1
|
Lou Y, Chen H, Fei S, Chen X, Guo L, Pan Q. Role of denosumab in lipid metabolism disorders: clinical significance and potential mechanisms. Arch Osteoporos 2025; 20:68. [PMID: 40418391 DOI: 10.1007/s11657-025-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE Lipid metabolism disorders, characterized by abnormal blood lipid levels, are central to the pathogenesis of obesity, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. These conditions increase the risk of type 2 diabetes, cardiovascular diseases (CVD), and stroke, highlighting the need for novel therapeutic approaches. Emerging evidence suggests a complex interplay between bone and lipid metabolism, with RANKL playing a key role. This review explores the potential of denosumab, a RANKL-targeting monoclonal antibody, in modulating lipid metabolism and its broader metabolic implications. METHODS We conducted a comprehensive literature review to analyze the molecular mechanisms by which denosumab influences lipid metabolism, with a focus on the OPG/RANKL/RANK signaling pathway. Additionally, we examined the roles of immune modulation, bone marrow adipose tissue, and gut microbiota in metabolic diseases. RESULTS Denosumab, primarily known for its anti-resorptive effects in osteoporosis, may also exert beneficial effects on lipid metabolism. Preclinical and clinical studies suggest its potential in ameliorating obesity, NAFLD, and atherosclerosis. The OPG/RANKL/RANK axis appears to mediate crosstalk between bone and metabolic pathways, while immune regulation and gut microbiota may further contribute to these effects. CONCLUSION Denosumab shows promise as a therapeutic agent for lipid metabolism disorders, though long-term metabolic effects remain unclear. Further research is needed to validate its efficacy and elucidate underlying mechanisms, which could pave the way for novel treatments targeting metabolic diseases.
Collapse
Affiliation(s)
- Yuan Lou
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China
| | - Huan Chen
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China
| | - Sijia Fei
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China
| | - Xinda Chen
- Department of Endocrinology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100000, China
| | - Lixin Guo
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China.
| | - Qi Pan
- Department of Endocrinology Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
2
|
Shao Z, Wang T, Yan X, Ning R, Xu X, He Q, Zhang X, Jiang M, Yang C. Identification of a RANKL/TNF-α Dual-Inhibitor as a Potential Disease-Modifying Agent for the Treatment of Knee Osteoarthritis. J Med Chem 2025; 68:10216-10237. [PMID: 40358029 DOI: 10.1021/acs.jmedchem.5c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Osteoarthritis (OA) is a multifactorial degenerative disease involved subchondral bone remodeling, cartilage destruction and synovium inflammation. While receptor activator of nuclear factor-κB ligand (RANKL), a tumor necrosis factor (TNF) superfamily protein, is the critical regulator in bone metabolism associated with subchondral bone resorption, TNF-α is also an important inflammatory factor involved in the OA inflammation and cartilage destruction. Based on previous compound Y1599, we identified a novel tetrahydro-β-carboline derivative Y2641 with both RANKL and TNF-α inhibition in this study. Y2641 exhibited potent RANKL-induced osteoclastogenic inhibition (IC50 = 109.1 nM), and had anti-inflammatory and cartilage destruction inhibiting effects at 10 μM with low cytotoxicity. SPR assays demonstrated the binding affinity of Y2641 to RANKL (Kd = 3.984 μM) and TNF-α (Kd = 18.59 μM). In vivo assay further revealed the disease-modifying effects of Y2641 in OA rats, establishing Y2641 as a promising lead compound for the development of disease-modifying osteoarthritis drugs.
Collapse
Affiliation(s)
- Zhengguang Shao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200021, China
| | - Tianqi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xueming Yan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhao Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200021, China
| |
Collapse
|
3
|
Lin L, Ren Y, Wang X, Yao Q. Effects of Bisphosphonates and Denosumab on Dental Implants: A Systematic Review With Meta-Analysis. Oral Dis 2025. [PMID: 40326505 DOI: 10.1111/odi.15373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE This review aimed to evaluate the effects of bisphosphonates (BP) and denosumab on dental implants, including implant failure (IF), marginal bone loss (MBL), and medication-related osteonecrosis of the jaw (MRONJ). MATERIALS AND METHODS A literature search was conducted in four databases and OpenGrey. Studies examining IF/MBL/MBRONJ associated with BP or denosumab were included. ROBINS-I was used to assess the risk of bias. Trial sequential analysis and the GRADE approach were used to examine the certainty of evidence. Statistical analyses were conducted using R version 4.3.1. RESULTS Twenty-one studies were included. BP was associated with IF only at the implant level (RR 1.74; 95% CI: 1.10-2.75) but not at the patient level (RR 1.01; 95% CI: 0.35-2.91). The analysis of two studies indicated no significant correlation between BP and MBL (MD 0.05; 95% CI: -0.12 to 0.21). BP was associated with MRONJ (RR 3.45; 95% CI: 2.56-4.65), whereas denosumab showed no significant statistical correlation with MRONJ (RR 25.98; 95% CI: 0.31-2165.63). CONCLUSION In patients with dental implants, the existing very low certainty level evidence suggests that BP intake may be associated with greater risks of IF and MRONJ but not with MBL, whereas it is currently unknown whether denosumab is associated with MRONJ.
Collapse
Affiliation(s)
- Linni Lin
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijie Ren
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xia Wang
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianqian Yao
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Su Z, Yeung MCF, Han S, Yau RCH, Lam YL, Ho KWY, Shek TW, Shi F, Feng S, Chen H, Ho JWK, Xu Z, Cheung JPY, Cheung KSC. Denosumab Enhances Antitumor Immunity by Suppressing SPP1 and Boosting Cytotoxic T Cells. Cancer Immunol Res 2025; 13:646-660. [PMID: 40009710 DOI: 10.1158/2326-6066.cir-24-1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
Denosumab, a RANK ligand inhibitor, is primarily used to prevent osteoclastogenesis in the treatment of conditions such as osteoporosis, bone metastasis, and giant cell tumor of bone (GCTB). RANK ligand also plays an important role in immunity by activating NF-κB and its target genes, including the osteopontin-coding gene SPP1 (also known as OPN), which is linked to CXCL9:SPP1 macrophage polarization and prognosis. In this study, we explored an additional role of denosumab in enhancing antitumor immunity in patients. Single-cell RNA sequencing was performed on nine human GCTB samples, including six untreated and three treated only with denosumab, to exclude confounding treatment factors linked with bone metastasis samples. We further analyzed paired samples collected before and after denosumab treatment from a cohort of nine patients with GCTB and conducted a pan-cancer analysis of 34 distinct types of cancers. Our single-cell analysis of GCTB resulted in a comprehensive cell atlas revealing an antitumor role of denosumab in inhibiting SPP1 expression and augmenting active cytotoxic T-cell abundance. Furthermore, we validated this immunomodulatory role of denosumab using the paired GCTB samples. Finally, the pan-cancer analysis supported a negative correlation between SPP1 and CD8A levels, with the CD8A:SPP1 ratio correlating with overall survival in 14 cancer types, which was superior to either CD8A or SPP1 alone. Our research provides clinical evidence that denosumab improves antitumor immunity by decreasing SPP1 expression and enhancing cytotoxic T-cell activity, serving as a milestone in the development of innovative use of denosumab and offering potential benefits to patients with elevated levels of SPP1.
Collapse
Affiliation(s)
- Zezhuo Su
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maximus Chun Fai Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shan Han
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Ching Hing Yau
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Lee Lam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth Wai Yip Ho
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tony Wai Shek
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Feng Shi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuang Feng
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongtai Chen
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Zhiyuan Xu
- Oncology Medical Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kelvin Sin Chi Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Jin H, Jin H, Suk KS, Lee BH, Park SY, Kim HS, Moon SH, Park SR, Kim N, Shin JW, Kwon JW. Anti-osteoporosis medication in patients with posterior spine fusion: a systematic review and meta-analysis. Spine J 2025:S1529-9430(25)00204-9. [PMID: 40280495 DOI: 10.1016/j.spinee.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND CONTEXT Osteoporosis and osteopenia are common among patients undergoing posterior spine fusion surgery, presenting challenges such as pseudarthrosis, screw loosening, and poor patient outcomes. While pharmacological interventions are available, no consensus exists regarding the optimal perioperative treatment for these patients. Furthermore, the effectiveness of various treatment options in improving fusion rates and minimizing complications remains uncertain. PURPOSE To compare the effects of teriparatide, bisphosphonates, denosumab, and romosozumab in patients with posterior spine fusion with low bone mineral density (BMD). STUDY DESIGN Systematic review and meta-analysis PATIENT SAMPLE: Adult patients with low BMD receiving osteoporosis medications and undergoing posterior spine fusion surgery OUTCOME MEASURES: Fusion rate, subsequent vertebral fracture (VF), screw loosening, cage subsidence, proximal junctional kyphosis(PJK), and patient-reported outcomes (PROs), particularly the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI). METHODS A systematic search was conducted using PubMed, EMBASE, and Cochrane Library. Two reviewers independently selected and assessed relevant studies. Four groups were analyzed to evaluate the comparative effectiveness of antiosteoporosis medication on the outcome measures: Bisphosphonate versus Control; Teriparatide versus Control; Teriparatide versus Bisphosphonate; and Denosumab versus Control. RESULTS Bisphosphonate showed reduced subsequent VFs (odds ratio [OR]=0.27, 95% confidence interval [CI]=0.09-0.81) and cage subsidence (OR=0.29, 95% CI=0.11-0.75) and improved ODI scores at 12 months (standardized mean difference [SMD] [95% CI]=-0.75 [-1.42, -0.08]) compared to the control. Teriparatide showed a higher fusion rate (OR=3.52, 95% CI=1.84-6.75), lower screw loosening (OR=0.23, 95% CI=0.09-0.60), and improved ODI scores at 24 months (SMD [95% CI]=-0.57 [-0.99, -0.15]) compared to the control. Moreover, teriparatide showed a higher fusion rate (OR=2.28, 95% CI=1.67-3.11), lower subsequent VF (OR=0.22, 95% CI=0.09-0.51), and improved VAS score for back pain (VASB) (mean difference [MD] [95% CI]=-0.30 [-0.54, -0.07]) and ODI (SMD [95% CI]=-0.38[-0.64, -0.12]) scores at 12 months compared to bisphosphonate. Denosumab showed no significant difference in fusion rate or other complications compared to control. CONCLUSION Our results indicated that teriparatide should be used as the first-line perioperative treatment for patients with poor bone quality scheduled for posterior spine fusion. Teriparatide exhibited better fusion rates and reduced complications than controls and bisphosphonates, resulting in improved PROs. Moreover, bisphosphonates can be utilized in patients with contraindications to teriparatide since the former prevents osteoporosis-related complications compared to controls, resulting in improved PROs. Further studies are warranted to evaluate the potential effects of denosumab and romosozumab.
