1
|
Al-Khazali HM, Christensen RH, Gozalov E, Hakimzadeh Z, Melchior AG, Dominguez-Moreno R, Ashina M, Ashina H. Effects of substance P on headache induction and arterial dilation in healthy adults. Cephalalgia 2025; 45:3331024251336132. [PMID: 40369974 DOI: 10.1177/03331024251336132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
ObjectiveTo determine whether intravenous infusion of substance P elicits headache and arterial dilation in healthy adults.MethodsIn a double-blind, placebo-controlled, two-way crossover study, we randomly allocated healthy adults to receive either substance P (1.5 pmol/kg/min) or placebo (isotonic saline) by 20-minute intravenous infusion on separate experiment days. The primary endpoint was the incidence of headache within 12 hours after the infusion. Other endpoints included the area under the curve (AUC) for headache intensity scores over the 12-hour observation period and AUC changes in the superficial temporal artery (STA) diameter from baseline to 120 minutes post-infusion.ResultsTwenty-one participants underwent randomization and completed both experiment days. Headache was reported by 15 (71%) of 21 participants following substance P, compared with two (10%) after placebo (p < 0.001). The AUC for headache intensity scores was significantly higher after substance P infusion than after placebo (p = 0.03). In addition, there was a significant STA diameter increase with substance P, compared with placebo (p = 0.005).ConclusionsAmong healthy adults, substance P infusion elicited headache and arterial dilation. These findings support a role for substance P in headache pathogenesis and encourage further investigation in migraine and other headache disorders. Additional research is also needed to explore new therapeutic strategies targeting substance P or its downstream signaling.Trial Registration:CT identifier: NCT06632080.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune H Christensen
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Gozalov
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Hakimzadeh
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna G Melchior
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rogelio Dominguez-Moreno
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Tang S, Fu S, Zheng Y, Cheng X, Cao P, Li C, Peng G. Mechanistic exploration of licorice reconciling Medicine:Huangqi Guizhi Wuwu decoction and Shaoyao Gancao decoction compatibility as an example. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119708. [PMID: 40147678 DOI: 10.1016/j.jep.2025.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza uralensis Fisch. (GU) is a pivotal botanical in traditional Chinese medicine (TCM), because of its ability to reconcile various herbs, and its crucial role in numerous formulas. Huanggui Shaogan decoction (HSGD) is an empirical formula, developed by Huangqi Guizhi Wuwu decoction (HGD) and Shaoyao Gancao decoction (SGD), and prepared by adding GU to HGD. However, the mechanisms of GU reconciling medicine remain incompletely characterized. AIM OF THE STUDY This study aimed to explain mechanisms of GU reconciling medicine based on the differences of components, pharmacological efficacy, and the existence of the components. METHODS Differential components between HSGD and HGD were systematically identified using LC‒MS/MS coupled with chemometric analysis. The existence states and binding affinities of these differential components were further characterized via ultrafiltration separation. The therapeutic potential of HSGD was validated in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). RESULTS Twenty-two differential chemical components between HSGD and HGD were identified, including flavonoids, saponins, gingerol, and monoglycoside. The transmittance of flavonoids and gingerols increased in HSGD. However, the transmittance of astragalus saponins decreased, which may be due to micelle association and the increase in molecular clusters. HSGD could enhance the mechanical pain threshold, alleviate cold nociceptive hypersensitivity, relieve dorsal root ganglia neuron injury, and decrease the expression of nerve growth factor, 5-hydroxytryptamine, substance P, and calcitonin gene-related peptide better. The differential correlation analysis revealed the relationship between differential components and pharmacological indicators. The above results indicated that different herbs combinations had a greater impact on the dissolution and molecular state of the components of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. CONCLUSION The study highlights the solubilizing effect of GU within HSGD, and it also improves the efficacy of the treatment of OIPN, which underpins its compatibility rationality. It provided an inspiration for the study of other TCM formulas.
Collapse
Affiliation(s)
- Shuwan Tang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengnan Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Xiaolan Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| |
Collapse
|
3
|
Cai W, Khoutorsky A. Revisiting the role of Substance P and CGRPα. eLife 2025; 14:e106766. [PMID: 40235300 PMCID: PMC12002792 DOI: 10.7554/elife.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Mice lacking two neuropeptides thought to be essential for processing pain show no change in how they respond to a wide range of harmful stimuli.
Collapse
Affiliation(s)
- Weihua Cai
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill UniversityMontrealCanada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill UniversityMontrealCanada
| |
Collapse
|
4
|
Sun L, Fang M, Xu T, Liu M, Fang S, Feng W. Application of Healthcare Failure Mode and Effect Analysis in the Management of Patients With Intrathecal Morphine Pump Implantation. Pain Manag Nurs 2025; 26:e207-e214. [PMID: 39613668 DOI: 10.1016/j.pmn.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Intrathecal morphine pump helps alleviate pain in the advanced stages of cancer, and thus, ensuring safe intrathecal morphine pump infusion is important. In this study, we investigated the effect of healthcare failure mode and effects analysis (HFMEA) in the management of patients with intrathecal morphine pump implantation. METHODS We included 112 cancer patients with severe pain who met the inclusion criteria for intrathecal morphine pump implantation treatment in the pain department of our hospital from November 2021 to October 2022. We analyzed the severity, likelihood, and crisis of potential failure modes, causes, and results of intrathecal morphine pumps during this period, compiled the records, and formulated the appropriate improvement measures based on the results of the analysis. From November 2022 to October 2023, the HFMEA model was applied to 125 patients in the department, and the effectiveness of the model was evaluated by assessing the patients' VAS (visual analog scale) score, SAS (self-rating anxiety scale) score, SDS score, PSQI (Pittsburgh Sleep Quality Index) score and quality of life (QOL) (self-rating depression scale) score. RESULTS The occurrence of adverse events (6 cases vs. 2 cases, p < .05), and the total incidence of adverse events (8.9% vs. 1.6%, X2= 6.600, p = .010) was significantly different before and after HFMEA was applied. For patients who received intrathecal morphine pump implantation, the VAS scores and the related pain indices were significantly lower after HFMEA than before. Additionally, the score of SAS (48.91 ± 6.03 vs. 47.02 ± 6.77), PSQI (37.30 ± 5.78 vs. 39.63 ± 5.64), and QOL (9.93 ± 3.04 vs. 8.98 ± 2.31) of patients improved significantly. CONCLUSIONS With the application of the HFMEA model, a multidisciplinary team assessed the risks associated with the use of intrathecal morphine pumps and prioritized measures to reduce them. By implementing the improvement measures, potential errors decreased significantly during the intrathecal morphine pump process. It allowed nursing managers to change the safety incidents related to drug administration using an intrathecal morphine pump from negative treatment after the event to active prevention before the event, greatly improved the level of drug use safety management, reflected the continuous improvement of nursing quality, and ensured nursing safety.
