seven weeks later, MRI, immunohistochemistry (IHC), and western blot (WB) will be performed on the LF of the L5-6 segment in the two groups of rats. Results MRI results showed that the LF in the experimental group was significantly thicker than that in the sham group. Masson staining results indicated that LF thickness, collagen fiber area, and collagen volume fraction (CVF) were significantly higher in the experimental group than in the sham group. IHC and WB showed that the expression of TGF-β1, COL1, and IL-1β in the LF of the experimental group was significantly higher than that in the LF of sham group. Conclusion Through innovative surgical intervention combined with stress stimulation, a relatively reliable, efficient, and convenient rat LFH model was established.
Collapse
Affiliation(s)
- Long Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Niandong Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanxia Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouhang Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Zhao Y, Jiang S, Chen L, Xiang Q, Lin J, Li W. Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway. Cell Mol Biol Lett 2025; 30:1. [PMID: 39754051 PMCID: PMC11699792 DOI: 10.1186/s11658-024-00660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated. METHODS The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml). The downregulated miRNA miR-335-3p was selected to investigate its effects on the fibrosis of LF cells and explored the accurate relevant mechanisms. RESULTS A total of 21 miRNAs were differently expressed during the fibrosis of LF cells. The downregulated miR-335-3p was selected for further investigation. MiR-335-3p was distinctly downregulated in the LFH tissues compared to non-LFH tissues. Overexpression of miR-335-3p could inhibit the fibrosis of LF cells. Further research showed miR-335-3p prevented the fibrosis of LF cells via binding to the 3'-UTR of SERPINE2 to reduce the expression of SERPINE2. The increased SERPINE2 expression might promote the fibrosis of LF cells via the activation of β-catenin signaling pathway to promote the transcription of fibrosis-related genes (ACTA2 and COL3A1). CONCLUSIONS Our results revealed that miR-335-3p prevented the fibrosis of LF cells via the epigenetic regulation of SERPINE2/β-catenin signaling pathway. The epigenetic regulator miR-335-3p might be a promising potential target for the treatment of LFH.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Longting Chen
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
11
|
Heidenberger J, Hangel R, Reihs EI, Strauss J, Liskova P, Alphonsus J, Brunner C, Döring K, Gerner I, Jenner F, Windhager R, Toegel S, Rothbauer M. The modulating role of uniaxial straining in the IL-1β and TGF-β mediated inflammatory response of human primary ligamentocytes. Front Bioeng Biotechnol 2024; 12:1469238. [PMID: 39720167 PMCID: PMC11666359 DOI: 10.3389/fbioe.2024.1469238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Biomechanical (over-)stimulation, in addition to inflammatory and fibrotic stimuli, severely impacts the anterior cruciate ligament (ACL) biology, contributing to the overall chronic nature of desmopathy. A major challenge has been the lack of representative two-dimensional (2D) in vitro models mimicking inflammatory processes in the presence of dynamic mechanical strain, both being crucial for ligament homeostasis. Physiological levels of strain exert anti-inflammatory effects, while excessive strain can facilitate inflammatory mechanisms. Adhering to the 3Rs (Replacement, Reduction and Refinement) principles of animal research, this study aims to investigate the role of a dynamic biomechanical in vitro environment on inflammatory mechanisms by combining a Flexcell culture system with primary human ligamentocytes for the study of ligament pathology. Primary ligamentocytes from OA patients were cultured under animal-free conditions with human platelet lysate, and exposed to either IL-1β or TGF-β3 to simulate different inflammatory microenvironments. Cells were subjected to different magnitudes of mechanical strain. Results showed that cells aligned along the force axis under strain. This study highlights the critical role of the mechanical microenvironment in modulating inflammatory and fibrotic cellular responses in ligamentocyte pathology, providing valuable insights into the complex interplay between biomechanical stimuli and cytokine signaling. These findings not only advance our understanding of ligament biology but also can pave the way for the development of more targeted therapeutic strategies for ligament injuries and diseases, potentially improving patient outcomes in orthopedic medicine.
Collapse
Affiliation(s)
- Johannes Heidenberger
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Raphael Hangel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva I. Reihs
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, Technische Universitaet Wien, Vienna, Austria
| | - Jonathan Strauss
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, Technische Universitaet Wien, Vienna, Austria
| | - Petra Liskova
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Jürgen Alphonsus
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Cornelia Brunner
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Kevin Döring
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Iris Gerner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florien Jenner
- Veterinary Tissue Engineering and Regenerative Medicine Vienna (VETERM), Equine Surgery Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Windhager
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Arthritis and Rehabilitation, Vienna, Austria
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, Technische Universitaet Wien, Vienna, Austria
- Ludwig Boltzmann Institute of Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
12
|
Rocca GL, Galieri G, Mazzucchi E, Pignotti F, Orlando V, Pappalardo S, Olivi A, Sabatino G. The 3-Steps Approach for Lumbar Stenosis with Anatomical Insights, Tailored for Young Spine Surgeons. J Pers Med 2024; 14:985. [PMID: 39338239 PMCID: PMC11433359 DOI: 10.3390/jpm14090985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Lumbar decompression surgery for degenerative lumbar stenosis is an intervention which addresses a degenerative condition affecting many patients. This article presents a meticulous three-phase surgical approach, derived from our clinical experiences and intertwining anatomical insights, offering a nuanced perspective tailored for the educational needs of young spinal surgeons. Methods: Six hundred and eighty-seven patients who underwent lumbar decompression surgery at a single institution were included in the present study. A retrospective analysis of patient demographics and surgical techniques was performed. All surgeries were performed by a consistent surgical team, emphasizing uniformity in approach. The surgical technique involves a meticulous three-phase process comprising exposure and skeletal visualization; microscopic identification and decompression; and undermining of the spinous process base and contralateral decompression. Results: Presenting results from 530 patients, the study examines demographic characteristics, health profiles, operative details, complications, and clinical assessments. The three-phase approach demonstrates low complication rates, absence of recurrences, and improved clinical outcomes, emphasizing its efficacy. Conclusions: The three-phase surgical approach emerges as a valuable educational tool for both novice and seasoned spinal surgeons. Rooted in anatomical insights, the structured methodology not only caters to the educational needs of young surgeons, but also ensures a standardized and safe procedure. The emphasis on tissue preservation and anatomical points aligns with current trends toward minimally invasive techniques, promising enhanced patient outcomes and satisfaction.
Collapse
Affiliation(s)
- Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (G.L.R.); (A.O.); (G.S.)
- Neurosurgical Training Center and Brain Research, Mater Olbia Hospital, 07026 Olbia, Italy (F.P.)
| | - Gianluca Galieri
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (G.L.R.); (A.O.); (G.S.)
- Neurosurgical Training Center and Brain Research, Mater Olbia Hospital, 07026 Olbia, Italy (F.P.)
| | - Edoardo Mazzucchi
- Neurosurgical Training Center and Brain Research, Mater Olbia Hospital, 07026 Olbia, Italy (F.P.)
- Department of Neurosurgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Fabrizio Pignotti
- Neurosurgical Training Center and Brain Research, Mater Olbia Hospital, 07026 Olbia, Italy (F.P.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Vittorio Orlando
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (G.L.R.); (A.O.); (G.S.)
| | - Simona Pappalardo
- Department of Anatomical Pathology, Giovanni Paolo II Hospital, 97100 Olbia, Italy
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (G.L.R.); (A.O.); (G.S.)
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy; (G.L.R.); (A.O.); (G.S.)
- Neurosurgical Training Center and Brain Research, Mater Olbia Hospital, 07026 Olbia, Italy (F.P.)
| |
Collapse
|
13
|
Guo Z, Wang P, Ye S, Li H, Bao J, Shi R, Yang S, Yin R, Wu X. Interpretable Machine Learning Models Based on Shapley Additive Explanations for Predicting the Risk of Cerebrospinal Fluid Leakage in Lumbar Fusion Surgery. Spine (Phila Pa 1976) 2024; 49:1281-1293. [PMID: 38963261 DOI: 10.1097/brs.0000000000005087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
STUDY DESIGN Retrospective study. OBJECTIVES The objective of this investigation was to formulate and internally verify a customized machine learning (ML) framework for forecasting cerebrospinal fluid leakage (CSFL) in lumbar fusion surgery. This was accomplished by integrating imaging parameters and using the SHapley Additive exPlanation (SHAP) technique to elucidate the interpretability of the model. SUMMARY OF BACKGROUND DATA Given the increasing incidence and surgical volume of spinal degeneration worldwide, accurate predictions of postoperative complications are urgently needed. SHAP-based interpretable ML models have not been used for CSFL risk factor analysis in lumbar fusion surgery. METHODS Clinical and imaging data were retrospectively collected from 3505 patients who underwent lumbar fusion surgery. Six distinct machine learning models were formulated: extreme gradient boosting (XGBoost), decision tree (DT), random forest (RF), support vector machine (SVM), Gaussian naive Bayes (GaussianNB), and K-nearest neighbors (KNN) models. Evaluation of model performance on the test dataset was performed using performance metrics, and the analysis was executed through the SHAP framework. RESULTS CSFL was detected in 95 (2.71%) of 3505 patients. Notably, the XGBoost model exhibited outstanding accuracy in forecasting CSFLs, with high precision (0.9815), recall (0.6667), accuracy (0.8182), F1 score (0.7347), and AUC (0.7343). In addition, through SHAP analysis, significant predictors of CSFL were identified, including ligamentum flavum thickness, zygapophysial joint degeneration grade, central spinal stenosis grade, decompression segment count, decompression mode, intervertebral height difference, Cobb angle, intervertebral height index difference, operation mode, lumbar segment lordosis angle difference, Meyerding grade of lumbar spondylolisthesis, and revision surgery. CONCLUSIONS The combination of the XGBoost model with the SHAP is an effective tool for predicting the risk of CSFL during lumbar fusion surgery. Its implementation could aid clinicians in making informed decisions, potentially enhancing patient outcomes and lowering healthcare expenses. This study advocates for the adoption of this approach in clinical settings to enhance the evaluation of CSFL risk among patients undergoing lumbar fusion.
