1
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
3
|
Zeng C, Xu C, Wei Y, Ma F, Wang Y. Training and experimental validation a novel anoikis- and epithelial‒mesenchymal transition-related signature for evaluating prognosis and predicting immunotherapy efficacy in gastric cancer. J Cancer 2025; 16:1078-1100. [PMID: 39895782 PMCID: PMC11786038 DOI: 10.7150/jca.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Anoikis resistance and improper activation of epithelial‒mesenchymal transition (EMT) are critical factors in tumor metastasis and progression. Despite their interaction, the combined impact of anoikis and EMT on prognosis and immunotherapy in gastric cancer remains underexplored. In this study, we identified 354 anoikis- and EMT-related genes (AERGs) through Venn analysis and performed unsupervised clustering to classify gastric cancer patients into two molecular clusters: A and B. Molecular cluster A showed poor prognosis and an immunosuppressive tumor microenvironment, suggesting a "cold tumor" phenotype. Then, a novel AERG-related prognostic model comprising CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 was constructed and validated, accurately predicting the 1-, 3-, and 5-year survival rates of gastric cancer patients. Multivariate analysis revealed that the AERG-related risk score was an independent prognostic factor (hazard ratio = 1.651, 95% confidence interval = 1.429-1.907, P<0.001). Further studies demonstrated that, compared to the high-risk group, the low-risk group exhibited higher CD8+ T cell infiltration, tumor mutational burden, immunophenoscores, and lower tumor immune dysfunction and exclusion scores, indicating potential sensitivity to immunotherapy. RT‒qPCR and immunohistochemical staining validated the expression levels of the model's molecular markers. Overall, our AERG-related model shows promise for predicting outcomes and guiding the selection of tailored and precise therapies for gastric cancer patients.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chang Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, 213000, China
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, 213000, China
| |
Collapse
|
4
|
Qiao Y, Tian X, Li S, Niu H. Identification and experimental validation of a sialylation-related long noncoding RNA signature for prognosis of bladder cancer. BMC Urol 2024; 24:222. [PMID: 39390546 PMCID: PMC11465731 DOI: 10.1186/s12894-024-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The dysregulation of sialylation plays a pivotal role in cancer progression and metastasis, impacting various aspects of tumor behavior. This study aimed to investigate the prognostic significance of long non-coding RNAs (lncRNAs) in relation to sialylation. Additionally, we aimed to develop a signature of sialylation-related lncRNAs in the context of bladder cancer. METHODS This study used transcriptomic data and clinical information from the TCGA (the Cancer Genome Atlas) database to screen for sialylation-related lncRNAs and constructed a prognostic model. The relationships between these lncRNAs and biological pathways, immune cell infiltration, drug sensitivity, etc., were analyzed, and the expression of some lncRNAs was validated at the cellular level. RESULTS This study identified 6 prognostic lncRNAs related to sialylation and constructed a risk score model with high predictive accuracy and reliability. The survival period of patients in the high-risk group was significantly lower than that of the low-risk group, and it was related to various biological pathways and immune functions. In addition, this study found differences in the sensitivity of patients in different risk groups to chemotherapy drugs, providing a reference for personalized treatment. CONCLUSION In this study, we examined the relationship between sialylation-related lncRNA and the prognosis of bladder cancer, providing new molecular markers and potential targets for diagnosis and treatment. Our research revealed correlations between sialylation-related lncRNA characteristics and clinicopathological features, potential mechanisms, somatic mutations, immune microenvironment, chemotherapy response, and predicted drug sensitivity in bladder cancer. Additionally, in vitro cellular studies were conducted to validate these findings and lay the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xintao Tian
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengxian Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Rao J, Song C, Hao Y, Chen Z, Feng S, Xu S, Wu X, Xuan Z, Fan Y, Li W, Li J, Ren Y, Li J, Cheng F, Gu Z. Leveraging Patient-Derived Organoids for Personalized Liver Cancer Treatment. Int J Biol Sci 2024; 20:5363-5374. [PMID: 39430248 PMCID: PMC11488587 DOI: 10.7150/ijbs.96317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Primary liver cancer (PLC) is a primary cause of cancer-related death worldwide, and novel treatments are needed due to the limited options available for treatment and tumor heterogeneity. 66 surgically removed PLC samples were cultured using the self-developed 2:2 method, and the final success rate for organoid culture was 40.9%. Organoid performance has been evaluated using comprehensive molecular measurements, such as whole-exome and RNA sequencing, as well as anticancer drug testing. Multiple organoids and their corresponding tumor tissues contained several of the same mutations, with all pairs sharing conventional TP53 mutations. Regarding copy number variations and gene expression, significant correlations were observed between the organoids and their corresponding parental tumor tissues. Comparisons at the molecular level provided us with an assessment of organoid-to-tumor concordance, which, in combination with drug sensitivity testing provided direct guidance for treatment selection. Finally, we were able to determine an appropriate pharmacological regimen for a patient with ICC, demonstrating the clinical practicality in tailoring patient-specific drug regimens. Our study provides an organoid culture technology that can cultivate models that retain most of the molecular characteristics of tumors and can be used for drug sensitivity testing, demonstrating the broad potential application of organoid technology in precision medicine for liver cancer treatment.