Collapse
Affiliation(s)
- HyungSub Jin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - HyungJu Jin
- Department of Medicine, Yonsei University College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung-Soo Suk
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byung Ho Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Si Young Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hak-Sun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seong-Hwan Moon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sub-Ri Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Namhoo Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Won Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Won Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Meng L, Sun L, Li M. Research Progress on the Influence of Novel Targeted Drugs for Osteoporosis on Glucose Metabolism. Biomolecules 2025; 15:331. [PMID: 40149867 PMCID: PMC11939858 DOI: 10.3390/biom15030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Both diabetes and osteoporosis are serious chronic conditions. Evidence is mounting that several bone-derived hormones play a role in glucose metabolism in patients with diabetes. Notably, novel biotargeted anti-osteoporotic agents have been recently found to reduce the risk of diabetes. This review explores the correlation of osteokines, including the receptor activator of nuclear factor-κB ligand (RANKL), sclerostin, and Dickkopf-1 (DKK1) with glycemic indicators in patients with diabetes, as well as the effects of their respective monoclonal antibodies on glucose metabolism and their possible mechanisms. Denosumab, the monoclonal antibody against RANKL, has been shown to reduce glycated hemoglobin (HbA1c) and the risk of diabetes, possibly by enhancing pancreatic β-cell survival and glucagon-like peptide-1 secretion. Sclerostin was positively correlated with HbA1c and may induce insulin resistance via endoplasmic reticulum stress. The association of DKK1 with fasting plasma glucose and HbA1c is still unclear, though decreasing DKK1 levels may correlate with β-cell survival. However, few studies have investigated the effects of antibodies against sclerostin or DKK1 on glucose metabolism. Further research is required to elucidate the influence of novel anti-osteoporotic biotargeted agents on glucose homeostasis in patients with diabetes and their underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Mei Li
- Key Laboratory of Endocrinology of National Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (L.M.)
| |
Collapse
|
7
|
Xiang C, Cao J, Hu R, Li K, Meng T, Xia Y, Meng Q, Liu K, Liu L, Zhu X. Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signalling pathway to treat osteoporosis. Int Immunopharmacol 2025; 148:114073. [PMID: 39823799 DOI: 10.1016/j.intimp.2025.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear. In this study, Oleandrin was shown to reduce bone loss in ovariectomy-induced osteoporotic mice in vivo. Additionally, Oleandrin inhibited RANKL-induced osteoclast differentiation in a concentration-dependent manner in vitro. Signalling pathway studies showed that Oleandrin could inhibit osteoclast differentiation by targeting MAPK and NF-κB signalling pathways. Further mechanistic studies showed that Oleandrin binds to low-density lipoprotein receptor-related protein 4 in osteoclast, thereby exerting inhibitory effects on osteoclast differentiation. In conclusion, this study lays the foundation for further research on the anti-inflammatory and anti-osteoporotic effects of Oleandrin on osteoporosis and its underlying mechanism and provides new possibilities for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chongxin Xiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiankang Cao
- Department of Pain, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Hu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Tingyu Meng
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yutao Xia
- Department of Oncology, YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Qunbo Meng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Kaiwen Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Lian Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Xuetao Zhu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China.
| |
Collapse
|
8
|
Lems WF, Anastasilakis AD, Andreasen CM, Paccou J, Rolvien T, Tencerova M, Tuckermann J, Yavropoulou MP, Søe K. Basic and Clinical Scientists Working Together-Do We Make the Best of Both Worlds? Calcif Tissue Int 2025; 116:39. [PMID: 39953279 PMCID: PMC11828806 DOI: 10.1007/s00223-025-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal disorders, affecting as many as 1.3 billion people worldwide, are the leading cause of disability and impose a substantial health and socioeconomic burden. Despite the high prevalence of these conditions, translational research in this field is far from optimal, highlighting the need for stronger collaboration between basic and clinical scientists. This paper, authored by members of the basic and clinical action groups of the European Calcified Tissue Society (ECTS) and endorsed by the Board of the ECTS, examines the key barriers to effective translational research in musculoskeletal diseases, including clinician workload, differences in professional language and culture, physical distance between research sites, and insufficient interdisciplinary funding. Through interviews with eight institutional managers across five European countries, we observed that in some institutions, the collaboration between basic scientists and clinicians was regarded as no concern (but with room for improvement), and in most institutions it was recognised as a serious issue. We found consensus on the importance of collaboration yet identified discrepancies in the provision of structural and financial support. Based on these findings, we propose strategic initiatives to bridge the gap between basic and clinical research. Suggested measures include dedicated translational funding, integrated research facilities, collaborative scientific forums, strategic collaborations, establishment of physician-scientists, and, finally, bringing basic and clinical researchers together in the same building or even in a combined department. Notable successes, such as the development of the anti-osteoporotic drugs, romosozumab and denosumab, underscore the value of a coordinated approach and exemplify how shared insights between laboratory research and clinical practice can lead to impactful therapeutic advances. Moving forward, we advocate for institutional commitments to foster a robust translational research environment, as well as tailored funding initiatives to support such efforts. This paper serves as a call for discussion and action to enhance interdisciplinary cooperation to advance musculoskeletal medicine and improve outcomes for patients with debilitating musculoskeletal diseases.
Collapse
Affiliation(s)
- Willem F Lems
- Department of Rheumatology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Christina Møller Andreasen
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Julien Paccou
- MABlab ULR 4490, Rheumatology Department, University of Lille, CHU Lille, F-59000, Lille, France
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Maria P Yavropoulou
- First Department of Propaedeutic and Internal Medicine, Endocrinology Unit, LAIKO University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kent Søe
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Department of Pathology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
9
|
Ninomiya H, Fukuda S, Nishida-Fukuda H, Shibata Y, Sato T, Nakamichi Y, Nakamura M, Udagawa N, Miyazawa K, Suzuki T. Osteoprotegerin secretion and its inhibition by RANKL in osteoblastic cells visualized using bioluminescence imaging. Bone 2025; 191:117319. [PMID: 39500402 DOI: 10.1016/j.bone.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Bone remodeling is regulated by the interaction between receptor activator of nuclear factor kappa-B ligand (RANKL) and its receptor RANK on osteoblasts and osteoclasts, respectively. Osteoprotegerin (OPG) is secreted from osteoblasts and inhibits osteoclast differentiation by acting as a decoy receptor for RANKL. Despite its importance, the mechanism underlying the secretion of OPG remains poorly understood. Here, we applied a method of video-rate bioluminescence imaging using a fusion protein with Gaussia luciferase (GLase) and visualized the secretion of OPG from living mouse osteoblastic MC3T3-E1 cells. The bioluminescence imaging revealed that the secretion of OPG fused to GLase (OPG-GLase) occurred frequently and widely across the cell surface. Notably, co-expression of RANKL significantly reduced the secretion of OPG-GLase, indicating an inhibitory role of RANKL on OPG secretion within cells. Further imaging and biochemical analyses using deletion mutants of OPG and RANKL, as well as RANKL mutants that cause autosomal recessive osteopetrosis, demonstrated the essential role of protein-protein interaction between OPG and RANKL in the inhibition of OPG secretion. Treatment with proteasome inhibitors resulted in increased levels of OPG in both culture medium and cell lysates. However, the fold-increase of OPG was similar regardless of the presence or absence of RANKL, suggesting that the regulation of OPG secretion by RANKL is independent of proteasome activity. This report visualized the secretion of OPG from living cells and provided evidence for a novel intracellular inhibitory effect of RANKL on OPG secretion.
Collapse
Affiliation(s)
- Hotsuna Ninomiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Hisayo Nishida-Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yuto Shibata
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan; Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
10
|
Tabuchi Y, Kuroda K, Furusawa Y, Hirano T, Nagaoka R, Omura M, Hasegawa H, Hirayama J, Suzuki N. Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomed Rep 2025; 22:18. [PMID: 39651404 PMCID: PMC11621920 DOI: 10.3892/br.2024.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 12/11/2024] Open
Abstract
The teleost scale is a unique calcified tissue that contains osteoclasts, osteoblasts, osteocytes and the bone matrix, similar to mammalian bone. Here, the effects of low-intensity pulsed ultrasound (LIPUS) on osteoblasts and osteoclasts in goldfish scales were investigated. Scales were treated with LIPUS, which is equivalent to use under clinical conditions (30 mW/cm2 for 20 min), then cultured at 15˚C. Alkaline phosphatase activity, a marker of osteoblasts, or tartrate-resistant acid phosphatase (TRAP) activity, a marker of osteoclasts was measured. The gene expression profile was examined using RNA-sequencing. Gene network and biological function analyses were performed using the Ingenuity® Pathways Knowledge Base. A single exposure of LIPUS significantly increased ALP activity but did not affect TRAP activity. These data indicated that LIPUS induced osteoblastic activation in goldfish scales. Using RNA-sequencing, numerous genes that were significantly and differentially expressed 3, 6, and 24 h after LIPUS exposure were observed. Ingenuity® pathway analysis demonstrated that three gene networks, GN-3h, GN-6h, and GN-24h, were obtained from upregulated genes at 3, 6 and 24 h culture, respectively, and included several genes associated with osteoblast differentiation, such as protein kinase D1, prostaglandin-endoperoxide synthase 2, TNFRSF11B (tumor necrosis factor receptor superfamily, member 11b) and WNT3A (Wnt family member 3A). A significant upregulation of expression levels of these genes in scales treated with LIPUS was confirmed by reverse transcription-quantitative polymerase chain reaction. These results contribute to elucidating the molecular mechanisms of osteoblast activation induced by LIPUS.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Kouhei Kuroda
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Nagaoka
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Masaaki Omura
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hideyuki Hasegawa
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923-0961, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| |
Collapse
|
11
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Lewiecki EM, Bilezikian JP, Clark A, Collins MT, Kado DM, Lane J, Langdahl B, McClung MR, Snyder PJ, Stein EM. Proceedings of the 2024 Santa Fe Bone Symposium: Update on the Management of Osteoporosis and Rare Bone Diseases. J Clin Densitom 2025; 28:101559. [PMID: 39826229 DOI: 10.1016/j.jocd.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The 24th Annual Santa Fe Bone Symposium (SFBS) was held in Santa Fe, New Mexico, USA, on August 2-3, 2024. This was a "hybrid" meeting, with in-person and real-time remote participants representing a broad range of geographical locations and medical disciplines. The focus was on new developments in the care of patients with osteoporosis, other metabolic bone diseases, and inherited skeletal disorders. The most current medical evidence was presented and discussed with consideration of implications for patient management. Topics included an update on clinical uses of osteoanabolic agents, management of patients discontinuing denosumab, bone health optimization for orthopedic surgery, estrogen and testosterone in the management of osteoporosis, osteoporosis treatment in the very old, overview of rare bone diseases, treat-to-target for osteoporosis, and a progress report on global activities of Bone Health ECHO. There were two highly interactive faculty panel discussions - one with case presentations by attendees and another with open microphone for all topics of interest. Endocrinology fellows, selected from attendees of the Santa Fe Fellows Workshop on Metabolic Bone Diseases, held the two days preceding the SFBS, participated with presentations of oral abstracts. Ancillary events addressed modern approaches to menopause and bone health, case studies of management of patients at very high fracture risk, and management of patients with rare bone diseases, such as hypophosphatasia, fibrodysplasia ossificans progressiva, X-linked hypophosphatemia, and hypoparathyroidism. These proceedings of the SFBS present the clinical highlights of the plenary sessions and the discussions that followed.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA.