Collapse
Affiliation(s)
- ZongJie Guo
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - PeiYang Wang
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - SuHui Ye
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, Jiangsu, People's Republic of China
| | - HaoYu Li
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - JunPing Bao
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Shi
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Shu Yang
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Yin
- Department of immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - XiaoTao Wu
- Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Yan X, Liu T, Zhang R, Ma Q, Sun C. RMRP accelerates ligamentum flavum hypertrophy by regulating GSDMD-mediated pyroptosis through Gli1 SUMOylation. Front Immunol 2024; 15:1427970. [PMID: 39221246 PMCID: PMC11362830 DOI: 10.3389/fimmu.2024.1427970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Hypertrophy of ligamentum flavum (LF) is a significant contributing factor to lumbar spinal canal stenosis (LSCS). lncRNA plays a vital role in organ fibrosis, but its role in LF fibrosis remains unclear. Our previous findings have demonstrated that Hedgehog-Gli1 signaling is a critical driver leading to LF hypertrophy. Through the RIP experiment, our group found lnc-RMRP was physically associated with Gli1 and exhibited enrichment in Gli1-activated LF cells. Histological studies revealed elevated expression of RMRP in hypertrophic LF. In vitro experiments further confirmed that RMRP promoted Gli1 SUMO modification and nucleus transfer. Mechanistically, RMRP induced GSDMD-mediated pyroptosis, proinflammatory activation, and collagen expression through the Hedgehog pathway. Notably, the mechanical stress-induced hypertrophy of LF in rabbit exhibited analogous pathological changes of LF fibrosis occurred in human and showed enhanced levels of collagen and α-SMA. Knockdown of RMRP resulted in the decreased expression of fibrosis and pyroptosis-related proteins, ultimately ameliorating fibrosis. The above data concluded that RMRP exerts a crucial role in regulating GSDMD-mediated pyroptosis of LF cells via Gli1 SUMOylation, thus indicating that targeting RMRP could serve as a potential and effective therapeutic strategy for LF hypertrophy and fibrosis.
Collapse
Affiliation(s)
| | | | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Fang N, Wang Z, Jiang J, Yang A, Mao T, Wang Z, Chen Q. Nonsurgical therapy for lumbar spinal stenosis caused by ligamentum flavum hypertrophy: A review. Medicine (Baltimore) 2024; 103:e38782. [PMID: 38968524 PMCID: PMC11224896 DOI: 10.1097/md.0000000000038782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Lumbar spinal stenosis (LSS) can cause a range of cauda equina symptoms, including lower back and leg pain, numbness, and intermittent claudication. This disease affects approximately 103 million people worldwide, particularly the elderly, and can seriously compromise their health and well-being. Ligamentum flavum hypertrophy (LFH) is one of the main contributing factors to this disease. Surgical treatment is currently recommended for LSS caused by LFH. For patients who do not meet the criteria for surgery, symptom relief can be achieved by using oral nonsteroidal anti-inflammatory drugs (NSAIDs) and epidural steroid injections. Exercise therapy and needle knife can also help to reduce the effects of mechanical stress. However, the effectiveness of these methods varies, and targeting the delay in LF hypertrophy is challenging. Therefore, further research and development of new drugs is necessary to address this issue. Several new drugs, including cyclopamine and N-acetyl-l-cysteine, are currently undergoing testing and may serve as new treatments for LSS caused by LFH.
Collapse
Affiliation(s)
- Nan Fang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Zhigang Wang
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Jiecheng Jiang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Aofei Yang
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Tian Mao
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
- Department of Orthopedics & Traumatology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Zitong Wang
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Qian Chen
- College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics & Traumatology, Hubei Provincial Hospital of TCM, Wuhan, China
| |
Collapse
|
16
|
Kim CS, Kim H, Kim S, Lee JH, Jeong K, Lee HS, Kim YD. Prevalence of and factors associated with stenotic thoracic ligamentum flavum hypertrophy. Reg Anesth Pain Med 2024; 49:326-331. [PMID: 37507223 DOI: 10.1136/rapm-2023-104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Stenotic thoracic ligamentum flavum hypertrophy can cause leg and/or low back pain similar to that caused by lumbar spinal stenosis. However, the thoracic spine may occasionally be overlooked in patients with leg and/or low back pain. An accurate understanding of the prevalence of stenotic thoracic ligamentum flavum hypertrophy and its associated factors is necessary. METHODS In this prevalence study, we reviewed whole-spine MRI scans of patients who visited the pain clinic complaining of leg and/or low back pain between 2010 and 2019. We analyzed the overall prevalence and prevalence according to the age group, sex, grade of lumbar disc degeneration, and thoracic level. In addition, we identified factors independently associated with stenotic thoracic ligamentum flavum hypertrophy occurrence. RESULTS Among 1896 patients, the overall prevalence of stenotic thoracic ligamentum flavum hypertrophy was 9.8% (185/1896), with the highest prevalence observed in the ≥80-year-old age group among all age groups (15.9%, 14/88). The region with the highest prevalence was the T10/11 level (3.0%, 57/1896). Multivariable logistic regression analysis revealed that when compared with the <50-year-old age group, all other age groups were significantly associated with stenotic thoracic ligamentum flavum hypertrophy (p<0.01). In addition, grade 5 of lumbar disc degeneration was significantly associated with stenotic thoracic ligamentum flavum hypertrophy (p=0.03). CONCLUSIONS Given the possibility for missed stenotic thoracic ligamentum flavum hypertrophy to potentially result in neurological complications, extending lumbar spine MRI covering the lower thoracic region may be considered for patients over 50 years of age with suspected severe lumbar disc degeneration.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyungtae Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hwan Lee
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Wonkwang University Hospital, Iksan, Republic of Korea
- Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Wonkwang Institute of Science, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Koun Jeong
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Seung Lee
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Yeon-Dong Kim
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Wonkwang University Hospital, Iksan, Republic of Korea
- Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Wonkwang Institute of Science, Wonkwang University School of Medicine, Iksan, Republic of Korea
| |
Collapse
|
17
|
Sobański D, Bogdał P, Staszkiewicz R, Sobańska M, Filipowicz M, Czepko RA, Strojny D, Grabarek BO. Evaluation of differences in expression pattern of three isoforms of the transforming growth factor beta in patients with lumbosacral stenosis. Cell Cycle 2024; 23:555-572. [PMID: 38695374 PMCID: PMC11135850 DOI: 10.1080/15384101.2024.2345484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/30/2024] [Indexed: 05/28/2024] Open
Abstract
The study investigates molecular changes in the lumbosacral (L/S) spine's yellow ligamentum flavum during degenerative stenosis, focusing on the role of transforming growth factor beta 1-3 (TGF-β-1-3). Sixty patients with degenerative stenosis and sixty control participants underwent molecular analysis using real-time quantitative reverse transcription reaction technique (RTqPCR), enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemical analysis (IHC). At the mRNA level, study samples showed reduced expression of TGF-β-1 and TGF-β-3, while TGF-β-2 increased by only 4%. Conversely, at the protein level, the study group exhibited significantly higher concentrations of TGF-β-1, TGF-β-2, and TGF-β-3 compared to controls. On the other hand, at the protein level, a statistically significant higher concentration of TGF-β-1 was observed (2139.33 pg/mL ± 2593.72 pg/mL vs. 252.45 pg/mL ± 83.89 pg/mL; p < 0.0001), TGF-β-2 (3104.34 pg/mL ± 1192.74 pg/mL vs. 258.86 pg/mL ± 82.98 pg/mL; p < 0.0001), TGF-β-3 (512.75 pg/mL ± 107.36 pg/mL vs. 55.06 pg/mL ± 9.83 pg/mL, p < 0.0001) in yellow ligaments obtained from patients of the study group compared to control samples. The study did not establish a significant correlation between TGF-β-1-3 concentrations and pain severity. The findings suggest that molecular therapy aimed at restoring the normal expression pattern of TGF-β-1-3 could be a promising strategy for treating degenerative stenosis of the L/S spine. The study underscores the potential therapeutic significance of addressing molecular changes at the TGF-β isoforms level for better understanding and managing degenerative spinal conditions.
Collapse
Affiliation(s)
- Dawid Sobański
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, Cracow, Poland
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Paweł Bogdał
- Department of Orthopedic, Szpital Powiatowy w Zawierciu, Zawiercie, Poland
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, Katowice, Poland
| | | | - Michał Filipowicz
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, Cracow, Poland
| | - Ryszard Adam Czepko
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, Cracow, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, Poland
- Department of Medical Science, New Medical Techniques Specialist Hospital of St. Family in Rudna Mała, Rzeszów, Poland
| | | |
Collapse
|
18
|
Zhao R, Dong J, Liu C, Li M, Tan R, Fei C, Chen Y, Yang X, Shi J, Xu J, Wang L, Li P, Zhang Z. Thrombospondin-1 promotes mechanical stress-mediated ligamentum flavum hypertrophy through the TGFβ1/Smad3 signaling pathway. Matrix Biol 2024; 127:8-22. [PMID: 38281553 DOI: 10.1016/j.matbio.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor β1 (TGFβ1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFβ1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.
Collapse
Affiliation(s)
- Run Zhao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiale Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chunlei Liu
- Division of Spine Surgery, Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong 511518, China
| | - Mingheng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruiqian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinxing Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Shi
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, Guangdong 510630, China.
| | - Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
19
|
Chen J, Zhong G, Qiu M, Ke W, Xue J, Chen J. Exploring lncRNA Expression Patterns in Patients With Hypertrophied Ligamentum Flavum. Neurospine 2024; 21:330-341. [PMID: 38291747 PMCID: PMC10992663 DOI: 10.14245/ns.2346994.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal stenosis, resulting in significant disability and morbidity. Although long noncoding RNAs (lncRNAs) have been associated with various biological processes and disorders, their involvement in LFH remains not fully understood. METHODS Human ligamentum flavum samples were analyzed using lncRNA sequencing followed by validation through quantitative real-time polymerase chain reaction. To explore the potential biological functions of differentially expressed lncRNA-associated genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of LFH in vitro. RESULTS In the LFH tissues when compared to that in the nonhypertrophic ligamentum flavum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 upregulated and 446 downregulated. Based on GO analysis, the differentially expressed transcripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG pathway analysis indicated that the differentially expressed lncRNAs were associated with the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signaling pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 resulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 promoted fibrosis in LFH cells in vitro. CONCLUSION This study identified distinct expression patterns of lncRNAs that are linked to LFH, providing insights into its underlying mechanisms and potential prognostic and therapeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the pathophysiology of LFH.