Collapse
Affiliation(s)
- Jianhua Rao
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chao Song
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| | - Sidu Feng
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | | | - Xiaoyue Wu
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
| | - Zhengfeng Xuan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ye Fan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wenzhu Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Junda Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| |
Collapse
|
6
|
Zhao S, Ni K, Xie J, Cheng C, Zhao N, Liu J, Ji W, Wang Q, Zhang P, Liu Y. Exploring the prognostic value of BRMS1 + microglia based on single-cell anoikis regulator patterns in the immunologic microenvironment of GBM. J Neurooncol 2024; 170:101-117. [PMID: 39143438 PMCID: PMC11447114 DOI: 10.1007/s11060-024-04781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Anoikis is a specialized form of programmed cell death induced by the loss of cell adhesion to the extracellular matrix (ECM). Acquisition of anoikis resistance is a significant marker for cancer cell invasion, metastasis, therapy resistance, and recurrence. Although current research has identified multiple factors that regulate anoikis resistance, the pathological mechanisms of anoikis-mediated tumor microenvironment (TME) in glioblastoma (GBM) remain largely unexplored. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data and employing non-negative matrix factorization (NMF), we identified and characterized TME cell clusters with distinct anoikis-associated gene signatures. Prognostic and therapeutic response analyses were conducted using TCGA and CGGA datasets to assess the clinical significance of different TME cell clusters. The spatial relationship between BRMS1 + microglia and tumor cells was inferred from spatial transcriptome RNA sequencing (stRNA-seq) data. To simulate the tumor immune microenvironment, co-culture experiments were performed with microglia (HMC3) and GBM cells (U118/U251), and microglia were transfected with a BRMS1 overexpression lentivirus. Western blot or ELISA were used to detect BRMS1, M2 macrophage-specific markers, PI3K/AKT signaling proteins, and apoptosis-related proteins. The proliferation and apoptosis capabilities of tumor cells were evaluated using CCK-8, colony formation, and apoptosis assays, while the invasive and migratory abilities of tumor cells were assessed using Transwell assays. RESULTS NMF-based analysis successfully identified CD8 + T cell and microglia cell clusters with distinct gene signature characteristics. Trajectory analysis, cell communication, and gene regulatory network analyses collectively indicated that anoikis-mediated TME cell clusters can influence tumor cell development through various mechanisms. Notably, BRMS1 + AP-Mic exhibited an M2 macrophage phenotype and had significant cell communication with malignant cells. Moreover, high expression of BRMS1 + AP-Mic in TCGA and CGGA datasets was associated with poorer survival outcomes, indicating its detrimental impact on immunotherapy. Upregulation of BRMS1 in microglia may lead to M2 macrophage polarization, activate the PI3K/AKT signaling pathway through SPP1/CD44-mediated cell interactions, inhibit tumor cell apoptosis, and promote tumor proliferation and invasion. CONCLUSION This pioneering study used NMF-based analysis to reveal the important predictive value of anoikis-regulated TME in GBM for prognosis and immunotherapeutic response. BRMS1 + microglial cells provide a new perspective for a deeper understanding of the immunosuppressive microenvironment of GBM and could serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Kaixiang Ni
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ning Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
7
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
8
|
Yin L, Zhang Z, Yan Z, Yan Q. Multicenter cohort analysis of anoikis and EMT: implications for prognosis and therapy in lung adenocarcinoma. Discov Oncol 2024; 15:462. [PMID: 39298078 DOI: 10.1007/s12672-024-01293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Anoikis and epithelial-mesenchymal transition (EMT) are pivotal in the distant metastasis of lung adenocarcinoma (LUAD). A detailed understanding of their interplay and the identification of key genes is vital for effective therapeutic strategies against LUAD metastasis. METHODS Key prognostic genes related to anoikis and EMT were identified through univariate Cox regression analysis. We utilized ten machine learning algorithms to develop the Anoikis and EMT-Related Optimal Model (AEOM). The TCGA-LUAD dataset served as the training cohort, while six additional international multicenter LUAD datasets were employed as validation cohorts. The average concordance index (c-index) was used to evaluate model performance and identify the most effective model. Subsequent multi-omics analyses were conducted to explore differences in pathway enrichment, immune infiltration, and mutation landscapes between high and low AEOM groups. Experimental validation demonstrated that RHPN2, a key biomarker within the model, acts as an oncogene facilitating LUAD progression. RESULTS The AEOM displayed superior prognostic predictive performance for LUAD patients, outperforming numerous previously published LUAD signatures. Biologically, the AEOM was notably associated with immune features; the high AEOM group exhibited decreased immune activity and a tendency towards immune-cold tumors, as well as a higher tumor mutational burden (TMB). Subgroup analysis revealed that the low AEOM + high TMB group had the most favorable prognosis. The high AEOM group was primarily enriched in cell cycle-related pathways, promoting cancer cell proliferation. RHPN2, a crucial gene within the AEOM (correlation = 0.85, P < 0.05), was linked to poorer prognosis in LUAD patients with elevated RHPN2 expression. Further in vitro experiments showed that RHPN2 modulates LUAD cell proliferation and invasion. CONCLUSION The AEOM provides a robust prognostic model for LUAD, uncovering critical immune and biological pathways, with RHPN2 identified as a key oncogenic driver. These findings offer valuable insights for targeted therapies and enhanced patient outcomes.