| | - John P Bilezikian
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Clark
- Oregon Health & Science University, Portland, OR, USA
| | | | | | - Joseph Lane
- Hospital for Special Surgery, New York, NY, USA
| | - Bente Langdahl
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Peter J Snyder
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
13
|
Huang C, Dai J, Lim PK, Colcord K, Tang W, Jiang L. Denosumab in osteoporosis management for diabetes patients: insights from clinical trials and explorations for dual benefit. J Transl Med 2024; 22:1127. [PMID: 39707371 DOI: 10.1186/s12967-024-05820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Affiliation(s)
- Chenyu Huang
- Department of Epidemiology and Biostatistics, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, 92697-7550, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Orthopedic Surgery, University of California, Irvine, CA, USA
| | - Jiahui Dai
- Department of Epidemiology and Biostatistics, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, 92697-7550, USA
| | - Philip K Lim
- Department of Orthopedic Surgery, University of California, Irvine, CA, USA
| | - Katherine Colcord
- Department of Epidemiology and Biostatistics, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, 92697-7550, USA
| | - William Tang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Luohua Jiang
- Department of Epidemiology and Biostatistics, Joe C. Wen School of Population & Public Health, University of California, Irvine, CA, 92697-7550, USA.
| |
Collapse
|
14
|
Li S, Zou J, Ran J, Wang L, Nie G, Liu Y, Tian C, Yang X, Liu Y, Wan J, Peng W. Advances in the Study of Denosumab Treatment for Osteoporosis and Sarcopenia in the Chinese Middle-Aged and Elderly Population. Int J Gen Med 2024; 17:6089-6099. [PMID: 39678680 PMCID: PMC11646433 DOI: 10.2147/ijgm.s494759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Osteosarcopenia (OS) is a geriatric syndrome characterized by the concurrent presence of osteoporosis and sarcopenia, predominantly affecting the elderly population. Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mass, compromised bone microarchitecture, and heightened bone fragility, substantially elevating fracture risk. Sarcopenia (SP) is defined by decreased muscle mass, strength, and/or functional capacity. Both conditions are age-related degenerative diseases with overlapping pathophysiological mechanisms, commonly co-occurring in elderly individuals and substantially increasing fracture risk. Denosumab, a targeted anti-osteoporotic agent, mediates therapeutic effects by inhibiting bone resorption through the RANK-RANKL-OPG (RRO) pathway, consequently enhancing bone mineral density. International studies indicate that Denosumab not only treats osteoporosis but also improves sarcopenia-related metrics, suggesting its potential as a sarcopenia treatment. However, research focusing on the Chinese population remains limited. Additionally, the pathophysiological mechanisms of sarcopenia and the pathways through which Denosumab ameliorates sarcopenia are not yet fully understood, warranting further experimental investigation. In summary, Denosumab's therapeutic efficacy in osteoporosis treatment and its potential impact on sarcopenia are of substantial research interest. However, research and literature on these topics in China remain notably scarce. This article aims to offer a systematic review and critical analysis of these topics.
Collapse
Affiliation(s)
- Shaotian Li
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jingfeng Zou
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiajia Ran
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Liping Wang
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Guqiao Nie
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiting Liu
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunhui Tian
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xin Yang
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yun Liu
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jingjing Wan
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wen Peng
- General Practice Department, Union Hospital TongJi Medical College HuaZhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
15
|
Kaneko K, Tsai J, Meñez D, Oh B, Suh AJ, Bae S, Mizuno M, Umemoto A, Giannopoulou E, Fujii T, Zhang Y, Stein EM, Bockman RS, Park-Min KH. Cellular signatures in human blood track bone mineral density in postmenopausal women. JCI Insight 2024; 9:e178977. [PMID: 39576015 PMCID: PMC11601907 DOI: 10.1172/jci.insight.178977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Osteoclasts are the sole bone-resorbing cells and are formed by the fusion of osteoclast precursor cells (OCPs) derived from myeloid lineage cells. Animal studies reveal that circulating OCPs (cOCPs) in blood travel to bone and fuse with bone-resident osteoclasts. However, the characteristics of human cOCPs and their association with bone diseases remain elusive. We have identified and characterized human cOCPs and found a positive association between cOCPs and osteoclast activity. Sorted cOCPs have a higher osteoclastogenic potential than other myeloid cells and effectively differentiate into osteoclasts. cOCPs exhibit distinct morphology and transcriptomic signatures. The frequency of cOCPs in the blood varies among treatment-naive postmenopausal women and has an inverse correlation with lumbar spine bone density and a positive correlation with serum CTX, a bone resorption marker. The increased cOCPs in treatment-naive patients with osteoporosis were significantly diminished by denosumab, a widely used antiresorptive therapy. Our study reveals the distinctive identity of human cOCPs and the potential link between the dynamic regulation of cOCPs and osteoporosis and its treatment. Taken together, our study enhances our understanding of human cOCPs and highlights a potential opportunity to measure cOCPs through a simple blood test, which could potentially identify high-risk individuals.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Deniece Meñez
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Andrew Junwoo Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Masataka Mizuno
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Akio Umemoto
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Takayuki Fujii
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Yaxia Zhang
- Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York, USA
- Pathology and Clinical Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Emily M. Stein
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Richard S. Bockman
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
16
|
Lan Y, Peng Q, Shen J, Liu H. Elucidating common biomarkers and pathways of osteoporosis and aortic valve calcification: insights into new therapeutic targets. Sci Rep 2024; 14:27827. [PMID: 39537712 PMCID: PMC11560947 DOI: 10.1038/s41598-024-78707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoporosis and aortic valve calcification, prevalent in the elderly, have unclear common mechanisms. This study aims to uncover them through bioinformatics analysis. METHODS Microarray data from GEO was analyzed for osteoporosis and aortic valve calcification. Differential expression analysis identified co-expressed genes. SVM-RFE and random forest selected key genes. GO and KEGG enrichment analyses were performed. Immunoinfiltration and GSEA analyses were subsequently performed. NetworkAnalyst analyzed microRNAs/TFs. HERB predicted drugs, and molecular docking assessed targeting potential. RESULTS Thirteen genes linked to osteoporosis and aortic valve calcification were identified. TNFSF11, KYNU, and HLA-DMB emerged as key genes. miRNAs, TFs, and drug predictions offered therapeutic insights. Molecular docking suggested 17-beta-estradiol and vitamin D3 as potential treatments. CONCLUSION The study clarifies shared mechanisms of osteoporosis and aortic valve calcification, identifies biomarkers, and highlights TNFSF11, KYNU, and HLA-DMB. It also suggests 17-beta-estradiol and vitamin D3 as potential effective treatments.
Collapse
Affiliation(s)
- Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
17
|
Schmitt L, Theiler-Schwetz V, Sadoghi P, Trummer C, Pilz S. Rebound hypercalcemia after denosumab cessation during follow-up after surgical treatment for parathyroid carcinoma: case report and literature review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240035. [PMID: 39529981 PMCID: PMC11554368 DOI: 10.20945/2359-4292-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/13/2024] [Indexed: 11/16/2024]
Abstract
Denosumab is a potent antiresorptive medication, commonly used in the treatment of osteoporosis, as well as in a variety of other diseases. Potential adverse rebound effects after its cessation include a loss in bone mineral density and an increased risk of osteoporotic fractures. Hypercalcemia is a less frequently reported rebound phenomenon after denosumab discontinuation, that may pose a diagnostic challenge to physicians as a rare non-parathyroid hormone (PTH) dependent cause of hypercalcemia. In our case, a 47-year-old male presented with rebound hypercalcemia after denosumab cessation during follow-up after surgical treatment for parathyroid carcinoma. This non-PTH-dependent hypercalcemia resolved after re-initiation of denosumab. We performed a systematic literature review on rebound hypercalcemia after denosumab cessation and identified 52 individual patient cases. Children appear to be more prone to developing rebound hypercalcemia, which could be attributed to their higher baseline bone turnover, underlying conditions, or denosumab dosage regimens. In most cases, patients initially presented with acute and often severe symptoms of hypercalcemia that occur from 1.75 to 9 months after denosumab cessation (4 to 9 months in adults). Most effective treatment approaches to sufficiently decrease serum calcium levels were bisphosphonates or re-administration of denosumab. A watch and wait strategy may be sufficient in asymptomatic cases, which are less common and probably underdiagnosed. Subsequent antiresorptive treatment after denosumab cessation, which is a common practice in osteoporosis treatment, may reduce the risk of rebound hypercalcemia. As denosumab is a frequently used drug in patients with advanced malignant diseases and rebound hypercalcemia with low PTH levels may raise the suspicion for skeletal metastases, awareness of this rebound effect may be for particular relevance in such settings.
