1
|
Chen CY, Hope Gadia Moreno RL, Wang PY, Nguyen TS, Wu JL, Chen KH, Chen CH, Lin CY, Wong PC. 3D-Printable Photothermal and Temperature-Controlled Polycaprolactone Scaffolds Incorporating Gold Plasmonic Blackbodies for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29455-29468. [PMID: 40356297 DOI: 10.1021/acsami.5c05707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Three-dimensional (3D) printing technology has revolutionized the design and fabrication of bone scaffolds, offering precise and customizable solutions for bone tissue engineering. In this study, we developed polycaprolactone (PCL) scaffolds that incorporated gold plasmonic blackbodies (AuPBs) to harness photothermal properties for temperature-controlled bone regeneration. The AuPB-PCL scaffolds demonstrated enhanced mechanical strength, a tunable thermal response under near-infrared (NIR) laser irradiation, and improved osteogenic potential. Photothermal stimulation effectively modulated cellular responses, promoting osteoblast proliferation, alkaline phosphatase (ALP) activity, and mineralization. Notably, mild hyperthermia (39-41 °C) induced by laser irradiation optimized osteogenesis, while excessive temperatures (≥42.5 °C) impaired cellular function due to mitochondrial stress and oxidative damage. These findings highlight the potential of AuPB-PCL scaffolds for controlled photothermal bone regeneration, offering a promising strategy for precise, completely noninvasive stimulation of bone repair.
Collapse
Affiliation(s)
- Chieh-Ying Chen
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ruaina Lily Hope Gadia Moreno
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Yao Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Thanh Sang Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Trauma, Hue Central Hospital, Hue 530000, Vietnam
| | - Jia-Lin Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11096, Taiwan
| | - Kuan-Hao Chen
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Chia-Ying Lin
- Convergent Bioscience and Technology Institute, Department of Biomedical Engineering and Informatics, Indiana University, Indianapolis, Indiana 46202, United States
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Kumar P, Sharma J, Kumar R, Najser J, Frantik J, Manuja A, Sunnam N, Praveenkumar S. Advances in bioink-based 3D printed scaffolds: optimizing biocompatibility and mechanical properties for bone regeneration. Biomater Sci 2025; 13:2556-2579. [PMID: 40190204 DOI: 10.1039/d4bm01606h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The development of bioink-based 3D-printed scaffolds has revolutionized bone tissue engineering (BTE) by enabling patient-specific and biomimetic constructs for bone regeneration. This review focuses on the biocompatibility and mechanical properties essential for scaffold performance, highlighting advancements in bioink formulations, material combinations, and printing techniques. The key biomaterials, including natural polymers (gelatin, collagen, alginate), synthetic polymers (polycaprolactone, polyethylene glycol), and bioactive ceramics (hydroxyapatite, calcium phosphate), are discussed concerning their osteoconductivity, printability, and structural integrity. Despite significant progress, challenges remain in achieving optimal mechanical strength, degradation rates, and cellular interactions. The review explores emerging strategies such as gene-activated bioinks, nanocomposite reinforcements, and crosslinking techniques to enhance scaffold durability and bioactivity. By synthesizing recent developments, this work provides insights into future directions for bioink-based scaffolds, paving the way for more effective and personalized bone regenerative therapies.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India.
| | - Jitender Sharma
- Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India.
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, City Phagwara, 144411, India.
| | - Jan Najser
- ENET Centre, CEET, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
| | - Jaroslav Frantik
- ENET Centre, CEET, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
| | - Anju Manuja
- ICAR-National Research Centre on Equines, Hisar, 125001, India.
| | - Nagaraju Sunnam
- Department of Mechanical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India.
| | - Seepana Praveenkumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris, 19 Mira Street, 620002, Ekaterinburg, Yeltsin, Russia.
| |
Collapse
|
3
|
Vyas J, Raytthatha N, Vyas P, Prajapati BG, Uttayarat P, Singh S, Chittasupho C. Biomaterial-Based Additive Manufactured Composite/Scaffolds for Tissue Engineering and Regenerative Medicine: A Comprehensive Review. Polymers (Basel) 2025; 17:1090. [PMID: 40284355 PMCID: PMC12030672 DOI: 10.3390/polym17081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Additive manufacturing (AM), also referred to as three-dimensional printing/printed (3DP), has emerged as a transformative approach in the current design and manufacturing of various biomaterials for the restoration of damaged tissues inside the body. This advancement has greatly aided the development of customized biomedical devices including implants, prosthetics, and orthotics that are specific to the patients. In tissue engineering (TE), AM enables the fabrication of complex structures that promote desirable cellular responses in the regeneration of tissues. Since the choice of biomaterials plays a vital role in scaffold performance as well as cellular responses, meticulous material selection is essential in optimizing the functionality of scaffolds. These scaffolds often possess certain characteristics such as biodegradability, biocompatibility, biomimicry, and porous structure. To this end, polymers such as chitosan, collagen, alginate, hyaluronic acid, polyglycolic acid, polylactic acid, and polycaprolactone have been extensively investigated in the fabrication of tissue-engineered scaffolds. Furthermore, combinations of biomaterials are also utilized to further enhance the scaffolds' performance and functionality. This review discusses the principle of AM and explores recent advancements in AM technologies in the development of TE and regenerative medicine. In addition, the applications of 3DP, polymer-based scaffolds will be highlighted.
Collapse
Affiliation(s)
- Jigar Vyas
- Krishna School of Pharmacy & Research, Dr. Kiran and Pallavi Global University, Varnama, Vadodara 391240, Gujarat, India; (J.V.); (N.R.)
| | - Nensi Raytthatha
- Krishna School of Pharmacy & Research, Dr. Kiran and Pallavi Global University, Varnama, Vadodara 391240, Gujarat, India; (J.V.); (N.R.)
| | - Puja Vyas
- Sigma Institute of Pharmacy, Sigma University, Vadodara 390019, Gujarat, India;
| | - Bhupendra G. Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 3840212, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand;
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Chang XZ, Liu JS, Lü JQ. Digital Light Processing 3D Printing Technology in Biomedical Engineering: A Review. Macromol Biosci 2025:e2500101. [PMID: 40201940 DOI: 10.1002/mabi.202500101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/23/2025] [Indexed: 04/10/2025]
Abstract
As one of the 3D printing technologies, digital light processing (DLP) 3D printing technology has been widely applied in biomedical engineering. The principles and advantages of DLP 3D printing technology are compared with other 3D printing technologies, while the characteristics and applicable fields of each technique are analyzed. The applications of DLP 3D printing technology in tissue engineering, medical devices and pharmaceutical field are classified and summarized. Besides, the prospects and challenges of DLP 3D printing technology in biomedical engineering are discussed. With continuous advancement, DLP 3D printing technology will play an increasingly important role in personalized medicine and regenerative medicine.