Collapse
Affiliation(s)
- Junling Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guibin Zhong
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Manle Qiu
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Wei Ke
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Xue
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Chen
- Department of Orthopedics, Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Yoshihara T, Morimoto T, Hirata H, Murayama M, Nonaka T, Tsukamoto M, Toda Y, Kobayashi T, Izuhara K, Mawatari M. Mechanisms of tissue degeneration mediated by periostin in spinal degenerative diseases and their implications for pathology and diagnosis: a review. Front Med (Lausanne) 2023; 10:1276900. [PMID: 38020106 PMCID: PMC10645150 DOI: 10.3389/fmed.2023.1276900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Periostin (POSTN) serves a dual role as both a matricellular protein and an extracellular matrix (ECM) protein and is widely expressed in various tissues and cells. As an ECM protein, POSTN binds to integrin receptors, transduces signals to cells, enabling cell activation. POSTN has been linked with various diseases, including atopic dermatitis, asthma, and the progression of multiple cancers. Recently, its association with orthopedic diseases, such as osteoporosis, osteoarthritis resulting from cartilage destruction, degenerative diseases of the intervertebral disks, and ligament degenerative diseases, has also become apparent. Furthermore, POSTN has been shown to be a valuable biomarker for understanding the pathophysiology of orthopedic diseases. In addition to serum POSTN, synovial fluid POSTN in joints has been reported to be useful as a biomarker. Risk factors for spinal degenerative diseases include aging, mechanical stress, trauma, genetic predisposition, obesity, and metabolic syndrome, but the cause of spinal degenerative diseases (SDDs) remains unclear. Studies on the pathophysiological effects of POSTN may significantly contribute toward the diagnosis and treatment of spinal degenerative diseases. Therefore, in this review, we aim to examine the mechanisms of tissue degeneration caused by mechanical and inflammatory stresses in the bones, cartilage, intervertebral disks, and ligaments, which are crucial components of the spine, with a focus on POSTN.
Collapse
Affiliation(s)
- Tomohito Yoshihara
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
22
|
Wang AY, Patel J, Kanter M, Olmos M, Maurer MS, McPhail ED, Patel AR, Arkun K, Kryzanski J, Riesenburger RI. The Emerging Significance of Amyloid Deposits in the Ligamentum Flavum of Spinal Stenosis Patients: A Review. World Neurosurg 2023; 177:88-97. [PMID: 37331471 DOI: 10.1016/j.wneu.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Spinal stenosis is one of the most common neurosurgical diseases and a leading cause of pain and disability. Wild-type transthyretin amyloid (ATTRwt) has been found in the ligamentum flavum (LF) of a significant subset of patients with spinal stenosis who undergo decompression surgery. Histologic and biochemical analyses of LF specimens from spinal stenosis patients, normally discarded as waste, have the potential to help elucidate the underlying pathophysiology of spinal stenosis and possibly allow for medical treatment of stenosis and screening for other systemic diseases. In the present review, we discuss the utility of analyzing LF specimens after spinal stenosis surgery for ATTRwt deposits. Screening for ATTRwt amyloidosis cardiomyopathy through LF specimens has led to the early diagnosis and treatment of cardiac amyloidosis in several patients, with more expected to benefit from this process. Emerging evidence in the literature also point to ATTRwt as a contributor to a previously unrecognized subtype of spinal stenosis in patients who might, in the future, benefit from medical therapy. In the present report, we review the current literature regarding the early detection of ATTRwt cardiomyopathy via LF screening and the possible contribution of ATTRwt deposits in the LF to spinal stenosis development.
Collapse
Affiliation(s)
- Andy Y Wang
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jainith Patel
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Matthew Kanter
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Michelle Olmos
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mathew S Maurer
- Department of Cardiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayan R Patel
- CardioVascular Center, Tufts Medical Center, Boston, Massachusetts, USA
| | - Knarik Arkun
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Kryzanski
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ron I Riesenburger
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Wang S, Qu Y, Fang X, Ding Q, Zhao H, Yu X, Xu T, Lu R, Jing S, Liu C, Wu H, Liu Y. Decorin: a potential therapeutic candidate for ligamentum flavum hypertrophy by antagonizing TGF-β1. Exp Mol Med 2023; 55:1413-1423. [PMID: 37394592 PMCID: PMC10394053 DOI: 10.1038/s12276-023-01023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Ligamentum flavum hypertrophy (LFH) is the main physiological and pathological mechanism of lumbar spinal canal stenosis (LSCS). The specific mechanism for LFH has not been completely clarified. In this study, bioinformatic analysis, human ligamentum flavum (LF) tissues collection and analysis, and in vitro and in vivo experiments were conducted to explore the effect of decorin (DCN) on LFH pathogenesis. Here, we found that TGF-β1, collagen I, collagen III, α-SMA and fibronectin were significantly upregulated in hypertrophic LF samples. The DCN protein expression in hypertrophic LF samples was higher than that in non-LFH samples, but the difference was not significant. DCN inhibited the expression of TGF-β1-induced fibrosis-associated proteins in human LF cells, including collagen I, collagen III, α-SMA, and fibronectin. ELISAs showed that TGF-β1 can upregulate PINP and PIIINP in the cell supernatant, and this effect was inhibited after DCN administration. Mechanistic studies revealed that DCN suppressed TGF-β1-induced fibrosis by blocking the TGF-β1/SMAD3 signaling pathway. In addition, DCN ameliorated mechanical stress-induced LFH in vivo. In summary, our findings indicated that DCN ameliorated mechanical stress-induced LFH by antagonizing the TGF-β1/SMAD3 signaling pathway in vitro and in vivo. These findings imply that DCN is a potential therapeutic candidate for ligamentum flavum hypertrophy.
Collapse
Affiliation(s)
- Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Yang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
24
|
Xu J, Si H, Zeng Y, Wu Y, Zhang S, Shen B. Transcriptome-wide association study reveals candidate causal genes for lumbar spinal stenosis. Bone Joint Res 2023; 12:387-396. [PMID: 37356815 PMCID: PMC10290907 DOI: 10.1302/2046-3758.126.bjr-2022-0160.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Aims Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. Methods We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes. Results TWAS identified 295 genes with permutation p-values < 0.05 for skeletal muscle and 79 genes associated for the whole blood, such as RCHY1 (PTWAS = 0.001). Those genes were enriched in 112 gene ontology (GO) terms and five Kyoto Encyclopedia of Genes and Genomes pathways, such as 'chemical carcinogenesis - reactive oxygen species' (LogP value = -2.139). Further comparing the TWAS significant genes with the differentially expressed genes identified by mRNA expression profiles of LSS found 18 overlapped genes, such as interleukin 15 receptor subunit alpha (IL15RA) (PTWAS = 0.040, PmRNA = 0.010). Moreover, 71 common GO terms were detected for the enrichment results of TWAS and mRNA expression profiles, such as negative regulation of cell differentiation (LogP value = -2.811). Conclusion This study revealed the genetic mechanism behind the pathological changes in LSS, and may provide novel insights for the early diagnosis and intervention of LSS.