Collapse
Affiliation(s)
- Lisa Schmitt
- Medical University of GrazDivision of Endocrinology and DiabetologyDepartment of Internal MedicineGrazAustriaDivision of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Verena Theiler-Schwetz
- Medical University of GrazDivision of Endocrinology and DiabetologyDepartment of Internal MedicineGrazAustriaDivision of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Patrick Sadoghi
- Medical University of GrazDepartment of Orthopaedics and TraumaGrazAustriaDepartment of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Christian Trummer
- Medical University of GrazDivision of Endocrinology and DiabetologyDepartment of Internal MedicineGrazAustriaDivision of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Pilz
- Medical University of GrazDivision of Endocrinology and DiabetologyDepartment of Internal MedicineGrazAustriaDivision of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Urbanski AH, Maso VE, Martins FM, da Costa-Martins AG, do Nascimento Oliveira APB, Nakaya HI. Chikungunya-Driven Gene Expression Linked to Osteoclast Survival and Chronic Arthralgia. Infect Dis Rep 2024; 16:914-922. [PMID: 39311214 PMCID: PMC11417755 DOI: 10.3390/idr16050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Chikungunya fever (CHIKF), caused by the Chikungunya virus (CHIKV), manifests as acute febrile illness often associated with polyarthritis and polyarthralgia. Although the acute symptoms resolve within two weeks, many patients experience prolonged joint pain and inflammation, resembling rheumatoid arthritis (RA). This study aimed to identify molecular markers related to joint pain and chronicity in CHIKV-infected individuals by analyzing blood transcriptomes using bulk RNA sequencing. B- and T-cell receptor (BCR and TCR) diversity was assessed through computational analysis of RNA-seq data, revealing a significant reduction in CDR3 diversity in CHIKV-infected individuals compared to healthy controls. This reduced diversity was associated with the upregulation of genes involved in osteoclast differentiation and activation, particularly through the RANK/RANKL signaling pathway. These findings suggest a potential link between immune dysregulation and enhanced osteoclast activity, which may contribute to the persistence of joint pain in chronic CHIKF. Targeting osteoclast-related pathways could offer therapeutic strategies for managing chronic symptoms in CHIKF patients.
Collapse
Affiliation(s)
- Alysson Henrique Urbanski
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - Vanessa E. Maso
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - Felipe M. Martins
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - André Guilherme da Costa-Martins
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
- Micromanufacturing Laboratory, Institute for Technological Research—IPT, São Paulo 05508-901, Brazil
| | | | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
- Hospital Israelita Albert Einstein, São Paulo 05653-000, Brazil
| |
Collapse
|
19
|
Jiang Y, Luo X, Zheng Z, Wen S, Gao H, Xu C, Jiang M, Wang S. Identification of novel RANKL inhibitors through in silico analysis. Bioorg Chem 2024; 153:107826. [PMID: 39299177 DOI: 10.1016/j.bioorg.2024.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is considered the principal regulator of osteoclast differentiation. Therefore, strategies interfering with the RANKL-RANK signaling pathway may effectively inhibit osteoclast differentiation and mitigate bone resorption. Consequently, RANKL has become a promising target for new drug design strategies. Despite extensive research on specific drugs and antibodies, only a few have shown efficacy in treating osteoporosis. To address this challenge, we aimed to explore new approaches for designing drugs for osteoporosis. In this study, a 3D quantitative structure-activity relationship (QSAR) pharmacophore model was built for RANKL with reference to known inhibitor IC50 values. The optimal pharmacophore model was then employed as a 3D query to screen databases for novel lead compounds. The obtained compounds were subjected to ADMET and TOPKAT analyses to predict drug pharmacokinetics and toxicity. Molecular docking and de novo evolution approaches were applied to verify the docking binding affinities of the compounds. Five candidate compounds were subjected to further in vitro analyses to assess their anti-osteoporotic effects, among which compound 4 demonstrated significant inhibitory activity, achieving an inhibitory rate of 92.6 % on osteoclastogenesis at a concentration of 10 μM. Subsequent molecular dynamics (MD) simulations to assess the stability and behavior of compound 4 and its evolved variant, ZINC00059014397_Evo, within the RANKL binding site revealed that the variant is a potential therapeutic agent for targeting osteoclasts. This study offers valuable insights for developing next generation RANKL inhibitors for osteoporosis treatments.
Collapse
Affiliation(s)
- Yingying Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaogang Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhanpeng Zheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongwei Gao
- China School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Cheng Xu
- Institute of Microalgae Synthetic Biology and Green Manufacturing, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Siyuan Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
20
|
Grassi G, Ghielmetti A, Zampogna M, Chiodini I, Arosio M, Mantovani G, Eller-Vainicher C. Zoledronate After Denosumab Discontinuation: Is Repeated Administrations More Effective Than Single Infusion? J Clin Endocrinol Metab 2024; 109:e1817-e1826. [PMID: 38609157 PMCID: PMC11403318 DOI: 10.1210/clinem/dgae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND After denosumab (Dmab) discontinuation C-terminal telopeptide (CTX) levels increase, bone mineral density (BMD) decreases and multiple vertebral fractures (FX) may occur with relevant impacts on women's health. A sequential therapy with bisphosphonates is recommended, and the European Calcified Tissue Society (ECTS) proposed repeated zoledronate (ZOL) administrations in patients with persistently high CTX levels, although the efficacy of this schedule is unknown. In this retrospective study, we describe BMD changes and FX rate in 52 patients managed according to the ECTS recommendations. METHODS We measured CTX levels and administered ZOL after 1 month from Dmab withdrawal (t0). After 6 months (t1), we administered a second ZOL infusion, if CTX levels were ≥280 ng/L. BMD changes and FX rate were assessed on average after 17 months from Dmab withdrawal. RESULTS Seventy-five percent of patients repeated ZOL infusion. In this group, spine BMD declined significantly (-5.5 ± 5.6%), while it remained stable in the group with CTX levels <280 ng/L (-0.1 ± 5.5%, P = 0.008). All fractured patients (9.6%) had received >5 Dmab injections and 2 ZOL infusions. The BMD worsening after Dmab withdrawal was associated with CTX t1 [odds ratio (OR) 2.9, interquartile range (IQR) 1.3-6.6, P = .009] and spine BMD gain during Dmab therapy corrected for the number of Dmab injections (OR 3.0, IQR 1.2-7.2, P = .014). A CTX level at t1 > 212 ng/L had 100% sensitivity in predicting the BMD loss. CONCLUSION In patients with uncontrolled CTX levels after Dmab withdrawal, 2 ZOL infusions 6 months apart do not prevent BMD loss and FX.
Collapse
Affiliation(s)
- Giorgia Grassi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Ghielmetti
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Marta Zampogna
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Iacopo Chiodini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
- Unit of Endocrinology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Maura Arosio
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Giovanna Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | | |
Collapse
|
21
|
Mokhber A, Hall E, Uzelac A, Salmena L, Cheung A, Lubinski J, Narod SA, Kotsopoulos J. Delineating the relationship between circulating osteoprotegerin and bone health in women with a pathogenic variant in BRCA1: A cross-sectional analysis. Bone Rep 2024; 22:101802. [PMID: 39297019 PMCID: PMC11408939 DOI: 10.1016/j.bonr.2024.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose Osteoprotegerin (OPG) plays an important role in the inhibition of osteoclast formation and bone resorption. Studies have reported lower OPG levels among women with a pathogenic variant (mutation) in the BRCA1 gene, and thus, may be at greater risk for skeletal bone loss. Thus, we investigated the association between circulating OPG and two validated markers of bone health: 1) bone fracture risk score (FRAX) and 2) bone mineral density (BMD), among BRCA mutation carriers. Methods Women with a blood sample and clinical data were included in this analysis. An enzyme-linked immunosorbent assay (ELISA) was used to quantify serum OPG (pg/mL) and the 10-year risk of major osteoporotic fracture (FRAXmajor) and hip fracture (FRAXhip) (%) was estimated using a web-based algorithm. For a subset of women, lumbar spine BMD was previously assessed by dual x-ray absorptiometry (DXA)(T-score). A Mann-Whitney U test was used to evaluate the association between OPG and FRAX score, while linear regression was used to assess the association of OPG and BMD. Results Among 701 women with a BRCA1 mutation, there was a significant (and unexpected) positive association between OPG levels and FRAX score (FRAXmajor: 2.12 (low OPG) vs. 2.53 (high OPG) P < 0.0001; FRAXhip: 0.27 (low OPG) vs. 0.44 (high OPG) P < 0.0001). In a subset with BMD measurement (n = 50), low serum OPG was associated with a significantly lower BMD T-score (-1.069 vs. -0.318; P = 0.04). Conclusion Our findings suggest that women with inherently lower OPG may be at risk of lower BMD, the gold standard marker of bone disease. Due to the young age of our cohort, on-going studies are warranted to re-evaluate the association between OPG and FRAX in BRCA mutation carriers.
Collapse
Affiliation(s)
- Aghaghia Mokhber
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- Queen's School of Medicine, Queen's University, Kingston, ON, Canada
| | - Elizabeth Hall
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aleksandra Uzelac
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Angela Cheung
- Osteoporosis Program, University Health Network, Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, ON, Canada
| | - Jan Lubinski
- Pomeranian Medical Institution, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Alraouji NN, Colak D, Al-Mohanna FH, Alaiya AA, Aboussekhra A. Endogenous osteoprotegerin (OPG) represses ERα and promotes stemness and chemoresistance in breast cancer cells. Cell Death Discov 2024; 10:377. [PMID: 39181873 PMCID: PMC11344809 DOI: 10.1038/s41420-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer and the leading cause of death among women worldwide. The osteoprotegerin (OPG) cytokine, a decoy receptor for RANKL and a key player in bone homeostasis, has pro-and anti-carcinogenic effects in various types of cancer, including breast neoplasms. In the present study, we have shown that ectopic expression of OPG in breast epithelial/cancer cells promotes the pro-metastatic processes epithelial-to-mesenchymal transition (EMT), stemness, angiogenesis as well as the activation of breast stromal fibroblasts. Furthermore, proteomics analysis, which allows the identification and quantification of a plethora of known and unknown proteins, has shown a strong and significant correlation between OPG upregulation and the expression of proteins with functions in EMT and stemness. On the other hand, OPG knockdown in triple-negative breast cancer (TNBC) cells inhibited the formation of cancer stem cells. Importantly, while OPG upregulation significantly enhanced the resistance of luminal BC cells to cisplatin and docetaxel, OPG downregulation sensitized TNBC cells to these chemotherapeutic drugs. We have also shown that OPG negatively controls estrogen receptor α (ERα), and OPG upregulation correlated well with the expression of genes related to ER-negative claudin low cells. Collectively, these results show that OPG promotes stemness and the consequent chemoresistance of breast cancer cells.