Collapse
Affiliation(s)
- Xin-Zhu Chang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Hebei University of Technology, Tianjin, 300401, China
| | - Jian-Shan Liu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Hebei University of Technology, Tianjin, 300401, China
| | - Jia-Qi Lü
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
5
|
Wu X, Zhao F, Wang H, Schirhagl R, Włodarczyk-Biegun MK. Integrating melt electrowriting (MEW) PCL scaffolds with fibroblast-laden hydrogel toward vascularized skin tissue engineering. Mater Today Bio 2025; 31:101593. [PMID: 40104645 PMCID: PMC11914512 DOI: 10.1016/j.mtbio.2025.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Three-dimensional (3D) skin equivalents (SEs) are promising platforms for studying skin disease or assessing the safety of skin-relevant products. Vascularization, which improves the functionality of reconstructed skin, is one of the remaining hurdles in SE production that, when successfully introduced, can widen SE applications. Here, combining porous polycaprolactone (PCL) melt electrowritten (MEW) scaffolds with fibroblast-laden methacrylated gelatin hydrogel (GelMA), we developed SEs with cellular vascular structure. The MEW scaffolds were composed of two layers: random fibers for culturing the keratinocytes to fabricate the epidermis; and well-aligned shapes filled with fibroblast-laden GelMA to mimic the dermis. Three dermal designs varying in porosities and pore sizes were compared to optimize the dermis reconstruction. Within one week, the design with bigger pore sizes achieved optimal cell distribution, penetration, and extracellular matrix (ECM) deposition. Additionally, Retinoic acid (RTA) was tested for improving ECM deposition. To mimic vasculature, we incorporated vascular grafts into the optimized SEs. These were fabricated by casting endothelial fibroblast-laden Matrigel onto small-diameter MEW-tubular structures. The versatility and reproducibility of the obtained SEs offer a robust new tool for in vitro testing and exploration of fundamental biological processes of skin tissue.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Fenghua Zhao
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hui Wang
- Nanostructured Materials and Interfaces, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
| | - Romana Schirhagl
- Department of Biomaterials and Biotechnology, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, the Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
6
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Bastos AR, Maia FR, Oliveira JM, Reis RL, Correlo VM. In vitro Bone Tissue Engineering Strategies: The Relevance of Cells and Culturing Methods in Bone Formation and Remodeling. Macromol Biosci 2025; 25:e2400453. [PMID: 39932135 DOI: 10.1002/mabi.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Indexed: 04/15/2025]
Abstract
The most recent advances in bone tissue engineering (BTE) approaches step forward in the field of three-dimensional (3D) tissue models, enabling the development of more realistic tools to study bone disorders, such as osteoporosis. BTE field aims to mimic native bone tissue more truthfully, providing an appropriate environment for tissue regeneration and repair through the combination of 3D porous scaffolds, specific growth factors, and cells. Currently, the scientific community is focused on developing and improving new biomaterials that in combination with growth factors and specific cell types, that can accurately emulate the native bone microenvironment. However, most of the reported studies in the BTE field are focused on bone formation, disregarding the entire bone remodeling steps, which also involve bone resorption. In this review, the currently available mono and co-culturing methods, types of biomaterials used in several strategies that combine scaffolds and relevant cells (e.g., osteoblasts (OBs), osteoclasts (OCs), and osteocytes (OCys)), envisioning a healthy bone formation and remodeling process, the gold-standard drug delivery systems, and bioengineered-based systems to tackle bone diseases are described.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Vítor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
8
|
Aminnezhad S, Hama NH, Hasan AH, Bagheri F, Alavi M. Applications of biocompatible polymeric nanomaterials in three-dimensional (3D) scaffolds: Bacterial infections and diabetes. Int J Biol Macromol 2025; 301:140331. [PMID: 39894115 DOI: 10.1016/j.ijbiomac.2025.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Printed form of polymeric nanomaterials in formation, crosslinking, structure, properties, toxicity and biocompatibility refers to the application of nanotechnology and 3D printing techniques to fabricate polymeric nanomaterials with specific physicochemical and biomedical features. In this regard, applications of 3D printing techniques, specifically for production of 3D scaffold have received huge attention in diabetes and bacterial infections. This review has tried to address recent advances and challenges related to applications of biocompatible polymeric nanomaterials in 3D printing techniques to ameliorate bacterial infections and diabetes. The applications of metal/metal oxide such as silver, gold, zinc, and titanium dioxide, and polymeric nanoparticles can augment the antimicrobial and degradation characteristics of 3D-printed scaffolds. The rapid advancements in 3D bio-printed scaffolds, specifically by artificial intelligence (AI) present a transformative landscape for diabetes treatment, addressing the complex challenges associated with impaired wound healing and tissue regeneration in individuals with diabetes mellitus.
Collapse
Affiliation(s)
- Sargol Aminnezhad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Nabaz Hamarashid Hama
- Medical Laboratory Science Department, College of Science, Komar University of Science and Technology, Sulaimani, Kurdistan Region, Iraq.
| | - Ayad H Hasan
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq; Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region, Iraq.