Collapse
Affiliation(s)
- Lu Yin
- School of Mathmatic and Information, Nanjing Normal University of Special Education, Nanjing, China
| | - Zhanshuo Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhu Yan
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China.
| | - Qiuyue Yan
- Emergency Medicine Department, The Affiliated Huai'an Hospital of Yangzhou University, Huai'an Fifth People's Hospital, Huai'an, China.
| |
Collapse
|
9
|
Nalla LV, Khairnar A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med 2024; 220:288-300. [PMID: 38734268 DOI: 10.1016/j.freeradbiomed.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
A tumour suppressor miRNA, miR-128-3p, is widely involved in various biological processes and has been found to get downregulated in breast cancer patients. We previously published that ectopically expressed miR-128-3p suppressed migration, invasion, cell cycle arrest, and breast cancer stem cells. In the present study, we explored the role of Empagliflozin (EMPA) as a miR-128-3p functionality-mimicking drug in inducing ferroptosis by inhibiting CD98hc. Given that CD98hc is one of the proteins critical in triggering ferroptosis, we confirmed that miR-128-3p and EMPA inhibited SP1, leading to inhibition of CD98hc expression. Further, transfection with siCD98hc, miR-128-3p mimics, and inhibitors was performed to assess their involvement in the ferroptosis of anoikis-resistant cells. We proved that anoikis-resistant cells possess high ROS and iron levels. Further, miR-128-3p and EMPA treatments induced ferroptosis by inhibiting GSH and enzymatic activity of GPX4 and also induced lipid peroxidation. Moreover, EMPA suppressed bioluminescence of 4T1-Red-FLuc induced thoracic cavity, peritoneal tumour burden and lung nodules in an in-vivo metastatic model of breast cancer. Collectively, we revealed that EMPA sensitized the ECM detached cells to ferroptosis by synergically activating miR-128-3p and lowering the levels of SP1 and CD98hc, making it a potential adjunct drug for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 602 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 62500, Czech Republic; International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 6250, Czech Republic.
| |
Collapse
|
10
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
12
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
13
|
Liu W, Ren Y, Wang T, Wang M, Xu Y, Zhang J, Bi J, Wu Z, Lv Y, Wu R. MFG-E8 induces epithelial-mesenchymal transition and anoikis resistance to promote the metastasis of pancreatic cancer cells. Eur J Pharmacol 2024; 969:176462. [PMID: 38431242 DOI: 10.1016/j.ejphar.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Pancreatic cancer is an extremely malignant tumor, and only a few clinical treatment options exist. MFG-E8 and kindlin-2 all play an important role in cancer progression. However, the specific mechanism occurring between MFG-E8, kindlin-2 and the migration and invasion of pancreatic cancer cells remains unelucidated. To unravel the specific mechanism, this study assessed the potential association between MFG-E8 and kindlin-2 as well as the involvement of MFG-E8 in pancreatic cancer using two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1). Pancreatic cancer cells were treated with 0, 250, and 500 ng/ml MFG-E8, and the effects of MFG-E8 on the migration, invasion, and anoikis of pancreatic cancer cells were observed. To investigate the role of kindlin-2 in pancreatic cancer, kindlin-2-shRNAi was transfected to knock down its expression level in the two pancreatic cancer cell lines. Furthermore, cilengitide, a receptor blocker of MFG-E8, was used to explore the relationship between MFG-E8, kindlin-2, and pancreatic cancer progression. Our findings demonstrated that MFG-E8 promotes the migration and invasion of pancreatic cancer cells and induces cell anoikis resistance in a dose-dependent manner, which was effectively counteracted by cilengitide, a receptor blocker. Additionally, the knockdown of kindlin-2 expression nullified the effect of MFG-E8 on the migration and invasion of pancreatic cancer cells. Consequently, this study provides insights into the specific mechanism underlying the interplay between MFG-E8 and kindlin-2 in the progression of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wuming Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhou Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujia Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Wang G, Dong R, Zhao H, Ye N, Wang J, Cheng J, Shi X, Luo L, Zhang T. The role of ERp29/FOS/EMT pathway in excessive apoptosis of placental trophoblast cells in intrahepatic cholestasis of pregnancy. Placenta 2024; 148:20-30. [PMID: 38346375 DOI: 10.1016/j.placenta.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Abnormal bile acid metabolism leading to changes in placental function during pregnancy. To determine whether endoplasmic reticulum protein 29 (ERp29) can mediate the pregnancy effects of cholestasis by altering the level of trophoblast cell apoptosis. METHODS ERp29 in serum of 66 intrahepatic cholestasis of pregnancy (ICP) pregnant women and 74 healthy were detected by ELISA. Subcutaneous injection of ethinyl estradiol (E2) was used to induce ICP in pregnant rats. Taurocholic acid (TCA) was used to simulate the ICP environment, and TGF-β1 was added to induce the epithelial mesenchymal transformation (EMT) process. The scratch, migration, and invasion test were used to detect the EMT process. ERp29 overexpression/knockdown vector were constructed and transfected to verify the role of ERp29 in the EMT process. Downstream gene was obtained through RNA-seq. RESULTS Compared with the healthy pregnant women, the expression levels of ERp29 in serum of ICP pregnancy women were significantly increased (P < 0.001). ERp29 in the placenta tissue of the ICP pregnant rats increased significantly, and the level of apoptosis increased. The placental tissues of the ICP had high expression of E-cadherin and low expression of N-cadherin, snail1, vimentin. After HTR-8/SVneo cells were induced by TCA, EMT was inhibited, while the ERp29 increased. Cell and animal experiments showed that, knockdown of ERp29 reduced the inhibition of EMT, the ICP progress was alleviated. Overexpression of FOS salvaged the inhibitory effects of ERp29 on cell EMT. DISCUSSION The high level of ERp29 in placental trophoblast cells reduced FOS mRNA levels, inhibited the EMT process and aggravated the occurrence and development of ICP.