Collapse
Affiliation(s)
- Noura N Alraouji
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Ayodele A Alaiya
- Department of Cell Therapy & Immunobiology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
24
|
Gu W, Hou L, Bao Q, Xu Q, Chen G. Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism. Animals (Basel) 2024; 14:2281. [PMID: 39123807 PMCID: PMC11311038 DOI: 10.3390/ani14152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Lie Hou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Animal Husbandry Extension Station, Yinchuan 750001, China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (L.H.); (Q.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
26
|
Kobayashi T, Morimoto T, Ito K, Mawatari M, Shimazaki T. Denosumab vs. bisphosphonates in primary osteoporosis: a meta-analysis of comparative safety in randomized controlled trials. Osteoporos Int 2024; 35:1377-1393. [PMID: 38733394 DOI: 10.1007/s00198-024-07118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Denosumab and bisphosphonates for primary osteoporosis are generally well-tolerated, but their comparative safety remains unclear. We aimed to explore the comparative safety of denosumab and bisphosphonates in primary osteoporosis. Databases such as PubMed and Google Scholar were searched for relevant peer-reviewed randomized controlled trials published in English (as of December 2023). Trials comparing adverse events (AE) between denosumab and bisphosphonates in patients with primary osteoporosis were investigated. Data were pooled using a fixed- or random-effects model to determine the risk ratios (RR) and 95% confidence intervals (CIs) for various AEs in patients treated with denosumab in comparison to patients treated with bisphosphonates. Eleven trials (5,545 patients; follow-up period: 12-24 months) were included in this meta-analysis. All trials had a risk of bias (e.g., reporting bias linked to secondary endpoints and selection bias linked to random allocation). In comparison to bisphosphonates, denosumab was significantly associated with less withdrawal due to AEs (RR = 0.49; 95% CI 0.34-0.71), more five-point major adverse cardiovascular events (RR = 2.05; 95% CI 1.03-4.09), more cardiovascular AEs (RR = 1.61; 95% CI 1.07-2.41), more infections (RR = 1.14; 95% CI 1.02-1.27), more upper respiratory tract infections (RR = 1.56; 95% CI 1.08-2.25), less vertebral fractures (RR = 0.54; 95% CI 0.31-0.93), and less abdominal pain (RR = 0.44;95% CI 0.22-0.87). We explored the comparative safety of denosumab and bisphosphonates for primary osteoporosis, some of which could be attributed to their beneficial effects. However, all trials had a risk of bias. Further investigations are required to confirm our results.
Collapse
Affiliation(s)
- Takaomi Kobayashi
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan.
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Clinical Research, Amagi Chuo Hospital, Fukuoka, Japan.
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Ito
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takafumi Shimazaki
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
27
|
Chandran M, Akesson KE, Javaid MK, Harvey N, Blank RD, Brandi ML, Chevalley T, Cinelli P, Cooper C, Lems W, Lyritis GP, Makras P, Paccou J, Pierroz DD, Sosa M, Thomas T, Silverman S. Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review. Osteoporos Int 2024; 35:1337-1358. [PMID: 38587674 PMCID: PMC11282157 DOI: 10.1007/s00198-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Collapse
Affiliation(s)
- M Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, DUKE NUS Medical School, Singapore, Singapore.
| | - K E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - M K Javaid
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - N Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - R D Blank
- Garvan Institute of Medical Research, Medical College of Wisconsin, Darlinghurst, NSW, Australia
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, Florence, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Cinelli
- Department of Trauma Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - W Lems
- Department of Rheumatology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - G P Lyritis
- Hellenic Osteoporosis Foundation, Athens, Greece
| | - P Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - J Paccou
- Department of Rheumatology, MABlab ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - D D Pierroz
- International Osteoporosis Foundation, Nyon, Switzerland
| | - M Sosa
- University of Las Palmas de Gran Canaria, Investigation Group on Osteoporosis and Mineral Metabolism, Canary Islands, Spain
| | - T Thomas
- Department of Rheumatology, North Hospital, CHU Saint-Etienne and INSERM U1059, University of Lyon-University Jean Monnet, Saint‑Etienne, France
| | - S Silverman
- Cedars-Sinai Medical Center and Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
28
|
Lyu Z, Chan YT, Lu Y, Fung Lam T, Wu X, Wu J, Xu L, Yang W, Zhang C, Lidan Zhong L, Wang N. Osteoprotegerin mediates adipogenesis in obesity. J Adv Res 2024; 62:245-255. [PMID: 38906326 PMCID: PMC11331166 DOI: 10.1016/j.jare.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
INTRODUCTION Adipogenesis, the process of white adipose tissue expansion, plays a critical role in the development of obesity. Osteoprotegerin (OPG), known for its role in bone metabolism regulation, emerges as a potential regulator in mediating adipogenesis during obesity onset. OBJECTIVES This study aims to elucidate the involvement of OPG in adipogenesis during the early phases of diet-induced obesity and explore its therapeutic potential in obesity management. METHODS Using a diet-induced obesity model, we investigated OPG expression patterns in adipocytes and explored the mechanisms underlying its involvement in adipogenesis. We also assessed the effects of targeted silencing of OPG and recombinant OPG administration on obesity progression and insulin resistance. Additionally, the impact of electroacupuncture treatment on OPG levels and obesity management was evaluated in both animal models and human participants. RESULTS OPG expression was prominently activated in adipocytes of white adipose tissues during the early phase of diet-induced obesity. Hyperlipidemia induced Cbfa1-dependent OPG transcription, initiating and promoting adipogenesis, leading to cell-size expansion and lipid storage. Intracellular OPG physically bound to RAR and released the PPARɤ/RXR complex, activating adipogenesis-associated gene expression. Targeted silencing of OPG suppressed obesity development, while recombinant OPG administration promoted disease progression and insulin resistance in obese mice. Electroacupuncture treatment suppressed obesity development in an OPG-dependent manner and improved obesity parameters in obese human participants. CONCLUSION OPG emerges as a key regulator in mediating adipogenesis during obesity development. Targeting OPG holds promise for the prevention and treatment of obesity, as evidenced by the efficacy of electroacupuncture treatment in modulating OPG levels and managing obesity-related outcomes.
Collapse
Affiliation(s)
- Zipan Lyu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Fung Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xingyao Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Linda Lidan Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
30
|
Galliera E, Massaccesi L, Suardi V, de Vecchi E, Villa F, Yi Z, Suo G, Lovati AB, Logoluso N, Corsi Romanelli MM, Pellegrini AV. sCD14-ST and Related Osteoimmunological Biomarkers: A New Diagnostic Approach to Osteomyelitis. Diagnostics (Basel) 2024; 14:1588. [PMID: 39125464 PMCID: PMC11312423 DOI: 10.3390/diagnostics14151588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Osteomyelitis (OM) is a major challenge in orthopedic surgery. The diagnosis of OM is based on imaging and laboratory tests, but it still presents some limitations. Therefore, a deeper comprehension of the pathogenetic mechanisms could enhance diagnostic and treatment approaches. OM pathogenesis is based on an inflammatory response to pathogen infection, leading to bone loss. The present study aims to investigate the potential diagnostic role of a panel of osteoimmunological serum biomarkers in the clinical approach to OM. The focus is on the emerging infection biomarker sCD14-ST, along with osteoimmunological and inflammatory serum biomarkers, to define a comprehensive biomarker panel for a multifaced approach to OM. The results, to our knowledge, demonstrate for the first time the diagnostic and early prognostic role of sCD14-ST in OM patients, suggesting that this biomarker could address the limitations of current laboratory tests, such as traditional inflammatory markers, in diagnosing OM. In addition, the study highlights a relevant diagnostic role of SuPAR, the chemokine CCL2, the anti-inflammatory cytokine IL-10, the Wnt inhibitors DKK-1 and Sclerostin, and the RANKL/OPG ratio. Moreover, CCL2 and SuPAR also exhibited early prognostic value.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Laboratorio Sperimentale Ricerche Biomarcatori Danno d’Organo, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Virginia Suardi
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Elena de Vecchi
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Francesca Villa
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Zhang Yi
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Guorui Suo
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Nicola Logoluso
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Antonio V. Pellegrini
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| |
Collapse
|
31
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
32
|
Yang X, Chen M, Wang S, Hu X, Zhou J, Yuan H, Zhu E, Wang B. Cortactin controls bone homeostasis through regulating the differentiation of osteoblasts and osteoclasts. Stem Cells 2024; 42:662-674. [PMID: 38655781 DOI: 10.1093/stmcls/sxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Meng Chen
- Department of hematology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, People's Republic of China
| |
Collapse
|
33
|
Liu J, Lin X, Sun L, Zhang Q, Jiang Y, Wang O, Xing X, Xia W, Li M. Safety and Efficacy of Denosumab in Children With Osteogenesis Imperfecta-the First Prospective Comparative Study. J Clin Endocrinol Metab 2024; 109:1827-1836. [PMID: 38198649 PMCID: PMC11180505 DOI: 10.1210/clinem/dgad732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 01/12/2024]
Abstract
CONTEXT Denosumab is a potential therapeutic agent for osteogenesis imperfecta (OI), but its efficacy and safety remain unclear in children with OI. OBJECTIVE We aimed to investigate the effects of denosumab on bone mineral density (BMD), spinal morphometry, and safety in children with OI compared with zoledronic acid. METHODS In this prospective study, 84 children or adolescents with OI were randomized to receive denosumab subcutaneous injection every 6 months or zoledronic acid intravenous infusion once. Changes of BMD and its Z-score, vertebral shape, serum levels of calcium and bone turnover biomarkers were assessed during the 1-year treatment. RESULTS After 12 months of treatment, BMD at the lumbar spine, femoral neck, and total hip significantly increased by 29.3%, 27.8%, and 30.2% in the denosumab group, and by 32.2%, 47.1%, and 41.1% in the zoledronic acid group (all P < .001 vs baseline). Vertebral height and projection area significantly increased after denosumab and zoledronic acid treatment. Rebound hypercalcemia was found to be a common and serious side effect of denosumab, of which 14.3% reached hypercalcemic crisis. Rebound hypercalcemia could be alleviated by switching to zoledronic acid treatment. CONCLUSION Treatment with denosumab or zoledronic acid is beneficial in increasing BMD and improving the spinal morphometry of children with OI. However, denosumab should be used with caution in pediatric patients with OI because of its common and dangerous side effect of rebound hypercalcemia. The appropriate dosage and dosing interval of denosumab need to be further explored in children with OI.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
35
|
Yu G, Fu X, Gong A, Gu J, Zou H, Yuan Y, Song R, Ma Y, Bian J, Liu Z, Tong X. Oligomeric proanthocyanidins ameliorates osteoclastogenesis through reducing OPG/RANKL ratio in chicken's embryos. Poult Sci 2024; 103:103706. [PMID: 38631227 PMCID: PMC11040129 DOI: 10.1016/j.psj.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.