| | - Fatemeh Bagheri
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
9
|
Kim JE, Jeong GJ, Yoo YM, Bhang SH, Kim JH, Shin YM, Yoo KH, Lee BC, Baek W, Heo DN, Mongrain R, Lee JB, Yoon JK. 3D bioprinting technology for modeling vascular diseases and its application. Biofabrication 2025; 17:022014. [PMID: 40081017 DOI: 10.1088/1758-5090/adc03a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
In vitromodeling of vascular diseases provides a useful platform for drug screening and mechanistic studies, by recapitulating the essential structures and physiological characteristics of the native tissue. Bioprinting is an emerging technique that offers high-resolution 3D capabilities, which have recently been employed in the modeling of various tissues and associated diseases. Blood vessels are composed of multiple layers of distinct cell types, and experience different mechanical conditions depending on the vessel type. The intimal layer, in particular, is directly exposed to such hemodynamic conditions inducing shear stress, which in turn influence vascular physiology. 3D bioprinting techniques have addressed the structural limitations of the previous vascular models, by incorporating supporting cells such as smooth muscle cells, geometrical properties such as dilation, curvature, or branching, or mechanical stimulation such as shear stress and pulsatile pressure. This paper presents a review of the physiology of blood vessels along with the pathophysiology of the target diseases including atherosclerosis, thrombosis, aneurysms, and tumor angiogenesis. Additionally, it discusses recent advances in fabricatingin vitro3D vascular disease models utilizing bioprinting techniques, while addressing the current challenges and future perspectives for the potential clinical translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Min Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Byung-Chul Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
- Biofriends Inc., Seoul 02447, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, H3A 0C3 Montréal, Canada
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| |
Collapse
|
10
|
Singaravelu S, Abrahamse H, Dhilip Kumar SS. Three-dimensional bio-derived materials for biomedical applications: challenges and opportunities. RSC Adv 2025; 15:9375-9397. [PMID: 40161530 PMCID: PMC11951103 DOI: 10.1039/d4ra07531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Three-dimensional (3D) bio-derived materials are emerging as a promising approach to enhance wound healing therapies. These innovative materials can be tailored to meet the specific needs of various wound types and patients, facilitating the controlled release of therapeutic agents such as growth factors and antibiotics, which promote cell growth and tissue regeneration. Despite their potential, significant challenges remain in achieving optimal biocompatibility, ensuring structural integrity, and maintaining precise release mechanisms. Additionally, issues such as scalability, cost-effectiveness, and regulatory compliance pose substantial barriers to widespread use. However, recent advances in materials science and interdisciplinary research offer new opportunities to overcome these challenges. This review provides a comprehensive analysis of the current state of 3D bio-derived materials in biomedical applications, highlighting the types of materials available, their advantages and limitations, and the progress made in their design and development. It also outlines new directions for future research aimed at bridging the gap between scientific discoveries and their practical applications in injury healing strategies. The findings of this review underscore the significant potential of 3D bio-derived materials in revolutionizing wound healing and advancing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| |
Collapse
|
11
|
Zhang K, Constantinou AP, O'Connell C, Georgiou TK, Gelmi A. A thermoresponsive PEG-based methacrylate triblock terpolymer as a bioink for 3D bioprinting. J Mater Chem B 2025; 13:3593-3601. [PMID: 39973333 DOI: 10.1039/d4tb02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Thermoresponsive polymers have been extensively reported for their use in tissue engineering and drug delivery applications. They have a wide range of thermoresponsive and rheological properties controlled by their structural characteristics, such as composition and architecture. Here, the considerable potential of a PEG based, non-ionic triblock thermoresponsive copolymer, namely OEGMA30013-b-BuMA22-b-DEGMA12 as a bioink for 3D printing with cell encapsulation is identified. The rheological tests showed that the gel transition temperature is 8 °C with 35% w/w concentration in PBS. The printability and cytotoxicity of the thermoresponsive gel were characterised and compared with those of commercial thermoresponsive polymer Pluronic®F127 in detail. Specifically, the 35% w/w triblock copolymer presented great printability with a printing speed of 450 mm min-1 at 37 °C, and was less cytotoxic than F127 at both 20% and 30% w/w concentrations. A one-layer structure of human mesenchymal stem cell (hMSC) embedded triblock copolymer was successfully printed onto a glass slide at 37 °C. This provides an option to create a scaffold for stem cell culture and programming for further tissue engineering applications via direct printing of a cell-laden thermoresponsive polymer.
Collapse
Affiliation(s)
- Kaiwen Zhang
- School of Science, RMIT University, VIC, 3000, Australia.
| | | | - Cathal O'Connell
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia
| | | | - Amy Gelmi
- School of Science, RMIT University, VIC, 3000, Australia.
| |
Collapse
|
12
|
Mereddy RR, Zona EE, LaLiberte CJ, Dingle AM. Optimizing Flexor Digitorum Profundus Tendon Repair: A Narrative Review. J Funct Biomater 2025; 16:97. [PMID: 40137376 PMCID: PMC11942686 DOI: 10.3390/jfb16030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Zone II flexor digitorum profundus (FDP) tendon injuries are complex, and present significant challenges in hand surgery, due to the need to balance strength and flexibility during repair. Traditional suture techniques often lead to complications such as adhesions or tendon rupture, prompting the exploration of novel strategies to improve outcomes. This review investigates the use of flexor digitorum superficialis (FDS) tendon autografts to reinforce FDP repairs, alongside the integration of biomaterials to enhance mechanical strength without sacrificing FDS tissue. Key biomaterials, including collagen-polycaprolactone (PCL) composites, are evaluated for their biocompatibility, mechanical integrity, and controlled degradation properties. Collagen-PCL emerges as a leading candidate, offering the potential to reduce adhesions and promote tendon healing. Although nanomaterials such as nanofibers and nanoparticles show promise in preventing adhesions and supporting cellular proliferation, their application remains limited by manufacturing challenges. By combining advanced repair techniques with biomaterials like collagen-PCL, this approach aims to improve surgical outcomes and minimize complications. Future research will focus on validating these findings in biological models, assessing tendon healing through imaging, and comparing the cost-effectiveness of biomaterial-enhanced repairs with traditional methods. This review underscores the potential for biomaterial-based approaches to transform FDP tendon repair.
Collapse
Affiliation(s)
| | | | | | - Aaron M. Dingle
- Division of Plastic and Reconstructive Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (R.R.M.); (E.E.Z.); (C.J.L.)