Collapse
Affiliation(s)
- Jiawen Xu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Haibo Si
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Shaoyun Zhang
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
25
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. LncRNA XIST facilitates hypertrophy of ligamentum flavum by activating VEGFA-mediated autophagy through sponging miR-302b-3p. Biol Direct 2023; 18:25. [PMID: 37226251 DOI: 10.1186/s13062-023-00383-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Increasing evidences have shown that long non-coding RNAs (lncRNAs) display crucial regulatory roles in the occurrence and development of numerous diseases. However, the function and underlying mechanisms of lncRNAs in hypertrophy of ligamentum flavum (HLF) have not been report. METHODS The integrated analysis of lncRNAs sequencing, bioinformatics analysis and real-time quantitative PCR were used to identify the key lncRNAs involved in HLF progression. Gain- and loss-function experiments were used to explore the functions of lncRNA X inactive specific transcript (XIST) in HLF. Mechanistically, bioinformatics binding site analysis, RNA pull-down, dual-luciferase reporter assay, and rescue experiments were utilized to investigate the mechanism by which XIST acts as a molecular sponge of miR-302b-3p to regulate VEGFA-mediated autophagy. RESULTS We identified that XIST was outstandingly upregulated in HLF tissues and cells. Moreover, the up-regulation of XIST strongly correlated with the thinness and fibrosis degree of LF in LSCS patients. Functionally, knockdown of XIST drastically inhibited proliferation, anti-apoptosis, fibrosis and autophagy of HLF cells in vitro and suppressed hypertrophy and fibrosis of LF tissues in vivo. Intestinally, we uncovered that overexpression of XIST significantly promoted proliferation, anti-apoptosis and fibrosis ability of HLF cells by activating autophagy. Mechanistic studies illustrated that XIST directly medullated the VEGFA-mediated autophagy through sponging miR-302b-3p, thereby enhancing the development and progression of HLF. CONCLUSION Our findings highlighted that the XIST/miR-302b-3p/VEGFA-mediated autophagy axis is involved in development and progression of HLF. At the same time, this study will complement the blank of lncRNA expression profiles in HLF, which laid the foundation for further exploration of the relationship between lncRNAs and HLF in the future.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Gu Y, Yu W, Qi M, Hu J, Jin Q, Wang X, Wang C, Chen Y, Yuan W. Identification and validation of hub genes and pathways associated with mitochondrial dysfunction in hypertrophy of ligamentum flavum. Front Genet 2023; 14:1117416. [PMID: 37234868 PMCID: PMC10206037 DOI: 10.3389/fgene.2023.1117416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Lumbar spinal stenosis which can lead to irreversible neurologic damage and functional disability, is characterized by hypertrophy of ligamentum flavum (HLF). Recent studies have indicated that mitochondrial dysfunction may contribute to the development of HLF. However, the underlying mechanism is still unclear. Methods: The dataset GSE113212 was obtained from the Gene Expression Omnibus database, and the differentially expressed genes were identified. The intersection of DEGs and mitochondrial dysfunction-related genes were identified as mitochondrial dysfunction-related DEGs. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis were performed. Protein-protein interaction network was constructed, and miRNAs and transcriptional factors of the hub genes were predicted via the miRNet database. Small molecule drugs targeted to these hub genes were predicted via PubChem. Immune infiltration analysis was performed to evaluate the infiltration level of immune cells and their correlation with the hub genes. In final, we measured the mitochondrial function and oxidative stress in vitro and verified the expression of hub genes by qPCR experiments. Results: In total, 43 genes were identified as MDRDEGs. These genes were mainly involved in cellular oxidation, catabolic processes, and the integrity of mitochondrial structure and function. The top hub genes were screened, including LONP1, TK2, SCO2, DBT, TFAM, MFN2. The most significant enriched pathways include cytokine-cytokine receptor interaction, focal adhesion, etc. Besides, SP1, PPARGC1A, YY1, MYC, PPARG, and STAT1 were predicted transcriptional factors of these hub genes. Additionally, increased immune infiltration was demonstrated in HLF, with a close correlation between hub genes and immune cells found. The mitochondrial dysfunction and the expression of hub genes were validated by evaluation of mitochondrial DNA, oxidative stress markers and quantitative real-time PCR. Conclusion: This study applied the integrative bioinformatics analysis and revealed the mitochondrial dysfunction-related key genes, regulatory pathways, TFs, miRNAs, and small molecules underlying the development of HLF, which improved the understanding of molecular mechanisms and the development of novel therapeutic targets for HLF.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenchao Yu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Min Qi
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jinquan Hu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Chick CN, Inoue T, Mori N, Tanaka E, Kawaguchi M, Takahashi T, Hanakita J, Minami M, Kanematsu R, Usuki T. LC-MS/MS analysis of elastin crosslinker desmosines and microscopic evaluation in clinical samples of patients with hypertrophy of ligamentum flavum. Bioorg Med Chem 2023; 82:117216. [PMID: 36842401 DOI: 10.1016/j.bmc.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Ligamentum flavum (LF) pathologies often lead to severe myelopathy or radiculopathy characterized by reduced elasticity, obvious thickening, or worsened ossification. Elastin endows critical mechanical properties to tissues and organs such as vertebrae and ligaments. Desmosine (DES) and isodesmosine (IDES) are crosslinkers of elastin monomers called tropoelastin. These crosslinkers are potential biomarkers of chronic obstructive pulmonary disease. As a biological diagnostic tool that supplements existing symptomatic, magnetic resonance imaging scanning or radiological imaging diagnostic measures for LF hypertrophy and associated pathologies, an isotope-dilution liquid chromatography-tandem mass spectrometry method with selected reaction monitoring mode for the quantitation of DESs in human plasma, urine, cerebrospinal fluid (CSF), and yellow ligamentum was investigated. Isotopically labeled IDES-13C3,15N1 was used as an internal standard (ISTD) for DES quantitation for the first time. The samples plus ISTD were hydrolyzed with 6 N hydrochloric acid. Analytes and ISTD were extracted using a solid phase extraction cellulose cartridge column. The assays were repeatable, reproducible, and accurate with % CV ≤ 7.7, ISTD area % RSD of 7.6, and % AC ≤ (101.2 ± 3.90) of the calibrations. The ligamentum samples gave the highest average DES/IDES content (2.38 μg/mg) on a dry-weight basis. A high percentage of the CSF samples showed almost no DESs. Urine and plasma samples of patients showed no significant difference from the control (p-value = 0.0519 and 0.5707, respectively). Microscopy of the yellow ligamentum samples revealed dark or blue-colored zones of elastin fibers that retained the hematoxylin dye and highly red-colored zones of collagen after counterstaining with van Gieson solution. Thus, we successfully developed a method for DES/IDES quantitation in clinical samples.
Collapse
Affiliation(s)
- Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Tomoo Inoue
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan; Department of Neurosurgery, Saitama Red Cross Hospital, 1-5 Shintoshin, Chuo-ku, Saitama 330-8553, Japan; Spinal Disorders Center, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka 426-8662, Japan.
| | - Natsuki Mori
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Eri Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toshiyuki Takahashi
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka 426-8662, Japan
| | - Junya Hanakita
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka 426-8662, Japan
| | - Manabu Minami
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka 426-8662, Japan
| | - Ryo Kanematsu
- Spinal Disorders Center, Fujieda Heisei Memorial Hospital, 123-1 Mizukami, Fujieda, Shizuoka 426-8662, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
28
|
Li Q, Wang H, Liu L, Weng Y, Xu S, Li L, Wang Z. Suppression of the NLRP3 Inflammasome through Activation of the Transient Receptor Potential Channel Melastatin 2 Promotes Osteogenesis in Tooth Extraction Sockets of Periodontitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:213-232. [PMID: 36410421 DOI: 10.1016/j.ajpath.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022]
Abstract
This study explored the role of transient receptor potential channel melastatin 2 (TRPM2)-mediated activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in osteogenesis during healing of tooth extraction sockets. Tooth extraction socket tissue samples were collected from patients with or without periodontitis. In a TRPM2 knockout mouse model of socket healing, mice with or without periodontitis and their wild-type littermates were used for comparing the socket healing phenotypes. Micro-computed tomography imaging, three-dimensional reconstruction of the sockets, and hematoxylin and eosin staining for histopathologic analysis were performed. Immunofluorescence, immunohistochemistry, and Western blot analysis were used for evaluation of protein expression; the mRNA levels were evaluated by quantitative RT-PCR. Osteogenic, chondrogenic, and adipogenic differentiation potential of human bone marrow mesenchymal stem cells (BMMSCs) was evaluated. Calcium deposition was evaluated using Alizarin Red S staining. NLRP3 and CASP1 were up-regulated in tooth sockets of periodontitis patients. NLRP3 knockdown promoted the osteogenic differentiation of maxillary BMMSCs under inflammatory conditions. TRPM2 was up-regulated in the tooth extraction socket tissue of periodontitis. Inhibiting TRPM2 expression mitigated the NLRP3 inflammasome and its deleterious effect on osteogenesis. Activation of the TRPM2 ion channel regulated osteogenesis of BMMSCs under inflammatory conditions via Ca2+ influx, the mitochondrial dynamics, and pyroptosis. Targeting the TRPM2/Ca2+/NLRP3 axis could be beneficial in the healing process of the tooth extraction sockets of patients with periodontitis.
Collapse
Affiliation(s)
- Qin Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liwei Liu
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuteng Weng
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuyu Xu
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lin Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Oral and Maxillofacial Surgery and Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
29
|
Yabu A, Suzuki A, Hayashi K, Hori Y, Terai H, Orita K, Habibi H, Salimi H, Kono H, Toyoda H, Maeno T, Takahashi S, Tamai K, Ozaki T, Iwamae M, Ohyama S, Imai Y, Nakamura H. Periostin increased by mechanical stress upregulates interleukin-6 expression in the ligamentum flavum. FASEB J 2023; 37:e22726. [PMID: 36583686 DOI: 10.1096/fj.202200917rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Ligamentum flavum (LF) hypertrophy is a major cause of lumbar spinal canal stenosis. Although mechanical stress is thought to be a major factor involved in LF hypertrophy, the exact mechanism by which it causes hypertrophy has not yet been fully elucidated. Here, changes in gene expression due to long-term mechanical stress were analyzed using RNA-seq in a rabbit LF hypertrophy model. In combination with previously reported analysis results, periostin was identified as a molecule whose expression fluctuates due to mechanical stress. The expression and function of periostin were further investigated using human LF tissues and primary LF cell cultures. Periostin was abundantly expressed in human hypertrophied LF tissues, and periostin gene expression was significantly correlated with LF thickness. In vitro, mechanical stress increased gene expressions of periostin, transforming growth factor-β1, α-smooth muscle actin, collagen type 1 alpha 1, and interleukin-6 (IL-6) in LF cells. Periostin blockade suppressed the mechanical stress-induced gene expression of IL-6 while periostin treatment increased IL-6 gene expression. Our results suggest that periostin is upregulated by mechanical stress and promotes inflammation by upregulating IL-6 expression, which leads to LF degeneration and hypertrophy. Periostin may be a pivotal molecule for LF hypertrophy and a promising therapeutic target for lumbar spinal stenosis.
Collapse
Affiliation(s)
- Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Hayashi
- Department of Orthopedic Surgery, Osaka City Juso Hospital, Osaka, Japan
| | - Yusuke Hori
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hidetomi Terai
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hasibullah Habibi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hamidullah Salimi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kono
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Maeno
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Shinji Takahashi
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koji Tamai
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomonori Ozaki
- Department of Orthopedic Surgery, Ishikiri Seiki Hospital, Osaka, Japan
| | - Masayoshi Iwamae
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shoichiro Ohyama
- Department of Orthopedic Surgery, Nishinomiya Watanabe Hospital, Nishinomiya, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Ito K, Kise H, Suzuki S, Nagai S, Hachiya K, Takeda H, Kawabata S, Ikeda D, Takubo K, Kaneko S, Fujita N. Potential Involvement of Oxidative Stress in Ligamentum Flavum Hypertrophy. J Clin Med 2023; 12:jcm12030808. [PMID: 36769455 PMCID: PMC9918097 DOI: 10.3390/jcm12030808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Oxidative stress (OS) results in many disorders, of which degenerative musculoskeletal conditions are no exception. However, the interaction between OS and ligamentum flavum (LF) hypertrophy in lumbar spinal canal stenosis is not clearly understood. The first research question was whether OS was involved in LF hypertrophy, and the second was whether the antioxidant N-acetylcysteine (NAC) was effective on LF hypertrophy. In total, 47 LF samples were collected from patients with lumbar spinal disorders. The cross-sectional area of LF was measured on axial magnetic resonance imaging. Immunohistochemistry of 8-OHdG and TNF-α were conducted on human LF samples. A positive association was found between 8-OHdG or TNF-α expression and cross-sectional area of LF. Flow cytometry analysis showed that H2O2, buthionine sulfoximine, and TNF-α treatment significantly increased intracellular reactive oxygen species in primary LF cells. NAC inhibited the induction of LF hypertrophy markers by OS or TNF in a real-time reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Western blotting analysis indicated that p38, Erk, and p65 phosphorylation were involved in intracellular OS signaling in LF cells. In conclusion, our results indicated that OS could be a therapeutic target for LF hypertrophy. Although this study included no in vivo studies to examine the longitudinal efficacy of NAC on LF hypertrophy, NAC may have potential as a therapeutic agent against lumbar spinal canal stenosis.