Collapse
Affiliation(s)
- Gengsheng Yu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaohui Fu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Anqing Gong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianhong Gu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Hui Zou
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yan Yuan
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruilong Song
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yonggang Ma
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianchun Bian
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Zongping Liu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xishuai Tong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China.
| |
Collapse
|
36
|
Schaper-Gerhardt K, Gutzmer R, Angela Y, Zimmer L, Livingstone E, Schadendorf D, Hassel JC, Weishaupt C, Remes B, Kubat L, Spassova I, Becker JC. The RANKL inhibitor denosumab in combination with dual checkpoint inhibition is associated with increased CXCL-13 serum concentrations. Eur J Cancer 2024; 202:113984. [PMID: 38479119 DOI: 10.1016/j.ejca.2024.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Recent evidence suggests additional immunomodulatory properties of RANKL inhibition possibly boosting the clinical efficacy of immune checkpoint inhibitors (ICI). METHODS We conducted a prospective, multicentre clinical trial in unresectable stage IV melanoma patients with bone metastases who received denosumab in parallel with dual ICI (BONEMET) and performed comprehensive immune monitoring at baseline and 4, 12, and 24 weeks after initiation of therapy. Secondary endpoints included tolerability and efficacy. For comparison, biospecimens from melanoma patients treated with dual ICI without denosumab were analyzed accordingly and served as retrospective reference cohort. RESULTS In both the BONEMET (n = 16) and the reference cohort (n = 18) serum levels of 17 cytokines, including IFNγ were significantly increased after 4 weeks of treatment. Patients who received ICI and denosumab showed a significantly higher increase in serum CXCL-13 and a significant decrease in VEGFc compared with the reference cohort. While no changes in T cell composition were observed at 4 weeks, patients in the BONEMET cohort showed a significant decrease in the peripheral naïve T-cell population and an increase in CD8+ effector cells after 12 weeks. Treatment-related adverse events occurred with comparable frequency (93.8% in the BONEMET cohort versus 83.3% in the reference cohort). 7/16 patients in the BONEMET cohort and 8/18 patients in the reference cohort achieved disease control. CONCLUSION Denosumab in combination with dual ICI modulates cytokine expression and T-cell composition in peripheral blood. The upregulation of CXCL-13, a key factor for initiating tertiary lymphoid structures, strengthens the hypothesis that denosumab indeed boost immunological effects.
Collapse
Affiliation(s)
- Katrin Schaper-Gerhardt
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Campus Minden, Minden, Germany; Department of Dermatology and Allergy, Medical School Hannover, Hannover, Germany.
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Campus Minden, Minden, Germany; Department of Dermatology and Allergy, Medical School Hannover, Hannover, Germany
| | - Yenny Angela
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Campus Minden, Minden, Germany; Department of Dermatology and Allergy, Medical School Hannover, Hannover, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany; Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; German Cancer Consortium, Essen & National Center for Tumor Diseases, Campus Essen (NCT-West), Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, Essen, Germany; Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; German Cancer Consortium, Essen & National Center for Tumor Diseases, Campus Essen (NCT-West), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany; Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; German Cancer Consortium, Essen & National Center for Tumor Diseases, Campus Essen (NCT-West), Essen, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Muenster, Muenster, Germany
| | | | - Linda Kubat
- Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; Translational Skin Cancer Research (TSCR), University Medicine Essen, Germany
| | - Ivelina Spassova
- Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; Translational Skin Cancer Research (TSCR), University Medicine Essen, Germany
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, Essen, Germany; Westdeutsches Tumorzentrum, Essen, Germany, & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany; Translational Skin Cancer Research (TSCR), University Medicine Essen, Germany
| |
Collapse
|
37
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
38
|
Zhang S, Yin Y, Xiong H, Wang J, Liu H, Lu J, Zhang Q, Zhang L, Zhong J, Nie J, Lei K, Wang H, Yang S, Yao H, Wu H, Yu D, Ji X, Zhang H, Wu F, Xie W, Li W, Yao W, Zhong D, Sun H, Sun T, Guo Z, Wang R, Guo Y, Yu Z, Li D, Jin H, Song H, Chen X, Ma W, Hu Z, Liu D, Guo Y, Tang J, Jiang Z. Efficacy, Safety, and Population Pharmacokinetics of MW032 Compared With Denosumab for Solid Tumor-Related Bone Metastases: A Randomized, Double-Blind, Phase 3 Equivalence Trial. JAMA Oncol 2024; 10:448-455. [PMID: 38329745 PMCID: PMC10853867 DOI: 10.1001/jamaoncol.2023.6520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 02/09/2024]
Abstract
Importance The bioequivalence of denosumab biosimilar has yet to be studied in a 53-week, multicenter, large-scale, and head-to-head trial. A clinically effective biosimilar may help increase access to denosumab in patients with solid tumor-related bone metastases. Objectives To establish the biosimilarity of MW032 to denosumab in patients with solid tumor-related bone metastases based on a large-scale head-to-head study. Design, Setting, and Participants In this 53-week, randomized, double-blind, phase 3 equivalence trial, patients with solid tumors with bone metastasis were recruited from 46 clinical sites in China. Overall, 856 patients were screened and 708 eligible patients were randomly allocated to receive either MW032 or denosumab. Interventions Patients were randomly assigned (1:1) to receive MW032 or reference denosumab subcutaneously every 4 weeks until week 49. Main Outcomes and Measures The primary end point was percentage change from baseline to week 13 of natural logarithmic transformed urinary N-telopeptide/creatinine ratio (uNTx/uCr). Results Among the 701 evaluable patients (350 in the MW032 group and 351 in the denosumab group), the mean (range) age was 56.1 (22.0-86.0) years and 460 patients were women (65.6%). The mean change of uNTx/uCr from baseline to week 13 was -72.0% (95% CI, -73.5% to -70.4%) in the MW032 group and -72.7% (95% CI, -74.2% to -71.2%) in the denosumab group. These percent changes corresponded to mean logarithmic ratios of -1.27 and -1.30, or a difference of 0.02. The 90% CI for the difference (-0.04 to 0.09) was within the equivalence margin (-0.13 to 0.13); the mean changes of uNTx/uCr and bone-specific alkaline phosphatase (s-BALP) at each time point were also similar during 53 weeks. The differences of uNTx/uCr change were 0.015 (95% CI, -0.06 to 0.09), -0.02 (95% CI, -0.09 to 0.06), -0.05 (95% CI, -0.13 to 0.03) and 0.001 (95% CI, -0.10 to 0.10) at weeks 5, 25, 37, and 53, respectively. The differences of s-BALP change were -0.006 (95% CI, 0.06 to 0.05), 0.00 (95% CI, -0.07 to 0.07), -0.085 (95% CI, -0.18 to 0.01), -0.09 (95% CI, -0.20 to 0.02), and -0.13 (95% CI, -0.27 to 0.004) at weeks 5, 13, 25, 37 and 53, respectively. No significant differences were observed in the incidence of skeletal-related events (-1.4%; 95% CI, -5.8% to 3.0%) or time to first on-study skeletal-related events (unadjusted HR, 0.86; P = .53; multiplicity adjusted HR, 0.87; P = .55) in the 2 groups. Conclusions and Relevance MW032 and denosumab were biosimilar in efficacy, population pharmacokinetics, and safety profile. Availability of denosumab biosimilars may broaden the access to denosumab and reduce the drug burden for patients with advanced tumors. Trial Registration ClinicalTrials.gov Identifier: NCT04812509.
Collapse
Affiliation(s)
- Shaohua Zhang
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Jiangsu, PR China
| | - Hailin Xiong
- Huizhou Central People’s Hospital, Huizhou, PR China
| | | | - Hu Liu
- The First Affiliated Hospital of USTC/Anhui Provincial Cancer Hospital, Hefei, PR China
| | - Junguo Lu
- Nantong Tumor Hospital, Nantong, PR China
| | - Qingyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Longzhen Zhang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Jincai Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jianyun Nie
- Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Kaijian Lei
- The Second People’s Hospital of Yibin, Yibin, PR China
| | - Hong Wang
- Nanchang People’s Hospital, Nanchang, PR China
| | - Shu Yang
- The First Affiliated Hospital, The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Herui Yao
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | | | - Ding Yu
- Hubei Cancer Hospital, Wuhan, PR China
| | - Xuening Ji
- Zhongshan Clinical Collage of Dalian University, Dalian, PR China
| | - Hua Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumchi, PR China
| | - Fang Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Weimin Xie
- Guangxi Medical University Cancer Hospital, Nanning, PR China
| | - Wei Li
- The First Bethune Hospital of Jilin University, Changchun, PR China
| | - Weirong Yao
- The Jiangxi Provincial People’s Hospital, Nanchang, PR China
| | - Diansheng Zhong
- Tianjin Medical University General Hospital, Tianjin, PR China
| | | | - Tao Sun
- Liaoning Cancer Hospital & Institute, Shenyang, PR China
| | | | - Rui Wang
- Anhui Chest Hospital, Hefei, PR China
| | - Yanzhen Guo
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, PR China
| | - Zhuang Yu
- The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Dairong Li
- Chongqing University Cancer Hospital, Chongqing, PR China
| | | | - Haifeng Song
- Institute of Lifeomics, Academy of Military Medical Sciences, National Engineering Research Center for Protein Drugs, Beijing, PR China
| | - Xiaoyuan Chen
- Tsinghua Clinical Research Institute, School of Medicine, Tsinghua University, Beijing, PR China
| | - Wen Ma
- Mabwell (Shanghai) Bioscience Co, Ltd, Shanghai, PR China
| | - Zhitian Hu
- Mabwell (Shanghai) Bioscience Co, Ltd, Shanghai, PR China
| | - Datao Liu
- Mabwell (Shanghai) Bioscience Co, Ltd, Shanghai, PR China
| | - Yinhan Guo
- Mabwell (Shanghai) Bioscience Co, Ltd, Shanghai, PR China
| | - Jinhai Tang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province Hospital, Jiangsu, PR China
| | - Zefei Jiang
- Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, PR China
| |
Collapse
|
39
|
Liu A, Hayashi M, Ohsugi Y, Katagiri S, Akira S, Iwata T, Nakashima T. The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis. Nat Commun 2024; 15:2707. [PMID: 38548743 PMCID: PMC10978877 DOI: 10.1038/s41467-024-46746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Periodontitis, which is induced by repeated bacterial invasion and the ensuing immune reactions that follow, is the leading cause of tooth loss. Periodontal tissue is comprised of four different components, each with potential role in pathogenesis, however, most studies on immune responses focus on gingival tissue. Here, we present a modified ligature-induced periodontitis model in male mice to analyze the pathogenesis, which captures the complexity of periodontal tissue. We find that the inflammatory response in the peri-root tissues and the expression of IL-6 and RANKL by Thy-1.2- fibroblasts/stromal cells are prominent throughout the bone destruction phase, and present already at an early stage. The initiation phase is characterized by high levels of ST2 (encoded by Il1rl1) expression in the peri-root tissue, suggesting that the IL-33/ST2 axis is involved in the pathogenesis. Both Il1rl1- and Il33-deficient mice exhibit exacerbated bone loss in the acute phase of periodontitis, along with macrophage polarization towards a classically activated phenotype and increased neutrophil infiltration, indicating a protective role of the IL-33/ST2 axis in acute inflammation. Thus, our findings highlight the hidden role of the peri-root tissue and simultaneously advance our understanding of the etiology of periodontitis via implicating the IL-33/ST2 axis.