| |
Collapse
|
13
|
Varshney S, Dwivedi A, Pandey V. Bioprinting techniques for regeneration of oral and craniofacial tissues: Current advances and future prospects. J Oral Biol Craniofac Res 2025; 15:331-346. [PMID: 40027866 PMCID: PMC11870160 DOI: 10.1016/j.jobcr.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Background Regenerative dentistry aims to reinstate, fix, renew, and regrow tissues within the oral and craniofacial domain. Existing regenerative methods are based on insights into tissue biology or disease processes that lead to tissue degradation. However, achieving complete and functional Tissue regeneration remains a primary challenge in real-world medical scenarios. Aim The review focuses on the application of bioprinting techniques for rejuvenating intricate Oral and craniofacial tissues, such as craniofacial bone, periodontal ligament, cementum, dental pulp, temporomandibular joint cartilage, and whole teeth. Methods Bioprinting, a cutting-edge technology in regenerative dentistry, strives to create entirely new Functional tissues and organs. This approach merges principles from engineering and biology to produce three-dimensional biologically operational constructs containing bioactive substances, Living cells and cell clusters using automated bioprinters. The review summarizes the outcomes achieved through bioprinting techniques in both in vitro (laboratory experiments) and in vivo (Studies on living organisms) experiments. Result The emergence of this innovative tissue engineering technology has yielded highly promising outcomes during the experimental stages. Conclusion These promising experimental results necessitate replication through human clinical trials to ascertain the viability of bioprinting techniques for mainstream clinical implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Shailesh Varshney
- Department of Periodontology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anshuman Dwivedi
- ,Department of Stem Cells & Regenerative Medicine, Santosh, University, Ghaziabad, Uttar Pradesh, India
| | - Vibha Pandey
- ,Department of Psychology, Himalayan, Garhwal University, Uttarakhand, India
| |
Collapse
|
14
|
Rhim WK, Woo J, Kim JY, Lee EH, Cha SG, Kim DS, Baek SW, Park CG, Kim BS, Kwon TG, Han DK. Multiplexed PLGA scaffolds with nitric oxide-releasing zinc oxide and melatonin-modulated extracellular vesicles for severe chronic kidney disease. J Adv Res 2025; 69:75-89. [PMID: 38537702 PMCID: PMC11954823 DOI: 10.1016/j.jare.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION With prevalence of chronic kidney disease (CKD) in worldwide, the strategies to recover renal function via tissue regeneration could provide alternatives to kidney replacement therapies. However, due to relatively low reproducibility of renal basal cells and limited bioactivities of implanted biomaterials along with the high probability of substance-inducible inflammation and immunogenicity, kidney tissue regeneration could be challenging. OBJECTIVES To exclude various side effects from cell transplantations, in this study, we have induced extracellular vesicles (EVs) incorporated cell-free hybrid PMEZ scaffolds. METHODS Hybrid PMEZ scaffolds incorporating essential bioactive components, such as ricinoleic acid grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) based on biodegradable porous PLGA (P) platform was successfully manufactured. Consecutively, for functional improvements, melatonin-modulated extracellular vesicles (mEVs), derived from the human umbilical cord MSCs in chemically defined media without serum impurities, were also loaded onto PMEZ scaffolds to construct the multiplexed PMEZ/mEV scaffold. RESULTS With functionalities of Mg(OH)2 and extracellular matrix-loaded PLGA scaffolds, the continuous nitric oxide-releasing property of modified ZnO and remarkably upregulated regenerative functionalities of mEVs showed significantly enhanced kidney regenerative activities. Based on these, the structural and functional restoration has been practically achieved in 5/6 nephrectomy mouse models that mimicked severe human CKD. CONCLUSION Our study has proved the combinatory bioactivities of the biodegradable PLGA-based multiplexed scaffold for kidney tissue regeneration in 5/6 nephrectomy mouse representing a severe CKD model. The optimal microenvironments for the morphogenetic formations of renal tissues and functional restorations have successfully achieved the combinatory bioactivities of remarkable components for PMEZ/mEV, which could be a promising therapeutic alternative for CKD treatment.
Collapse
Affiliation(s)
- Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jiwon Woo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea; Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea; Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea; Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea; Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea; Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU) 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea; Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea; Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
15
|
Shen S, Shu B, Xu Y, Zhao H, Li Y, Li Y, Zhuo C, Zhuo N. Characterization and Biocompatibility Assessment of 3D-Printed HA/PCL Porous Bionic Bone Scaffold: in Vitro and in Vivo Evaluation. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2025; 25:119-132. [PMID: 40024235 PMCID: PMC11880846 DOI: 10.22540/jmni-25-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVES This study aims to characterize a three-dimensional-printed hydroxyapatite (HA)/polycaprolactone (PCL) scaffold and assess its biocompatibility both in vitro and in vivo. METHODS A bionic, porous HA/PCL scaffold was fabricated using 3D printing, and its microstructure, porosity, hydrophilicity, and mechanical properties were evaluated through scanning electron microscopy and various assays. Bone marrow mesenchymal stem cells (BMSCs) and vascular endothelial progenitor cells (VEPCs) were co-cultured with the scaffold, and their proliferation and osteogenic differentiation were assessed using the Cell Counting Kit-8, ALP assays, and alizarin red staining. Osteogenic marker expression was analyzed via qRT-PCR. In vivo bone regeneration was evaluated through histological analysis of H&E and Masson's trichrome staining in a rat cranial defect model. RESULTS The average pore size of the scaffold was 462.00 ± 100.389 μm, with a porosity of 53%, a water absorption expansion rate of 5.10%, a contact angle of 94.55°, an elastic modulus of 53.82 MPa, and a compressive strength of 6.10 MPa. ALP activity and qRT-PCR analysis of osteogenic markers (BMP2, OCN, Runx2) showed significant upregulation in cells co-cultured with the scaffolds. In vivo experiments demonstrated enhanced bone regeneration and collagen deposition in the HA/PCL scaffold group. CONCLUSION The results suggest that the HA/PCL scaffold promotes osteogenic differentiation and bone regeneration, making it suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shi Shen
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Benchao Shu
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Joint Trauma Surgery, Guangyuan First People’s Hospital, Guangyuan, Sichuan, China
| | - Yulin Xu
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Heng Zhao
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Li
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yujie Li
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chuanchuan Zhuo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Naiqiang Zhuo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Turker B. Redesigning FDM Platforms for Bio-Printing Applications. MICROMACHINES 2025; 16:226. [PMID: 40047710 PMCID: PMC11857145 DOI: 10.3390/mi16020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Fused Deposition Modeling (FDM) is a prominent additive manufacturing technique known for its ability to provide cost-effective and fast printing solutions. FDM enables the production of computer-aided 3D designs as solid objects at macro scales with high-precision alignment while sacrificing excellent surface smoothness compared to other 3D printing techniques such as SLA (Stereolithography) and SLS (Selective Laser Sintering). Electro-Spinning (ES) is another technique for producing soft-structured nonwoven micro-scale materials, such as nanofibers. However, compared to the FDM technique, it has limited accuracy and sensitivity regarding high-precision alignment. The need for high-precision alignment of micro-scaled soft structures during the printing process raises the question of whether FDM and ES techniques can be combined. Today, the printing technique with such capability is called Melt Electro Writing (MEW), and in practice, it refers to the basic working principle on which bio-printers are based. This paper aims to examine how these two techniques can be combined affordably. Comparatively, it presents output production processes, design components, parameters, and materials used in output production. It discusses the limitations and advantages of such a hybrid platform, specifically from the perspective of engineering design and its biomedical applications.