Collapse
Affiliation(s)
- Lixing Sun
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ming Fang
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tingyu Xu
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Miaobo Liu
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shujing Fang
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Weijiao Feng
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Internal Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
MacDonald DI, Jayabalan M, Seaman JT, Balaji R, Nickolls AR, Chesler AT. Pain persists in mice lacking both Substance P and CGRPα signaling. eLife 2025; 13:RP93754. [PMID: 40100256 PMCID: PMC11919252 DOI: 10.7554/elife.93754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed, we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Jonathan T Seaman
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Rakshita Balaji
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Alexander Theodore Chesler
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
6
|
Li Y, Ha NT, Li J, Yan Y, Chen Q, Cai L, Li W, Liu S, Li B, Cheng T, Sun Y, Wang Y, Deng J. Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development. Neuron 2025; 113:605-619.e6. [PMID: 39719702 DOI: 10.1016/j.neuron.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side. Spino-parabrachial pathways targeting the right-sided PBN display short-term facilitation, and right-sided PBN neurons exhibit an increase in the excitability and activity after nerve injury. Inhibiting Tacr1-positive neurons, blocking Tacr1-encoding tachykinin 1 receptor (NK1R), or knocking down the Tacr1 gene in the right-sided, rather than left-sided, PBN alleviates neuropathic pain-induced sensory hypersensitivity. Additionally, the right-sided PBN plays a critical role in the development of hyperalgesia during the early phase of neuropathic pain. These results highlight the essential role of NK1R in the lateralized modulation of neuropathic pain by the PBN, providing new insights into the mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
- Yinxia Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ngoc T Ha
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Juan Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yaxin Yan
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qian Chen
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Liping Cai
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weike Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shoupei Liu
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Tianlin Cheng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai 200032, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Hosseini NM, Valian N, Esfahaniani M, Nabi Afjadi M. Promising potential effects of resveratrol on oral and dental health maintenance: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1367-1389. [PMID: 39305330 DOI: 10.1007/s00210-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 02/14/2025]
Abstract
Resveratrol (RV-3, 5, 4'-trihydroxystilbene) is a natural compound found in plants like red grapes, berries, and peanuts, with promising effects on dental health. It helps strengthen tooth enamel by promoting remineralization, making the teeth more resistant to decay caused by acid-producing bacteria. RV also shields dentin, a vulnerable layer beneath the enamel, from erosion and sensitivity. Its anti-inflammatory properties can reduce inflammation associated with dental conditions such as pulpitis and endodontic diseases. Moreover, RV's antimicrobial activity inhibits the growth of bacteria involved in dental plaque and biofilm formation, preventing their accumulation on the tooth surface. This contributes to a healthier oral environment and prolongs the lifespan of dental restorative materials. However, the research on RV's impact on dental health is in its early stages, and further studies are needed to confirm potential benefits. Important factors such as determining the optimal dosage, understanding its bioavailability, and assessing potential side effects require further investigation. This review focuses on the important role of RV in promoting dental health. It delves into various aspects, including its impact on root health, maintenance of the dental pulp, care for tooth enamel, effectiveness of dental restorative materials, and health of dentin.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Narges Mohammad Hosseini
- Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Neda Valian
- Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Zhang X, Chen L, Wu Y, Chen Y, Luo X, Xu Z, Hu W, Kang Y, Chen L, Liu Y, Wang F, Liu D. Mediation Effect of CSF Substance P on the Association Between Smoking and Sleep. Brain Behav 2025; 15:e70296. [PMID: 39924994 PMCID: PMC11808183 DOI: 10.1002/brb3.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Cigarette smoking has been linked to severe and persistent sleep disturbances alongside notable fluctuations in neuropeptide levels. Substance P (SubP), influenced by smoking, also impacts sleep-wake cycles. However, its specific role in smoking-induced sleep disorders remains unclear. This study aimed to explore the connection between cigarette smoking and sleep quality by examining SubP levels in cerebrospinal fluid (CSF) and identifying potential treatment avenues for sleep disorders. METHODS A total of 146 Chinese men (93 nonsmokers, 53 active smokers) undergoing lumbar puncture before anterior cruciate ligament reconstruction were enrolled. Clinical data and Pittsburgh Sleep Quality Index (PSQI) scores were assessed, followed by CSF sample collection and CSF SubP level measurement. RESULTS Active smokers exhibited significantly higher PSQI scores (4.02 ± 2.27 vs. 2.60 ± 2.46, p < 0.001) and CSF SubP levels (2111 ± 212 vs. 1821 ± 289, p < 0.001) compared to nonsmokers. A negative correlation (r = -0.434, p < 0.001) between SubP levels and PSQI scores was observed in all participants and nonsmokers, while no correlation (r = -0.044, p = 0.72) was found in active smokers. Logistic regression analysis across different dimensions of sleep disorders indicated associations between CSF SubP levels and sleep quality as well as daytime dysfunction (OR = 0.439 (0.211-0.891), p = 0.025; OR = 0.308 (0.152-0.608), p = 0.001). Mediation analysis suggested that CSF SubP levels mediated the relationship between smoking and sleep. CONCLUSION CSF SubP levels are elevated in active smokers and appear to play a mediating role in the relationship between smoking and sleep regulation, as evidenced by a negative correlation between CSF SubP levels and PSQI scores.
Collapse
Affiliation(s)
- Xie Zhang
- Department of PharmacyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Lingling Chen
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Yuyu Wu
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Yu‐Hsin Chen
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Xingguang Luo
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Zeping Xu
- Department of PharmacyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Weiming Hu
- Department of PsychiatryThe Third Hospital of QuzhouQuzhouChina
| | - Yimin Kang
- Medical Neurobiology LabInner Mongolia Medical UniversityHuhhotChina
| | - Li Chen
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Yanlong Liu
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Fan Wang
- Beijing Hui‐Long‐Guan HospitalPeking UniversityBeijingChina
| | - Danhui Liu
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
9
|
Peng BG, Li YC, Yang L. Role of neurogenic inflammation in intervertebral disc degeneration. World J Orthop 2025; 16:102120. [PMID: 39850033 PMCID: PMC11752484 DOI: 10.5312/wjo.v16.i1.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation. IVD cells and infiltrating immune cells express functional receptors for neuropeptides through which they receive signals from the nervous system. In return, IVD cells and immune cells produce neuropeptides and nerve growth factor, which stimulate nerve fibers. This communication generates a positive bidirectional feedback loop that can enhance the inflammatory response of the IVD. Recently emerging transient receptor potential channels have been recognized as contributors to neurogenic inflammation in the degenerative IVDs. These findings suggest that neurogenic inflammation involves complex pathophysiological interactions between sensory nerves and multiple cell types in the degenerative IVDs. Clarifying the mechanism of neurogenic inflammation in IVD degeneration may provide in-depth understanding of the pathology of discogenic low back pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Yong-Chao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People’s Armed Police Forces, Tianjin 300000, China
| |
Collapse
|
10
|
Gutierrez S, Boada MD. NK1 receptor blockade disrupts microtumor growth and aggregation in a three-dimensional murine breast cancer model. Neuropeptides 2025; 109:102479. [PMID: 39591909 DOI: 10.1016/j.npep.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
Several data indicate that Substance P (SP) neurokinin type 1 receptor (NK1R) is at the center of the interaction between cancer cells and peripheral sensory neurons. Selecting the appropriate cancer cell line and its susceptibility to being modulated by NK1 antagonists are critical to studying this complex interaction. In the current study, we have focused on this selection by comparing several aspects of the triple-negative breast cancer (TNBC) cell line (MDA-MB-231LUC+) with a modified murine cell line (E0771LUC+), both expressing luciferase. This comparison was made using several methods, SP stimulation and 3D cell culture models, to better reproduce the heterogenous microenvironment of solid tumors observed in vivo. Furthermore, the susceptibility of the murine cell line (E0771LUC+) to NK1R antagonist (Aprepitant) was tested. Our results indicate that E0771LUC+ recapitulates several essential aspects of the human cell line, rendering this murine line ideal to be used on immune-competent animals during in vivo studies. We have also found that both cell lines are susceptible to SP stimulation, and their proliferation is disrupted by NK1R antagonists (Aprepitant). In vivo studies are required to verify and refine these findings.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Sana SRGL, Lv C, Yu S, Deng X, Dong Y. Epidural injection of varying doses of capsaicin alleviates inflammatory pain in rats via the TLR4/AKT/NF-κB pathway. Inflammopharmacology 2025; 33:257-267. [PMID: 39690361 PMCID: PMC11799098 DOI: 10.1007/s10787-024-01617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Capsaicin (CAP) induces transient pain sensation by activating transient receptor potential vanilloid-1 (TRPV1). However, the initial neuronal excitation induced by CAP is followed by a prolonged refractory period, resulting in long-lasting analgesia. Although the effects of CAP on microglia in the dorsal root ganglion of neuropathic pain disorders have been reported, the regulatory pathways of CAP on microglia remain poorly defined. METHODS A chronic pain model was established via plantar injection of complete Freund's adjuvant (CFA), and different doses of CAP were administered to rats. Pain behavior, expression of pain-related factors, protein expression of TRPV1 in nerve cells, and the inflammatory activation of microglia were evaluated. In vitro experiments were conducted to explore the activation and migration ability of microglia, expression of inflammatory cytokines and pathway proteins, TRPV1 expression in nerve cells, and intracellular calcium concentration under different doses of CAP. RESULTS Different doses of CAP alleviated chronic pain in rats, reduced TRPV1 expression in nerve cells, and inhibited the activation of microglia; however, high doses of CAP were particularly effective in improving chronic pain. In vitro experiments confirmed that CAP reduces the secretion of inflammatory cytokines by microglia via inhibition of the TLR4/AKT/NF-κB signaling pathway. This mechanism reduced the injury and apoptosis of nerve cells, the expression of TRPV1, and the influx of calcium ions in nerve cells. CONCLUSIONS CAP reduced inflammatory responses in microglia in a dose-dependent manner by inhibiting the TLR4/AKT/NF-κB signaling pathway, which consequently reduced TRPV1 expression on neuronal cells and reduced chronic pain.
