1
|
Sun S, Rong J, Wang C, Li R, Zhang H, Wang W, Duan H, Nie Z, Xiang D, Liu Z. Intranasal administration of exosomes derived from adipose mesenchymal stem cells ameliorates depressive-like behaviors and inhibits inflammation via AMPK/mTOR-mediated autophagy. J Affect Disord 2025; 382:227-247. [PMID: 40250814 DOI: 10.1016/j.jad.2025.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/25/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe, and often treatment-resistant, psychiatric disorder. Mesenchymal stem cell-derived exosomes have been shown to be neuroprotective. Here we employed adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) as a novel therapeutic approach for depressive-like behavior in mice and explored the underlying mechanisms. METHODS ADSC-Exos were administered intranasally to mice subjected to chronic restraint stress to assess behavioral changes and neuroprotection in terms of apoptosis, AMPK-mTOR signaling, and NLRP3 pathway activation by western blotting, microglial activation by immunofluorescence, and changes in serum inflammatory factors by ELISA. The effects of ADSC-Exos were also studied in vitro in HT22 cells. RESULTS ADSC-Exos significantly improved depressive-like behavior, anxiety-like behavior, and cognitive function in mice. ADSC-Exos had significant neuroprotective effects, including reducing neuronal apoptosis and promoting autophagy by activating AMPK-mTOR signaling, ultimately reducing neuroinflammation. In vitro, ADSC-Exos inhibited corticosterone-induced apoptosis, activated autophagy in an AMPK pathway-dependent manner, and inhibited NLRP3 inflammasome activation. CONCLUSION ADSC-Exos may be a potential treatment for MDD by alleviating depressive-like behaviors and protecting against tissue injury, possibly through activation of AMPK-mTOR signaling and inhibition of NLRP3 inflammasome-mediated neuroinflammation.
Collapse
Affiliation(s)
- Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
2
|
Seth G, Singh S, Sharma G, Suvedi D, Kumar D, Nagraik R, Sharma A. Harnessing the power of stem cell-derived exosomes: a rejuvenating therapeutic for skin and regenerative medicine. 3 Biotech 2025; 15:184. [PMID: 40417660 PMCID: PMC12102458 DOI: 10.1007/s13205-025-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Exosomes are small extracellular vesicles produced by most cell types and contain proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, and DNA) that can be released by donor cells to influence the function of recipient cells. Skin photoaging is the premature aging of skin structures caused by prolonged exposure to ultraviolet (UV), as demonstrated by depigmentation, roughness, rhytides, elastosis, and precancerous alterations. Exosomes are associated with aging processes such as oxidative damage, inflammation, and senescence. Exosomes' anti-aging properties have been linked to various in vitro and preclinical investigations. There are still several unanswered questions about the use of MSC exosomes for skin rejuvenation, despite encouraging results. Uncertainty surrounds the precise processes by which exosomes stimulate the creation of collagen, skin tissue via a variety of mechanisms, including reduced matrix metalloproteinase (MMP) expression, increased collagen and elastin production, and modulation of intracellular signaling pathways and intercellular communication. These findings suggest the therapeutic potential of exosomes in skin aging. This review provides information on the molecular mechanisms and consequences of exosome anti-aging.
Collapse
Affiliation(s)
- Gracy Seth
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Siddharth Singh
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Geetansh Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Divyesh Suvedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| |
Collapse
|
3
|
Saeedi P, Nilchiani LS, Zand B, Hajimirghasemi M, Halabian R. An overview of stem cells and cell products involved in trauma injury. Regen Ther 2025; 29:60-76. [PMID: 40143930 PMCID: PMC11938091 DOI: 10.1016/j.reth.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Trauma injuries represent a significant public health burden worldwide, often leading to long-term disability and reduced quality of life. This review provides a comprehensive overview of the therapeutic potential of stem cells and cell products for traumatic injuries. The extraordinary characteristics of stem cells, such as self-renewal and transdifferentiation, make them definitive candidates for tissue regeneration. Mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) have been tested in preclinical studies for treating distinct traumatic injuries. Stem cell mechanisms of action are addressed through paracrine signaling, immunomodulation, differentiation, and neuroprotection. Cell products such as conditioned media, exosomes, and secretomes offer cell-free resources, thereby avoiding the risks of live cell transplantation. Clinical trials have reported many effective outcomes; however, variability exists across trauma types. Some challenges include tumorigenicity, standardized protocols, and regulatory issues. Collaboration and interdisciplinary research are being conducted to harness stem cells and products for trauma treatment. This emerging field is promising for improving patient recovery and quality of life after traumatic injuries.
Collapse
Affiliation(s)
- Pardis Saeedi
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Nilchiani
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Bita Zand
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Maryam Hajimirghasemi
- Department of Internal Medicine, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xiang R, Jiali H, Xingxin L, Min W, Peng J, Neng N, Jing Z, Yizhou Z, Jinbo H, Meili G. IFN-γ Synergizes with TNF-α to Induce RIPK1-Independent Necroptosis of Mesenchymal Stem/Stromal Cells. Adv Biol (Weinh) 2025:e00577. [PMID: 40432483 DOI: 10.1002/adbi.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/30/2025] [Indexed: 05/29/2025]
Abstract
IFN-γ and TNF-α are two vital inflammatory factors elevated aberrantly in many diseases. Such an inflammatory microenvironment is detrimental to residual cells such as mesenchymal stem cells (MSCs), yet the precise mechanisms are not fully understood. IFN-γ and TNF-α have distinct effects on the immunoregulatory properties of MSCs, and they have been proposed as optimal priming factors to enhance the immunosuppressive capacity of engineered MSCs. Thus, the overall effects of IFN-γ and/or TNF-α exposure on MSCs needs to be elucidated. Here, it is found that IFN-γ and TNF-α synergistically induce cell death of MSCs via necroptosis. When MSCs are exposed to both IFN-γ and TNF-α, their morphological features and biological functions are impaired. Mechanistically revealed by RNA-Sequencing, the injured MSCs undergo a unique cell death process, namely necroptosis. Compared with controls, IFN-γ synergized with TNF-α to increase the expression of RIPK1, RIPK3, MLKL, and all other genes associated with necroptosis. Rescue experiments further demonstrate that this process can be reversed by RIPK3 and MLKL inhibitors but not by the RIPK1 inhibitor, suggesting a RIPK1-independent pathway. Collectively, this study discloses an inflammatory injury mechanism of MSCs, which may shed new light on revealing the MSCs deficits in many inflammatory diseases with expectations to inspire potential targeted therapies. In addition, inflammatory impairment should be taken into consideration when delivering cell therapy based on MSCs primed with IFN-γ and TNF-α.