Collapse
Affiliation(s)
- Burak Turker
- Department of Biomedical Engineering, Engineering Faculty, Ahmet Necdet Sezer Campus, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
17
|
Pisani S, Evangelista A, Chesi L, Croce S, Avanzini MA, Dorati R, Genta I, Benazzo M, Comoli P, Conti B. Nanofibrous Scaffolds' Ability to Induce Mesenchymal Stem Cell Differentiation for Soft Tissue Regenerative Applications. Pharmaceuticals (Basel) 2025; 18:239. [PMID: 40006052 PMCID: PMC11859969 DOI: 10.3390/ph18020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have gained recognition as a highly versatile and promising cell source for repopulating bioengineered scaffolds due to their inherent capacity to differentiate into multiple cell types. However, MSC implantation techniques have often yielded inconsistent clinical results, underscoring the need for advanced approaches to enhance their therapeutic efficacy. Recent developments in three-dimensional (3D) bioengineered scaffolds have provided a significant breakthrough by closely mimicking the in vivo environment, addressing the limitations of traditional two-dimensional (2D) cell cultures. Among these, nanofibrous scaffolds have proven particularly effective, offering an optimal 3D framework, growth-permissive substrates, and the delivery of trophic factors crucial for MSC survival and regeneration. Furthermore, the selection of appropriate biomaterials can amplify the paracrine effects of MSCs, promoting both proliferation and targeted differentiation. The synergistic combination of MSCs with nanofibrous scaffolds has demonstrated remarkable potential in achieving repair, regeneration, and tissue-specific differentiation with enhanced safety and efficacy, paving the way for routine clinical applications. In this review, we examine the most recent studies (2013-2023) that explore the combined use of MSCs and nanofibrous scaffolds for differentiation into cardiogenic, epithelial, myogenic, tendon, and vascular cell lineages. Using PubMed, we identified and analyzed 275 relevant articles based on the search terms "Nanofibers", "Electrospinning", "Mesenchymal stem cells", and "Differentiation". This review highlights the critical advancements in the use of nanofibrous scaffolds as a platform for MSC differentiation and tissue regeneration. By summarizing key findings from the last decade, it provides valuable insights for researchers and clinicians aiming to optimize scaffold design, MSC integration, and translational applications. These insights could significantly influence future research directions and the development of more effective regenerative therapies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Aleksandra Evangelista
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Luca Chesi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Maria Antonietta Avanzini
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Patrizia Comoli
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (M.A.A.); (P.C.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.D.); (I.G.); (B.C.)
| |
Collapse
|
18
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
19
|
Ke S, Sun X, Qian J, Zhou Z, Lin M, He B, Shen R, Ye Z. The Experimental Study of Double-Layer Heterogeneous CA Scaffold in Promoting the Surface Shape Recovery and Internal Osteogenesis of Alveolar Bone. Biotechnol J 2025; 20:e202400603. [PMID: 39956934 DOI: 10.1002/biot.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025]
Abstract
In this work, double-layer heterogeneous CA scaffolds were designed for alveolar bone defects. The outer layer featured high hardness and slow degradation, and large pores and rapid degradation characterized the inner layer. The CA scaffold morphology was akin to bone defects, and its direct implantation reduced the operation time. A higher concentration of CA resulted in smaller pores and slower degradation. CA can promote the formation of mineralized nodules and the expression of genes related to mineralization without inducing cytotoxic effects. It also promoted the expression of cellular inflammatory factors, potentially through the TLR4 pathway. In vivo studies confirmed that CA did not promote the aggregation of inflammatory cells or the expression of inflammatory factors. In conclusion, the scaffold's characteristics of high surface hardness and slow degradation were beneficial for surface osteogenesis and maintaining the defect's shape and osteogenic space. Conversely, rapid internal degradation favors the formation of bone tissue.
Collapse
Affiliation(s)
- Songxia Ke
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing Qian
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Department of Laboratory, Putian Center for Disease Prevention and Control, Putian, China
| | - Ziqing Zhou
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Minhong Lin
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Baoying He
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Renze Shen
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zhanchao Ye
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Irukuvarjula V, Fouladgar F, Powell R, Carney E, Habibi N. Bioprinting 3D lattice-structured lumens using polyethylene glycol diacrylate (PEGDA) combined with self-assembling peptide nanofibers as hybrid bioinks for anchorage dependent cells. OPENNANO 2025; 21:100223. [PMID: 40342565 PMCID: PMC12060093 DOI: 10.1016/j.onano.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
There is a pressing need for new cell-laden, printable bioinks to mimic stiffer tissues such as cartilage, fibrotic tissue and bone. PEGDA monomers are bioinks that crosslink with light to form a viscoelastic solid, however, they lack cell adhesion properties. Here, we utilized a hybrid bioink by combining self-assembled peptide nanofibers with PEGDA for 3D printing lumens. Adult human dermal fibroblast (aHDF) cells were first seeded in peptide-laden in 2D and 3D layers and cell behavior were studied. The cell's morphology remained spheres when they were infused in the 3D hydrogel and highly aligned with 2D overlay hydrogels. HDF cells did not adhere to unmodified PEGDA lumens, however, they successfully attached and proliferated on PEGDA/peptide lumens. Moreover, HDF cells seeded on the hybrid PEGDA/peptide lumens displayed a distinct spread F-actin morphology. The results showcase the potential of peptide hydrogels in facilitating interaction of anchorage dependent cells with PEGDA structures.
Collapse
Affiliation(s)
| | - Faye Fouladgar
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Robert Powell
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Emily Carney
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Neda Habibi
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| |
Collapse
|
21
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
22
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
23
|
Zhu H, Kuang H, Huang X, Li X, Zhao R, Shang G, Wang Z, Liao Y, He J, Li D. 3D printing of drug delivery systems enhanced with micro/nano-technology. Adv Drug Deliv Rev 2025; 216:115479. [PMID: 39603388 DOI: 10.1016/j.addr.2024.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huijuan Kuang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruosen Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziyu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yucheng Liao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
24
|
Heiden A, Schardax M, Hüttenberger M, Preninger D, Mao G, Schiller D, Kaltenbrunner M. Organic Ink Multi-Material 3D Printing of Sustainable Soft Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409403. [PMID: 39533489 PMCID: PMC11775878 DOI: 10.1002/adma.202409403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Drawing inspiration from nature, soft materials are at the core of a transformation toward adaptive and responsive engineered systems, capable of conquering demanding terrain and safe when interacting with biological life. Despite recent advances in 3D printing of soft materials, researchers are still far from being able to print complex soft systems where a multitude of different components need to work together symbiotically. Closing this gap necessitates a platform that unites diverse materials into one synergetic process. Here, a multi-material printing system is presented, combining gelatin-based hydrogels with a new biodegradable support material. This organic ink maintains up to 60° overhang and is printable over gaps to structurally support the main biogel body, while triggered dissolution enables its selective removal and the formation of internal cavities. Therefore, the creation of vascular networks, tunable scaffolds, and embedded sensors within a single printing process becomes feasible. Furthermore, a perforation-resistant, joint-like vacuum actuator (VAc) is designed and 3D printed, capable of bending to angles up to 60° at fast response times down to 0.23 s. Combining these approaches in an efficient, streamlined fabrication process with biodegradable materials will unlock new sustainability dimensions for complex and durable soft systems.