Collapse
Affiliation(s)
- Si Ri Gu Leng Sana
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanbao Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Yu
- Department of Anesthesiology, Guangzhou United Family Hospital, Guangzhou, China
| | - Xijin Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingwei Dong
- Department of Anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Wright A, Murphy SF, VandeVord PJ. Glial activation and nociceptive neuropeptide elevation associated with the development of chronic post-traumatic headache following repetitive blast exposure. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100178. [PMID: 39850976 PMCID: PMC11754688 DOI: 10.1016/j.ynpai.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla. In this study, male rats were exposed to repeated blast events to induce traumatic brain injury (bTBI) and subsequently assessed for the development of PTH by testing for chronic pain behaviors and examining the neuropathology of the descending pain pathway. The results demonstrated that facial hypersensitivity developed as early as week two following bTBI and persisted throughout the study (12 weeks). Depressive-like behaviors were observed at 12 weeks following bTBI, and these behaviors were associated with neuropathologies such as microglia ramification and neuropeptide elevation (Calcitonin Gene-Related Peptide, CGRP; Substance P, SP). Overall, these findings support the hypothesis that bTBI causes the activation of microglia and elevation of neuropeptides, which contribute to the development of chronic PTH behaviors.
Collapse
Affiliation(s)
- Amirah Wright
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
| | - Susan F. Murphy
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
| | - Pamela J. VandeVord
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
- Salem Veterans Affairs Medical Center, 1970 Roanoke Blvd, Salem, VA, 24153, United States
| |
Collapse
|
13
|
MacDonald DI, Jayabalan M, Seaman J, Balaji R, Nickolls A, Chesler A. Pain persists in mice lacking both Substance P and CGRPα signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567208. [PMID: 38076807 PMCID: PMC10705526 DOI: 10.1101/2023.11.15.567208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Jonathan Seaman
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Rakshita Balaji
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alec Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alexander Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Singh MT, Thaggikuppe Krishnamurthy P, Magham SV. Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells. J Drug Target 2024; 32:258-269. [PMID: 38252517 DOI: 10.1080/1061186x.2024.2309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.
Collapse
Affiliation(s)
- Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
15
|
Kuete CF, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling Human iPSC-Derived Sensory Neurons for Analgesic Drug Screening Using a Multi-Electrode Array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623405. [PMID: 39605708 PMCID: PMC11601878 DOI: 10.1101/2024.11.18.623405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks. After maturation (28 days), we exposed the nociceptors to various drugs, assessing their effects on neuronal activity, with excellent assay performance (Z' values >0.5). Pharmacological tests showed responses to analgesic targets, including ion channels (Nav, Cav, Kv, TRPV1), neurotransmitter receptors (AMPAR, GABA-R), and kinase inhibitors (tyrosine, JAK1/2). Transcriptomic analysis confirmed the presence of these drug targets, although expression levels varied compared to primary human dorsal root ganglion cells. This HCS platform facilitates the rapid discovery of novel analgesics, reducing the risk of preclinical-to-human translation failure. Motivation Chronic pain affects approximately 1.5 billion people worldwide, yet effective treatments remain elusive. A significant barrier to progress in analgesic drug discovery is the limited translation of preclinical findings to human clinical outcomes. Traditional rodent models, although widely used, often fail to accurately predict human responses, while human primary tissues are limited by scarcity, technical difficulties, and ethical concerns. Recent advancements have identified human induced pluripotent stem cell (hiPSC)-derived nociceptors as promising alternatives; however, current differentiation protocols produce cells with inconsistent and physiologically questionable phenotypes.To address these challenges, our study introduces a novel high-content screening (HCS) platform using hiPSC-derived nociceptors cultured on multi-well micro-electrode arrays (MEAs). The "Anatomic" protocol, used to generate these nociceptors, ensures cells with transcriptomic profiles closely matching human primary sensory neurons. Our platform achieves nearly 100% active electrode yield within two weeks and demonstrates sustained, stable activity over time. Additionally, robust Z' factor analysis (exceeding 0.5) confirms the platform's reliability, while pharmacological validation establishes the functional expression of critical analgesic targets. This innovative approach improves both the efficiency and clinical relevance of analgesic drug screening, potentially bridging the translational gap between preclinical studies and human clinical trials, and offering new hope for effective pain management.