Collapse
Affiliation(s)
- Ren Xiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Huo Jiali
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Li Xingxin
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Wang Min
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Jin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Nie Neng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Zhang Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Zheng Yizhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Huang Jinbo
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| | - Ge Meili
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin institutes of Health Science, Tianjin, 300020, China
| |
Collapse
|
5
|
Liu J, Li B, Zhao B, Liu W, Yang F, Yang J, Jiang J, Hu K. IL-33 alleviates corneal nerve damage in herpes simplex keratitis. Int Immunopharmacol 2025; 159:114833. [PMID: 40394801 DOI: 10.1016/j.intimp.2025.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/11/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Herpes simplex keratitis (HSK) is a leading cause of corneal blindness globally, primarily resulting from herpes simplex virus type 1 (HSV-1) infection. HSK can cause pervasive and irreversible corneal nerve damage, leading to decreased corneal sensitivity and vision loss. Interleukin (IL)-33, a multifunctional cytokine, plays an important role in immune and inflammatory responses. However, the effects of IL-33 on nerve damage associated with HSK and the underlying mechanisms remain poorly understood. In this study, we first evaluated the effects of IL-33 on the severity of HSK and corneal nerve damage in a mouse model of HSK. The mechanisms of IL-33 on the production of neuroprotective factors by corneal epithelial cells (HCE-Ts) were investigated in an HSV-1 infection model in vitro. Additionally, the role and mechanism of IL-33 in regulating macrophage polarization for neuroprotection were investigated through in vitro co-culture experiments. The results indicated that IL-33 reduced the severity of HSK and protected corneal nerves in HSK mouse model. Mechanistically, IL-33 promoted the production of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) via activation of the GSK3β/β-catenin signaling pathway in corneal epithelial cells. Furthermore, IL-33 promoted M2 macrophage polarization through activation of the JAK2/STAT6 pathway, which in turn attenuated inflammatory responses and reduced neuronal apoptosis. These findings reveal the neuroprotective mechanisms of IL-33 in HSK and offer new insights for further research and treatment of HSK.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Boda Li
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Boxiao Zhao
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Liu
- Department of Ophthalmology, Linyi Bright Eye Hospital Intersection of Lanling Road and Fuzuo Road, Linyi, 276002, China
| | - Fan Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jingya Yang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China; Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
6
|
Nan DN, Praneetpong N, Bulanawichit W, Chantarangsu S, Everts V, Ferreira JN, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Biomechanical force-primed periodontal ligament stem cells exhibit a tolerance effect against bacterial inflammation. J Dent 2025; 159:105820. [PMID: 40381879 DOI: 10.1016/j.jdent.2025.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVE As mechanosensory cells, periodontal ligament stem cells (PDLSCs) react to mechanical force through proliferative, immunomodulatory, and regenerative actions that promote bone deposition. This study aimed to investigate how biomechanical compressive forces modulate PDLSCs' self-tolerance to proinflammatory responses. METHODS PDLSCs were cultured and characterized using flow cytometry. Intermittent compressive force (ICF) was applied to the cells using a computerized-controlled apparatus, with a force of 1.5 g/cm² at 0.23 Hz for 24 hours. TLR4 activation was induced using lipopolysaccharides (LPS) from P. gingivalis, in the presence or absence of ICF. Pathway inhibitors targeting TGF-β receptor type 1, Rho kinase, and NF-kB were applied to investigate the signaling pathways. Pro-inflammatory cytokine levels were measured using qPCR and ELISA. Western blotting was performed to assess the protein expression of TLR4 and TGF-β1. Immunofluorescence staining was used to localize TLR4. Osteogenic differentiation and IDO enzymatic activity were assessed. RESULTS Our results showed that PDLSCs primed with ICF developed tolerance to self-inflammatory responses when exposed to LPS, as indicated by reduced levels of inflammatory factors such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. This tolerance, specific to ICF-primed PDLSCs, was partially mediated by the NF-kB p65 signaling pathway. Additionally, ICF enhanced PDLSC immunosuppressive properties and restored osteogenic differentiation, which had been delayed by LPS/TLR4 activation. Notably, TLR4 responded directly to ICF stimulation. CONCLUSIONS This study demonstrated that priming inflamed PDLSCs with biomechanical compressive force induces a tolerance effect against infection-induced inflammation, promoting bone regeneration. CLINICAL SIGNIFICANCE This study underscores the critical role of tolerance mechanisms in maintaining PDLSCs homeostasis, highlights the intricate interplay between biomechanical forces and immune modulation, and provides new insights into manipulating stem cells and developing therapeutic strategies to enhance bone and tissue regeneration in immune-related disorders, particularly periodontal disease.
Collapse
Affiliation(s)
- Daneeya Na Nan
- Division of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Natnicha Praneetpong
- Division of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wajathip Bulanawichit
- Division of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Cell Biology, Faculty of Dentistry, University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Joao N Ferreira
- Center of Excellence and Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence in Genomics and Precision Dentistry and Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Nuttapol Limjeerajarus
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Costela-Ruiz VJ, González-Vigil E, Espinosa-Ibáñez O, Alcázar – Caballero RM, Melguizo-Rodríguez L, Fernández-López O, Arias-Santiago S. Application of allogeneic adult mesenchymal stem cells in the treatment of venous ulcers: A phase I/II randomized controlled trial protocol. PLoS One 2025; 20:e0323173. [PMID: 40373055 PMCID: PMC12080757 DOI: 10.1371/journal.pone.0323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/26/2025] [Indexed: 05/17/2025] Open
Abstract
OBJECTIVE To evaluate the feasibility, safety and efficacy of the cutaneous application of Bioengineered Artificial Mesenchymal Sheet (BAMS) in venous leg ulcers (VLUs) versus conventional treatment. METHODS This protocol is based on the design of a Phase I/II, multicenter, randomized, controlled, open-label clinical trial investigating the application of a biological dressing supplemented with mesenchymal stem cells (NCT05962931). The clinical trial is being conducted in 2 primary care units within the Granada Metropolitan Health District. A total of 20 patients with VLUs are being randomized (1:1) into 2 intervention arms: a control group and a treatment group. The intervention in the treatment group consists of the local application of 4 doses of BAMS, administered once per week, while the control group receives conventional therapy. Feasibility will be assessed based on the ability to complete the administration of 4 doses in at least 80% of the patients in the treatment group. Safety will be evaluated by analyzing the incidence of adverse effects and serious adverse effects. Efficacy will be assessed in terms of the percentage of wound closure (measured by wound area reduction), macroscopic assessment of the lesion (visual macroscopic analysis and RESVECH 2.0 scale), analysis of growth factors and inflammatory cytokines (ELISA test), pain levels (VAS scale) and quality of life (CIVIQ 20). RESULTS If confirmed, BAMS-based therapy may provide an effective treatment for VLUs, potentially reducing wound closure time and associated complications. This therapy could significantly enhance patients' quality of life due to the regenerative and analgesic properties of the biological dressing. DISCUSSION Given the biological activity of mesenchymal stem cells, an accelerated healing effect is expected in the treatment group. This could lead to shorter healing times for chronic wounds, resulting in significant benefits for patients, healthcare professionals, and overall healthcare costs. TRIAL REGISTRATION NCT05962931.
Collapse
Affiliation(s)
- Víctor J. Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
| | - Encarnación González-Vigil
- Andalusian Health Service, Granada Metropolitan Health District, Primary Care Unit of Atarfe (Granada), Granada, Spain
| | - Olga Espinosa-Ibáñez
- Tissue Engineering and Cell Production Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
| | - Olga Fernández-López
- Andalusian Network for the Design and Translation of Advanced Therapies, Junta de Andalucía, Seville, Spain
| | - Salvador Arias-Santiago
- Instituto Investigación Biosanitaria, ibs. Granada, Spain
- Tissue Engineering and Cell Production Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada. Spain
- Dermatology Department, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Li X, Liao J, Zheng Y, Cai W, Chen J, Liang Y, Chen Y, Li X, Luo J, Xie J, Zhou M, Hang L, Sun X, Yue X, Wang X, Wang Y, Wang H. Mesenchymal stem cells derived from hPSC via neural crest attenuate chemotherapy-induced premature ovarian insufficiency by ameliorating apoptosis and oxidative stress in granulosa cells. Stem Cell Res Ther 2025; 16:239. [PMID: 40361250 PMCID: PMC12076839 DOI: 10.1186/s13287-025-04346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) poses a significant threat to female reproductive health and currently lacks effective interventions. Recent studies highlight the promising potential of human pluripotent stem cell-derived mesenchymal stem cells (hPSC-MSC) in regenerative medicine. However, research on hPSC-MSC-based treatments for POI remains limited, particularly in the characterization of the intermediate differentiation stages from hPSC to MSC. This study presents an accelerated differentiation protocol for generating hPSC-MSC via neural crest cells (NCC) and evaluates their therapeutic potential in chemotherapy-induced POI. METHODS We modified a canonical small molecule-mediated protocol for hPSC-NCC-MSC differentiation. Systematic characterization of differentiated-cells was performed using qPCR, immunofluorescence, cell viability assays, flow cytometry and trilineage differentiation. In vivo, hPSC-NCC-MSC were transplanted into chemotherapy-induced POI SD rat models, and parameters such as body weight, ovarian weight, estrous cycle, hormone levels, follicle count, and mating were assessed. Granulosa cells (GC) apoptosis was analyzed using TUNEL assay and immunohistochemistry. In vitro, their effects on apoptosis inhibition and oxidative stress alleviation were investigated in a cultured GC cell line. Additionally, comparisons between umbilical cord MSC (UC-MSC) and hPSC-NCC-MSC in chemotherapy-induced POI was conducted. RESULTS Our optimized protocol, combining CHIR99021 and SB431542, efficiently induced NCC from both human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC). The programmed hPSC-NCC-MSC, characterized by specific NCC markers (P75, HNK1, SOX10, and AP2α), exhibited typical MSC morphology, trilineage differentiation potential, favorable cell viability, and prominent anti-senescence properties. Among these, NCC differentiated from H1-hESCs (H1-NCC) demonstrated the highest induction efficiency (72.45%), and H1-NCC-derived MSC (H1-NCC-MSC) displayed superior proliferation and anti-senescence properties compared to UC-MSC. Besides, H1-NCC-MSC exhibited therapeutic efficacy comparable to UC-MSC in both in vivo and in vitro models of chemotherapy-induced POI, potentially through mechanisms involving reduced GC apoptosis, alleviated oxidative stress, and improved mitochondrial function. CONCLUSIONS Our findings propose a modified hPSC-NCC-MSC differentiation protocol, offering an inexhaustible and stable source for regenerative therapies. Furthermore, we provide the first experimental evidence that hPSC-NCC-MSC have therapeutic potential comparable to UC-MSC in restoring chemotherapy-induced POI. The underlying mechanisms are likely associated with paracrine-mediated effects on GC apoptosis, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xinran Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinrong Liao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Youhong Zheng
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Cai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Chen
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Liang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanmei Chen
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxuan Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamao Luo
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Xie
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Manping Zhou
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lilin Hang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiujuan Sun
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Yue
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Huiyan Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Chen L, Kadoya K, Endo T, Iwasaki N, Terkawi MA. Efferocytosis at the frontline of homeostasis: Shaping the bone microenvironment and therapeutic implications in related diseases. Cytokine Growth Factor Rev 2025:S1359-6101(25)00048-6. [PMID: 40368727 DOI: 10.1016/j.cytogfr.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Bone is a dynamic tissue that constantly undergoes remodeling processes throughout life to maintain its structure and integrity. During this process, physiological bone turnover, which is shaped by apoptosis, occurs in cells in the bone microenvironment. The clearance of these apoptotic cells (ACs) is executed by phagocytes through a process called efferocytosis, which simply means taking to the grave "burial." Efferocytosis is a multistage process involving the recognition, binding, internalization, and digestion of ACs, culminating in the resolution of inflammation. Critically, aberrations in efferocytosis lead to the accumulation of apoptotic corpses, impairing tissue homeostasis and contributing to various pathologies as well as bone-related diseases. Emerging evidence suggests that modulating/activating efferocytosis at any stage represents a promising therapeutic strategy for managing bone-related diseases, especially those associated with aging and inflammation. This review discusses the current understanding of the cellular and molecular mechanisms of efferocytosis, its roles within the bone microenvironment, and potential therapeutic interventions targeting efferocytosis in age-related bone diseases.