Collapse
Affiliation(s)
- Andreas Heiden
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - Michael Schardax
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - Michael Hüttenberger
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - David Preninger
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - Guoyong Mao
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - David Schiller
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| | - Martin Kaltenbrunner
- Division of Soft Matter PhysicsInstitute for Experimental PhysicsJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
- Soft Materials LabLinz Institute of TechnologyJohannes Kepler UniversityAltenberger Str. 69Linz4040Austria
| |
Collapse
|
25
|
Marsh AC, Zhang Y, Wagley Y, Acevedo PK, Crimp MA, Hankenson K, Hammer ND, Roch A, Boccaccini AR, Chatzistavrou X. Advancements in reliability of mechanical performance of 3D PRINTED Ag-doped bioceramic antibacterial scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 166:214039. [PMID: 39326251 DOI: 10.1016/j.bioadv.2024.214039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The current gold-standard approach for addressing bone defects in load-bearing applications sees the use of either autographs or allographs. These solutions, however, have limitations as autographs and allographs carry the risk of additional trauma, the threat of disease transmission, and potential donor rejection. An attractive candidate for overcoming the challenges associated with the use of autographs and allographs is a 3D porous scaffold displaying the needed mechanical competency for use in load-bearing applications that can stimulate bone tissue regeneration and provide antibacterial capabilities. To date, no reports document a 3D porous scaffold that fully meets the criteria specified above. In this work, we show how the use of fused filament fabrication (FFF) 3D printing technology in combination with a bimodal distribution of Ag-doped bioactive glass-ceramic (Ag-BG) micro-sized particles can successfully deliver porous 3D scaffolds with attractive and reliable mechanical performance characteristics capable of stimulating bone tissue regeneration and the ability to provide inherent antibacterial properties. To characterize the reliability of the mechanical performance of the FFF-printed Ag-BG scaffolds, Weibull statistics were evaluated for both the compressive (N = 25; m = 13.6 ± 0.9) and flexural (N = 25; m = 7.3 ± 0.7) strengths. Methicillin-resistant Staphylococcus aureus (MRSA) was used both in planktonic and biofilm forms to highlight the advanced antibacterial characteristics of the FFF-printed Ag-BG scaffolds. Biological performance was evaluated in vitro through indirect exposure to human marrow stromal cells (hMSCs), where the FFF-printed Ag-BG scaffolds were found to provide an attractive environment for cell infiltration and mineralization. Our work demonstrates how fused filament fabrication technology can be used with bioactive and antibacterial materials such as Ag-BG to deliver mechanically competent porous 3D scaffolds capable of stimulating bone tissue regeneration while simultaneously providing antibacterial performance capabilities.
Collapse
Affiliation(s)
- Adam C Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Yaozhong Zhang
- Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Parker K Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin A Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aljoscha Roch
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
26
|
Dalfino S, Olaret E, Piazzoni M, Savadori P, Stancu I, Tartaglia G, Dolci C, Moroni L. Polycaprolactone/β-Tricalcium Phosphate Composite Scaffolds with Advanced Pore Geometries Promote Human Mesenchymal Stromal Cells' Osteogenic Differentiation. Tissue Eng Part A 2025; 31:13-28. [PMID: 38613813 DOI: 10.1089/ten.tea.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Critical-sized mandibular bone defects, arising from, for example, resections after tumor surgeries, are currently treated with autogenous bone grafts. This treatment is considered very invasive and is associated with limitations such as morbidity and graft resorption. Tissue engineering approaches propose to use 3D scaffolds that combine structural features, biomaterial properties, cells, and biomolecules to create biomimetic constructs. However, mimicking the complex anatomy and composition of the mandible poses a challenge in scaffold design. In our study, we evaluated the dual effect of complex pore geometry and material composition on the osteogenic potential of 3D printed scaffolds. The scaffolds were made of polycaprolactone (PCL) alone (TCP0), or with a high concentration of β-tricalcium phosphate (β-TCP) up to 40% w/w (TCP40), with two complex pore geometries, namely a star- (S) and a diamond-like (D) shape. Scanning electron microscopy and microcomputed tomography images confirmed high fidelity during the printing process. The D-scaffolds displayed higher compressive moduli than the corresponding S-scaffolds. TCP40 scaffolds in simulated body fluid showed deposition of minerals on the surface after 28 days. Subsequently, we assessed the differentiation of seeded bone marrow-derived human mesenchymal stromal cells (hMSCs) over 28 days. The early expression of RUNX2 in the cell nuclei confirmed the commitment toward an osteogenic phenotype. Moreover, alkaline phosphatase (ALP) activity and collagen deposition displayed an increasing trend in the D-scaffolds. Collagen type I was mainly present in the deposited extracellular matrix (ECM), confirming deposition of bone matrix. Finally, Alizarin Red staining showed successful mineralization on all the TCP40 samples, with higher values for the S-shaped scaffolds. Taken together, our study demonstrated that the complex pore architectures of scaffolds comprised TCP40 stimulated osteogenic differentiation and mineralization of hMSCs in vitro. Future research will aim to validate these findings in vivo.
Collapse
Affiliation(s)
- Sophia Dalfino
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elena Olaret
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Marco Piazzoni
- Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Paolo Savadori
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Izabela Stancu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Claudia Dolci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
27
|
Safavi AS, Karbasi S. A new path in bone tissue engineering: polymer-based 3D-printed magnetic scaffolds (a comprehensive review of in vitro and in vivo studies). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39715733 DOI: 10.1080/09205063.2024.2444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Bone tissue engineering is a promising approach to address the increasing need for bone repair. Scaffolds play a crucial role in providing the structural framework for cell growth and differentiation. 3D printing offers precise control over scaffold design and fabrication. Polymers and inorganic compounds such as magnetic nanoparticles (MNPs) are used to create biocompatible and functional scaffolds. MNPs enhance mechanical properties, facilitate drug delivery, and enable the real-time monitoring of bone regeneration. This review highlights the potential of polymer-based 3D-printed magnetic scaffolds in advancing bone regenerative medicine.