Collapse
Affiliation(s)
- Gaoying Wang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ruirui Dong
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Haijian Zhao
- Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223001, China
| | - Ningzhen Ye
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Wang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Cheng
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xinrui Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Liang Luo
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Jiangnan University, Wuxi, 214000, China.
| | - Ting Zhang
- Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
15
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
16
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
17
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
18
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
20
|
Yang C, Yu T, Lin Q. A Novel Signature Based on Anoikis Associated with BCR-Free Survival for Prostate Cancer. Biochem Genet 2023; 61:2496-2513. [PMID: 37118620 DOI: 10.1007/s10528-023-10387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
This study aimed to elucidate the role of anoikis in the progression of prostate cancer (PCa) and to develop a prognostic signature based on anoikis-related genes (ARGs). To achieve this, PCa cases were subjected to nonnegative matrix factorization (NMF) analysis, which allowed for the identification of distinct patterns of anoikis modification. Additionally, immune infiltration was evaluated using single-sample gene-set enrichment analysis (ssGSEA). Survival analysis was performed using the Kaplan-Meier method, and a risk score was generated based on the expression levels of ARGs to quantitatively assess the modification of anoikis in PCa. Using the Least Absolute Shrinkage and Selection Operator (LASSO) method, four hub-genes were identified, and patients were classified into different risk groups based on their individual scores. Importantly, the low-risk subtype was characterized by a significantly improved biochemical recurrence-free survival, underscoring the clinical relevance of the ARG-based prognostic signature. To further improve the prognostic accuracy of the signature, patient age, pathological T stage, Gleason score, and prostate-specific antigen level were incorporated into the analysis, yielding a comprehensive prognostic signature. The clinical relevance of this signature was illustrated through a nomogram, providing a visual representation of the prognostic implications of the ARG-based signature. Taken together, these findings highlight the potential of ARGs in predicting the clinical outcomes of PCa patients and provide a novel and clinically relevant prognostic signature based on the modification of anoikis in PCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Rd, Xiamen, 361003, Fujian, China
| | - Tian Yu
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Department of General Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Rd, Xiamen, 361003, Fujian, China.
| |
Collapse
|
21
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
22
|
Feng K, Zhang Z, Luo J, Wang W, Li T, Luo J, Huang H. Integrated bulk and scRNA sequence identified anoikis-related diagnostic biomarkers and potential association with immune infiltration in type A aortic dissection. Aging (Albany NY) 2023; 15:11268-11285. [PMID: 37877967 PMCID: PMC10637813 DOI: 10.18632/aging.205126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
Type-A aortic dissection (TAAD) is common life-threatening cardiovascular diseases with high-morbidity and mortality but the concrete etiology of disease remains unclear, which might disturb or delay the early diagnosis for TAAD. Anoikis is a special form of programmed cell-death (PCD) induced by detachment of anchorage-dependent cells from the extracellular matrix (ECM) or neighboring cells, and has been widely applied to identify anoikis-related biomarkers for the prediction and prognosis in oncological fields. However, the specific roles of anoikis-related genes (ARGs) in TAAD remain unclear. In this study, we first identified and validated eight diagnostic ARGs for TAAD based on multiple RNA-sequence datasets, including CHEK2, HIF1A, HK2, HMGA1, SERPINA1, PTPN1, SLC2A1 and VEGFA. The comprehensive functional annotation was evaluated by the integrated functional enrichments analysis. We identified the activation of inflammatory-related pathways, metabolic reprogramming and angiogenesis, and the inhibition of cardiovascular development pathways in TAAD. Immune cell infiltration (ICI) analysis further demonstrated that innate immune-cells were more dominant than adaptive immune-cells in TAAD tissues, especially in macrophages, monocytes, activated-DC, NKT cells and CD56+dim NK cells. The cellular landscape was further validated by single-cell RNA sequence technology with significant associations with anoikis in TAAD patients. Four vital ARGs (HIF1A, HMGA1, SERPINA1 and VEGFA) were ultimately identified along with the changes of differentiation trajectory, and major expressions were conformably concentrated on Macro1-3, Mono1-2 and Mono4 subtypes. These findings provide a promising diagnostic biomarker for the accurately diagnosing the disease and would be helpful to further explore the potential pathogenesis with anoikis process for TAAD.