Collapse
Affiliation(s)
- Liyile Chen
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
10
|
Zarro PR, De Felice S, Sabbieti MG, Agas D. The Inflamed Bone Marrow Scenery Amongst the Symplegades of Ageing and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40279001 DOI: 10.1007/5584_2025_860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Upon inflammation, the bone marrow (BM) landscape undergoes significant architectural and functional modifications. Stimulation of the hematopoietic niche triggers a series of lightning events, which begin with stem/progenitor blood elements mobilization and culminates with the activation of immune responses. Ageing partially mirrors this process, albeit with a propensity towards chronic inflammation and immune dysfunction. Age-related chronic inflammation disrupts bone homeostasis and accompanies impaired tissue regeneration. Thus, focusing on the bone marrow's dynamics during inflammatory bone diseases could lay the way for the development of novel therapeutic platforms aimed at niche reprogramming. Herein, we summarize inflammatory and age-induced processes in multiple BM compartments, with particular reference to hematopoietic, stromal stem/progenitor cells, and mature immunocytes. Finally, we focus on autophagy and its potential to clinically re-modulate the pathological "flogistic" bias, possibly by restoring functional phenotypes within the bone marrow niche elements.
Collapse
Affiliation(s)
- Pier Raffaele Zarro
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Simona De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
11
|
Kanewska A, Lackner I, Friedrich A, Winkelmann M, Rojewski M, Weber B, Preßmar J, Perl M, Schrezenmeier H, Kalbitz M. Immunomodulatory and cardio-protective effects of differentially originated multipotent mesenchymal stroma cells during polymicrobial sepsis in mice. Eur J Trauma Emerg Surg 2025; 51:178. [PMID: 40253667 PMCID: PMC12009780 DOI: 10.1007/s00068-025-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Sepsis is a life-threatening condition with cardiac complications being an independent predictor of poor outcome. Although their mechanisms have been widely investigated, therapeutic options remain limited. One promising therapeutic tool are mesenchymal stromal cells (MSCs). The aim of this study is to investigate the immunomodulatory effects of human MSCs from two different sources (bone marrow/BMMSC and adipose tissue/ASC) and to evaluate their cardioprotective potential. METHODS 60 adult male C57BL/6 mice were divided into sham, sepsis (cecal ligation puncture (CLP)) and two i.v. treatment groups CLP + human BMMSC and CLP + human ASC with 5 animals in each group. The observation periods were 8, 24 and 72 h. Left ventricular tissue was analyzed histologically, by qPCR (C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa, and Nlrp3) and western blot. Cardiac damage markers troponin I and heart fatty acid binding protein (HFABP) were detected in serum by ELISA. RESULTS Troponin I and HFABP were significantly increased in CLP group after 8 h compared to sham. In cardiac tissue the expression of C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa and Nlrp3 inflammasome was upregulated up to 24h after CLP compared to sham. After BMMSC treatment, C3ar as well as C5ar, Tlr2 and Il-10 mRNA expression in left ventricle was downregulated compared to CLP, whereas ASC treatment was associated with the downregulation of Il-6 and Nlrp3. CONCLUSIONS CLP-induced polymicrobial sepsis in mice was associated with cardiac damage and increased inflammation in left ventricular tissue. Therapeutic systemic application of human BMMSC and ASC ameliorated damage and inflammation in the heart.
Collapse
Affiliation(s)
- Anna Kanewska
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Ina Lackner
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Anne Friedrich
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Winkelmann
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Birte Weber
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe-University, Frankfurt Am Main, Germany
| | - Jochen Preßmar
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Mario Perl
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- Military Medical City Hospital (MMCH), Doha, Qatar
| |
Collapse
|
12
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Hoseini SM, Montazeri F. The influence of cell source on the senescence of human mesenchymal stem/stromal cells. Hum Cell 2025; 38:87. [PMID: 40221541 DOI: 10.1007/s13577-025-01213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
While mesenchymal stem/stromal cells (MSCs) exhibit the ability to self-renew, they are not immortal; they eventually reach a point of irreversible growth cessation and functional deterioration following a limited series of population doublings, referred to as replicative senescence. When evaluated according to the criteria set by the International Society for Cell Therapy (ISCT), MSCs show significant differences in their senescence patterns and other characteristics related to their phenotype and function. These differences are attributed to the source of the MSCs and the conditions in which they are grown. MSCs derived from fetal or adult sources have variations in their genome stability, as well as in the expression and epigenetic profile of the cells, which in turn affects their secretome. Understanding the key factors of MSC senescence based on cell source can help to develop effective strategies for regulating senescence and improving the therapeutic potential.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, No. 1. Safaeyeh. Bou-Al Ave., Yazd, 8916877391, Iran.
| |
Collapse
|
14
|
Casorati B, Zafferri I, Castiglioni S, Maier JA. Replicative Senescence in Mesenchymal Stem Cells: An In Vitro Study on Mitochondrial Dynamics and Metabolic Alterations. Antioxidants (Basel) 2025; 14:446. [PMID: 40298797 PMCID: PMC12024194 DOI: 10.3390/antiox14040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors capable of self-renewal and differentiation into various cell lineages, making them essential for tissue repair and regenerative medicine. However, their regenerative potential is constrained by replicative senescence, an irreversible growth arrest that occurs after a finite number of cell divisions. In this study, we serially passaged human bone marrow-derived MSCs (bMSCs) and compared young, pre-senescent, and senescent cells. The onset of senescence was accompanied by progressive alterations in mitochondrial dynamics, leading to a decline in mitochondrial membrane potential, and increased reactive oxygen species (ROS) production, alongside a diminished cellular antioxidant capacity. These mitochondrial defects play a role in metabolic reprogramming in senescent bMSCs. Our findings underscore the intricate interplay between ROS, mitochondrial dysfunction, and replicative senescence, offering valuable insights to guide the development of therapeutic strategies for preserving MSC functionality in aging and MSC-based therapies.
Collapse
Affiliation(s)
| | | | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (B.C.); (I.Z.); (J.A.M.)
| | | |
Collapse
|
15
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
16
|
Tan S, Luo X, Wang Y, Chen S, Jiang T, Yang X, Peng X, Zhang X, Zhang S, Zhang C, Liu Z, Ma D. Biomimetic non-collagenous proteins-calcium phosphate complex with superior osteogenesis via regulating macrophage IL-27 secretion. Biomaterials 2025; 315:122917. [PMID: 39490058 DOI: 10.1016/j.biomaterials.2024.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Traumatic defects or non-union fractures presents a substantial challenge in the fields of tissue engineering and regenerative medicine. Although synthetic calcium phosphate-based biomaterials (CaPs) such as dibasic calcium phosphate anhydrate (DCPA) are commonly employed for bone repair, their inadequate cellular immune responses significantly impede sustained degradation and optimal osteogenesis. In this study, drawing inspiration from the key structure of an acidic non-collagenous protein-CaP complex (ANCPs-CaP) essential for natural bone formation, we prepared biomimetic mineralized dibasic calcium phosphate (MDCPA). This preparation utilized plant-derived non-collagenous protein Zein as the organic template and acidic artificial saliva as the mineralization medium. Physicochemical property analysis revealed that MDCPA is a complex of Zein and DCPA, which mimics the composite of the natural ANCP-CaP. Moreover, MDCPA exhibited enhanced biodegradability and osteogenic potential. Mechanistic insight revealed that MDCPA can be phagocytized and degraded by macrophages via the FCγRIII receptor, leading to the release of interleukin 27 (IL-27), which promotes osteogenic differentiation by osteoimmunomodulation. The critical role of IL-27 in osteogenesis is further confirmed using IL-27 gene knockout mice. Additionally, MDCPA demonstrates effective healing of critical-sized defects in rat cranial bones within only 4 w, providing a promising basis and valuable insights for critical-sized bone defects regeneration.