Collapse
|
16
|
Chowdari Gurram P, Satarker S, Nampoothiri M. Recent advances in the molecular signaling pathways of Substance P in Alzheimer's disease: Link to neuroinflammation associated with toll-like receptors. Biochem Biophys Res Commun 2024; 733:150597. [PMID: 39197195 DOI: 10.1016/j.bbrc.2024.150597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
A significant quantity of substance P (SP) and its receptor, the neurokinin 1 (NK1) receptors are found in the brain. SP is a neuropeptide distributed in the central nervous system and functions as a neurotransmitter, neuromodulator, and neurotrophic factor. The concentrations of SP in the brain and cerebrospinal fluid fluctuate in individuals with Alzheimer's disease (AD). SP is an endogenous ligand for NK1 receptor, enhancing the expression of toll-like receptors (TLR) and vice versa. So, both pathways are interconnected, where activation of one pathway activates the second pathway. Researchers have observed the interaction of TLR with SP in the pathophysiology of AD. Thus, this review discusses various TLRs involved in regulating amyloid processing and its interaction with SP in AD. Further, in AD pathology, SP can regulate the non-amyloidogenic pathway. Recent studies have also demonstrated the capacity of SP in regulating voltage-gated potassium channel currents, emphasizing SP's neuroprotective ability. Therefore, we corroborate the findings linking the SP, NK1R, and TLRs in AD.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
17
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
18
|
Gomaa AA, Abdallah DM, El-Abhar HS, El-Mokadem BM. Repurposing Aprepitant: Can it protect against doxorubicin-induced Chemobrain beyond its antiemetic role? Life Sci 2024; 359:123210. [PMID: 39488263 DOI: 10.1016/j.lfs.2024.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The substance P (SP) and neurokinin-1 receptor (NK-1R) axis is crucial in numerous pathological processes, including inflammation, stress responses, pain perception, and vomiting. Consequently, aprepitant, an NK-1R blocker, is used as an antiemetic in chemotherapy, including the use of doxorubicin (DOX), but whether aprepitant can also assuage DOX-mediated chemobrain remains to be unveiled. Here, we scrutinized the potential neuroprotective effect and underlying mechanisms of aprepitant using DOX-induced chemobrain model, where rats were allocated into 4 groups (control, aprepitant, DOX, and DOX+ aprepitant). Cognitive deficits were assessed through behavioral tests and hippocampal structural alterations were determined by H&E and toluidine blue staining. Biochemical measurements were performed using ELISA, real-time quantitative PCR, western blotting, and immunohistochemical methods. Aprepitant improved cognitive responses, and hippocampal morphology, enhancing the presence of intact neurons. At the molecular tier, aprepitant significantly reduced hippocampal contents of SP and the inflammatory markers NF-κB and IL-1β. Additionally, it signified its antioxidant and antiapoptotic capacities by downregulating cleaved caspase-3 protein expression and curbing the content of malondialdehyde but boosted those of glutathione and Bcl-2. Aprepitant also downregulated the expression of miR-146a and turned off the endoplasmic reticulum (ER) stress cascade PERK/eIF-2α/ATF-4/CHOP. To recapitulate, aprepitant demonstrates a neuroprotective effect against DOX-mediated chemobrain by alleviating inflammatory, oxidative, and apoptotic responses, partly by reducing SP, ER stress, and miR-146a. These findings not only underscore the potential of aprepitant as a neuroprotective agent but also offer new understanding of the mechanisms behind chemobrain, leading to better therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Asmaa A Gomaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
19
|
Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Qin D. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol 2024; 12:1494865. [PMID: 39539691 PMCID: PMC11557334 DOI: 10.3389/fbioe.2024.1494865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of cutaneous nerves, neuropeptides, and specific receptors richly innervates the skin and influences a variety of physiological and pathological processes. The sensory and autonomic nerve fibers secrete a variety of neuropeptides that are essential to the different phases of wound healing. In addition to initiating a neurogenic inflammatory response in the early stages of healing, neuropeptides also control wound healing by influencing immune cells, repair cells, and the growth factor network. However, the precise mechanism by which they accomplish these roles in the context of cutaneous wound healing is still unknown. Investigating the mechanisms of action of neuropeptides in wound healing and potential therapeutic applications is therefore urgently necessary. The present review discusses the process of wound healing, types of neuropeptides, potential mechanisms underlying the role of neuropeptides in cutaneous wound healing, as well as some neuropeptide-derived treatment strategies, such as hydrogels, new dressings, electro stimulation, and skin-derived precursors. Future in-depth mechanistic studies of neuropeptides in cutaneous wound healing may provide opportunities to develop therapeutic technologies that harness the roles of neuropeptides in the wound healing process.
Collapse
Affiliation(s)
- Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
20
|
Wu D, Li F, Yang F, Liu J. Validity of Plasma Neuropeptide Y in Combination with Clinical Factors in Predicting Neuralgia Following Herpes Zoster. Int J Gen Med 2024; 17:4805-4814. [PMID: 39440102 PMCID: PMC11495191 DOI: 10.2147/ijgm.s480411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Fang Li
- Department of Pathology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Feifei Yang
- Department of Dermatology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing City, 101101, People’s Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, the First People’s Hospital of Yinchuan, Yinchuan City, Ningxia Hui Autonomous Region, 750001, People’s Republic of China
| |
Collapse
|
21
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
22
|
Liu C, Lin MTY, Lee IXY, Wong JHF, Lu D, Lam TC, Zhou L, Mehta JS, Ong HS, Ang M, Tong L, Liu YC. Neuropathic Corneal Pain: Tear Proteomic and Neuromediator Profiles, Imaging Features, and Clinical Manifestations. Am J Ophthalmol 2024; 265:6-20. [PMID: 38521157 DOI: 10.1016/j.ajo.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To investigate the tear proteomic and neuromediator profiles, in vivo confocal microscopy (IVCM) imaging features, and clinical manifestations in neuropathic corneal pain (NCP) patients. DESIGN Cross-sectional study. METHODS A total of 20 NCP patients and 20 age-matched controls were recruited. All subjects were evaluated by corneal sensitivity, Schirmer test, tear break-up time, and corneal and ocular surface staining, Ocular Surface Disease Index and Ocular Pain Assessment Survey questionnaires were administered, as well as IVCM examinations for corneal nerves, microneruomas, and epithelial and dendritic cells. Tears were collected for neuromediator and proteomic analysis using enzyme-linked immunosorbent assay and data-independent acquisition mass spectrometry. RESULTS Burning and sensitivity to light were the 2 most common symptoms in NCP. A total of 188 significantly dysregulated proteins, such as elevated metallothionein-2, creatine kinases B-type, vesicle-associated membrane protein 2, neurofilament light polypeptide, and myelin basic protein, were identified in the NCP patients. The top 10 dysregulated biological pathways in NCP include neurotoxicity, axonal signaling, wound healing, neutrophil degradation, apoptosis, thrombin signaling mitochondrial dysfunction, and RHOGDI and P70S6K signaling pathways. Compared to controls, the NCP cohort presented with significantly decreased corneal sensitivity (P < .001), decreased corneal nerve fiber length (P = .003), corneal nerve fiber density (P = .006), and nerve fiber fractal dimension (P = .033), as well as increased corneal nerve fiber width (P = .002), increased length, total area and perimeter of microneuromas (P < .001, P < .001, P = .019), smaller corneal epithelial size (P = .017), and higher nerve growth factor level in tears (P = .006). CONCLUSIONS These clinical manifestations, imaging features, and molecular characterizations would contribute to the diagnostics and potential therapeutic targets for NCP.
Collapse
Affiliation(s)
- Chang Liu
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Molly Tzu-Yu Lin
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Isabelle Xin Yu Lee
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Jipson Hon Fai Wong
- Clinical Research Platform (J.H.F.W.), Singapore Eye Research Institute, Singapore
| | - Daqian Lu
- Centre for Myopia Research (D.L., T.C.L.), School of Optometry, Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research (D.L., T.C.L.), School of Optometry, Hong Kong Polytechnic University, Hong Kong; Centre for Eye and Vision Research (CEVR) (T.C.L.), Hong Kong
| | - Lei Zhou
- School of Optometry (L.Z.), Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV); The Hong Kong Polytechnic University, Hong Kong
| | - Jodhbir S Mehta
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Hon Shing Ong
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ocular Surface Research Group (L.T.), Singapore Eye Research Institute, Singapore; Eye Academic Clinical Program (L.T.), Duke-NUS Medical School, Singapore; Department of Ophthalmology (L.T.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu-Chi Liu
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore; Department of Ophthalmology (Y.-C.L.), National Taiwan University, Taiwan.