Collapse
Affiliation(s)
- Kexiang Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhongwei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Jie Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wenjie Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Tianjie Li
- School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jing Luo
- School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Hongbo Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
23
|
Gogoi RP, Galoforo S, Fox A, Morris C, Ramos H, Gogoi VK, Chehade H, Adzibolosu NK, Shi C, Zhang J, Tedja R, Morris R, Alvero AB, Mor G. A Novel Role of Connective Tissue Growth Factor in the Regulation of the Epithelial Phenotype. Cancers (Basel) 2023; 15:4834. [PMID: 37835529 PMCID: PMC10571845 DOI: 10.3390/cancers15194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a biological process where epithelial cells lose their adhesive properties and gain invasive, metastatic, and mesenchymal properties. Maintaining the balance between the epithelial and mesenchymal stage is essential for tissue homeostasis. Many of the genes promoting mesenchymal transformation have been identified; however, our understanding of the genes responsible for maintaining the epithelial phenotype is limited. Our objective was to identify the genes responsible for maintaining the epithelial phenotype and inhibiting EMT. METHODS RNA seq was performed using an vitro model of EMT. CTGF expression was determined via qPCR and Western blot analysis. The knockout of CTGF was completed using the CTGF sgRNA CRISPR/CAS9. The tumorigenic potential was determined using NCG mice. RESULTS The knockout of CTGF in epithelial ovarian cancer cells leads to the acquisition of functional characteristics associated with the mesenchymal phenotype such as anoikis resistance, cytoskeleton remodeling, increased cell stiffness, and the acquisition of invasion and tumorigenic capacity. CONCLUSIONS We identified CTGF is an important regulator of the epithelial phenotype, and its loss is associated with the early cellular modifications required for EMT. We describe a novel role for CTGF, regulating cytoskeleton and the extracellular matrix interactions necessary for the conservation of epithelial structure and function. These findings provide a new window into understanding the early stages of mesenchymal transformation.
Collapse
Affiliation(s)
- Radhika P. Gogoi
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Sandra Galoforo
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Colton Morris
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Vir K. Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Nicholas K. Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| |
Collapse
|
24
|
Pang M, Sun X, He T, Liang H, Yang H, Chen J. Development of a prognostic model based on anoikis-related genes for predicting clinical prognosis and immunotherapy of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:10253-10271. [PMID: 37787988 PMCID: PMC10599733 DOI: 10.18632/aging.205073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 10/04/2023]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant cause of cancer-related mortality worldwide. The majority of HCC patients are diagnosed at advanced stages of the disease, with a high likelihood of metastasis and unfavorable prognosis. Anoikis resistance is a crucial factor contributing to tumor invasion and metastasis, although its specific role in HCC remains unclear. Based on the results of univariate Cox regression and least absolute shrink-age and selection operator (LASSO) analysis, a subset of anoikis-related genes (ARGs) significantly associated with overall survival (OS) was identified. A multivariate Cox regression analysis subsequently identified PDK4, STK11, and TFDP1 as three prognostic ARGs, which were then used to establish a prognostic risk model. Differences in OS caused by risk stratification in HCC patients were demonstrated. The nomogram analysis indicated that the ARGs prognostic signature served as an independent prognostic predictor. In vitro experiments further confirmed the abnormal expression of selected ARGs in HCC. The association between risk scores and OS was further examined through Kaplan-Meier analysis, CIBERSORT analysis, and single-sample gene set enrichment analysis (ssGSEA). This study is a pioneering effort to integrate multiple ARGs and establish a risk-predictive model, providing a unique perspective for the development of personalized and precise therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Mu Pang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ting He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Huichao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Hao Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Jun Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
25
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
27
|
Sun D, Guo Y, Tang P, Li H, Chen L. Arf6 as a therapeutic target: Structure, mechanism, and inhibitors. Acta Pharm Sin B 2023; 13:4089-4104. [PMID: 37799386 PMCID: PMC10547916 DOI: 10.1016/j.apsb.2023.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
ADP-ribosylation factor 6 (Arf6), a small G-protein of the Ras superfamily, plays pivotal roles in multiple cellular events, including exocytosis, endocytosis, actin remodeling, plasma membrane reorganization and vesicular transport. Arf6 regulates the progression of cancer through the activation of cell motility and invasion. Aberrant Arf6 activation is a potential therapeutic target. This review aims to understand the comprehensive function of Arf6 for future cancer therapy. The Arf6 GEFs, protein structure, and roles in cancer have been summarized. Comprehending the mechanism underlying Arf6-mediated cancer cell growth and survival is essential. The structural features of Arf6 and its efforts are discussed and may be contributed to the discovery of future novel protein-protein interaction inhibitors. In addition, Arf6 inhibitors and mechanism of action are listed in the table. This review further emphasizes the crucial roles in drug resistance and attempts to offer an outlook of Arf6 in cancer therapy.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Guo
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Piyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
28
|
Akçay EY, Tepeoğlu M, Atılgan AO, Yağcı S, Kılıç D, Özdemir BH. The prognostic significance of tumor budding and the expression of focal adhesion kinase and survivin in lung adenocarcinoma. Ann Diagn Pathol 2023; 66:152167. [PMID: 37329750 DOI: 10.1016/j.anndiagpath.2023.152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Adenocarcinoma is the tumor group with the highest incidence among lung cancers with poor prognosis. Tumor budding (TB) is the migration of single tumor cells or small clusters of cells from the neoplastic epithelium to the invasive front of the tumor. Focal adhesion kinase (FAK) and survivin are considered as poor prognostic factors in several tumors. Hence, we investigated TB, FAK, and survivin expression in lung adenocarcinoma. METHODS The study included 103 cases of lung adenocarcinoma in the resection materials. In tumoral tissues; TB was counted and scored in one high-power field (HPF), as low if <5 in 1 HPF and high if ≥5 in 1 HPF. FAK and survivin were studied immunohistochemically. RESULTS The mean number of TB in 1 HPF is 3.96 ± 2.8. Low-grade TB was observed in 45 (43.7 %) and high-grade TB was observed in 58 (56.3 %) patients. There was a positive correlation between TB and pT stage (p = 0.017), clinical stage (p = 0.002), lymphovascular invasion (p = 0.001), and perineural invasion (p = 0.045). The 4-year survival rate in patients was 90 % in those with low-grade TB and 60 % in those with high-grade TB (p = 0.001). FAK and survivin expressions were significantly increased in tumors with high-grade TB (p < 0.05). CONCLUSION A significant correlation was found between the grade of TB and pT stage, clinical stage, lymphovascular and perineural invasion in lung adenocarcinoma. TB can be considered as a histological parameter showing poor prognosis. It is thought that high expression of FAK and survivin also affect the prognosis in these patients by increasing TB.