Collapse
Affiliation(s)
- Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangsi Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Jiang
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoshan Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyi Peng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyao Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhenzhen Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Yi YF, Fan ZQ, Liu C, Ding YT, Chen Y, Wen J, Jian XH, Li YF. Immunomodulatory effects and clinical application of exosomes derived from mesenchymal stem cells. World J Stem Cells 2025; 17:103560. [PMID: 40160689 PMCID: PMC11947897 DOI: 10.4252/wjsc.v17.i3.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/21/2025] Open
Abstract
Exosomes (Exos) are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication. They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions. Exos derived from mesenchymal stem cells (MSCs) have significant immunomodulatory properties. They effectively regulate immune responses by modulating both innate and adaptive immunity. These Exos can inhibit excessive inflammatory responses and promote tissue repair. Moreover, they participate in antigen presentation, which is essential for activating immune responses. The cargo of these Exos, including ligands, proteins, and microRNAs, can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response. By inhibiting lymphocyte proliferation, acting on macrophages, and increasing the population of regulatory T cells, these Exos contribute to maintaining immune and metabolic homeostasis. Furthermore, they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells, which holds potential for immunotherapy applications. Given the immense therapeutic potential of MSC-derived Exos, this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control, tumor suppression, and autoimmune disease management. This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos, offering theoretical references for their future clinical utilization as cell-free drug preparations.
Collapse
Affiliation(s)
- Yang-Fei Yi
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Zi-Qi Fan
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yi-Tong Ding
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yao Chen
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, Changsha 410013, Hunan Province, China.
| | - Xiao-Hong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| | - Yu-Fei Li
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha 410005, Hunan Province, China
| |
Collapse
|
18
|
Wang YC, Cheng JB, Feng ML. Requirements for standardizing the assessment of mesenchymal stem cell therapy and its effects on osteoarthritis. World J Orthop 2025; 16:104451. [PMID: 40124721 PMCID: PMC11924026 DOI: 10.5312/wjo.v16.i3.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025] Open
Abstract
Publications of Soufan et al and Kristjánsson et al in the World Journal of Orthopedics on mesenchymal stem cell (MSC) therapy for osteoarthritis (OA) represent a significant exploration of regenerative medicine's potential in OA treatment. In their research, it is highlighted that MSCs can alleviate OA symptoms and even regenerate cartilage, potentially reversing the disease. They also compared the efficacy of three MSC subtypes, emphasizing the therapeutic advantages of adipose-derived MSCs. MSC injections, a novel and less invasive alternative to traditional treatments such as chondrocyte transplantation or arthroplasty, have a low cost, low risks, and favorable outcomes, presenting a promising approach for OA patients. Additionally, we stressed that the efficacy evaluation criteria, heterogeneity, safety, and other factors must be carefully considered to further advance the clinical translation of MSC therapy for OA.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing-Bo Cheng
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ming-Li Feng
- Department of Orthopaedic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
19
|
Zheng X, Tian S, Li T, Zhang S, Zhou X, Liu Y, Su R, Zhang M, Li B, Qi C, Guo G, Ma S, Sun K, Yang F, Hu Y, Yang C, Cui L, Shang Y, Guo C, Jin B, Guan L, Wang J, Ning W, Han Y. Host FSTL1 defines the impact of stem cell therapy on liver fibrosis by potentiating the early recruitment of inflammatory macrophages. Signal Transduct Target Ther 2025; 10:81. [PMID: 40050288 PMCID: PMC11885662 DOI: 10.1038/s41392-025-02162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/30/2024] [Accepted: 02/01/2025] [Indexed: 03/09/2025] Open
Abstract
Adult stem cell therapy holds great promise for treating decompensated liver cirrhosis on the basis of animal studies, despite uncertainty about its clinical therapeutic efficacy and unclear underlying mechanisms. Here, we investigated the role of follistatin-like 1 (FSTL1), a profibrotic and proinflammatory matricellular protein, in inflammation-related heterogeneity in stem cell therapy. Our results showed that a high level of circulating FSTL1 is significantly correlated with therapeutic response in patients with cirrhosis. FSTL1 facilitated MSC-mediated early recruitment of Ly6C+ inflammatory macrophages within 24 h postinfusion, which was essential for the empowerment of MSCs and subsequent Ly6C-CX3CR1+ macrophage remodelling at 48 h postinfusion. Fstl1 deficiency abrogated early macrophage recruitment and effective Ly6C-CX3CR1+ macrophage accumulation, resulting in the poor antifibrotic effect of MSCs in mice. Whereas, recombinant FSTL1 protein restored the therapeutic efficacy of MSCs in CCl4-injured Fstl1+/- mice. Mechanistically, host FSTL1 enhanced rapid recycling of CCR2 to the membrane via activation of the CD14/TLR4/NF-κB/ATP6V1G2 axis, leading to early recruitment of Ly6C+ monocytes /macrophages. Taken together, our findings revealed that FSTL1 is a critical regulator of the fibrotic immune microenvironment and facilitates subsequent stem cell therapy. These data suggest that FSTL1 could serve as a predictive biomarker of stem cell therapy response in patients with liver cirrhosis.
Collapse
Grants
- 82270551 National Natural Science Foundation of China (National Science Foundation of China)
- 81900570 National Natural Science Foundation of China (National Science Foundation of China)
- 82303155 National Natural Science Foundation of China (National Science Foundation of China)
- 82372882 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the National Key R&D Program of China, 2020YFA0710803 (to J.W.), 2017YFA0105704 (to Y. H.), 2021YFC2500700 and 2024YFA1108500 (to W.N.) National Natural Science Foundation of China (NSFC) grants 81900570, 82470638 (to X.Z.), 82270551 (to Y. H.), 82270616 (to J.W.), 81900502 (to G.G.), 82303155 (T.L.), 82372882 (L.G.) and 82030001 (to W.N.) Key Research and Development Program of Shaanxi province, China No. 2021ZDLSF02-07 (to Y. H.)