Collapse
Affiliation(s)
- Kei Ito
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Hideki Kise
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 108-8345, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 108-8345, Japan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Kurenai Hachiya
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroki Takeda
- Department of Spine and Spinal Cord Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
- Correspondence: ; Tel.: +81-5-6293-2169 or +81-3-5363-3812; Fax: +81-5-6293-9252 or +81-3-3353-6597
| |
Collapse
|
31
|
Wang C, Wei Z, Yu T, Zhang L. Dysregulation of metalloproteinases in spinal ligament degeneration. Connect Tissue Res 2023:1-13. [PMID: 36600486 DOI: 10.1080/03008207.2022.2160327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Degenerative changes in the spinal ligaments, such as hypertrophy or ossification, are important pathophysiological mechanisms of secondary spinal stenosis and neurological compression. Extracellular matrix (ECM) remodeling is one of the major pathological changes in ligament degeneration, and in this remodeling, ECM proteinase-mediated degradation of elastin and collagen plays a vital role. Zinc-dependent endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin-1 motifs (ADAMTSs) are key factors in ECM remodeling. This review aims to elucidate the underlying mechanisms of these metalloproteinases in the initiation and progression of spinal ligament degeneration. METHODS We clarify current literature on the dysregulation of MMPs/ADAMs/ADAMTS and their endogenous inhibitors in degenerative spinal ligament diseases. In addition, some instructive information was excavated from the raw data of the relevant high-throughput analysis. RESULTS AND CONCLUSIONS The dysregulation of metalloproteinases and their endogenous inhibitors may affect ligament degeneration by involving several interrelated processes, represented by ECM degradation, fibroblast proliferation, and osteogenic differentiation. Antagonists of the key targets of the processes may in turn ease ligament degeneration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Centre, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Gu Y, Hu J, Wang C, Qi M, Chen Y, Yu W, Wang Z, Wang X, Yuan W. Smurf1 Facilitates Oxidative Stress and Fibrosis of Ligamentum Flavum by Promoting Nrf2 Ubiquitination and Degradation. Mediators Inflamm 2023; 2023:1164147. [PMID: 37091902 PMCID: PMC10118886 DOI: 10.1155/2023/1164147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 04/25/2023] Open
Abstract
Lumbar spinal stenosis (LSS), which can lead to irreversible neurologic damage and functional disability, is characterized by hypertrophy and fibrosis in the ligamentum flavum (LF). However, the underlying mechanism is still unclear. In the current study, the effect of Smurf1, a kind of E3 ubiquitin ligase, in promoting the fibrosis and oxidative stress of LF was investigated, and its underlying mechanism was explored. The expression of oxidative stress and fibrosis-related markers was assessed in the tissue of lumbar spinal stenosis (LSS) and lumbar disc herniation (LDH). Next, the expression of the top 10 E3 ubiquitin ligases, obtained from Gene Expression Omnibus (GEO) dataset GSE113212, was assessed in LDH and LSS, and confirmed that Smurf1 expression was markedly upregulated in the LSS group. Furthermore, Smurf1 overexpression promotes the fibrosis and oxidative stress of LF cells. Subsequently, NRF2, an important transcription factor for oxidative stress and fibrosis, was predicted to be a target of Smurf1. Mechanistically, Smurf1 directly interacts with Nrf2 and accelerates Nrf2 ubiquitination and degradation. In conclusion, the current study suggests that Smurf1 facilitated the fibrosis and oxidative stress of LF and induced the development of LSS by promoting Nrf2 ubiquitination and degradation.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jinquan Hu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chen Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Min Qi
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yu Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wenchao Yu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhanchao Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xinwei Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen Yuan
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
33
|
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC, Ren YX. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater 2023; 19:139-154. [PMID: 35475028 PMCID: PMC9014323 DOI: 10.1016/j.bioactmat.2022.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor β1(TGF-β1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-β/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yi-Fan Wei
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhi Li
- Department of Orthopaedics, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - He-Long Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - He Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Feng-Lei Yu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ya-Nan Pu
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yong-Xin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
34
|
Rho JH, Yoon CD, Kim G, Kang HY. A new technique for controlling intractable pain in lumbar spinal stenosis using steroid injection to ligamentum flavum: A case series. Pain Pract 2023; 23:123-126. [PMID: 35638334 DOI: 10.1111/papr.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lumbar spinal stenosis is a common degenerative disease that causes low back and lower-extremity pain that increases with age. The treatment of lumbar spinal stenosis is either conservative or surgical. ESI is a commonly performed conservative treatment, but evidence of its effectiveness in lumbar spinal stenosis is limited. CASE SERIES We encountered the three patients with back pain and claudication due to lumbar spinal stenosis, which could not be controlled by conservative therapy including ESIs. Trimacinolone acetonide was injected into the patients' ligamentum flavum. All patients experienced dramatic improvement in their symptoms. CONCLUSIONS Trimacinolone acetonide injection into the ligamentum flavum may be effective for lumbar spinal stenosis that does not improve with ESIs.
Collapse
Affiliation(s)
- Jeong Ho Rho
- Spine and Pain Center, Okcheon St. Mary's Hospital, Okcheon, South Korea
| | - Chung Dae Yoon
- Department of Radiology, Okcheon St. Mary's Hospital, Okcheon, South Korea
| | - Gahee Kim
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Hee Yong Kang
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital, Seoul, South Korea
| |
Collapse
|
35
|
Xu Z, Wu FW, Niu X, Lu XP, Li YR, Zhang ST, Ou JZ, Wang XM. Integrated strategy of RNA-sequencing and network pharmacology for exploring the protective mechanism of Shen-Shi-Jiang-Zhuo formula in rat with non-alcoholic fatty liver disease. PHARMACEUTICAL BIOLOGY 2022; 60:1819-1838. [PMID: 36124995 PMCID: PMC9518293 DOI: 10.1080/13880209.2022.2106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Shen-Shi-Jiang-Zhuo formula (SSJZF) exhibits a definite curative effect in the clinical treatment of non-alcoholic fatty liver disease (NAFLD). OBJECTIVE To explore the therapeutic effect and mechanism of SSJZF on NAFLD. MATERIALS AND METHODS Sprague Dawley rats were randomly divided into control, NAFLD, positive drug (12 mg/kg/day), SSJZF high-dose (200 mg/kg/day), SSJZF middle-dose (100 mg/kg/day), and SSJZF low-dose (50 mg/kg/day) groups. After daily intragastric administration of NAFLD rats for 8 weeks, lipid metabolism and hepatic fibrosis were evaluated by biochemical indices and histopathology. Then we uncovered the main active compounds and mechanism of SSJZF against NAFLD by integrating RNA-sequencing and network pharmacology, and PI3K/AKT pathway activity was verified by western blot. RESULTS High dose SSJZF had the best inhibitory effect on hepatic lipid accumulation and fibrosis in rats with NAFLD, which significantly down-regulated total triglycerides (58%), cholesterol (62%), aspartate aminotransferase (57%), alanine aminotransferase (41%) andγ-glutamyl transpeptidase (36%), as well as the expression of ACC (5.3-fold), FAS (12.1-fold), SREBP1C (2.3-fold), and CD36 (4.4-fold), and significantly reduced collagen deposition (67%). Then we identified 23 compounds of SSJZF that acted on 25 key therapeutic targets of NAFLD by integrating RNA-sequencing and network pharmacology. Finally, we also confirmed that high dose SSJZF increased p-PI3K/PI3K (1.6-fold) and p-AKT/AKT (1.6-fold) in NAFLD rats. DISCUSSION AND CONCLUSION We found for first time that SSJZF improved NAFLD in rats by activating the PI3K/Akt pathway. These findings provide scientific support for SSJZF in the clinical treatment of NAFLD and contribute to the development of new NAFLD drugs.