Collapse
Affiliation(s)
- Eda Yılmaz Akçay
- Department of Pathology, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey
| | - Merih Tepeoğlu
- Department of Pathology, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey.
| | - Alev Ok Atılgan
- Department of Pathology, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey
| | - Sergen Yağcı
- Department of Pathology, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey
| | - Dalokay Kılıç
- Department of Thoracic Surgery, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey
| | - B Handan Özdemir
- Department of Pathology, Baskent University, Faculty of Medicine, Bahcelievler, Ankara, Turkey
| |
Collapse
|
29
|
Ray R, Goel S, Al Khashali H, Darweesh B, Haddad B, Wozniak C, Ranzenberger R, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Soluble E-Cadherin Signaling in Non-Small-Cell Lung Cancer Cells by Nicotine, BDNF, and β-Adrenergic Receptor Ligands. Biomedicines 2023; 11:2555. [PMID: 37760996 PMCID: PMC10526367 DOI: 10.3390/biomedicines11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the β-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (R.R.); (S.G.); (H.A.K.); (B.D.); (B.H.); (C.W.); (R.R.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
30
|
Večurkovská I, Mašlanková J, Tomečková V, Kaťuchová J, Kisková T, Fröhlichová L, Mareková M, Stupák M. Stage-Dependent Levels of Brain-Derived Neurotrophic Factor and Matrix Metalloproteinase 9 in the Prognosis of Colorectal Cancer. Biomedicines 2023; 11:1839. [PMID: 37509480 PMCID: PMC10377127 DOI: 10.3390/biomedicines11071839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE The development of sensitive and non-invasive biomarkers for the early detection of CRC and determination of their role in the individual stages of CRC. METHODS MMP-9 expression in serum and tissue, and BDNF expression in plasma were detected using the ELISA method. MMP-9 and BDNF in the tissue were also determined by immunohistochemical staining. RESULTS To assess the balance between changes in survival and tumor progression, we compared BDNF/MMP-9 ratios in tissues of living and deceased individuals. The tissue BDNF/MMP-9 ratio (evaluated immunohistochemically) decreased significantly with the progression of the disease in living patients. The BDNF/MMP-9 ratio was statistically significantly reduced in stages II and III compared to the benign group. However, in deceased individuals, the ratio showed an opposite tendency. CONCLUSION The determination of the tissue BDNF/MMP9 ratio can be used as a prognostic biomarker of CRC.
Collapse
Affiliation(s)
- Ivana Večurkovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Kaťuchová
- 1st Department of Surgery, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Terézia Kisková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Lucia Fröhlichová
- Department of Pathology, Louis Pasteur University Hospital, Rastislavova 43, 041 90 Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafarik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
31
|
Somsuan K, Aluksanasuwan S. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Genomics Inform 2023; 21:e22. [PMID: 37423640 PMCID: PMC10326534 DOI: 10.5808/gi.23013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/08/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
32
|
Hu J, Liao D, Sun Z, Ren W, Zhao L, Fang Y, Hu K, Yu H, Liu S, Zhou L, He T, Zhang Y. The HPV16 E6, E7/miR-23b-3p/ICAT signaling axis promotes proliferation, migration, invasion and EMT of cervical cancer cells. Carcinogenesis 2023; 44:221-231. [PMID: 36847693 DOI: 10.1093/carcin/bgad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Cervical cancer (CC) remains one of the most common female malignancies, with higher incidence and mortality rates. more than 99% of CCs are associated with persistent infection with high-risk human papillomavirus. In view of the growing evidence that HPV 16 E6 and E7, two key oncoproteins encoded by HPV 16, regulate the expression of many other multifunctional genes and downstream effectors that contribute to the development of CC. Herein, we undertook a comprehensive effort into how HPV16 E6, E7 oncogenes affect the progression of CC cells. Previous studies have shown that ICAT expression was significantly increased in CC and had a pro-cancer effect. We observed that knockdown of HPV16 E6, E7 expression in SiHa and CasKi cells resulted in significant inhibition of ICAT expression and upregulation of miR-23b-3p expression. Besides, dual luciferase assays confirmed that ICAT was a target gene of miR-23b-3p, and negatively modulated by miR-23b-3p. Functional experiments showed that the overexpression of miR-23b-3p suppressed malignant behaviors of CC cells, such as migration, invasion and EMT. The overexpression of ICAT counteracted the suppressive effect of miR-23b-3p on HPV16-positive CC cells. Furthermore, after the knockdown of HPV16 E6 and E7, the inhibition of miR-23b-3p could increase the ICAT expression and rescue the siRNA HPV16 E6, E7-mediated suppressive impact on the aggressiveness of SiHa and CaSki cells. Collectively, our findings uncover that HPV16 E6, E7/miR-23b-3p/ ICAT axis plays an important role in HPV16-positive CC pathogenesis, which may serve as a promising therapeutic target for HPV16-associated CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Deyu Liao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zijiu Sun
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Wei Ren
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ling Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuting Fang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Huomei Yu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shiyan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Tongchuan He