- the National Key R&D Program of China, 2020YFA0710803
Collapse
Affiliation(s)
- Xiaohong Zheng
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Siyuan Tian
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xia Zhou
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yansheng Liu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guanya Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Shuoyi Ma
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Keshuai Sun
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Fangfang Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chunmei Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Lina Cui
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yulong Shang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lei Guan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
- Science and Technology Innovation Research Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ying Han
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules 2025; 15:371. [PMID: 40149907 PMCID: PMC11940628 DOI: 10.3390/biom15030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in dogs, with limited options available for reversing myocardial damage. Stem cell therapies have shown significant potential for cardiac repair, owing to their immunomodulatory, antifibrotic, and regenerative properties. This review evaluates the therapeutic applications of mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and Wharton's jelly with a focus on their role in canine cardiology and their immunoregulatory properties. Preclinical studies have highlighted their efficacy in enhancing cardiac function, reducing fibrosis, and promoting angiogenesis. Various delivery methods, including intracoronary and intramyocardial injections, are assessed for their safety and efficacy. Challenges such as low cell retention, differentiation efficiency, and variability in therapeutic responses are also discussed. Emerging strategies, including genetic modifications and combination therapies, aim to enhance the efficacy of MSCs. Additionally, advances in delivery systems and regulatory frameworks are reviewed to support clinical translation. This comprehensive evaluation underscores the potential of stem cell therapies to revolutionize canine cardiovascular disease management while identifying critical areas for future research and clinical integration.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud H. Emam
- Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mizuki Hasegawa
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
21
|
Shu J, Jiao Y, Wei W, Yan A. Spermidine Inhibits M1 Microglia Polarization in a Mouse Model of Parkinson's Disease and BV2 Cells via NF-κB/STAT-1 Pathway. Brain Behav 2025; 15:e70410. [PMID: 40059454 PMCID: PMC11891262 DOI: 10.1002/brb3.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Excessively activated M1 microglia release proinflammatory factors that can cause neuronal death and contribute to the development of Parkinson's disease (PD). Recent research indicates that spermidine, a naturally occurring polyamine, may have anti-inflammatory properties. Nonetheless, the specific role of spermidine in Parkinson's disease, particularly how it affects microglia-driven neuroinflammation and the balance between M1 and M2 polarization, is still not fully understood. METHODS We examined the effects of spermidine on the polarization of M1/M2 microglia in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and lipopolysaccharide (LPS)-stimulated BV2 cells. Methods like RT-PCR, western blotting, and immunofluorescence were used to examine how spermidine influences the polarization of microglia. RESULTS In vivo, spermidine pretreatment reduced the activation of M1 microglia and encouraged the transformation of microglia into the M2 phenotype in the substantia nigra (SN) of PD mice. Additionally, spermidine decreased the release of inflammatory factors and lessened the death of dopaminergic neurons in the SN of these mice. In vitro, spermidine indirectly protected neurons from death by affecting microglial polarization. Furthermore, spermidine preconditioning led to decreased phosphorylation of NF-κB, STAT1, and p38 MAPK, while enhancing the phosphorylation of STAT6, both in vivo and in vitro. Additionally, we observed that the supernatant from BV2 cells was cultured with SH-SY5Y neurons. The findings revealed that the supernatant from LPS-activated BV2 cells notably reduced the viability of SH-SY5Y cells, as well as the levels of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, and p-AKT. However, these effects were significantly reversed by pretreatment with spermidine. CONCLUSION Our research found that spermidine reduced M1 microglial polarization, partially through the inhibition of the NF-κB, STAT1, and p38 MAPK pathways, and encouraged M2 microglial polarization by activating the STAT6 pathway. This action helped to mitigate neuroinflammation in both the MPTP mouse model of Parkinson's disease and LPS-stimulated BV2 cells. Additionally, spermidine provided indirect neuroprotection by activating BDNF-TrkB-PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Jun Shu
- Department of NeurologyHuadong Hospital, Fudan UniversityShanghaiChina
| | - Yuqiong Jiao
- Department of NeurologyHuadong Hospital, Fudan UniversityShanghaiChina
| | - Wenshi Wei
- Department of NeurologyHuadong Hospital, Fudan UniversityShanghaiChina
| | - Aijuan Yan
- Department of NeurologyHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
22
|
Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines 2025; 13:586. [PMID: 40149563 PMCID: PMC11940137 DOI: 10.3390/biomedicines13030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of a wide range of soluble factors, including different proteins, growth factors, cytokines, chemokines, and DNA and RNA molecules, in addition to numerous secondary metabolites and byproducts of their metabolism. MSC secretome can be formally divided into secretory and vesicular parts, both of which are very important for intercellular communication and are involved in processes such as angiogenesis, proliferation, and immunomodulation. Exosomes are thought to have the same content and function as the MSCs from which they are derived, but they also have a number of advantages over stem cells, including low immunogenicity, unaltered functional activity during freezing and thawing, and a lack of tumor formation. In addition, MSC pre-treatment with various inflammatory factors or hypoxia can alter their secretomes so that it can be modified into a more effective treatment. Paracrine factors secreted by MSCs improve the survival of other cell populations by several mechanisms, including immunomodulatory (mostly anti-inflammatory) activity and anti-apoptotic activity partly based on Hsp27 upregulation. Reproductive medicine is one of the fields in which this cell-free approach has been extensively researched. This review presents the possible applications and challenges of using MSC secretome in the treatment of infertility. MSCs and their secretions have been shown to have beneficial effects in various models of female and male infertility resulting from toxic damage, endocrine disorders, trauma, infectious agents, and autoimmune origin.
Collapse
Affiliation(s)
| | | | | | - Kalina Belemezova
- Department of Biology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.K.); (N.M.); (M.M.)
| |
Collapse
|
23
|
Zhu Y, Zhu J, Wang X, Wang P, Liu R. Molecular roles in membrane receptor signaling pathways and cascade reactions in chondrocytes: a review. J Mol Histol 2025; 56:94. [PMID: 39988650 DOI: 10.1007/s10735-025-10368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Articular cartilage (AC) is a specialized connective tissue with unique biological and mechanical properties, which depends on the biological effects of each resident chondrocyte and its surrounding extracellular matrix (ECM) to form a unit that operates in a constant and balanced feedback loop. The surface membrane receptors of chondrocytes play a crucial role in the feedback balance of this biological unit. Various biological signals outside chondrocytes, such as water-soluble chemical signal molecules and mechanical signals, are unable to directly enter the cell and must first bind to the plasma membrane receptors to induce changes in the level and activity of intracellular signal transduction molecules. These changes then transmit through signaling cascade pathways into the nucleus, changing the cell phenotype, and producing physiological or pathological changes. Specific chemical and mechanical signals break the feedback balance of cartilage tissue units through membrane receptors. In the ECM environment, the molecular actions of chondrocyte membrane receptors in response to these specific signals, along with associated ion channel receptors, collectively regulate the biological effects of chondrocytes. This leads to decreased chondrocyte survival and an imbalance in ECM regulation, ultimately disrupting the tissue's molecular framework and physiological feedback mechanisms, and resulting in pathological changes in cartilage tissue. To provide insights into addressing the complexities associated with cartilage tissue injury and repair engineering, this review provides a comprehensive overview of the molecular mechanisms and biological implications of chondrocyte membrane receptor-mediated signal transduction, including G protein-coupled receptors (GPCRs), enzyme-linked receptors (tyrosine kinase receptors (TKRs)), and integrin receptors.
Collapse
Affiliation(s)
- Yingkang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jingjing Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pengbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ruiyu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
24
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
25
|
Yu Y, Tao Y, Ma J, Li J, Song Z. Targeting the tumor microenvironment with mesenchymal stem cells based delivery approach for efficient delivery of anticancer agents: An updated review. Biochem Pharmacol 2025; 232:116725. [PMID: 39746456 DOI: 10.1016/j.bcp.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Drug delivery to cancer cells continues to present a major therapeutic challenge. Mesenchymal stem cells (MSCs) possess an intrinsic ability to migrate specifically to tumor tissues, making them promising candidates for targeted drug delivery. Evidence from preclinical studies indicates that MSCs loaded with therapeutic anti-cancer agents exhibit considerable anti-tumor activity. Moreover, several clinical trials are currently evaluating their effectiveness in cancer patients. The integration of MSCs with synthetic nanoparticles (NPs) enhances their therapeutic potential, particularly through the use of cell membrane-coated NPs, which represent a significant advancement in the field. This review systematically investigates the tumor microenvironment, the sources of MSCs, the tumor homing mechanisms, and the methods of loading and releasing anticancer drugs from MSCs. Furthermore, cutting-edge strategies to improve the efficacy of MSCs based drug delivery systems (DDS) including the innovative use of MSC membrane coated nanoparticles have been discussed. The study concludes with an overview of the therapeutic use of MSCs as drug carriers, including a detailed analysis of the mechanisms by which MSCs deliver therapeutics to cancer cells, enabling targeted drug delivery. It aims to elucidate the current state of this approach, identify key areas for development, and outline potential future directions for advancing MSCs based cancer therapies.
Collapse
Affiliation(s)
- Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
26
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
27
|
Su Z, Xu T, Sun JY, Sun W, Kong X. Alterations in the transcriptome and microRNAs of adipose-derived mesenchymal stem cells from different sites in rats during aging. Am J Physiol Cell Physiol 2025; 328:C78-C94. [PMID: 39495250 DOI: 10.1152/ajpcell.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging.NEW & NOTEWORTHY Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.
Collapse
Affiliation(s)
- Zhenyang Su
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Kim YS, Lupatov AY, Burunova VV, Bagmet NN, Chardarov NK, Malov SL, Kholodenko RV, Shatverian GA, Manukyan GV, Yarygin KN, Kholodenko IV. Human Liver MSCs Retain Their Basic Cellular Properties in Chronically Inflamed Liver Tissue. Int J Mol Sci 2024; 25:13374. [PMID: 39769138 PMCID: PMC11676302 DOI: 10.3390/ijms252413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Every 25th death worldwide is associated with liver pathology. The development of novel approaches to liver diseases therapy and protocols for maintaining the vital functions of patients on the liver transplant waiting list are urgently needed. Resident mesenchymal stem cells (MSCs) play a significant role in supporting liver tissue integrity and improve the liver condition after infusion. However, it remains unclear whether MSCs isolated from chronically inflamed livers are similar in their basic cellular properties to MSCs obtained from healthy livers. We applied a large array of tests to compare resident MSCs isolated from apparently normal liver tissue and from chronically inflamed livers of patients with fibrosis, cirrhosis, and viral hepatitis. Chronic inflammatory environment did not alter the major cellular characteristics of MSCs, including the expression of MSC markers, stem cell markers, adhesion molecules, and the hallmarks of senescence, as well as cell proliferation, migration, and secretome. Only the expression of some immune checkpoints and toll-like receptors was different. Evidently, MSCs with unchanged cellular properties are present in human liver even at late stages of inflammatory diseases. These cells can be isolated and used as starting material in the development of cell therapies of liver diseases.