| |
Collapse
|
23
|
Georgiou SG, Anagnostou TL, Sideri AI, Gouletsou PG, Athanasiou LV, Kazakos G, Tsioli V, Dermisiadou E, Galatos AD. Effect of classical music on light-plane anaesthesia and analgesia in dogs subjected to surgical nociceptive stimuli. Sci Rep 2024; 14:19511. [PMID: 39174615 PMCID: PMC11341903 DOI: 10.1038/s41598-024-70343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
The objectives of this prospective, randomized, blinded, crossover, experimental study were to detect the potential anaesthetic- and analgesic-sparing effects of classical music provided to dogs undergoing skin surgery, and to investigate the role of substance P as an intraoperative pain indicator. Twenty dogs were included, each subjected to three different treatments: Chopin music, Mozart music and no music. They were premedicated with acepromazine, butorphanol and meloxicam and anaesthetized with propofol and isoflurane. Fentanyl was used as rescue analgesia. The anaesthetic depth was monitored by using the bispectral index along with standard anaesthetic monitoring, and autonomic nervous system responses were used to monitor the adequacy of analgesia. Furthermore, measurements of substance P serum concentration were carried out. Dogs exposed to music required less isoflurane and fentanyl. Furthermore, a statistically significant effect of time on substance P concentration was observed regardless of exposure to music, and there was a significant interaction effect between different timepoints and the type of acoustic stimulus. Classical music seems to have an isoflurane and fentanyl sparing effect on dogs undergoing minor surgery. Following surgical stimulation, the serum substance P concentration increases rapidly, and thus appears to be a potentially useful pain indicator.
Collapse
Affiliation(s)
- S G Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - T L Anagnostou
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A I Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - P G Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - L V Athanasiou
- Clinic of Medicine, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - G Kazakos
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - E Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - A D Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Karditsa, Greece.
| |
Collapse
|
24
|
Zhao X, Liu S, Yang Z, Li Y. Molecular mechanisms and genetic factors contributing to the developmental dysplasia of the hip. Front Genet 2024; 15:1413500. [PMID: 39156961 PMCID: PMC11327038 DOI: 10.3389/fgene.2024.1413500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Pediatric Orthopaedics, Shenyang Orthopaedic Hospital, Shenyang, China
| | - Shuai Liu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Wu L, Zhang D, Wu Y, Liu J, Jiang J, Zhou C. Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Helps to Maintain Respiratory Frequency Under Sevoflurane Anesthesia. Neurosci Bull 2024; 40:1127-1140. [PMID: 38767833 PMCID: PMC11306470 DOI: 10.1007/s12264-024-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/15/2024] [Indexed: 05/22/2024] Open
Abstract
The lateral parabrachial nucleus (PBL) is implicated in the regulation of respiratory activity. Sodium leak channel (NALCN) mutations disrupt the respiratory rhythm and influence anesthetic sensitivity in both rodents and humans. Here, we investigated whether the NALCN in PBL glutamatergic neurons maintains respiratory function under general anesthesia. Our results showed that chemogenetic activation of PBL glutamatergic neurons increased the respiratory frequency (RF) in mice; whereas chemogenetic inhibition suppressed RF. NALCN knockdown in PBL glutamatergic neurons but not GABAergic neurons significantly reduced RF under physiological conditions and caused more respiratory suppression under sevoflurane anesthesia. NALCN knockdown in PBL glutamatergic neurons did not further exacerbate the respiratory suppression induced by propofol or morphine. Under sevoflurane anesthesia, painful stimuli rapidly increased the RF, which was not affected by NALCN knockdown in PBL glutamatergic neurons. This study suggested that the NALCN is a key ion channel in PBL glutamatergic neurons that maintains respiratory frequency under volatile anesthetic sevoflurane but not intravenous anesthetic propofol.
Collapse
Affiliation(s)
- Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin Alleviates CCI-Induced Neuropathic Pain in Rats by Modulating the IL34/CSFIR Axis and Attenuating the Schwann Cell-Macrophage Cascade Response in the DRG. Mol Neurobiol 2024; 61:5027-5041. [PMID: 38159197 DOI: 10.1007/s12035-023-03876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the potential therapeutic applications of (+)-catechin in the treatment of neuropathic pain. In vivo study, 32 SD rats were randomly divided into four groups: sham group, chronic constriction injury (CCI) group, CCI + ibuprofen group and CCI+ (+)-catechin group. They were subjected to behavioural tests, ELISA, immunohistochemistry and Western blotting. The mechanisms involved were investigated using specific inhibitors in cell experiments. Results of in vivo experiments showed that (+)-catechin could reduce the cold sensitivity pain in a rat model of CCI; ELISA and immunohistochemistry results showed that (+)-catechin could decrease the levels of IL-8, IL-6, TNF-α, CCL2 and CCL5 in serum and the expression levels of nNOS, COX2, IL6, TNF-α, IBA-1 and CSF1R in DRG of CCI rats. Finally, western blot confirmed that (+)-catechin could diminish the levels of IL-34/CSF1R/JAK2/STAT3 signalling pathway in DRG of CCI rats. In vitro studies showed that (+)-catechin reduced IL-34 secretion in LPS-induced RSC96 cells. Meanwhile, (+)-catechin administration in LPS-induced Schwann cell-conditioned medium (L-CM) significantly inhibited the proliferation and migration of RAW264.7 cells; in addition, L-CM+(+)-catechin reduced the activation of the CSF1R/JAK2/STAT3 signalling pathway. (+)-Catechin attenuated the Schwann cell-macrophage cascade response in the DRG by modulating the IL34/CSFIR axis and inhibiting activation of the JAK2/STAT3 pathway, thereby attenuating CCI-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
27
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
29
|
Yang Y, Cao X, Wang Y, Wu X, Zhou P, Miao L, Deng X. Neurokinin-1 receptor antagonist aprepitant regulates autophagy and apoptosis via ROS/JNK in intrahepatic cholangiocarcinoma. Liver Int 2024; 44:1651-1667. [PMID: 38554043 DOI: 10.1111/liv.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis and limited treatment options. Aprepitant, a selective NK-1R antagonist, can inhibit the growth of various tumours in vitro and in vivo. However, it remains unclear whether aprepitant has cytotoxic effects on iCCA. METHODS We measured the expression of SP/NK-1R in clinical samples of iCCA by immunohistochemistry. Then, we detected the cytotoxic effects of aprepitant on iCCA cells via MTT, EdU and colony formation assay. We constructed a subcutaneous xenograft model of BALB/c nude mice by using HCCC-9810 and RBE cell lines to explore the effects of aprepitant in vivo. To elucidate the potential mechanisms, we explored the pro-apoptotic effect of aprepitant by flow cytometric, western blotting, ROS detection and JC-1 staining. Furthermore, we detected the autophagic level of HCCC-9810 and RBE by western blotting, mRFP-eGFP-LC3 adenovirus transfection and electron microscope. RESULTS SP/NK-1R is significantly expressed in iCCA. Aprepitant inhibited human iCCA xenograft growth and dose-dependently decreased the viability of RBE and HCCC-9810 cells. Aprepitant-induced mitochondria-dependent apoptosis through ROS/JNK pathway. Additionally, pretreatment with z-VAD-fmk partly reversed the effect of aprepitant on cell viability, while NAC completely attenuated the cytotoxic effects of aprepitant in vitro. Furthermore, we observed the dynamic changes of autophagosome in RBE and HCCC-9810 cells treated with aprepitant. CONCLUSION SP/NK-1R signalling is significantly activated in iCCA and promotes the proliferation of iCCA cells. By contrast, aprepitant can induce autophagy and apoptosis in iCCA cells via ROS accumulation and subsequent activation of JNK.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueyan Cao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Wu
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhou
- Lab Center, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Akotkar L, Aswar U, Ganeshpurkar A, Rathod K, Bagad P, Gurav S. Phytoconstituents Targeting the Serotonin 5-HT 3 Receptor: Promising Therapeutic Strategies for Neurological Disorders. ACS Pharmacol Transl Sci 2024; 7:1694-1710. [PMID: 38898946 PMCID: PMC11184608 DOI: 10.1021/acsptsci.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The 5-hydroxytryptamine-3 receptor (5-HT3R), a subtype of serotonin receptor, is a ligand-gated ion channel crucial in mediating fast synaptic transmission in the central and peripheral nervous systems. This receptor significantly influences various neurological activities, encompassing neurotransmission, mood regulation, and cognitive processing; hence, it may serve as an innovative target for neurological disorders. Multiple studies have revealed promising results regarding the beneficial effects of these phytoconstituents and extracts on conditions such as nausea, vomiting, neuropathic pain depression, anxiety, Alzheimer's disease, cognition, epilepsy, sleep, and dyskinesia via modulation of 5-HT3R in the pathophysiology of neurological disorder. The review delves into a detailed exploration of in silico, in vitro, and in vivo studies and clinical studies that discussed phytoconstituents acting on 5-HT3R and attenuates difficulties in neurological diseases. The diverse mechanisms by which plant-derived phytoconstituents influence 5-HT3R activity offer exciting avenues for developing innovative therapeutic interventions. Besides producing an agonistic or antagonistic effect, some phytoconstituents exert modulatory effects on 5-HT3R activity through multifaceted mechanisms. These include γ-aminobutyric acid and cholinergic neuronal pathways, interactions with neurokinin (NK)-1, NK2, serotonergic, and γ-aminobutyric acid(GABA)ergic systems, dopaminergic influences, and mediation of calcium ions release and inflammatory cascades. Notably, the phytoconstituent's capacity to reduce oxidative stress has also emerged as a significant factor contributing to their modulatory role. Despite the promising implications, there is currently a dearth of exploration needed to understand the effect of phytochemicals on the 5-HT3R. Comprehensive preclinical and clinical research is of the utmost importance to broaden our knowledge of the potential therapeutic benefits associated with these substances.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Urmila Aswar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Ankit Ganeshpurkar
- Department
of Pharmaceutical Chemistry, Poona College
of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune411038, India
| | - Kundlik Rathod
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Pradnya Bagad
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Shailendra Gurav
- Department
of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India
| |
Collapse
|
31
|
Zhang M, Wang Z, Ding C. Pharmacotherapy for osteoarthritis-related pain: current and emerging therapies. Expert Opin Pharmacother 2024; 25:1209-1227. [PMID: 38938057 DOI: 10.1080/14656566.2024.2374464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) related pain has affected millions of people worldwide. However, the current pharmacological options for managing OA-related pain have not achieved a satisfactory effect. AREAS COVERED This narrative review provides an overview of the current and emerging drugs for OA-related pain. It covers the drugs' mechanism of action, safety, efficacy, and limitations. The National Library of Medicine (PubMed) database was primarily searched from 2000 to 2024. EXPERT OPINION Current treatment options are limited and suboptimal for OA pain management. Topical nonsteroidal anti-inflammatory drugs (NSAIDs) are the recognized and first-line treatment in the management of OA-related pain, and other drugs are inconsistent recommendations by guidelines. Emerging treatment options are promising for OA-related pain, including nerve growth factor (NGF) inhibitors, ion channel inhibitors, and calcitonin gene-related peptide (CGRP) antagonists. Besides, drugs repurposing from antidepressants and antiepileptic analgesics are shedding light on the management of OA-related pain. The management of OA-related pain is challenging as pain is heterogeneous and subjective. A more comprehensive strategy combined with non-pharmacological therapy needs to be considered, and tailored management options to individualized patients.
Collapse
Affiliation(s)
- Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Humes C, Sic A, Knezevic NN. Substance P's Impact on Chronic Pain and Psychiatric Conditions-A Narrative Review. Int J Mol Sci 2024; 25:5905. [PMID: 38892091 PMCID: PMC11172719 DOI: 10.3390/ijms25115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Charles Humes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
33
|
Guzzi G, Della Torre A, Bruni A, Lavano A, Bosco V, Garofalo E, La Torre D, Longhini F. Anatomo-physiological basis and applied techniques of electrical neuromodulation in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:29. [PMID: 38698460 PMCID: PMC11064427 DOI: 10.1186/s44158-024-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies' mechanisms of action, clinical utility, and future perspectives in chronic pain management.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Attilio Della Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Angelo Lavano
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Bosco
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Domenico La Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy.
| |
Collapse
|
34
|
Yanuck SF. Failed Induction of the T H1 System in T H2 Dominant Patients: The Cancer-Permissive Immune Macroenvironment. Integr Med (Encinitas) 2024; 23:24-35. [PMID: 38911450 PMCID: PMC11193407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Tumor microenvironment infiltration by cells of the T helper cell type 1 (TH1) system, including TH1 cells, M1 macrophages, natural killer cells, and CD8+ T cells, is associated with better cancer prognosis. In contrast, tumor microenvironment infiltration by cells of the TH2 system, including TH2 cells, M2 macrophages, and innate lymphoid cells type 2, as well as immune suppressive myeloid-derived suppressor cells and regulatory T cells, is associated with poorer cancer prognosis. Beyond the tumor itself and a myriad of other modifying factors, such as genetic and epigenetic influences on tumorigenesis, the overall immune state of the patient, termed the macroenvironment, has also been shown to significantly influence cancer outcomes. Alterations in the tricarboxylic acid (TCA) cycle (TCA cycle breaks) involving loss of function of succinate dehydrogenase, isocitrate dehydrogenase, and fumarate hydratase have been shown to be associated with an intracellular metabolic shift away from oxidative phosphorylation and into glycolysis in cells that are transforming into cancer cells. The same loss of function of succinate dehydrogenase and isocitrate dehydrogenase has also been identified as inducing a shift in macrophages toward glycolysis that is associated with M1 macrophage polarization. M1 macrophages make interleukin 12, which stimulates TH1 cells and natural killer cells to produce interferon gamma (IFN-γ), which in turn stimulates M1 macrophage activity, forming an activation loop. IFN-γ also drives activation of CD8+ T cells. Thus, M1 macrophage activation initiates and sustains activation of the TH1 system of cells. In this fashion, TCA cycle breaks at succinate dehydrogenase and isocitrate dehydrogenase that promote cellular transformation into cancer cells are also associated with upregulation of the TH1 system that provides anti-cancer immune surveillance. The TH1 and TH2 systems are known to inhibit each other's activation. It is this author's hypothesis that, in patients whose macroenvironment is sufficiently TH2-dominant, the metabolic shift toward glycolysis induced by TCA cycle breaks that gives rise to mutagenic changes in tissue parenchymal cells is not counterbalanced by adequate activation of M1 macrophages, thus giving rise to cancer cell development. For instance, the atopic TH2-high asthma phenotype, a TH2 dominance-based comorbidity, is associated with a more than doubled incidence of colon, breast, lung, and prostate cancer, compared with non-asthmatics. Failure of TCA cycle breaks to induce M1 polarization of tissue-resident macrophages yields a tissue environment in which the tissue-resident macrophages fail to routinely perform M1-associated functions such as phagocytizing newly developing cancer cells. Failure of M1 phenotypic expression in both tissue-resident macrophages and monocyte-derived macrophages recruited to the tumor microenvironment yields both a loss of direct antitumor M1 macrophage actions and failure of TH1 system activation in general, including failure of CD8+ T cell activation, yielding a cancer-permissive tumor microenvironment and a poorer prognosis in patients with existing cancers. This paper proposes a conceptual framework that connects established elements in the existing research and points to the utility of a patient profiling process, aimed at personalization of treatment through identification and targeting of elements in each patient's tumor microenvironment and macroenvironment that contribute to unfavorable prognosis.