Collapse
Affiliation(s)
- Atiyeh Sadat Safavi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
29
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
30
|
Sarkar Z, Singh H, Iqubal MK, Baboota S, Khan S, Parveen R, Ali J. Involvement of macromolecules in 3D printing for wound healing management: A narrative review. Int J Biol Macromol 2024; 282:136991. [PMID: 39476921 DOI: 10.1016/j.ijbiomac.2024.136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.
Collapse
Affiliation(s)
- Zinataman Sarkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harshita Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
31
|
Sachdeo RA, Khanwelkar C, Shete A. 3D Printing in Wound Healing: Innovations, Applications, and Future Directions. Cureus 2024; 16:e75331. [PMID: 39776700 PMCID: PMC11706447 DOI: 10.7759/cureus.75331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems. By mimicking the extracellular matrix (ECM) and facilitating cell proliferation, 3D-printed biomaterials have the potential to significantly accelerate the healing process. In addition, 3D bioprinting enables the production of functional skin substitutes that can be customized for individual patients. Despite the promise of these technologies, several challenges remain, including the need for improved vascularization, cost concerns, and regulatory hurdles. The future of wound healing lies in the continued integration of 3D printing with emerging technologies such as 4D printing and bioelectronics, providing opportunities for personalized and on-demand therapies. This review explores the current state of 3D printing in wound care, its challenges, and the future potential of these innovative technologies.
Collapse
Affiliation(s)
- Rahul A Sachdeo
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Chitra Khanwelkar
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Amol Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| |
Collapse
|
32
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
33
|
Zhao L, Wang Y, Wang Q, Zhang Y, Yang G. Optimization Design and SLM Manufacturing of Porous Titanium Alloy Femoral Stem. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4896. [PMID: 39410466 PMCID: PMC11477622 DOI: 10.3390/ma17194896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
In order to solve the loosening problem caused by stress shielding of femoral stem prostheses in clinical practice, an optimization design method of a personalized porous titanium alloy femoral stem is proposed. According to the stress characteristics of the femur, the porous unit cell structures (TO-C, TO-T, TO-B) under three different loads of compression, torsion, and bending were designed by topology optimization. The mechanical properties and permeability of different structures were studied. Combined with the porous structure optimization, a personalized radial gradient porous titanium alloy femoral stem was designed and manufactured by selective laser melting (SLM) technology. The results show that the TO-B structure has the best comprehensive performance among the three topologically optimized porous types, which is suitable for the porous filling structure of the femoral stem, and the SLM-formed porous femoral stem has good quality. The feasibility of the personalized design and manufacture of porous titanium alloy implants is verified, which can provide a theoretical basis for the optimal design of implants in different parts.
Collapse
Affiliation(s)
- Lisong Zhao
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Provincial Collaborative Innovation Center for General Aviation Additive Manufacturing, Shijiazhuang 050018, China
| | - Yukang Wang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Provincial Collaborative Innovation Center for General Aviation Additive Manufacturing, Shijiazhuang 050018, China
| | - Qing Wang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Provincial Collaborative Innovation Center for General Aviation Additive Manufacturing, Shijiazhuang 050018, China
| | - Yongdi Zhang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Provincial Collaborative Innovation Center for General Aviation Additive Manufacturing, Shijiazhuang 050018, China
| | - Guang Yang
- College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Hebei Provincial Collaborative Innovation Center for General Aviation Additive Manufacturing, Shijiazhuang 050018, China
| |
Collapse
|
34
|
Doyle SE, Cazzola CN, Coleman CM. Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100184. [PMID: 39313131 DOI: 10.1016/j.slasd.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.
Collapse
Affiliation(s)
- Stephanie E Doyle
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland.
| | - Courtney N Cazzola
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| | - Cynthia M Coleman
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| |
Collapse
|
35
|
Fernandes da Silva JLG, Barroso Gonçalves SM, Plácido da Silva HH, Tavares da Silva MP. Three-dimensional printed exoskeletons and orthoses for the upper limb-A systematic review. Prosthet Orthot Int 2024; 48:590-602. [PMID: 38175034 DOI: 10.1097/pxr.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
This systematic review aims to assess and summarize the current landscape in exoskeletons and orthotic solutions developed for upper limb medical assistance, which are partly or fully produced using 3-dimensional printing technologies and contain at least the elbow or the shoulder joints. The initial search was conducted on Web of Science, PubMed, and IEEEXplore, resulting in 92 papers, which were reduced to 72 after removal of duplicates. From the application of the inclusion and exclusion criteria and selection questionnaire, 33 papers were included in the review, being divided according to the analyzed joints. The analysis of the selected papers allowed for the identification of different solutions that vary in terms of their target application, actuation type, 3-dimensional printing techniques, and material selection, among others. The results show that there has been far more research on the elbow joint than on the shoulder joint, which can be explained by the relative complexity of the latter. Moreover, the findings of this study also indicate that there is still a gap between the research conducted on these devices and their practical use in real-world conditions. Based on current trends, it is anticipated that the future of 3-dimensional printed exoskeletons will revolve around the use of flexible and high-performance materials, coupled with actuated devices. These advances have the potential to replace the conventional fabrication methods of exoskeletons with technologies based on additive manufacturing.
Collapse
|
36
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
37
|
Alemifar A, Burnette K, Jandres B, Hurt S, Tse HM, Robinson JL. Electrospun Fiber Surface Roughness Modulates Human Monocyte-Derived Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610568. [PMID: 39282362 PMCID: PMC11398424 DOI: 10.1101/2024.08.30.610568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages in vitro and in vivo using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. In vitro experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.