Collapse
Affiliation(s)
- Yan S. Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Alexey Yu. Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Veronika V. Burunova
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Nikolay N. Bagmet
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Nikita K. Chardarov
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Svyatoslav L. Malov
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Garnik A. Shatverian
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Garik V. Manukyan
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
- Department of General Pathology and Pathophysiology, Russian Medical Academy of Continuous Professional Education, 125284 Moscow, Russia
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| |
Collapse
|
29
|
Xu Q, Gu L, Li Z, Gao L, Wei L, Shafiq Z, Chen S, Cai Q. Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke. Neuromolecular Med 2024; 26:51. [PMID: 39644405 DOI: 10.1007/s12017-024-08819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.
Collapse
Affiliation(s)
- Qingxue Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Wei
- Department of Anesthesiology, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430200, China
| | - Zohaib Shafiq
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, 430072, Hubei, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
30
|
Ma Q, Meng M, Zhou X, Guo W, Feng K, Huang T, Cai YD. Identification of Key Genes in Fetal Gut Development at Single-Cell Level by Exploiting Machine Learning Techniques. Proteomics 2024; 24:e202400104. [PMID: 39324223 DOI: 10.1002/pmic.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Mei Meng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
31
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
32
|
Wang J, Lou W, Li Y, Jiang Y, Jiang X, Yang L. Progress in targeted therapy for ankylosing spondylitis: A review. Medicine (Baltimore) 2024; 103:e40742. [PMID: 39612456 PMCID: PMC11608699 DOI: 10.1097/md.0000000000040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by axial osteoarticular inflammation and tendon enthesitis with unclear pathogenesis. Nonsteroidal anti-inflammatory drugs and antirheumatic drugs used in the traditional treatment of AS have some problems such as drug intolerance and inadequate treatment response. Since the introduction of biological agents in the treatment of AS, they have completely changed the treatment concept of AS, and because of their safety and good tolerance, they have become the main choice for clinical AS patients. This article systematically summarizes the current status of targeted therapy for AS worldwide, analyzes the advantages and disadvantages of different types of biological agents in the treatment of AS, and provides an objective evaluation of clinical targeted therapy for AS, in order to provide a new perspective for clinical standardized treatment.
Collapse
Affiliation(s)
- Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| | - Wang Lou
- Department of Anesthesiology, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| | - Yingnan Li
- Burn the Brotherhood of Plastic Surgery, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| | - Yang Jiang
- Department of Medical Laboratory, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| | - Xue Jiang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| | - Lin Yang
- Department of Anesthesiology, Jilin Province FAW General Hospital, Changchun City, Jilin Province, China
| |
Collapse
|
33
|
Naji NS, Sathish M, Karantanos T. Inflammation and Related Signaling Pathways in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3974. [PMID: 39682161 DOI: 10.3390/cancers16233974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, and inflammatory signaling is involved in its pathogenesis. Cytokines exert a robust effect on the progression of AML and affect survival outcomes. The dysregulation in the cytokine network may foster a pro-tumorigenic microenvironment, increasing leukemic cell proliferation, decreasing survival and driving drug resistance. The dominance of pro-inflammatory mediators such as IL-11β, TNF-α and IL-6 over anti-inflammatory mediators such as TGF-β and IL-10 has been implicated in tumor progression. Additionally, inflammatory cytokines have favored certain populations of hematopoietic stem and progenitor cells with mutated clonal hematopoiesis genes. This article summarizes current knowledge about inflammatory cytokines and signaling pathways in AML, their modes of action and the implications for immune tolerance and clonal hematopoiesis, with the aim of finding potential therapeutic interventions to improve clinical outcomes in AML patients.
Collapse
Affiliation(s)
- Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mrudula Sathish
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Perin EC, Borow KM, Henry TD, Jenkins M, Rutman O, Hayes J, James CW, Rose E, Skali H, Itescu S, Greenberg B. Mesenchymal precursor cells reduce mortality and major morbidity in ischaemic heart failure with inflammation: DREAM-HF. Eur J Heart Fail 2024. [PMID: 39593178 DOI: 10.1002/ejhf.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
AIMS Progressive heart failure with reduced ejection fraction (HFrEF) is adversely affected by alterations in the myocardial balance between bone marrow-derived pro-inflammatory cardiac macrophages and embryo-derived reparative cardiac resident macrophages. Mesenchymal precursor cells (MPCs) may restore this balance and improve clinical outcomes when inflammation is present. The purpose was to (i) identify risk factors for cardiovascular death (CVD) in control patients with HFrEF in the DREAM-HF trial, and (ii) determine if MPCs improve major clinical outcomes (CVD, myocardial infarction [MI], stroke) in high-risk patients with ischaemic HFrEF and inflammation. METHODS AND RESULTS Cause-specific regression analyses were used to identify CVD risk factors in DREAM-HF control patients. Aalen-Johansen cumulative incidence curves were used to examine CVD, 2-point major adverse cardiovascular events (MACE) (MI or stroke), and 3-point MACE (CVD or MI or stroke) by treatment group in ischaemic vs non-ischaemic HFrEF and in patients with or without baseline inflammation. In control DREAM-HF patients, factors portending the greatest risk for CVD were inflammation (baseline plasma high-sensitivity C-reactive protein ≥2 mg/L; p = 0.003) and ischaemic HFrEF aetiology (p = 0.097), with increased CVD risk of 61% and 38%, respectively. Over 30-month mean follow-up, MPCs reduced 2-point and 3-point MACE by 88% (p = 0.005) and 52% (p = 0.018), respectively, in patients with ischaemic HFrEF and inflammation compared to controls. CONCLUSION Ischaemic aetiology and inflammation were identified as major risk factors for MACE in control DREAM-HF patients. A single intramyocardial MPC administration produced the most significant, sustained reduction in 2-point and 3-point MACE in patients with ischaemic HFrEF and inflammation.
Collapse
Affiliation(s)
- Emerson C Perin
- Center for Clinical Research, The Texas Heart Institute, Houston, TX, USA
| | | | - Timothy D Henry
- Department of Cardiology, The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | | | | | | | | | | | - Hicham Skali
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Barry Greenberg
- Division of Cardiology, University of California, San Diego, CA, USA
| |
Collapse
|
35
|
Liu T, Ran C, Zhao D, Yang F, Guo Q, Yang J, Zhang X. Mesenchymal stem cells and their exosomes mitigate osteoarthritis by restoring the balance between proinflammatory Teffs and Tregs. FRONTIERS IN AGING 2024; 5:1509014. [PMID: 39629263 PMCID: PMC11611854 DOI: 10.3389/fragi.2024.1509014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. In addition to the wear and tear of joints, aberrant remodelling driven by a significant presence of inflammatory mediators within the joint is one of the key mechanisms in the pathogenesis of OA. Among these factors, hyperactivation of Teffs subsets plays a crucial role in promoting this pathological process. The immune imbalance between proinflammatory CD4+ effector T cells (proinflammatory Teffs) and Tregs could be a crucial factor in the pathogenesis of OA. Therefore, correcting the imbalance of Tregs/proinflammatory Teffs may slow or inhibit the occurrence and development of OA, which could be a potential target for the treatment of OA. Mesenchymal stem cells (MSCs) possess anti-inflammatory and immunomodulatory properties, regulating both adaptive and innate immunity through mechanisms involving soluble factors such as IDO, PGE2, and TGF-β, as well as cell-to-cell contact and exosomes. Correcting the imbalance between Tregs and proinflammatory Teffs may be one of the mechanisms of MSCs in the treatment of OA. Therefore, this review aims to summarize the relationship between OA and the immune imbalance between Tregs and proinflammatory Teffs, the immunoregulatory role of Tregs in OA, and the role of MSCs and their exosomes in correcting the imbalance between Tregs and proinflammatory Teffs.