Collapse
Affiliation(s)
- Samuel F. Yanuck
- DC; Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
35
|
Lan J, Deng Z, Wang Q, Li D, Fan K, Chang J, Ma Y. Neuropeptide substance P attenuates colitis by suppressing inflammation and ferroptosis via the cGAS-STING signaling pathway. Int J Biol Sci 2024; 20:2507-2531. [PMID: 38725846 PMCID: PMC11077368 DOI: 10.7150/ijbs.94548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
Neuropeptide substance P (SP) belongs to a family of bioactive peptides and regulates many human diseases. This study aims to investigate the role and underlying mechanisms of SP in colitis. Here, activated SP-positive neurons and increased SP expression were observed in dextran sodium sulfate (DSS)-induced colitis lesions in mice. Administration of exogenous SP efficiently ameliorated the clinical symptoms, impaired intestinal barrier function, and inflammatory response. Mechanistically, SP protected mitochondria from damage caused by DSS or TNF-α exposure, preventing mitochondrial DNA (mtDNA) leakage into the cytoplasm, thereby inhibiting the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. SP can also directly prevent STING phosphorylation through the neurokinin-1 receptor (NK1R), thereby inhibiting the activation of the TBK1-IRF3 signaling pathway. Further studies revealed that SP alleviated the DSS or TNF-α-induced ferroptosis process, which was associated with repressing the cGAS-STING signaling pathway. Notably, we identified that the NK1R inhibition reversed the effects of SP on inflammation and ferroptosis via the cGAS-STING pathway. Collectively, we unveil that SP attenuates inflammation and ferroptosis via suppressing the mtDNA-cGAS-STING or directly acting on the STING pathway, contributing to improving colitis in an NK1R-dependent manner. These findings provide a novel mechanism of SP regulating ulcerative colitis (UC) disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunfei Ma
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
37
|
Bom ADOP, Dias-Soares M, Corrêa RCD, Neves CL, Hosch NG, de Lucena GG, Oliveira CG, Pagano RL, Chacur M, Giorgi R. Molecular Aspects Involved in the Mechanisms of Bothrops jararaca Venom-Induced Hyperalgesia: Participation of NK1 Receptor and Glial Cells. Toxins (Basel) 2024; 16:187. [PMID: 38668612 PMCID: PMC11053884 DOI: 10.3390/toxins16040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.
Collapse
Affiliation(s)
- Ariela de Oliveira Pedro Bom
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Monique Dias-Soares
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Raíssa Cristina Darroz Corrêa
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
- Postgraduate Program in Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Camila Lima Neves
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | | | - Gabriela Gomes de Lucena
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| | - Camilla Garcia Oliveira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Rosana Lima Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil;
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-900, SP, Brazil; (C.G.O.); (M.C.)
| | - Renata Giorgi
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (A.d.O.P.B.); (M.D.-S.); (R.C.D.C.); (C.L.N.); (G.G.d.L.)
| |
Collapse
|
38
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
39
|
Niella RV, Corrêa JMX, dos Santos JFR, Lima LF, Marques CSDC, Santos LC, Santana LR, Silva ÁJC, Farias KS, Pirovani CP, Silva JF, de Lavor MSL. Post-treatment with maropitant reduces oxidative stress, endoplasmic reticulum stress and neuroinflammation on peripheral nerve injury in rats. PLoS One 2024; 19:e0287390. [PMID: 38507417 PMCID: PMC10954158 DOI: 10.1371/journal.pone.0287390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN Randomized, blinded, prospective experimental study. ANIMALS 98 male Wistar rats. METHODS Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.
Collapse
Affiliation(s)
- Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | | - Larissa Ferreira Lima
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | | - Larissa Rodrigues Santana
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Álvaro José Chávez Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Keilane Silva Farias
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Juneo Freitas Silva
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
40
|
Zhao L, Zhou Y, Duan H, Zhang Y, Ma B, Yang T, Chen J, Chen Y, Qi H. Analysis of Clinical Characteristics and Neuropeptides in Patients with Dry Eye with and without Chronic Ocular Pain after FS-LASIK. Ophthalmol Ther 2024; 13:711-723. [PMID: 38190027 PMCID: PMC10853104 DOI: 10.1007/s40123-023-00861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Chronic ocular pain, particularly prevalent in patients with dry eye disease and post-femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) surgery, presents with unclear clinical characteristics and an undefined pathogenesis. In this study, we aimed to compare clinical characteristics and tear neuropeptide concentrations in patients with dry eye disease (DED) with and without chronic ocular pain following FS-LASIK, and investigate correlations between ocular pain, clinical characteristics, and tear neuropeptide levels. METHODS Thirty-eight post-FS-LASIK patients with DED were assigned to two groups: those with chronic ocular pain and those without chronic ocular pain. Dry eye, ocular pain, and mental health-related parameters were evaluated using specific questionnaires and tests. The morphology of corneal nerves and dendritic cells (DCs) was evaluated by in vivo confocal microscopy. Function of corneal innervation was evaluated by corneal sensitivity. Concentrations of tear cytokines (interleukin [IL]-6, IL-23, IL-17A, and interferon-γ) and neuropeptides (α-melanocyte-stimulating hormone, neurotensin, β-endorphin, oxytocin, and substance P [SP]) were measured using the Luminex assay. RESULTS Most patients with chronic ocular pain experienced mild to moderate pain; the most common types included stimulated pain (provoked by wind and light), burning pain, and pressure sensation. More severe dry eye (P < 0.001), anxiety symptoms (P = 0.026), lower Schirmer I test values (P = 0.035), lower corneal nerve density (P = 0.043), and more activated DCs (P = 0.041) were observed in patients with ocular pain. Tear concentrations of SP and oxytocin were significantly higher in patients with ocular pain (P = 0.001, P = 0.021, respectively). Furthermore, significant correlations were observed among ocular pain severity, SP, and anxiety levels. CONCLUSIONS Patients with DED after FS-LASIK who have chronic ocular pain show more severe ocular and psychological discomfort and higher tear levels of neuropeptides. Furthermore, ocular pain severity is correlated with tear SP levels. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05600985.
Collapse
Affiliation(s)
- Lu Zhao
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongyu Duan
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yu Zhang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Baikai Ma
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Tingting Yang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yueguo Chen
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hong Qi
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Health Science Center, Institute of Medical Technology, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
41
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
42
|
Gałęcka I, Szyryńska N, Całka J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024; 21:5. [PMID: 38321545 PMCID: PMC10845528 DOI: 10.1186/s12989-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
43
|
Bazan HEP, Pham TL. A new R,R-RvD6 isomer with protective actions following corneal nerve injury. Prostaglandins Other Lipid Mediat 2024; 170:106802. [PMID: 38036037 PMCID: PMC10966988 DOI: 10.1016/j.prostaglandins.2023.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The transparent cornea is the most densely innervated tissue in the body, primarily by sensory nerves originating from the trigeminal ganglia (TG). Damage to corneal nerves reduces sensitivity and tear secretion and results in dry eye. Consequently, ocular pain, for which no satisfactory therapies exist, arises in many cases. Treatment of injured corneas with pigment epithelium-derived factor (PEDF) combined with docosahexaenoic acid (DHA) stimulates nerve regeneration in models of refractive surgery, which damages nerves. The mechanism involves the synthesis of a stereoisomer of resolvin D6 (R,R-RvD6) formed after incorporating DHA into membrane lipids. Activation of a PEDF receptor (PEDF-R) with phospholipase activity releases DHA to synthesize the new resolvin isomer, which is secreted via tears. Topical treatment of mice corneas with R,R-RvD6 shows higher bioactivity in regenerating nerves and increasing sensitivity compared to PEDF+DHA. It also stimulates a transcriptome in the TG that modulates genes involved in ocular pain. Our studies suggest an important therapeutic role for R,R-RvD6 in regenerating corneal nerves and decreasing pain resulting from dry eye.