Collapse
Affiliation(s)
- Anhao Liu
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, IFReC,Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tomoki Nakashima
- Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
40
|
Huang J, Wu T, Jiang YR, Zheng XQ, Wang H, Liu H, Wang H, Leng HJ, Fan DW, Yuan WQ, Song CL. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res 2024; 12:18. [PMID: 38514644 PMCID: PMC10958005 DOI: 10.1038/s41413-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-βAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
Collapse
Affiliation(s)
- Jie Huang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Xuan-Qi Zheng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Huan Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hao Liu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Hui-Jie Leng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Dong-Wei Fan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Wan-Qiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Chun-Li Song
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China.
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China.
| |
Collapse
|
41
|
Ishizu H, Shimizu T, Ohashi Y, Kusunoki K, Kanayama M, Iwasaki N, Oha F. Zinc improves Denosumab and eldecalcitol efficacy for bone mineral density in patients with hypozincemia. J Bone Miner Metab 2024; 42:233-241. [PMID: 38324176 DOI: 10.1007/s00774-024-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION We aimed to investigate the effects of zinc deficiency and zinc medication in osteoporosis patients undergoing denosumab (DMAb). MATERIALS AND METHODS This retrospective study was conducted at a single hospital. The participants were female osteoporosis patients visiting between April 2019 and April 2020. All patients were treated with DMAb and eldecalcitol and recommended zinc-rich food. Based on zinc medication and serum zinc levels at the 12th month of dietary guidance, patients were categorized into the following four groups: hypozincemia with zinc medication, latent zinc deficiency with zinc medication, without zinc medication, and control without zinc medication. Longitudinal serum zinc concentrations, bone mineral density (BMD), and occurrence of fractures were measured. We investigated the factors influencing no response to DMAb and eldecalcitol treatment. RESULTS Among the 145 patients followed up for 24 months, dietary guidance did not change the serum zinc concentration; however, zinc medication significantly increased these levels. The hypozincemia group did not show a significant BMD increase in the lumbar spine and femoral neck after DMAb and eldecalcitol treatment during dietary guidance; however, zinc medication increased these to the same levels as the other groups. In multivariate analyses, hypozincemia and thyroid disease were identified as the factors affecting no response. While 28.2% of patients with latent zinc deficiency without zinc medication suffered fractures, no fractures occurred in hypozincemia patients with zinc medication. CONCLUSION Hypozincemia may reduce the efficacy of DMAb and eldecalcitol in increasing BMD and fracture prevention.
Collapse
Affiliation(s)
- Hotaka Ishizu
- Hakodate Central Hospital, Hakodate, Hokkaido, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan.
| | - Yusuke Ohashi
- Hakodate Central Hospital, Hakodate, Hokkaido, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Kenichi Kusunoki
- Hakodate Central Hospital, Hakodate, Hokkaido, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | | | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Japan
| | - Fumihiro Oha
- Hakodate Central Hospital, Hakodate, Hokkaido, Japan
| |
Collapse
|
42
|
Teh JW, Mac Gearailt C, Lappin DWP. Post-Transplant Bone Disease in Kidney Transplant Recipients: Diagnosis and Management. Int J Mol Sci 2024; 25:1859. [PMID: 38339137 PMCID: PMC10856017 DOI: 10.3390/ijms25031859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Kidney transplantation is the preferred gold standard modality of treatment for kidney failure. Bone disease after kidney transplantation is highly prevalent in patients living with a kidney transplant and is associated with high rates of hip fractures. Fractures are associated with increased healthcare costs, morbidity and mortality. Post-transplant bone disease (PTBD) includes renal osteodystrophy, osteoporosis, osteonecrosis and bone fractures. PTBD is complex as it encompasses pre-existing chronic kidney disease-mineral bone disease and compounding factors after transplantation, including the use of immunosuppression and the development of de novo bone disease. After transplantation, the persistence of secondary and tertiary hyperparathyroidism, renal osteodystrophy, relative vitamin D deficiency and high levels of fibroblast growth factor-23 contribute to post-transplant bone disease. Risk assessment includes identifying both general risk factors and kidney-specific risk factors. Diagnosis is complex as the gold standard bone biopsy with double-tetracycline labelling to diagnose the PTBD subtype is not always readily available. Therefore, alternative diagnostic tools may be used to aid its diagnosis. Both non-pharmacological and pharmacological therapy can be employed to treat PTBD. In this review, we will discuss pathophysiology, risk assessment, diagnosis and management strategies to manage PTBD after kidney transplantation.
Collapse
Affiliation(s)
- Jia Wei Teh
- Department of Nephrology, Galway University Hospital, H91 YR71 Galway, Ireland
| | - Conall Mac Gearailt
- Department of Rheumatology, Galway University Hospital, H91 YR71 Galway, Ireland
| | - David W. P. Lappin
- Department of Nephrology, Galway University Hospital, H91 YR71 Galway, Ireland
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
43
|
Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med 2024; 56:264-272. [PMID: 38297158 PMCID: PMC10907717 DOI: 10.1038/s12276-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoclasts are the principal cells that efficiently resorb bone. Numerous studies have attempted to reveal the molecular pathways leading to the differentiation and activation of osteoclasts to improve the treatment and prevention of osteoporosis and other bone-destructive diseases. While the cumulative knowledge of osteoclast regulatory molecules, such as receptor activator of nuclear factor-kB ligand (RANKL) and nuclear factor of activated T cells 1 (NFATc1), contributes to the understanding of the developmental progression of osteoclasts, little is known about how the discrete steps of osteoclastogenesis modify osteoclast status but not the absolute number of osteoclasts. The regulatory mechanisms involved in osteoclast maturation but not those involved in differentiation deserve special attention due to their potential use in establishing a more effective treatment strategy: targeting late-phase differentiation while preserving coupled bone formation. Recent studies have shed light on the molecules that govern late-phase osteoclast differentiation and maturation, as well as the metabolic changes needed to adapt to shifting metabolic demands. This review outlines the current understanding of the regulation of osteoclast differentiation, as well as osteoclast metabolic adaptation as a differentiation control mechanism. Additionally, this review introduces molecules that regulate the late-phase osteoclast differentiation and thus minimally impact coupled bone formation.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Cui Y, Lv B, Li Z, Ma C, Gui Z, Geng Y, Liu G, Sang L, Xu C, Min Q, Kong L, Zhang Z, Liu Y, Qi X, Fu D. Bone-Targeted Biomimetic Nanogels Re-Establish Osteoblast/Osteoclast Balance to Treat Postmenopausal Osteoporosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303494. [PMID: 37794621 DOI: 10.1002/smll.202303494] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Indexed: 10/06/2023]
Abstract
Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.
Collapse
Affiliation(s)
- Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Bin Lv
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Zhongying Li
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Chunming Ma
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Zhengwei Gui
- Department of Thyroid and Breast, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yongtao Geng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Linchao Sang
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Chen Xu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Qi Min
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yang Liu
- Department of Spine Surgery, Changzheng hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, 050051, P. R. China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
45
|
Evenepoel P, Jørgensen HS, Bover J, Davenport A, Bacchetta J, Haarhaus M, Hansen D, Gracia-Iguacel C, Ketteler M, McAlister L, White E, Mazzaferro S, Vervloet M, Shroff R. Recommended calcium intake in adults and children with chronic kidney disease-a European consensus statement. Nephrol Dial Transplant 2024; 39:341-366. [PMID: 37697718 DOI: 10.1093/ndt/gfad185] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/13/2023] Open
Abstract
Mineral and bone disorders (MBD) are common in patients with chronic kidney disease (CKD), contributing to significant morbidity and mortality. For several decades, the first-line approach to controlling hyperparathyroidism in CKD was by exogenous calcium loading. Since the turn of the millennium, however, a growing awareness of vascular calcification risk has led to a paradigm shift in management and a move away from calcium-based phosphate binders. As a consequence, contemporary CKD patients may be at risk of a negative calcium balance, which, in turn, may compromise bone health, contributing to renal bone disease and increased fracture risk. A calcium intake below a certain threshold may be as problematic as a high intake, worsening the MBD syndrome of CKD, but is not addressed in current clinical practice guidelines. The CKD-MBD and European Renal Nutrition working groups of the European Renal Association (ERA), together with the CKD-MBD and Dialysis working groups of the European Society for Pediatric Nephrology (ESPN), developed key evidence points and clinical practice points on calcium management in children and adults with CKD across stages of disease. These were reviewed by a Delphi panel consisting of ERA and ESPN working groups members. The main clinical practice points include a suggested total calcium intake from diet and medications of 800-1000 mg/day and not exceeding 1500 mg/day to maintain a neutral calcium balance in adults with CKD. In children with CKD, total calcium intake should be kept within the age-appropriate normal range. These statements provide information and may assist in decision-making, but in the absence of high-level evidence must be carefully considered and adapted to individual patient needs.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Skou Jørgensen
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
| | - Jordi Bover
- Department of Nephrology, University Hospital Germans Trias i Pujol, Barcelona, Catalonia, Spain
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute, Can Ruti Campus, Barcelona, Catalonia, Spain
| | - Andrew Davenport
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Justine Bacchetta
- Pediatric Nephrology Rheumatology and Dermatology Unit, Reference Center for Rare Renal Diseases, ORKID and ERK-Net networks, Lyon University Hospital, Bron, France
- Lyon Est Medical School, INSERM1033 Research Unit, Claude Bernard Lyon 1 University, Lyon, France
| | - Mathias Haarhaus
- Division of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Diaverum Sweden, Malmö, Sweden
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Carolina Gracia-Iguacel
- Department of Renal Medicine, IIS-Fundación Jiménez Díaz UAM University Hospital, Madrid, Spain
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Louise McAlister
- Dietetic Team, UCL Great Ormond Street Hospital for Children and University College London, London, UK
| | - Emily White
- Dietetic Team, Royal Free Hospital, University College London, London, UK
| | - Sandro Mazzaferro
- Department of Translation and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marc Vervloet
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, The Netherlands
- Department of Nephrology, Amsterdam UMC, The Netherlands
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital for Children, London, UK
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
46
|
Dong L, Jiang L, Xu Z, Zhang X. Denosumab, teriparatide and bisphosphonates for glucocorticoid-induced osteoporosis: a Bayesian network meta-analysis. Front Pharmacol 2024; 15:1336075. [PMID: 38313307 PMCID: PMC10834754 DOI: 10.3389/fphar.2024.1336075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Several medications have been used for glucocorticoids-induced osteoporosis (GIO). However, the best therapeutic option for GIO is still controversial. A Bayesian network meta-analysis was conducted to compare the efficacy and safety of denosumab, teriparatide and bisphosphonates for patients with GIO. Methods: Relevant randomized controlled trials published in PubMed, Embase, Cochrane Library and ClinicalTrials.gov up to August 2023 were searched. The following efficiency and safety outcomes were extracted for comparison: bone mineral density (BMD) percentage changes in lumbar spine, femur neck and total hip, and incidences of adverse events (AEs), serious adverse events (SAEs), vertebrae and non-vertebrae fracture. Bayesian random effects models were used for multiple treatment comparisons. Results: 11 eligible RCTs involving 2,877 patients were identified. All the six medications including alendronate, risedronate, etidronate, zoledronate, teriparatide, and denosumab and were effective in increasing BMD. Teriparatide and denosumab were more effective in improving lumbar spine and femur neck BMD, and reducing vertebrae fracture. Alendronate and denosumab were more effective in improving total hip BMD. Alendronate and teriparatide had the lowest incidences of AEs and SAEs. Conclusion: Teriparatide denosumab and the bisphosphonates are all effective in improving BMD for GIO patients. Based on this network meta-analysis, teriparatide and denosumab have higher efficiency in improving lumbar spine and femur neck BMD, and reducing vertebrae fracture. Systematic Review Registration: 10.17605/OSF.IO/2G8YA, identifier CRD42023456305.