Collapse
Affiliation(s)
- Zheng Xu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan-Wei Wu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuan Niu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiao-Peng Lu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Rong Li
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Ting Zhang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guangdong Agriculture and Reclamation Central Hospital, Zhanjiang, Guangdong
| | - Jun-Zhao Ou
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Mei Wang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Wang AY, Kanter M, Olmos M, McPhail ED, Safain MG, Kryzanski J, Arkun K, Riesenburger RI. Lumbar stenosis due to wild-type transthyretin amyloid-induced thickening of the ligamentum flavum: a separate etiology from degeneration of intervertebral discs? J Neurosurg Spine 2022; 37:687-693. [PMID: 35901753 DOI: 10.3171/2022.5.spine22362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Wild-type transthyretin amyloid (ATTRwt) is deposited in the ligamentum flavum (LF) of a subset of patients with spinal stenosis who undergo decompressive surgery, although its role in the pathophysiology of spinal stenosis is unknown. It has been theorized that degeneration of intervertebral discs causes increased mechanical stress and inflammatory/degenerative cascades and ultimately leads to LF fibrosis. If ATTRwt deposits contribute to LF thickening and spinal stenosis through a different pathway, then patients with ATTRwt may have less severe disc degeneration than those without it. In this study, the authors compared the severity of disc degeneration between patients with lumbar stenosis with and without amyloid in their LF to test whether ATTRwt is a unique contributor to LF thickening and spinal stenosis. METHODS Of 324 consecutive patients between 2018 and 2019 who underwent decompression surgery for spinal stenosis and had LF samples sent for pathological analysis, 31 harboring ATTRwt were compared with 88 controls. Patient medical records were retrospectively reviewed for demographic and surgical information. Disc degeneration was assessed on preoperative T2-weighted MR images with the modified Pfirrmann grading system at every lumbar disc level. RESULTS Baseline characteristics were similar between the groups, except for a statistically significant increase in age in the ATTRwt group. The crude unadjusted comparisons between the groups trended toward a less severe disc degeneration in the ATTRwt group, although this difference was not statistically significant. A multivariable linear mixed-effects model was created to adjust for the effects of age and to isolate the influence of ATTRwt, the presence of an operation at the level, and the specific disc level (between L1 and S1). This model revealed that ATTRwt, the presence of an operation, and the specific level each had significant effects on modified Pfirrmann scores. CONCLUSIONS Less severe disc degeneration was noted in patients with degenerative spinal stenosis harboring ATTRwt compared with those without amyloid. This finding suggests that ATTRwt deposition may play a separate role in LF thickening from that played by disc degeneration. Future studies should aim to elucidate this potentially novel pathophysiological pathway, which may uncover an exciting potential for the development of amyloid-targeted therapies that may help slow the development of spinal stenosis.
Collapse
Affiliation(s)
- Andy Y Wang
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Matthew Kanter
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Michelle Olmos
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Ellen D McPhail
- 2Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; and
| | - Mina G Safain
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - James Kryzanski
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Knarik Arkun
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
- 3Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Ron I Riesenburger
- 1Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
37
|
Hsu YC, Chuang HC, Tsai KL, Tu TY, Shyong YJ, Kuo CH, Liu YF, Shih SS, Lin CL. Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1380353. [PMID: 36338342 PMCID: PMC9629932 DOI: 10.1155/2022/1380353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2025]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chuang
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Fu Liu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Shien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Duan Y, Li J, Qiu S, Ni S, Cao Y. TCF7/SNAI2/miR-4306 feedback loop promotes hypertrophy of ligamentum flavum. Lab Invest 2022; 20:468. [PMID: 36224570 PMCID: PMC9558422 DOI: 10.1186/s12967-022-03677-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
Background Hypertrophy of ligamentum flavum (HLF) is the mainly cause of lumbar spinal stenosis (LSS), but the precise mechanism of HLF formation has not been fully elucidated. Emerging evidence indicates that transcription factor 7 (TCF7) is the key downstream functional molecule of Wnt/β-catenin signaling, which participated in regulating multiple biological processes. However, the role and underlying mechanism of TCF7 in HLF is still unclear. Methods We used mRNAs sequencing analysis of human LF and subsequent confirmation with RT-qPCR, western blot and immunohistochemistry to identified the TCF7 in HLF tissues and cells. Then effect of TCF7 on HLF progression was investigated both in vitro and in vivo. Mechanically, chromatin immunoprecipitation, dual-luciferase reporter assays, and rescue experiments were used to validate the regulation of TCF7/SNAI2/miR-4306 feedback loop. Results Our results identified for first time that the TCF7 expression was obviously elevated in HLF tissues and cells compared with control, and also found that TCF7 expression had significant positive correlation with LF thickness and fibrosis score. Notably, TCF7 inhibition suppressed the hyper-proliferation and fibrosis phenotype of HLF cells in vitro and ameliorated progression of HLF in mice in vivo, whereas TCF7 overexpression promoted hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Our data further revealed that TCF7 interacted with SNAI2 promoter to transactivated the SNAI2 expression, thereby promoting hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Furthermore, miR-4036 negatively regulated by SNAI2 could negatively feedback regulate TCF7 expression by directly binding to TCF7 mRNA 3’-UTR, thus inhibiting the hyper-proliferation and fibrosis phenotype of HLF cells in vitro. Conclusions Our study demonstrated that TCF7 inhibition could suppress HLF formation by modulating TCF7/SNAI2/miR-4306 feedback loop, which might be considered as a novel potential therapeutic target for HLF. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03677-0.
Collapse
Affiliation(s)
- Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
He N, Qi W, Zhao Y, Wang X. Relationship between Severity of Lumbar Spinal Stenosis and Ligamentum Flavum Hypertrophy and Serum Inflammatory Factors. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8799240. [PMID: 36277021 PMCID: PMC9581654 DOI: 10.1155/2022/8799240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022]
Abstract
Objective This study is aimed at investigating the correlation between lumbar spinal stenosis (LSS) severity, ligamentum flavum hypertrophy, and the upregulation of inflammatory markers. Methods From March 2019 and May 2022, eighty-five inpatients with LSS were enlisted as the study's research group, while sixty-five patients hospitalized for lumbar intervertebral disc herniation over the same time period served as the study's control group. Moreover, mild, moderate, and severe subgroups of patients were created within the research population based on their LSS severity. The ligamentum flavum thickness and the positive expression rates of TNF-α, TGF-β1, and IL-1α were compared between the study group and the control group. The levels of TNF-α, TGF-β1, and IL-1α that were found to be positively expressed were compared between the mild, moderate, and severe groups. Patients with LSS had their ligamentum flavum thickness and their positive expression rates of TNF-α, TGF-β1, and IL-1α analyzed using Spearman correlation analysis. We evaluated the diagnostic utility of the positive expression rates of IL-α1, TGF-β1, and TNF-α and ligamentum flavum thickness in distinguishing the severity of LSS using a receiver operating characteristic (ROC) curve. Results The rates of both lower limb pain (40.00%) and intermittent claudication (80.00%) in the LSS group were higher than those in the lumbar disc herniation group (15.38%, 12.31%), with statistical significance (P < 0.05). However, no substantial disparity was observed in left lower limb pain, right lower limb pain, low back pain, lower limb sensation, muscle strength, and reflex abnormalities between the two groups (P > 0.05). Positive expressions of TGF-β1, TNF-α, and IL-1α and thicker ligamentum flavum were more prevalent in the LSS group than in the lumbar intervertebral disc herniation group. All indexes were significantly (P < 0.05) higher in the moderate stenosis group than in the severe stenosis group. Additionally, the thickness of the ligamentum flavum and the positive expression rates of TNF-α, TGF-β1, and IL-1α were higher in the mild and moderate stenosis groups than in the severe stenosis group. The expression levels of TNF-α, TGF-β1, and IL-1α were favorably linked with ligamentum flavum thickness (P < 0.05). ROC curve analysis showed that the thickness of ligamentum flavum, the expression of IL-1α, the expression of TGF-β1, and the expression of TNF-α could effectively diagnose mild, moderate, and severe LSS (P < 0.05). Conclusion Ligamentum flavum hypertrophy and positive expression rates of IL-1α, TGF-β1, and TNF-α are closely linked to LSS, which can effectively identify mild, moderate, and severe LSS.
Collapse
Affiliation(s)
- Nina He
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Wenbin Qi
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Yongli Zhao
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| | - Xiaojun Wang
- Department of Rehabilitation Physiotherapy, Shandong University Qilu Hospital (Qingdao), Qingdao, Shandong 266000, China
| |
Collapse
|
40
|
Li P, Fei CS, Chen YL, Chen ZS, Lai ZM, Tan RQ, Yu YP, Xiang X, Dong JL, Zhang JX, Wang L, Zhang ZM. Revealing the novel autophagy-related genes for ligamentum flavum hypertrophy in patients and mice model. Front Immunol 2022; 13:973799. [PMID: 36275675 PMCID: PMC9581255 DOI: 10.3389/fimmu.2022.973799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fibrosis is a core pathological factor of ligamentum flavum hypertrophy (LFH) resulting in degenerative lumbar spinal stenosis. Autophagy plays a vital role in multi-organ fibrosis. However, autophagy has not been reported to be involved in the pathogenesis of LFH. Methods The LFH microarray data set GSE113212, derived from Gene Expression Omnibus, was analyzed to obtain differentially expressed genes (DEGs). Potential autophagy-related genes (ARGs) were obtained with the human autophagy regulator database. Functional analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were conducted to elucidate the underlying biological pathways of autophagy regulating LFH. Protein-protein interaction (PPI) network analyses was used to obtain hub ARGs. Using transmission electron microscopy, quantitative RT-PCR, Western blotting, and immunohistochemistry, we identified six hub ARGs in clinical specimens and bipedal standing (BS) mouse model. Results A total of 70 potential differentially expressed ARGs were screened, including 50 up-regulated and 20 down-regulated genes. According to GO enrichment and KEGG analyses, differentially expressed ARGs were mainly enriched in autophagy-related enrichment terms and signaling pathways related to autophagy. GSEA and GSVA results revealed the potential mechanisms by demonstrating the signaling pathways and biological processes closely related to LFH. Based on PPI network analysis, 14 hub ARGs were identified. Using transmission electron microscopy, we observed the autophagy process in LF tissues for the first time. Quantitative RT-PCR, Western blotting, and immunohistochemistry results indicated that the mRNA and protein expression levels of FN1, TGFβ1, NGF, and HMOX1 significantly higher both in human and mouse with LFH, while the mRNA and protein expression levels of CAT and SIRT1 were significantly decreased. Conclusion Based on bioinformatics analysis and further experimental validation in clinical specimens and the BS mouse model, six potential ARGs including FN1, TGFβ1, NGF, HMOX1, CAT, and SIRT1 were found to participate in the fibrosis process of LFH through autophagy and play an essential role in its molecular mechanism. These potential genes may serve as specific therapeutic molecular targets in the treatment of LFH.