- Molecular Oncology Laboratory, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
33
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
34
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F, Velaei K. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int 2023; 47:683-698. [PMID: 36453448 DOI: 10.1002/cbin.11970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
The development of effective treatments for cancers requires investigations for a more detailed and comprehensive understanding of the basic cellular mechanisms involved in carcinogenesis, cancer progression, and metastasis. One of those driving mechanisms is anoikis, a special type of apoptosis, which is induced by losing anchorage from the extracellular matrix (ECM). In other words, resisting death in detached cells (cells without ECM) forms an anoikis-resistant phenotype. Since the anoikis-resistance state compensates for the initial steps of cancer metastasis, this review aimed to discuss mechanisms of gaining anoikis/anoikis resistance phenotype in tumor cells. Finally, we highlighted the significance of anoikis in malignancies so as to provide clear insight into cancer diagnosis and therapy development.
Collapse
Affiliation(s)
- Farzad Sattari Fard
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fakhrosadat Sajjadian
- Department of Radiology, Faculty of Para-Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Li Y, Zhang J, Cai Y, Liu H, Yang W, Xu Y, Huang M. VSTM2L contributes to anoikis resistance and acts as a novel biomarker for metastasis and clinical outcome in ovarian cancer. Biochem Biophys Res Commun 2023; 658:107-115. [PMID: 37030064 DOI: 10.1016/j.bbrc.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The majority of patients are diagnosed when ovarian cancer (OC) has metastasized, making surgery and chemotherapy less effective. Thus, there is an urgent need to elucidate the mechanisms underlying metastasis and to further explore novel diagnostic biomarkers of OC metastasis. Here, we conducted a genome-wide CRISPR-Cas9 screen for anoikis resistance to identify key genes associated with OC metastasis. Further, bioinformatic analysis was performed using TCGA and GTEx datasets to explore the genes associated with OC progression and prognosis. After integrated analysis, the V-set and transmembrane domain-containing protein 2-like (VSTM2L) was identified as a crucial gene closely associated with OC metastasis, progression, and prognosis. Further validation using a patient-based cohort suggested that VSTM2L expression was significantly higher in metastatic lesions than in primary lesions. Subsequently, an in vitro assay showed that VSTM2L silencing increased SKOV3 cell death and hampered spheroid formation. Mechanistically, GSEA highlighted that epithelial-mesenchymal transition (EMT)-related pathways was positively associated with VSTM2L expression. Consistently, the validation based on the VSTM2L silence suggested the involvement of VSTM2L in EMT-related TGF-β and NF-κB signaling. Meanwhile, the addition of VSTM2L-containing medium did not provoke those signaling, indicating VSTM2L functions as an intracellular protein to activate TGF-β and NF-κB signaling. In summary, our study revealed that VSTM2L is a novel player involved in anoikis resistance and is a promising biomarker of OC metastasis and prognosis.
Collapse
|
36
|
Li Z, Zhao J, Huang X, Wang J. An m7G-related lncRNA signature predicts prognosis and reveals the immune microenvironment in bladder cancer. Sci Rep 2023; 13:4302. [PMID: 36922569 PMCID: PMC10017825 DOI: 10.1038/s41598-023-31424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Bladder cancer (BC) is a representative malignant tumor type, and the significance of N7-methyguanosine (m7G)-related lncRNAs in BC is still unclear. Utilizing m7G-related lncRNAs, we developed a prognostic model to evaluate BC's prognosis and tumor immunity. First, we selected prognostic lncRNAs related to m7G by co-expression analysis and univariate Cox regression and identified two clusters by consensus clustering. The two clusters differed significantly in terms of overall survival, clinicopathological factors, and immune microenvironment. Then, we further constructed a linear stepwise regression signature by multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Patients fell into high-risk (HR) and low-risk (LR) groups considering the train group risk score. HR group had worse prognoses when stratified by clinicopathological factors. The receiver operating curve (ROC) suggested that the signature had a better prognostic value. Tumor mutation burden (TMB) showed a negative relevance to the risk score, and patients with low TMB presented a better prognosis. Validation of the signature was carried out with multivariate and univariate Cox regression analysis, nomogram, principal component analysis (PCA), C-Index, and quantitative reverse transcriptase PCR (qRT-PCR). Finally, the gene set enrichment analysis (GSEA) demonstrated the enrichment of tumor-related pathways in HR groups, and single-sample gene set enrichment analysis (ssGSEA) indicated a close association of risk score with tumor immunity. According to the drug sensitivity test, the signature could predict the effects of conventional chemotherapy drugs. In conclusion, our study indicates the close relevance of m7G-related lncRNAs to BC, and the established risk signature can effectively evaluate patient prognosis and tumor immunity and is expected to become a novel prognostic marker for BC patients.
