1
|
Cai Q, Jing C, Wang X, Xing X, Liu W. STEAP Proteins: Roles in disease biology and potential for therapeutic intervention. Int J Biol Macromol 2025; 309:142797. [PMID: 40185436 DOI: 10.1016/j.ijbiomac.2025.142797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Iron and copper are essential metal ions, and maintaining their metabolic balance is critical for organismal health. The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) protein family, comprising STEAP1, STEAP2, STEAP3, and STEAP4, plays a vital role in cellular metal homeostasis. These proteins are located on the cell membrane and are characterized by six transmembrane domains. With the exception of STEAP1, the STEAP proteins function as metal oxidoreductases due to their F420H2:NADP+ oxidoreductase (FNO)-like domain. However, STEAP1 contributes to metal metabolism through its heme group and interaction with other STEAP proteins. Beyond metal metabolism, STEAP proteins are involved in critical cellular processes, including the regulation of the cell cycle, proliferation, differentiation, and apoptosis. Notably, STEAP proteins are recognized as potential biomarkers and therapeutic targets in human cancers, particularly prostate cancer. This review outlines the structural features and functional roles of STEAP proteins in various diseases, including cancers, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and benign prostatic hyperplasia, with a focus on their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Qiaomei Cai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xiangling Xing
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China.
| | - Wancheng Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Zhang L, Ren X, An R, Song H, Tian Y, Wei X, Shi M, Wang Z. The Role of STEAP1 in Prostate Cancer: Implications for Diagnosis and Therapeutic Strategies. Biomedicines 2025; 13:794. [PMID: 40299363 PMCID: PMC12024770 DOI: 10.3390/biomedicines13040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/30/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies and the second leading cause of cancer-related death in men worldwide. The six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is exceptionally overexpressed in PCa, maintaining high expression even in the castration-resistant prostate cancer (CRPC) stage, making it a promising target for diagnosis and treatment. STEAP1-positive extracellular vesicles and STEAP1-PET imaging are optimistic approaches for the non-invasive detection of different stages of PCa. STEAP1-targeted therapy includes an antibody-drug conjugate (ADC), chimeric antigen receptor T cell (CAR-T), T-cell engager (TCE), and vaccines, which demonstrate valuable therapeutic prospects. This review presents the structure and pathophysiological function of STEAP1, synthesizes cutting-edge advances in STEAP1-targeted molecular imaging and clinical applications, and critically analyzes their translational potential to overcome the limitations of current PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Xinyi Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Ran An
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Hongchen Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Yaqi Tian
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| | - Mingjun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
- Institute of Urology, Beijing Municipal Health Commission, Beijing 100054, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; (L.Z.); (X.R.); (R.A.); (Y.T.); (X.W.)
| |
Collapse
|
3
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Nakamura H, Arihara Y, Takada K. Targeting STEAP1 as an anticancer strategy. Front Oncol 2023; 13:1285661. [PMID: 37909017 PMCID: PMC10613890 DOI: 10.3389/fonc.2023.1285661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Although the six-transmembrane epithelial antigen of prostate 1 (STEAP1) was first identified in advanced prostate cancer, its overexpression is recognized in multiple types of cancer and associated with a poor prognosis. STEAP1 is now drawing attention as a promising therapeutic target because of its tumor specificity and membrane-bound localization. The clinical efficacy of an antibody-drug conjugate targeting STEAP1 in metastatic, castration-resistant, prostate cancer was demonstrated in a phase 1 trial. Furthermore, growing evidence suggests that STEAP1 is an attractive target for immunotherapies such as chimeric antigen receptor-T cell therapy. In this review, we summarize the oncogenic functions of STEAP1 by cancer type. This review also provides new insights into the development of new anticancer strategies targeting STEAP1.
Collapse
Affiliation(s)
| | | | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Rocha SM, Santos FM, Socorro S, Passarinha LA, Maia CJ. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119522. [PMID: 37315586 DOI: 10.1016/j.bbamcr.2023.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
Collapse
Affiliation(s)
- Sandra M Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Fátima M Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, Campus de Cantoblanco, 28029 Madrid, Spain
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
6
|
Ito R, Miyanishi K, Kubo T, Hamaguchi K, Osuga T, Tanaka S, Ohnuma H, Murase K, Takada K, Nagayama M, Kimura Y, Mizuguchi T, Takemasa I, Kato J. Synergistic antitumor effect of histone deacetylase class IIa inhibitor with lenvatinib in hepatocellular carcinoma. Hepatol Int 2023; 17:735-744. [PMID: 36738397 DOI: 10.1007/s12072-023-10484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC) class I and IIa are highly expressed in hepatocellular carcinoma (HCC) and associated with decreased survival. However, clinically used pan and class I inhibitors have serious adverse events. In this study, we assessed the antitumor effects and tolerability of class IIa HDAC inhibitor (HDACI) with lenvatinib, which is a standard therapy for HCC. METHODS AND RESULT Combination therapy with class IIa HDACI and lenvatinib exerted synergistic antitumor effect in human HCC cell lines. In mouse models, this therapy showed significant antitumor effects, and few adverse events occurred. In immunoblotting, the expression of fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) was high in cell lines that showed a high antitumor effect. In addition, class IIa HDACI administration decreased the expression of FGFR4. In the small interfering RNA (siRNA) analysis, knockdown of HDAC9, which is an isoform of HDAC class IIa, reduced the expression of FGFR4 and induced apoptosis. Immunohistochemistry of human clinical specimens showed a positivity rate of 32% for FGFR4 and 84% for HDAC9 in HCC, and all FGFR4-positive patients were HDAC9 positive. CONCLUSION Class IIa HDACI and lenvatinib combination therapy induces apoptosis by downregulating FGFR4 and blocking the FGFR signaling in FGFR4-positive HCC cell lines and has demonstrated synergistic antitumor effects and safety. This combination therapy overcomes the problems of conventional therapies and will be beneficial for FGFR4-positive HCC patients.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Tomohiro Kubo
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kota Hamaguchi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Takahiro Osuga
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Hiroyuki Ohnuma
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Minoru Nagayama
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
- Postgraduate School of Health Science and Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
7
|
Rocha SM, Nascimento D, Coelho RS, Cardoso AM, Passarinha LA, Socorro S, Maia CJ. STEAP1 Knockdown Decreases the Sensitivity of Prostate Cancer Cells to Paclitaxel, Docetaxel and Cabazitaxel. Int J Mol Sci 2023; 24:6643. [PMID: 37047621 PMCID: PMC10095014 DOI: 10.3390/ijms24076643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Daniel Nascimento
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Rafaella S. Coelho
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Ana Margarida Cardoso
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.)