Collapse
Affiliation(s)
- Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-shuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-lin Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-sen Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-ming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-qian Tan
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-peng Yu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-le Dong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-xiong Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| | - Zhong-min Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Liang Wang, ; Zhong-min Zhang,
| |
Collapse
|
41
|
Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1549-1562. [PMID: 36131026 PMCID: PMC9534863 DOI: 10.1038/s12276-022-00849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-β1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-β1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-β1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-β1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-β1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-β1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-β1 pathway. These findings indicate that CLU is a potential treatment target for LFH. The protein clusterin regulates the body’s response to lower back pain induced by mechanical stress and could be a target for treatments. Lower back pain is common and is exacerbated by our upright stance. A major cause of the pain is excessive cell growth (hypertrophy) in the ligaments between vertebrae. This growth narrows the spinal canal and compresses nerves. Using a unique mouse model bred to walk upright, Zhongmin Zhang and Liang Wang at Southern Medical University in Guangzhou, China, and co-workers showed that clusterin, a protein involved in regulation of cell survival, can reduce the hypertrophy caused by mechanical stresses, and could be used in back pain treatments. Clusterin regulates the activity of the growth factor TGF-β1, which plays a role in synthesizing new tissues after injury, but can spur excessive growth.
Collapse
|
42
|
Jain M, Sable M, Tirpude AP, Sahu RN, Samanta SK, Das G. Histological difference in ligament flavum between degenerative lumbar canal stenosis and non-stenotic group: A prospective, comparative study. World J Orthop 2022; 13:791-801. [PMID: 36189332 PMCID: PMC9516625 DOI: 10.5312/wjo.v13.i9.791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ligament flavum (LF) hypertropy is the main etiopathogenesis of lumbar canal stenosis (LCS). The purely elastic LF undergoes a morphological adaptation including a reduction in the elastic fibers and a consequent increase in the collagen content, fibrosis, cicatrization, and calcification. However, the morphometric analysis can delineate the LF in patients with LCS from those without LCS, which would help in better understanding LCS pathogenesis.
AIM To compare the histopathological changes in LF between the degenerative LCS and non-stenotic (non-LCS) group.
METHODS The present prospective study was conducted in 82 patients who were divided into two groups, namely LCS and non-LCS. Demographic details of the patients such as duration of symptoms, level of involvement, and number of segments were recorded. The LF obtained from both groups was histopathologically examined for the fibrosis score, elastic fiber degeneration, calcification, and chondroid metaplasia. Morphometrical details included a change in elastin and collagen percentages, elastin/collagen ratio, elastic fiber fragmentation, and ligamentocyte numbers. All parameters were compared between the two groups by using the independent t test, Chi-square test, and Pearson’s correlation test.
RESULTS Out of 82 cases, 74 were analysed, 34 in LCS and 40 in non-LCS group. The mean ± SD age of presentation in LCS and non- LCS group was 49.2 ± 8.9 and 43.1 ± 14.3 respectively. The LCS group (n = 34) exhibited significant differences in fibrosis (P = 0.002), elastic fiber degeneration (P = 0.01), % elastic fragmentation (66.5 ± 16.3 vs 29.5 ± 16.9), % elastic, content (26.9 ± 6.7 vs 34.7 ± 8.4), % collagen content (63.6 ± 10.4 vs 54.9 ± 6.4), reduction of elastic/collagen (0.4 ± 0.1 vs 0.6 ± 0.1), and ligamentocyte number (39.1 ± 19.1 vs 53.5 ± 26.9) as compared to non-LCS group (n = 40). The calcification (P = 0.08) and Pearson’s correlation between duration and loss of elastin was not significant. The difference in LF morphology is consistent in patient’s ≥ 40 years of age among the groups as found in subgroup analysis. Similarly in the patents < 40 and > 40 in the non-LCS group.
CONCLUSION LF is vital in the pathogenesis of LCS. The purely elastic LF undergoes a morphological adaptation that includes a reduction in the elastic fibers with a consequent increase in the collagen content, fibrosis, cicatrization, and calcification. The present study provides a detailed morphometric analysis to semiquantitatively delineate the LF changes in patients with LCS from those in patients without LCS.
Collapse
Affiliation(s)
- Mantu Jain
- Department of Orthopaedics, All India Institute of Medical Sciences Bhubaneswar, Bhuabneswar 751019, Odisha, India
| | - Mukund Sable
- Department of Pathology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar 751019, Odisha, India
| | - Amit Purushottam Tirpude
- Department of Anatomy, All India Institute of Medical Sciences Raipur, Raipur 492009, Chattisgarh, India
| | - Rabi Narayan Sahu
- Department of Neurosurgery, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar 751019, Odisha, India
| | - Sudeep Kumar Samanta
- Department of Orthopaedics, All India Institute of Medical Sciences Bhubaneswar, Bhuabneswar 751019, Odisha, India
| | - Gurudip Das
- Department of Orthopaedics, All India Institute of Medical Sciences Bhubaneswar, Bhuabneswar 751019, Odisha, India
| |
Collapse
|
43
|
Lu QL, Zheng ZX, Ye YH, Lu JY, Zhong YQ, Sun C, Xiong CJ, Yang GX, Xu F. Macrophage migration inhibitory factor takes part in the lumbar ligamentum flavum hypertrophy. Mol Med Rep 2022; 26:289. [PMID: 35904178 PMCID: PMC9366153 DOI: 10.3892/mmr.2022.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to observe the content difference of macrophage migration inhibitory factor [MIF; novoprotein recombinant human MIF (n-6his) (ch33)], TGFβ1 and MMP13 in patients with and without ligamentum flavum (LF) hypertrophy and investigate the roles of MIF in LF hypertrophy. The concentration of MIF, TGFβ1 and MMP13 in LF were detected by ELISA in a lumbar spinal stenosis (LSS) group and a lumbar disc herniation (LDH) group. Culture of primary LFs and identification were performed for the subsequent study. Cell treatments and cell proliferation assay by CCK-8 was performed. Western blot and quantitative PCR analysis were used to detect the expression of TGFβ1, MMP13, type I collagen (COL-1) and type III collagen (COL-3) and Src which were promoted by MIF. The concentration of MIF, TGFβ1 and MMP13 were higher in the LSS group compared with the LDH group. Culture of primary LFs and identification were performed. Significant difference in LFs proliferation occurred with treatment by MIF at a concentration of 40 nM for 48 h (P<0.05). The gene and protein expression of TGFβ1, MMP13, COL-1, COL-3 and Src were promoted by MIF (P<0.05). Proliferation of LFs was induced by MIF and MIF-induced proliferation of LFs was inhibited by PP1 (a Src inhibitor). MIF may promote the proliferation of LFs through the Src kinase signaling pathway and can promote extracellular matrix changes by its pro-inflammatory effect. MIF and its mediated inflammatory reaction are driving factors of LF hypertrophy.
Collapse
Affiliation(s)
- Qi-Lin Lu
- Department of Orthopaedics, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Zi-Xuan Zheng
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yu-Hui Ye
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jiang-Yun Lu
- Medical Laboratory, Hubei 672 Orthopedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430079, P.R. China
| | - Yu-Qi Zhong
- Medical Laboratory, Hubei 672 Orthopedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430079, P.R. China
| | - Chao Sun
- Department of Orthopaedics, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Cheng-Jie Xiong
- Department of Orthopaedics, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Gong-Xu Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
44
|
Wang AY, Saini H, Tingen JN, Sharma V, Flores A, Liu D, Olmos M, McPhail ED, Safain MG, Kryzanski J, Arkun K, Riesenburger RI. The Relationship Between Wild-Type Transthyretin Amyloid Load and Ligamentum Flavum Thickness in Lumbar Stenosis Patients. World Neurosurg 2022; 164:e113-e118. [PMID: 35398327 DOI: 10.1016/j.wneu.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND One key contributor to lumbar stenosis is thickening of the ligamentum flavum (LF), a process still poorly understood. Wild-type transthyretin amyloid (ATTRwt) has been found in the LF of patients undergoing decompression surgery, suggesting that amyloid may play a role. However, it is unclear whether within patients harboring ATTRwt, the amount of amyloid is associated with LF thickness. METHODS From an initial cohort of 324 consecutive lumbar stenosis patients whose LF specimens from decompression surgery were sent for analysis (2018-2019), 33 patients met the following criteria: 1) Congo red-positive amyloid in the LF, 2) ATTRwt by mass spectrometry-based proteomics, and 3) an available preoperative magnetic resonance imaging. Histological specimens were digitized, and amyloid load was quantified through Trainable Weka Segmentation machine learning. LF thicknesses were manually measured on axial T2-weighted preoperative magnetic resonance imaging scans at each lumbar level, L1-S1. The sum of thicknesses at every lumbar LF level (L1-S1) equals "lumbar LF burden". RESULTS Patients had a mean age of 72.7 years (range = 59-87), were mostly male (61%) and white (82%), and predominantly had surgery at L4-L5 levels (73%). Amyloid load was positively correlated with LF thickness (R = 0.345, P = 0.0492) at the levels of surgical decompression. Furthermore, amyloid load was positively correlated with lumbar LF burden (R = 0.383, P = 0.0279). CONCLUSIONS Amyloid load is positively correlated with LF thickness and lumbar LF burden across all lumbar levels, in a dose-dependent manner. Further studies are needed to validate these findings, uncover the underlying pathophysiology, and pave the way toward using therapies that slow LF thickening.