Collapse
Affiliation(s)
- Aidan Alemifar
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Bioengineering Graduate Program, University of Kansas
| | - KaLia Burnette
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Bryan Jandres
- Department of Biochemistry, University of Washington
| | - Samuel Hurt
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Hubert M Tse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center
| | - Jennifer L Robinson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington
- Department of Mechanical Engineering, University of Washington
| |
Collapse
|
38
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
39
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
40
|
Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: expanding possibilities with nanoparticles. NANOTECHNOLOGY 2024; 35:392002. [PMID: 38941981 DOI: 10.1088/1361-6528/ad5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Tissue engineering is a multidisciplinary field that merges engineering, material science, and medical biology in order to develop biological alternatives for repairing, replacing, maintaining, or boosting the functionality of tissues and organs. The ultimate goal of tissue engineering is to create biological alternatives for repairing, replacing, maintaining, or enhancing the functionality of tissues and organs. However, the current landscape of tissue engineering techniques presents several challenges, including a lack of suitable biomaterials, inadequate cell proliferation, limited methodologies for replicating desired physiological structures, and the unstable and insufficient production of growth factors, which are essential for facilitating cell communication and the appropriate cellular responses. Despite these challenges, there has been significant progress made in tissue engineering techniques in recent years. Nanoparticles hold a major role within the realm of nanotechnology due to their unique qualities that change with size. These particles, which provide potential solutions to the issues that are met in tissue engineering, have helped propel nanotechnology to its current state of prominence. Despite substantial breakthroughs in the utilization of nanoparticles over the past two decades, the full range of their potential in addressing the difficulties within tissue engineering remains largely untapped. This is due to the fact that these advancements have occurred in relatively isolated pockets. In the realm of tissue engineering, the purpose of this research is to conduct an in-depth investigation of the several ways in which various types of nanoparticles might be put to use. In addition to this, it sheds light on the challenges that need to be conquered in order to unlock the maximum potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Sohrab Sardari
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research branch, Tehran, Iran
| | - Maryam Ghodousi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Amid Rahi
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
41
|
Khaledian S, Mohammadi G, Abdoli M, Fatahian A, Fatahian A, Fatahian R. Recent Advances in Implantable 3D-Printed Scaffolds for Repair of Spinal Cord Injury. Adv Pharm Bull 2024; 14:331-345. [PMID: 39206398 PMCID: PMC11347741 DOI: 10.34172/apb.2024.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) is an important factor in sensory and motor disorders that affects thousands of people every year. Currently, despite successes in basic science and clinical research, there are few effective methods in the treatment of chronic and acute spinal cord injuries. In the last decade, the use of 3D printed scaffolds in the treatment of SCI had satisfactory and promising results. By providing a microenvironment around the injury site and in combination with growth factors or cells, 3D printed scaffolds help in axon regeneration as well as neural recovery after SCI. Here, we provide an overview of tissue engineering, 3D printing scaffolds, the different polymers used and their characterization methods. This review highlights the recent encouraging applications of 3D printing scaffolds in developing the novel SCI therapy.
Collapse
Affiliation(s)
- Salar Khaledian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Taleghani and Imam Ali Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohadese Abdoli
- Department of Nanobiotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arad Fatahian
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arya Fatahian
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fatahian
- Clinical Research Development Center, Taleghani and Imam Ali Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Neurosurgery, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
42
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
43
|
Park JH, Tucker SJ, Yoon JK, Kim Y, Hollister SJ. 3D printing modality effect: Distinct printing outcomes dependent on selective laser sintering (SLS) and melt extrusion. J Biomed Mater Res A 2024; 112:1015-1024. [PMID: 38348580 DOI: 10.1002/jbm.a.37682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/03/2024]
Abstract
A direct and comprehensive comparative study on different 3D printing modalities was performed. We employed two representative 3D printing modalities, laser- and extrusion-based, which are currently used to produce patient-specific medical implants for clinical translation, to assess how these two different 3D printing modalities affect printing outcomes. The same solid and porous constructs were created from the same biomaterial, a blend of 96% poly-ε-caprolactone (PCL) and 4% hydroxyapatite (HA), using two different 3D printing modalities. Constructs were analyzed to assess their printing characteristics, including morphological, mechanical, and biological properties. We also performed an in vitro accelerated degradation study to compare their degradation behaviors. Despite the same input material, the 3D constructs created from different 3D printing modalities showed distinct differences in morphology, surface roughness and internal void fraction, which resulted in different mechanical properties and cell responses. In addition, the constructs exhibited different degradation rates depending on the 3D printing modalities. Given that each 3D printing modality has inherent characteristics that impact printing outcomes and ultimately implant performance, understanding the characteristics is crucial in selecting the 3D printing modality to create reliable biomedical implants.
Collapse
Affiliation(s)
- Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - YongTae Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Babaei M, Ebrahim-Najafabadi N, Mirzadeh M, Abdali H, Farnaghi M, Gharavi MK, Kheradmandfard M, Kharazi AZ, Poursamar SA. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study. BIOMATERIALS ADVANCES 2024; 161:213900. [PMID: 38772132 DOI: 10.1016/j.bioadv.2024.213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahim-Najafabadi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Mirzadeh
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Abdali
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadhasan Farnaghi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kalbasi Gharavi
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Kheradmandfard
- Dental Materials Research Centre, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
45
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
46
|
Thakur B, Bhardwaj A, Luke AM, Wahjuningrum DA. Effectiveness of traditional band and loop space maintainer vs 3D-printed space maintainer following the loss of primary teeth: a randomized clinical trial. Sci Rep 2024; 14:14081. [PMID: 38890410 PMCID: PMC11189383 DOI: 10.1038/s41598-024-61743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
This study evaluates the efficacy of 3D-printed band and loop space maintainers (3D-BLSMs) to mitigate concerns caused by early primary tooth loss in children when compared to their conventional equivalents. Over 9 months, 62 participants aged 6 to 12 years participated in a randomized clinical study. This study evaluated their failure rates (de-cementation, debonding, solder breakage, loop breakage, band breakage, and abutment tooth fracture), gingival health, and patient overall satisfaction. Random assignments were made to place the participants in two groups: traditional band and loop space maintainers or the 3D-BLSMs. The findings show that at 9 months, 3D-BLSMs provided significantly higher survival rates (77.4%) than conventional maintainers (51.6%, p < 0.01). Gum inflammation was mild in both groups, highlighting the need for good oral hygiene. In both groups, patient satisfaction exceeded 90%. Although there was some pain at first with 3D-BLSMs, this eventually subsided and aesthetic preferences disappeared. There were no negative consequences noted, and both groups needed ongoing dental treatment. In conclusion, with excellent patient satisfaction in both groups, 3D-printed space maintainers offer greater long-term durability in reducing dental concerns following early primary tooth loss.
Collapse
Affiliation(s)
- Bhagyashree Thakur
- Division of District Early Intervention Centre, Department of Dentistry, Thane Civil Hospital, Thane, 400601, India
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia
| | - Anuj Bhardwaj
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia
- Department of Conservative Dentistry and Endodontics, College of Dental Sciences & Hospital, Rau, Indore, 453331, India
| | - Alexander Maniangat Luke
- Department of Clinical Science, College of Dentistry, Ajman University, Ajman P.O. Box 346, Al-Jurf, UAE
- Centre of Medical and Bio-Allied Health Sciences Research (CMBAHSR), Ajman University, Ajman P.O. Box 346, Al-Jurf, UAE
| | - Dian Agustin Wahjuningrum
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia.
| |
Collapse
|
47
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
48
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
49
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
50
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|