- C4-UBI—Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
8
|
Shi DM, Dong SS, Zhou HX, Song DQ, Wan JL, Wu WZ. Genomic and transcriptomic profiling reveals key molecules in metastatic potentials and organ-tropisms of hepatocellular carcinoma. Cell Signal 2023; 104:110565. [PMID: 36539000 DOI: 10.1016/j.cellsig.2022.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Metastasis is a landmark event for rapid postsurgical relapse and death of HCC patients. Although distinct genomic and transcriptomic profiling of HCC metastasis had been reported previously, the causal relationships of somatic mutants, mRNA levels and metastatic potentials were difficult to be established in clinic. Therefore, 11 human HCC cell lines and 7 monoclonal derivatives with definite metastatic potentials and tropisms were subjected to whole exome sequencing (WES) and whole transcriptome sequencing (WTS). TP53, MYO5A, ROS1 and ARID2 were the prominent mutants of metastatic drivers in HCC cells. During HCC clonal evaluation, TP53, MYO5A and ROS1 mutations occurred in the early stage, EXT2 and NIN in the late stage. NF1 mutant was unique in lung tropistic cell lines, RNF126 mutant in lymphatic tropistic ones. PER1, LMO2, GAS7, NR4A3 expression levels were positively associated with relapse-free survival (RFS) of HCC patients. The integrative analysis revealed 58 genes exhibited both somatic mutation and dysregulated mRNA levels in high metastatic cells. Altogether, metastatic drivers could accumulate gradually at different stages during HCC progression, some drivers might modulate HCC metastatic potentials and the others regulate metastatic tropisms.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Department of Medical Oncology, Changzheng Hospital, Shanghai, People's Republic of China
| | - Shuang-Shuang Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hong-Xing Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Qiang Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jin-Liang Wan
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
9
|
Rocha SM, Nascimento D, Cardoso AM, Passarinha L, Socorro S, Maia CJ. STEAP1 regulation and its influence modulating the response of LNCaP prostate cancer cells to bicalutamide, enzalutamide and apalutamide. Mol Med Rep 2023; 27:52. [PMID: 36660947 PMCID: PMC9879076 DOI: 10.3892/mmr.2023.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/15/2023] Open
Abstract
Anti‑androgen drugs are the standard pharmacological therapies for treatment of non‑metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti‑androgen used and often patients become resistant to treatment. Thus, studying how the anti‑androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti‑androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti‑androgen drugs. For this purpose, wild‑type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild‑type and LNCaP‑STEAP1 knockdown cells, except for c‑myc expression levels, where a cumulative effect between anti‑androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti‑androgens in c‑myc levels is required to be addressed in future studies.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Daniel Nascimento
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Margarida Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís Passarinha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal,Correspondence to: Professor Cláudio J. Maia, CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal, E-mail:
| |
Collapse
|
10
|
Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. DATA 2022. [DOI: 10.3390/data7050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) family comprises STEAP1-4. Several studies have pointed out STEAP proteins as putative biomarkers, as well as therapeutic targets in several types of human cancers, particularly in prostate cancer. However, the relationships and significance of the expression pattern of STEAP1-4 in cancer cases are barely known. Herein, the Oncomine database and cBioPortal platform were selected to predict the differential expression levels of STEAP members and clinical prognosis. The most common expression pattern observed was the combination of the over- and underexpression of distinct STEAP genes, but cervical and gastric cancer and lymphoma showed overexpression of all STEAP genes. It was also found that STEAP genes’ expression levels were already deregulated in benign lesions. Regarding the prognostic value, it was found that STEAP1 (prostate), STEAP2 (brain and central nervous system), STEAP3 (kidney, leukemia and testicular) and STEAP4 (bladder, cervical, gastric) overexpression correlate with lower patient survival rate. However, in prostate cancer, overexpression of the STEAP4 gene was correlated with a higher survival rate. Overall, this study first showed that the expression levels of STEAP genes are highly variable in human cancers, which may be related to different patients’ outcomes.
Collapse
|
11
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| |
Collapse
|