Collapse
Affiliation(s)
- Andy Y Wang
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Harleen Saini
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Joseph N Tingen
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vaishnavi Sharma
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alexandra Flores
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Diang Liu
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Michelle Olmos
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mina G Safain
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - James Kryzanski
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Knarik Arkun
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ron I Riesenburger
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
45
|
Yabe Y, Hagiwara Y, Tsuchiya M, Onoda Y, Yoshida S, Onoki T, Ishikawa K, Kurosawa D, Murakami E. Factors Associated with Thickening of the Ligamentum Flavum on Magnetic Resonance Imaging in Patients with Lumbar Spinal Canal Stenosis. Spine (Phila Pa 1976) 2022; 47:1036-1041. [PMID: 35125456 DOI: 10.1097/brs.0000000000004341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study of the ligamentum flavum (LF) thickness among patients with lumbar spinal canal stenosis (LSCS). OBJECTIVES To elucidate the factors associated with thickening of the LF on magnetic resonance imaging (MRI). SUMMARY OF BACKGROUND DATA Thickening of the LF is a major contributor to LSCS. This thickening is attributed to tissue hypertrophy or buckling of the ligament, and there may be several associated factors on MRI; however, these factors remain unclear. METHODS We studied the LF in 56 patients (a total of 106 ligaments) with LSCS, who underwent decompressive surgery; among them, 23 were receiving haemodialysis. The Pearson correlation coefficient was used to assess relationships between the thickness of the LF on MRI and the thickness of the LF tissue, age, disc height, disc degeneration, and disc level. Patients were also categorised into 2 groups based on whether they were undergoing haemodialysis, and the relationships were assessed similarly. RESULTS Among patients with LSCS, the thickness of the LF on MRI showed a significant positive linear relationship with the thickness of the LF tissue, and no association with disc height. Except for in those receiving haemodialysis, the thickness of the LF on MRI showed a significant positive relationship with age, disc degeneration, and disc level among patients with LSCS. CONCLUSION In patients with LSCS, thickening of the LF on MRI appears to represent tissue hypertrophy. The association between the thickness of the LF on MRI and age, disc degeneration, and disc level may indicate simultaneous alterations of spine components along with aging that was cancelled by the effects of haemodialysis.
Collapse
Affiliation(s)
- Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masahiro Tsuchiya
- Department of Nursing, Faculty of Health Science, Tohoku Fukushi, University, Sendai, Miyagi, Japan
| | - Yoshito Onoda
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takahiro Onoki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keisuke Ishikawa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Kurosawa
- Department of Orthopaedic Surgery, JCHO Sendai Hospital, Sendai, Miyagi, Japan
| | - Eiichi Murakami
- Department of Orthopaedic Surgery, JCHO Sendai Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
46
|
Xiang Q, Zhao Y, Lin J, Jiang S, Li W. Epigenetic modifications in spinal ligament aging. Ageing Res Rev 2022; 77:101598. [PMID: 35218968 DOI: 10.1016/j.arr.2022.101598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Spinal stenosis is a common degenerative spine disorder in the aged population and the spinal ligament aging is a main contributor to this chronic disease. However, the underlying mechanisms of spinal ligament aging remain unclear. Epigenetics is the study of heritable and reversible changes in the function of a gene or genome that occur without any alteration in the primary DNA sequence. Epigenetic alterations have been demonstrated to play crucial roles in age-related diseases and conditions, and they are recently studied as biomarkers and therapeutic targets in the field of cancer research. The main epigenetic modifications, including DNA methylation alteration, histone modifications as well as dysregulated noncoding RNA modulation, have all been implicated in spinal ligament aging diseases. DNA methylation modulates the expression of critical genes including WNT5A, GDNF, ACSM5, miR-497 and miR-195 during spinal ligament degeneration. Histone modifications widely affect gene expression and obvious histone modification abnormalities have been found in spinal ligament aging. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) exert crucial regulating effects on spinal ligament aging conditions via targeting various osteogenic or fibrogenic differentiation related genes. To our knowledge, there is no systematic review yet to summarize the involvement of epigenetic mechanisms of spinal ligament aging in degenerative spinal diseases. In this study, we systematically discussed the different epigenetic modifications and their potential functions in spinal ligament aging process.
Collapse
|
47
|
Seki S, Iwasaki M, Makino H, Yahara Y, Kondo M, Kamei K, Futakawa H, Nogami M, Watanabe K, Tran Canh Tung N, Hirokawa T, Tsuji M, Kawaguchi Y. Association of Ligamentum Flavum Hypertrophy with Adolescent Idiopathic Scoliosis Progression-Comparative Microarray Gene Expression Analysis. Int J Mol Sci 2022; 23:5038. [PMID: 35563428 PMCID: PMC9101523 DOI: 10.3390/ijms23095038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The role of the ligamentum flavum (LF) in the pathogenesis of adolescent idiopathic scoliosis (AIS) is not well understood. Using magnetic resonance imaging (MRI), we investigated the degrees of LF hypertrophy in 18 patients without scoliosis and on the convex and concave sides of the apex of the curvature in 22 patients with AIS. Next, gene expression was compared among neutral vertebral LF and LF on the convex and concave sides of the apex of the curvature in patients with AIS. Histological and microarray analyses of the LF were compared among neutral vertebrae (control) and the LF on the apex of the curvatures. The mean area of LF in the without scoliosis, apical concave, and convex with scoliosis groups was 10.5, 13.5, and 20.3 mm2, respectively. There were significant differences among the three groups (p < 0.05). Histological analysis showed that the ratio of fibers (Collagen/Elastic) was significantly increased on the convex side compared to the concave side (p < 0.05). Microarray analysis showed that ERC2 and MAFB showed significantly increased gene expression on the convex side compared with those of the concave side and the neutral vertebral LF cells. These genes were significantly associated with increased expression of collagen by LF cells (p < 0.05). LF hypertrophy was identified in scoliosis patients, and the convex side was significantly more hypertrophic than that of the concave side. ERC2 and MAFB genes were associated with LF hypertrophy in patients with AIS. These phenomena are likely to be associated with the progression of scoliosis.
Collapse
Affiliation(s)
- Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mami Iwasaki
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Miho Kondo
- Department of Orthopaedic Surgery, Takaoka City Hospital, Toyama 933-8550, Japan;
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Makiko Nogami
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Kenta Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Nguyen Tran Canh Tung
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; (H.M.); (K.K.); (H.F.); (M.N.); (K.W.); (N.T.C.T.); (T.H.); (M.T.); (Y.K.)
| |
Collapse
|
48
|
Expression of Estrogen Receptor Alpha and Evaluation of Histological Degeneration Scores in Fibroblasts of Hypertrophied Ligamentum Flavum: A Qualitative Study. Biomolecules 2021; 11:biom11121752. [PMID: 34944396 PMCID: PMC8698276 DOI: 10.3390/biom11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The most common spinal disorder in elderly is lumbar spinal stenosis (LSS), resulting partly from ligamentum flavum (LF) hypertrophy. Its pathophysiology is not completely understood. The present study wants to elucidate the role of estrogen receptor α (ER α) in fibroblasts of hypertrophied LF. LF samples of 38 patients with LSS were obtained during spinal decompression. Twelve LF samples from patients with disk herniation served as controls. Hematoxylin & Eosin (H&E) and Elastica stains and immunohistochemistry for ER α were performed. The proportions of fibrosis, loss and/or degeneration of elastic fibers and proliferation of collagen fibers were assessed according to the scores of Sairyo and Okuda. Group differences in the ER α and Sairyo and Okuda scores between patients and controls, male and female sex and absence and presence of additional orthopedic diagnoses were assessed with the Mann–Whitney U test. There was a tendency towards higher expression of ER α in LF fibroblasts in the hypertrophy group (p = 0.065). The Sairyo and Okuda scores were more severe for the hypertrophy group but, in general, not statistically relevant. There was no statistically relevant correlation between the expression of ER α and sex (p = 0.326). ER α expression was higher in patients with osteochondrosis but not statistically significant (p = 0.113). In patients with scoliosis, ER α expression was significantly lower (p = 0.044). LF hypertrophy may be accompanied by a higher expression of ER α in fibroblasts. No difference in ER α expression was observed regarding sex. Further studies are needed to clarify the biological and clinical significance of these findings.
Collapse
|
49
|
Cao Y, Zhan Y, Qiu S, Chen Z, Gong K, Ni S, Duan Y. Integrative analysis of genome-wide DNA methylation and single-nucleotide polymorphism identified ACSM5 as a suppressor of lumbar ligamentum flavum hypertrophy. Arthritis Res Ther 2021; 23:251. [PMID: 34593020 PMCID: PMC8482693 DOI: 10.1186/s13075-021-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. METHODS A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. RESULTS We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. CONCLUSION This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Zhan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kaiqin Gong
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
50
|
Rolipram plays an anti-fibrotic effect in ligamentum flavum fibroblasts by inhibiting the activation of ERK1/2. BMC Musculoskelet Disord 2021; 22:818. [PMID: 34556093 PMCID: PMC8461931 DOI: 10.1186/s12891-021-04712-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Fibrosis is an important factor and process of ligamentum flavum hypertrophy. The expression of phosphodiesterase family (PDE) is related to inflammation and fibrosis. This article studied the expression of PDE in hypertrophic ligamentum flavum fibroblasts and investigated whether inhibition of PDE4 activity can play an anti-fibrotic effect. Methods Samples of clinical hypertrophic ligamentum flavum were collected and patients with lumbar disc herniations as a control group. The collagenase digestion method is used to separate fibroblasts. qPCR is used to detect the expression of PDE subtypes, type I collagen (Col I), type III collagen (Col III), fibronectin (FN1) and transforming growth factor β1 (TGF-β1). Recombinant TGF-β1 was used to stimulate fibroblasts to make a fibrotic cell model and treated with Rolipram. The morphology of the cells treated with drugs was observed by Sirius Red staining. Scratch the cells to observe their migration and proliferation. WB detects the expression of the above-mentioned multiple fibrotic proteins after drug treatment. Finally, combined with a variety of signaling pathway drugs, the signaling mechanism was studied. Results Multiple PDE subtypes were expressed in ligamentum flavum fibroblasts. The expression of PDE4A and 4B was significantly up-regulated in the hypertrophic group. Using Rolipram to inhibit PDE4 activity, the expression of Col I and TGF-β1 in the hypertrophic group was inhibited. Col I recovered to the level of the control group. TGF-β1 was significantly inhibited, which was lower than the control group. Recombinant TGF-β1 stimulated fibroblasts to increase the expression of Col I/III, FN1 and TGF-β1, which was blocked by Rolipram. Rolipram restored the increased expression of p-ERK1/2 stimulated by TGF-β1. Conclusion The expressions of PDE4A and 4B in the hypertrophic ligamentum flavum are increased, suggesting that it is related to the hypertrophy of the ligamentum flavum. Rolipram has a good anti-fibrosis effect after inhibiting the activity of PDE4. This is related to blocking the function of TGF-β1, specifically by restoring normal ERK1/2 signal. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04712-9.
Collapse
|