Collapse
Affiliation(s)
- Haydee E P Bazan
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.
| | - Thang L Pham
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA.
| |
Collapse
|
44
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
45
|
Bonelli F, Campestre F, Lasagni Vitar RM, Demirsoy IH, Fonteyne P, Ferrari G. Aprepitant Restores Corneal Sensitivity and Reduces Pain in DED. Transl Vis Sci Technol 2024; 13:9. [PMID: 38345550 PMCID: PMC10866158 DOI: 10.1167/tvst.13.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose This study aims to assess the efficacy of two aprepitant formulations (X1 and X2), in a preclinical model of dry eye disease (DED) induced by benzalkonium chloride (BAK). Methods Two aprepitant formulations were tested on 7 to 8-week-old male mice for their efficacy. In vivo corneal fluorescein staining assessed epithelial damage as the primary end point on days 0, 3, 5, 7, 9, 12, and 14 using slit-lamp microscopy. The DED model was induced with 0.2% BAK twice daily for the first week and once daily for the next week. Mice were randomly assigned to 5 treatment groups: Aprepitant X1 (n = 10) and X2 (n = 10) formulation, 2 mg/mL dexamethasone (n = 10), control vehicle X (n = 10), 0.2% hyaluronic acid (n = 10), or no treatment (n = 10). Eye wiping, phenol red, and Cochet Bonnet tests assessed ocular pain, tear fluid secretion, and nerve function. After 7 days, the mice were euthanized to quantify leukocyte infiltration and corneal nerve density. Results Topical aprepitant X1 reduced BAK-induced corneal damage and pain compared to gel vehicle X (P = 0.007) and dexamethasone (P = 0.021). Aprepitant X1 and X2 improved corneal sensitivity versus gel vehicle X and dexamethasone (P < 0.001). Aprepitant X1 reduced leukocyte infiltration (P < 0.05) and enhanced corneal nerve density (P < 0.001). Tear fluid secretion remained statistically unchanged in both the X1 and X2 groups. Conclusions Aprepitant formulation X1 reduced pain, improved corneal sensitivity and nerve density, ameliorated epitheliopathy, and reduced leukocyte infiltration in male mouse corneas. Translational Relevance Aprepitant emerges as a safe, promising therapeutic prospect for the amelioration of DED's associated symptoms.
Collapse
Affiliation(s)
- Filippo Bonelli
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology–Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Fabiola Campestre
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ibrahim Halil Demirsoy
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Department of Ophthalmology, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
46
|
Zhou MY, Yao CH, Yang YJ, Li X, Yang J, Liu JH, Yu BY, Dai WL. Based on spinal central sensitization creating analgesic screening approach to excavate anti-neuropathic pain ingredients of Corydalis yanhusuo W.T.Wang. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117084. [PMID: 37666376 DOI: 10.1016/j.jep.2023.117084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis Rhizome (RC) as a traditional analgesic Chinese medicine is the dried tuber of Corydalis yanhusuo W.T.Wang. Many efforts have revealed that RC could effectively alleviate neuropathic pain, while its active ingredients in neuropathic pain are still not clear. AIM OF THE STUDY Spinal central sensitization contributes greatly to neuropathic pain, and neuron, astrocyte and microglia play important roles in spinal central sensitization. The aim of the present study is to excavate active compounds in RC regulating spinal central sensitization to inhibit neuropathic pain. MATERIALS AND METHODS Immunofluorescence and western blotting were used to determine protein expression levels. Gene expression levels were detected by RT-PCR. PC12 neuronal cells, C6 astrocyte cells, and BV2 microglia cells were cultured for in vitro studies. Targeting multi types of cells extraction combined with HPLC-Q-TOF-MS/MS was established to identify components binding to above cells. Animal studies were used to verify the analgesic activities of components. RESULTS Total alkaloids of RC (RC-TA) significantly relieved neuropathic pain in chronic constriction injury (CCI) rats and repressed spinal central sensitization. Eight components of RC-TA were found to bind to PC12, C6, or BV2 cells. They could respectively suppress the activation of cells in vitro and alleviate CCI-induced neuropathic pain, among which glaucine and dehydrocorydaline induced antinociception was stronger than l-THP. Meanwhile, glaucine had no effect on acute or chronic inflammatory pain, and its antinociception in neuropathic pain could be abolished by dopamine D1 receptor agonist. CONCLUSIONS Employing multi types of cells based on spinal central sensitization rather than single cell may allow for more thorough excavation of active substances. Glaucine was firstly found could attenuate neuropathic pain but not other types of pain which indicated that different alkaloids in RC exert distinct analgesic effects on different pain models, and gluacine has the potential to be developed as an analgesic drug specifically for neuropathic pain relieving.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yu-Jie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
47
|
Park DS, Oh S, Jin YJ, Na MH, Kim M, Kim JH, Hyun DY, Cho KH, Hong YJ, Kim JH, Ahn Y, Hermida-Prieto M, Vázquez-Rodríguez JM, Gutiérrez-Chico JL, Mariñas-Pardo L, Lim KS, Park JK, Byeon DH, Cho YN, Kee SJ, Sim DS, Jeong MH. Preliminary Investigation on Efficacy and Safety of Substance P-Coated Stent for Promoting Re-Endothelialization: A Porcine Coronary Artery Restenosis Model. Tissue Eng Regen Med 2024; 21:53-64. [PMID: 37973692 PMCID: PMC10764706 DOI: 10.1007/s13770-023-00608-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 μm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
Collapse
Affiliation(s)
- Dae Sung Park
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- The Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Seok Oh
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yu Jeong Jin
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Mi Hyang Na
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
| | - Munki Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Jeong Ha Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
| | - Dae Young Hyun
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Kyung Hoon Cho
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Joon Hong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju Han Kim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Manuel Hermida-Prieto
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Manuel Vázquez-Rodríguez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Juan Luis Gutiérrez-Chico
- Bundeswehrzentralkrankenhaus (Federal Army Central Military Hospital), Koblenz, Germany
- Universidad Alfonso X el Sabio, Madrid, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de La Salud, Universidad Internacional de Valencia (VIU), Valencia, Spain
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | | | | | - Young-Nan Cho
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Clinical Laboratory Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Doo Sun Sim
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Myung Ho Jeong
- The Korea Cardiovascular Stent Research Institute, Chonnam National University, Gwangju, Korea.
- The Cardiovascular Convergence Research Center of Chonnam National University Hospital Designated by Korea Ministry of Health and Welfare, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiovascular Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
48
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
49
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
50
|
Krawczyk A, Mozel S, Rycerz K, Jaworska-Adamu J, Arciszewski MB. Immunoreactivity of glutamine synthetase in satellite glia around various subpopulations of lumbar dorsal root ganglia neurons in adult rats treated with monosodium glutamate. J Chem Neuroanat 2023; 134:102347. [PMID: 37838216 DOI: 10.1016/j.jchemneu.2023.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.
Collapse
Affiliation(s)
- Aleksandra Krawczyk
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Jadwiga Jaworska-Adamu
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Marcin Bartłomiej Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| |
Collapse
|