Collapse
Affiliation(s)
- Tianhao Liu
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qiang Guo
- Zhongshan Clinical College, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
36
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
37
|
Schoberleitner I, Faserl K, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules 2024; 14:1433. [PMID: 39595609 PMCID: PMC11592141 DOI: 10.3390/biom14111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Breast implant surgery has evolved significantly, yet challenges such as capsular contracture remain a persistent concern. This review presents an in-depth analysis of recent advancements in understanding the immune mechanisms and clinical implications associated with silicone mammary implants (SMIs). The article systematically examines the complex interplay between immune responses and capsular fibrosis, emphasizing the pathophysiological mechanisms of inflammation in the etiology of this fibrotic response. It discusses innovations in biomaterial science, including the development of novel anti-biofilm coatings and immunomodulatory surfaces designed to enhance implant integration and minimize complications. Emphasis is placed on personalized risk assessment strategies, leveraging molecular insights to tailor interventions and improve patient outcomes. Emerging therapeutic targets, advancements in surgical techniques, and the refinement of post-operative care are also explored. Despite notable progress, challenges such as the variability in immune responses, the long-term efficacy of new interventions, and ethical considerations remain. Future research directions are identified, focusing on personalized medicine, advanced biomaterials, and bridging preclinical findings with clinical applications. As we advance from bench to bedside, this review illuminates the path forward, where interdisciplinary collaboration and continued inquiry weave together to enhance the art and science of breast implant surgery, transforming patient care into a realm of precision and excellence.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Yang T, Luo W, Yu J, Zhang H, Hu M, Tian J. Bladder cancer immune-related markers: diagnosis, surveillance, and prognosis. Front Immunol 2024; 15:1481296. [PMID: 39559360 PMCID: PMC11570592 DOI: 10.3389/fimmu.2024.1481296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
As an immune-related tumor type, bladder cancer has been attracting much attention in the study of its markers. In recent years, researchers have made rapid progress in the study of immune-related markers for bladder cancer. Studies have shown that immune-related markers play an important role in the diagnosis, prognosis assessment and treatment of bladder cancer. In addition, the detection of immune-related markers can also be used to evaluate the efficacy of immunotherapy and predict the treatment response of patients. Therefore, in depth study of the expression of immune-related markers in bladder cancer and their application in the clinic is of great significance and is expected to provide new breakthroughs for individualized treatment of bladder cancer. Future studies will focus more on how to detect immune-related markers with low cost and high accuracy, as well as develop new immunotherapeutic strategies to bring better therapeutic outcomes to bladder cancer patients.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wanru Luo
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
40
|
Baiju I, Kumar Bharti M, Somal A, Pandey S, Bhat IA, Joseph A, Chandra V, Taru Sharma G. Exploration of immunomodulatory mechanism of caprine Wharton's jelly derived mesenchymal stem cells. Cell Immunol 2024; 405-406:104879. [PMID: 39305581 DOI: 10.1016/j.cellimm.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 12/02/2024]
Abstract
The present study was aimed to explore the possible mechanisms by which caprine Wharton's jelly-derived MSCs (WJ-MSCs) perform their immunomodulatory function. WJ-MSCs were isolated through explants culture and characterized as per ISCT criteria using culture behavior, expression of surface markers by PCR, FACS and immunocytochemical localization (ICC), trilineage differentiation potential etc. Secretory behavior for important biomolecules (IDO, TGFβ1, VEGF, IL6) was evaluated by ICC and western blot assay. Cell-to-cell communication was studied by culturing cells in cell-cell contact and trans-well system. The MSCs when co-cultured with activated Tc and Th cells, down-regulation of T cell cytokine as well as upregulation of immunomodulatory factors (VEGF A, IL10, IL6, IDO, iNOS, PTGS2, HGF, TGFβ, CXCL10, CXCL11) was noticed in both cell-cell contact and trans-well culture system which was significantly higher in cell-cell contact system. Trilineage differentiation of MSCs showed significant upregulation of MHC I (CAHI) and MHC II (CLA DRB3) molecules suggesting better clinical applications of MSCs without differentiation to avoid immune rejection. It can be concluded that WJ-MSCs perform their immunomodulation through the secretion of a battery of biomolecules and work in both cell-cell contact manner and through their secretome.
Collapse
Affiliation(s)
- Indu Baiju
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India
| | - Mukesh Kumar Bharti
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India; Institute of Agricultural Sciences, RGSC, Banaras Hindu University, Barkachha, Mirzapur 231001 UP India
| | - Anjali Somal
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India; Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur HP India
| | - Sriti Pandey
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India; Nanaji Deshmukh Veterinary Science University, Jabalpur 482001 MP India
| | - Irfan A Bhat
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India
| | - Anand Joseph
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India
| | - Vikash Chandra
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India.
| | - G Taru Sharma
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 UP India; National Institute of Animal Biotechnology, Hyderabad 500 032 Telangana India.
| |
Collapse
|
41
|
Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, Galler KM, Buchalla W, Widbiller M. Understanding dental pulp inflammation: from signaling to structure. Front Immunol 2024; 15:1474466. [PMID: 39534600 PMCID: PMC11554472 DOI: 10.3389/fimmu.2024.1474466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The pulp is a unique tissue within each tooth that is susceptible to painful inflammation, known as pulpitis, triggered by microbial invasion from carious lesions or trauma that affect many individuals. The host response involves complex immunological processes for pathogen defense and dentin apposition at the site of infection. The interplay of signaling between the immune and non-immune cells via cytokines, chemokines, neuropeptides, proteases, and reactive nitrogen and oxygen species leads to tissue reactions and structural changes in the pulp that escalate beyond a certain threshold to irreversible tissue damage. If left untreated, the inflammation, which is initially localized, can progress to pulpal necrosis, requiring root canal treatment and adversely affecting the prognosis of the tooth. To preserve pulp vitality and dental health, a deeper understanding of the molecular and cellular mechanisms of pulpitis is imperative. In particular, elucidating the links between signaling pathways, clinical symptoms, and spatiotemporal spread is essential to develop novel therapeutic strategies and push the boundaries of vital pulp therapy.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Martyna Smeda
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Uderhardt
- Medical Department 3, Rheumatology and Immunology, University Hospital Erlangen, Erlangen, Germany
| | - David Besold
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
42
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
43
|
Pers YM, Soler-Rich R, Vadalà G, Ferreira R, Duflos C, Picot MC, Herman F, Broussous S, Sánchez A, Noriega D, Ardura F, Alberca Zaballos M, García V, Gordillo Cano V, González-Vallinas M, Denaro V, Russo F, Guicheux J, Vilanova J, Orozco L, Meisel HJ, Alfonso M, Rannou F, Maugars Y, Berenbaum F, Barry FP, Tarte K, Louis-Plence P, Ferreira-Dos-Santos G, García-Sancho J, Jorgensen C. Allogenic bone marrow-derived mesenchymal stromal cell-based therapy for patients with chronic low back pain: a prospective, multicentre, randomised placebo controlled trial (RESPINE study). Ann Rheum Dis 2024; 83:1572-1583. [PMID: 39393844 PMCID: PMC11503111 DOI: 10.1136/ard-2024-225771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/10/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES To assess the efficacy of a single intradiscal injection of allogeneic bone marrow mesenchymal stromal cells (BM-MSCs) versus a sham placebo in patients with chronic low back pain (LBP). METHODS Participants were randomised in a prospective, double-blind, controlled study to receive either sham injection or intradiscal injection of 20 million allogeneic BM-MSC, between April 2018 and December 2022. The first co-primary endpoint was the rate of responders defined by improvement of the Visual Analogue Scale (VAS) for pain of at least 20% and 20 mm, or improvement of the Oswestry Disability Index (ODI) of 20% between baseline and month 12. The secondary structural co-primary endpoint was assessed by the disc fluid content measured by quantitative MRI T2, between baseline and month 12. Secondary endpoints included pain VAS, ODI, the Short Form (SF)-36 and the minimal clinically important difference in all timepoints (1, 3, 6, 12 and 24 months). We determined the immune response associated with allogeneic cell injection between baseline and 6 months. Serious adverse events (SAEs) were recorded. RESULTS 114 patients were randomised (n=58, BM-MSC group; n=56, sham placebo group). At 12 months, the primary outcome was not reached (74% in the BM-MSC group vs 69% in the placebo group; p=0.77). The groups did not differ in all secondary outcomes. No SAE related to the intervention occurred. CONCLUSIONS While our study did not conclusively demonstrate the efficacy of allogeneic BM-MSCs for LBP, the procedure was safe. Long-term outcomes of MSC therapy for LBP are still being studied. TRIAL REGISTRATION NUMBER EudraCT 2017-002092-25/ClinicalTrials.gov: NCT03737461.