Collapse
Affiliation(s)
- Liang Dong
- Department of Orthopedic, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Lianghai Jiang
- Department of Spinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Zhengwei Xu
- Department of Orthopedic, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| | - Xiaobo Zhang
- Department of Orthopedic, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, China
| |
Collapse
|
47
|
Xu J, Gao F, Liu W, Guan X. Cell-cell communication characteristics in breast cancer metastasis. Cell Commun Signal 2024; 22:55. [PMID: 38243240 PMCID: PMC10799417 DOI: 10.1186/s12964-023-01418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024] Open
Abstract
Breast cancer, a highly fatal disease due to its tendency to metastasize, is the most prevalent form of malignant tumors among women worldwide. Numerous studies indicate that breast cancer exhibits a unique predilection for metastasis to specific organs including the bone, liver, lung, and brain. However, different types of, The understanding of the heterogeneity of metastatic breast cancer has notably improved with the recent advances in high-throughput sequencing techniques. Focusing on the modification in the microenvironment of the metastatic organs and the crosstalk between tumor cells and in situ cells, noteworthy research points include the identification of two distinct modes of tumor growth in bone metastases, the influence of type II pneumocyte on lung metastases, the paradoxical role of Kupffer cells in liver metastases, and the breakthrough of the blood-brain barrier (BBB) breach in brain metastases. Overall, this review provides a comprehensive overview of the characteristics of breast cancer metastases, shedding light on the pivotal roles of immune and resident cells in the development of distinct metastatic foci.
Collapse
Affiliation(s)
- Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
48
|
Rupel K, Dal Broi C, Ottaviani G, Bellassai L, Bogdan Preda TM, Di Lenarda R, Biasotto M. Changes in mandibular radiomorphometric indices in osteoporosis patients treated with denosumab: a retrospective case-control study. BMC Oral Health 2024; 24:89. [PMID: 38229055 DOI: 10.1186/s12903-024-03870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Radiomorphometric indices measured on Dental Panoramic Radiography (DPR) can reflect Bone Mineral Density (BMD). The aim of our study is to evaluate changes in DPR radiographic markers in patients undergoing antiresorptive therapy with denosumab and correlate them to BMD and serum bone turnover markers (BTM). METHODS We evaluated two radiomorphometric indices: Mandibular Cortical Width (MCW) and Panoramic Mandibular Index (PMI), in patients undergoing antiresorptive therapy with denosumab at T0 (before starting the therapy) and at T1 (after 12 months), comparing results with a control group of healthy patients who performed two DPRs at a one-year time distance. Correlation analysis was performed in the denosumab group, as well as ROC curves were obtained for both indices. RESULTS The study included 18 patients and 21 controls according to specific inclusion and exclusion criteria, matched by gender and age. Both MCW and PMI were significantly lower at T0 in the denosumab group, consistently with lower BMD. MCW showed significant correlation with femoral and lumbar DEXA and was significantly lower in patients with osteoporosis compared to osteopenia. Only PMI index increased significantly in the denosumab group from T0 to T1. After one year (T1), there weren't any differences between patients and controls for both indices. No significant correlations were found with BTMs. Sensitivity and specificity for MCW and PMI were also calculated. CONCLUSIONS Our results show how CMW shows sufficient sensitivity and specificity to be used as a radiographic marker to screen and intercept patients with osteoporosis. PMI seems to be able to reflect changes in response to antiresorptive therapy with denosumab. Further studies are needed to confirm our hypothesis.
Collapse
Affiliation(s)
- Katia Rupel
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy.
| | - Chiara Dal Broi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy
| | - Laura Bellassai
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy
| | | | - Roberto Di Lenarda
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy
| | - Matteo Biasotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, n 447 - 34129, Trieste, Italy
| |
Collapse
|
49
|
Zhao J, Dou Y, Liang G, Huang H, Hong K, Yang W, Zhou G, Sha B, Liu J, Zeng L. Global Publication Trends and Research Hotspots of the Immune System and Osteoporosis: A Bibliometric and Visualization Analysis from 2012 to 2022. Endocr Metab Immune Disord Drug Targets 2024; 24:455-467. [PMID: 37881072 DOI: 10.2174/0118715303257269231011073100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone metabolism disorder in which the immune system and bone metabolism interact. OBJECTIVE The purpose of this study was to explore the research status, hot spots and trends regarding the influence of the immune system on OP and to provide a basis for research directions and applications in this field. METHODS We searched and collected literature about the immune system and OP published from 2012 to 2022 in the Web of Science Core Collection database. All the included studies were subjected to bibliometrics analysis using Hiplot Pro, VOSviewer and CiteSpace software to produce statistics and visual analyses of the literature output, countries, institutions, authors, keywords and journals. RESULTS A total of 1201 papers were included, and the number of citations of these articles reached 31,776. The number of publications and citations on the immune system and OP has increased year by year. The top three countries with the greatest number of papers published were China, the United States of America (USA) and Italy. The two institutions with the largest number of papers published were Sichuan University and Soochow University, both located in China. De Martinis Massimo (Italy) and Ginaldi Lia (Italy) are prolific authors in this field. The representative academic journals are Osteoporosis International, Frontiers in Immunology, Journal of Bone and Mineral Research, PloS One and Bone. The results of the keyword cooccurrence analysis showed that the research topics in this field mainly focused on T cells, cytokines, signaling pathways, vitamin D, postmenopausal OP and immune diseases. The keyword burst results showed that zoledronic acid, chain fatty acids and gut microbiota are the frontiers and trends of future research on this topic. CONCLUSION The influence of the immune system on OP has been widely studied, and the current research in this field focuses on the effect or mechanism of immune-related cytokines, signaling pathways and vitamin D on OP. Future research trends in this field should focus on the immune regulation mechanism and clinical transformation of zoledronic acid, chain fatty acids and the gut microbiota in OP.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| |
Collapse
|
50
|
Behrens A, Wurmthaler L, Heindl F, Gass P, Häberle L, Volz B, Hack CC, Emons J, Erber R, Hartmann A, Beckmann MW, Ruebner M, Dougall WC, Press MF, Fasching PA, Huebner H. RANK and RANKL Expression in Tumors of Patients with Early Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84:77-85. [PMID: 38178900 PMCID: PMC10764119 DOI: 10.1055/a-2192-2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction The receptor activator of nuclear factor-κB (RANK) pathway was associated with the pathogenesis of breast cancer. Several studies attempted to link the RANK/RANKL pathway to prognosis; however, with inconsistent outcomes. We aimed to further contribute to the knowledge about RANK/RANKL as prognostic factors in breast cancer. Within this study, protein expression of RANK and its ligand, RANKL, in the tumor tissue was analyzed in association with disease-free survival (DFS) and overall survival (OS) in a study cohort of patients with early breast cancer. Patients and Methods 607 samples of female primary and early breast cancer patients from the Bavarian Breast Cancer Cases and Controls Study were analyzed to correlate the RANK and RANKL expression with DFS and OS. Therefore, expression was quantified using immunohistochemical staining of a tissue microarray. H-scores were determined with the cut-off value of 8.5 for RANK and 0 for RANKL expression, respectively. Results RANK and RANKL immunohistochemistry were assessed by H-score. Both biomarkers did not correlate (ρ = -0.04). According to molecular subtypes, triple-negative tumors and HER2-positive tumors showed a higher number of RANK-positive tumors (H-score ≥ 8.5), however, no subtype-specific expression of RANKL could be detected. Higher RANKL expression tended to correlate with a better prognosis. However, RANK and RANKL expression could not be identified as statistically significant prognostic factors within the study cohort. Conclusions Tumor-specific RANK and RANKL expressions are not applicable as prognostic factors for DFS and OS, but might be associated with subtype-specific breast cancer progression.
Collapse
Affiliation(s)
- Annika Behrens
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lena Wurmthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Volz
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Ansbach University of Applied Sciences, Ansbach, Germany
| | - Carolin C. Hack
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Julius Emons
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Ramona Erber
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - William C. Dougall
- Hematology and Oncology Research, Amgen, Inc., Seattle, WA, USA
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael F. Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| |
Collapse
|