Collapse
Affiliation(s)
- Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, CHRU Lapeyronie, Montpellier, France
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | | | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Rosanna Ferreira
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpelliera, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Marie-Christine Picot
- Department of Medical Information, Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, Languedoc-Roussillon, France
| | - Fanchon Herman
- Clinical Research and Epidemiology Unit (Public Health Department), Montpellier, France
| | - Sylvie Broussous
- 7Research and Innovation Department, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Ana Sánchez
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - David Noriega
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Francisco Ardura
- Orthopedic Surgery Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Mercedes Alberca Zaballos
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Verónica García
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Virginia Gordillo Cano
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Valladolid, Spain
- Citospin SL, Valladolid, Spain
| | - Margarita González-Vallinas
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Vicenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Roma, Lazio, Italy
| | - Jérôme Guicheux
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
| | | | | | | | - Matias Alfonso
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Yves Maugars
- Regenerative Medicine and Skeleton, RMeS, Nantes Université, Oniris, INSERM, CHU Nantes, Nantes, France
- Service de Rhumatologie, Hôtel-Dieu, CHU Nantes, Nantes, France
| | | | - Frank P Barry
- Regenerative Medicine Institute, University of Galway Regenerative Medicine Institute, Galway, Ireland
| | - Karin Tarte
- Laboratoire SITI, Pôle Biologie, CHU Rennes, Rennes, Bretagne, France
| | - Pascale Louis-Plence
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Guilherme Ferreira-Dos-Santos
- Centro Médico Teknon, Barcelona, Spain
- Division of Pain Medicine, Department of Anesthesiology, Reanimation, and Pain Medicine, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier García-Sancho
- Citospin SL, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Christian Jorgensen
- INSERM U 1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| |
Collapse
|
44
|
Di Ianni E, Erdem JS, Narui S, Wallin H, Lynch I, Vogel U, Jacobsen NR, Møller P. Pro-inflammatory and genotoxic responses by metal oxide nanomaterials in alveolar epithelial cells and macrophages in submerged condition and air-liquid interface: An in vitro-in vivo correlation study. Toxicol In Vitro 2024; 100:105897. [PMID: 39025158 DOI: 10.1016/j.tiv.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Studies on in vitro-in vivo correlations of inflammatory and genotoxic responses are needed to advance new approach methodologies. Here, we assessed pro-inflammatory and genotoxic responses by 13 nanosized metal oxides (nMeOx) and quartz (DQ12) in alveolar epithelial cells (A549) and macrophages (THP-1a) exposed in submerged conditions, and in A549:THP-1a co-cultures in air-liquid interface (ALI) system. Soluble nMeOx produced the highest IL-8 expression in A549 and THP-1a cells in submerged conditions (≥2-fold, p < 0.05), whereas only CuO caused a strong response in co-cultures exposed in the ALI system (13-fold, p < 0.05). IL-8 expression in A549 cells with concentrations as nMeOx specific surface area (SSA) correlated with neutrophil influx in mice (r = 0.89-0.98, p < 0.05). Similarly, IL-8 expression in THP-1a cell with concentrations as mass and SSA (when excluding soluble nMeOx) correlated with neutrophil influx in mice (r = 0.81-0.84, p < 0.05). DNA strand breaks (SB) was measured by the comet assay. We used a scoring system that categorizes effects in standard deviation units for comparison of genotoxicity in different models. Concordant genotoxicity was observed between SB levels in vitro (A549 and co-culture) and in vivo (broncho-alveolar lavage fluid cells and lung tissue). In conclusion, this study shows in vitro-in vivo correlations of nMeOx-induced inflammatory and genotoxic responses.
Collapse
Affiliation(s)
- Emilio Di Ianni
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark
| | | | - Shan Narui
- National Institute of Occupational Health, Oslo, Norway
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark; DTU Food, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Barcelos SM, Rosa PMDS, Moura ABB, Villarroel CLP, Bridi A, Bispo ECI, Garcez EM, Oliveira GDS, Almeida MA, Malard PF, Peixer MAS, Pereira RW, de Alencar SA, Saldanha-Araujo F, Dallago BSL, da Silveira JC, Perecin F, Pogue R, Carvalho JL. Extracellular vesicles derived from bovine adipose-derived mesenchymal stromal cells enhance in vitro embryo production from lesioned ovaries. Cytotherapy 2024; 26:1141-1151. [PMID: 38904584 DOI: 10.1016/j.jcyt.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.
Collapse
Affiliation(s)
- Stefhani Martins Barcelos
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Ana Beatriz Bossois Moura
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Emãnuella Melgaço Garcez
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | | | - Maria Alice Almeida
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | - Sérgio Amorim de Alencar
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bruno Stéfano Lima Dallago
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
46
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
47
|
Behm C, Miłek O, Schwarz K, Rausch-Fan X, Moritz A, Andrukhov O. 1,25-dihydroxyvitamin-D 3 distinctly impacts the paracrine and cell-to-cell contact interactions between hPDL-MSCs and CD4 + T lymphocytes. Front Immunol 2024; 15:1448597. [PMID: 39372405 PMCID: PMC11449738 DOI: 10.3389/fimmu.2024.1448597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) possess a strong ability to modulate the immune response, executed via cytokine-boosted paracrine and direct cell-to-cell contact mechanisms. This reciprocal interaction between immune cells and hPDL-MSCs is influenced by 1,25-dihydroxyvitamin-D3 (1,25(OH)2D3). In this study, the participation of different immunomodulatory mechanisms on the hPDL-MSCs-based effects of 1,25(OH)2D3 on CD4+ T lymphocytes will be elucidated using different co-culture models with various cytokine milieus. MATERIAL AND METHODS hPDL-MSCs and CD4+ T lymphocytes were co-cultured indirectly and directly with inserts (paracrine interaction only) or directly without inserts (paracrine and direct cell-to-cell contact interaction). They were stimulated with TNF-α or IL-1β in the absence/presence of 1,25(OH)2D3. After five days of co-cultivation, the CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the gene expression of soluble and membrane-bound immunomediators was determined in hPDL-MSCs. RESULTS In the indirect and direct co-culture model with inserts, 1,25(OH)2D3 decreased CD4+ T lymphocyte proliferation and viability. The direct co-culture model without inserts caused the opposite effect. 1,25(OH)2D3 mainly decreased the CD4+ T lymphocyte-associated secretion of cytokines via hPDL-MSCs. The degree of these inhibitions varied between the different co-culture setups. 1,25(OH)2D3 predominantly decreased the expression of the soluble and membrane-bound immunomediators in hPDL-MSCs to a different extent, depending on the co-culture models. The degree of all these effects depended on the absence and presence of exogenous TNF-α and IL-1β. CONCLUSION These data assume that 1,25(OH)2D3 differently affects CD4+ T lymphocytes via the paracrine and direct cell-to-cell contact mechanisms of hPDL-MSCs, showing anti- or pro-inflammatory effects depending on the co-culture model type. The local cytokine microenvironment seems to be involved in fine-tuning these effects. Future studies should consider this double-edged observation by executing different co-culture models in parallel.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oliwia Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Katharina Schwarz
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Deng X, Zhang S, Qing Q, Wang P, Ma H, Ma Q, Zhao W, Tang H, Lu M. Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta. Biochem Biophys Rep 2024; 39:101739. [PMID: 38974020 PMCID: PMC11225169 DOI: 10.1016/j.bbrep.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.
Collapse
Affiliation(s)
- Xiangxiong Deng
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Su Zhang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Quan Qing
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Pengfei Wang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Haiyang Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Qinghua Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Weixiang Zhao
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Hanjing Tang
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Min Lu
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| |
Collapse
|
49
|
Fadaghi S, Mahmoodi M, Derakhshani A, Sedghy F, Ranjkesh M, Behzadi A. Enhancement the antioxidative and immunomodulatory functions of mesenchymal stem cells by tetrandrine. Heliyon 2024; 10:e35667. [PMID: 39220890 PMCID: PMC11365297 DOI: 10.1016/j.heliyon.2024.e35667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, mesenchymal stem cells (MSCs) were primed with Tetrandrine (TET) having anti-inflammatory and immunomodulatory effects to examine the effects of this molecule on the antioxidative potential of MSCs as well as their modulatory effects on activated peripheral blood mononuclear cells (PBMCs). The viability of primed MSCs was detected using MTT assay and Trypan blue staining. Moreover, flow cytometry technique was applied to evaluate cell cycle distribution and immunophenotype of MSCs. The production of superoxide dismutase 3 (SOD3), malondialdehyde (MDA), kynurenine, TGF-β, and IFN-γ were also measured by spectrophotometry to assess the alteration of antioxidative and immunomodulatory potential of MSCs. Then, TET-primed MSCs were cocultured with PBMCs. The MTT assay was used to measure the proliferation of PBMCs. Cell cycle progression of PBMCs and frequency of regulatory T cells were evaluated using Flow cytometry. ELISA assay was also applied to determine the concentrations of TGF-β and IFN-γ after coculturing. According to our data, TET enhanced the secretion of SOD3 and kynurenine from MSCs, while the production of IFN-γ was reduced. No changes were observed in the viability, proliferation, and immunophenotype of MSCs after priming with TET. Moreover, the proliferation and frequency of PBMCs in the S and G2/M phases of cell cycle reduced after co-culturing with TET-primed MSCs. The concentration of TGF-β was increased in the supernatant of PBMCs, but the level of IFN-γ was reduced. Our data suggested this priming method as a novel strategy for increasing the antioxidative and immunomodulatory activity of MSCs.
Collapse
Affiliation(s)
- Shohreh Fadaghi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjkesh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmadreza Behzadi
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
50
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|