Collapse
Affiliation(s)
- Zhenchi Li
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China
- Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China
- Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiangping Wang
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
37
|
Kim TU, Lee SW, Baek SM, Yim JH, Lee YJ, Son JH, Park SJ, Park JK. Apocrine cystomatosis: From the aspect of epithelial-mesenchymal transition. VET MED-CZECH 2023; 68:33-37. [PMID: 38384992 PMCID: PMC10878258 DOI: 10.17221/77/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/02/2022] [Indexed: 02/23/2024] Open
Abstract
Apocrine cystomatosis, also called epitrichial sweat gland cystomatosis, is a non-neoplastic condition characterised by multiple dilated cysts of sweat gland origin. Histopathologically, these cysts comprise two layers of cells: an inner layer of glandular epithelial cells and an outer layer of myoepithelial cells. A case of apocrine cystomatosis was admitted to a local hospital. The microscopic investigation revealed that some enlarged cysts showed the transition of glandular epithelial cells into a spindle, mesenchymal cell-like morphology. The epithelial-to-mesenchymal transition (EMT) has long been studied as a pathway for embryogenesis, organ development, and carcinogenesis. While various molecular factors, including cytokines and growth factors, are known to induce EMT, mechanical forces have also been proposed to initiate EMT. The present case describes a possible relationship between EMT occurring in a cystic condition and further pathological inspection.
Collapse
Affiliation(s)
- Tae-Un Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seoung-Woo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Su-Min Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Jin Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun-Hyeok Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Joon Park
- Laboratory of Veterinary Histology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Kyu Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Leung D, Price ZK, Lokman NA, Wang W, Goonetilleke L, Kadife E, Oehler MK, Ricciardelli C, Kannourakis G, Ahmed N. Platinum-resistance in epithelial ovarian cancer: an interplay of epithelial-mesenchymal transition interlinked with reprogrammed metabolism. J Transl Med 2022; 20:556. [PMID: 36463238 PMCID: PMC9719259 DOI: 10.1186/s12967-022-03776-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFβ1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFβ1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.
Collapse
Affiliation(s)
- Dilys Leung
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Zoe K. Price
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Noor A. Lokman
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Wanqi Wang
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Lizamarie Goonetilleke
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Martin K. Oehler
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Carmela Ricciardelli
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia ,grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| |
Collapse
|
39
|
Castellón EA, Indo S, Contreras HR. Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms232314917. [PMID: 36499245 PMCID: PMC9736174 DOI: 10.3390/ijms232314917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Enrique A. Castellón
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| | | | - Héctor R. Contreras
- Correspondence: (E.A.C.); (H.R.C.); Tel.: +56-229-786-863 (E.A.C.); +56-229-786-862 (H.R.C.)
| |
Collapse
|
40
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|
43
|
Regulation of the Soluble Amyloid Precursor Protein α (sAPPα) Levels by Acetylcholinesterase and Brain-Derived Neurotrophic Factor in Lung Cancer Cell Media. Int J Mol Sci 2022; 23:ijms231810746. [PMID: 36142659 PMCID: PMC9500850 DOI: 10.3390/ijms231810746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-β40/42 (Aβ), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aβ40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aβ and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aβ40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).
Collapse
|
44
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
45
|
Shonibare Z, Monavarian M, O’Connell K, Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr MD, Whitaker R, Berchuck A, Nixon AB, Arend RC, Lee NY, Miller CR, Hempel N, Mythreye K. Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep 2022; 40:111066. [PMID: 35905726 PMCID: PMC9899501 DOI: 10.1016/j.celrep.2022.111066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-β superfamily growth factors BMP and TGF-β/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-β and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-β, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-β members controlling anchorage-independent survival and metastasis in ovarian cancers.
Collapse
Affiliation(s)
- Zainab Shonibare
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mehri Monavarian
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Kathleen O’Connell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Abigail Shelton
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Shubham Mehta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mark D. Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew B. Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C. Arend
- Department of Gynecology Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nam Y. Lee
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - C. Ryan Miller
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Karthikeyan Mythreye
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
46
|
Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol 2022; 24:1844-1855. [PMID: 35751743 DOI: 10.1007/s12094-022-02851-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) confers the most lethal characteristics to cancer cells i.e., metastasis and resistance to chemo-and-radio-therapy, and therefore exhibit an appealing target in the field of oncology. Research in the past decade has demonstrated the crucial role of aerobic glycolysis in EMT, which is generally credited as the glucose metabolism for the creation of biomass such as fatty acids, amino acids, and nucleotides thereby providing building blocks for limitless proliferation. In the present review, apart from discussing EMT's evident role in the metastatic process and cancer stemness, we also talked about the vital role of glycolytic enzymes viz. GLUTs, HKs, PGI, PFK-1, aldolase, enolase, PK, LDHA, etc. in the induction of the EMT process in cancerous cells.
Collapse
|
47
|
Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, Lin H, Zhang H, Wang SQ. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis 2022; 13:472. [PMID: 35589677 PMCID: PMC9120066 DOI: 10.1038/s41419-022-04890-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Zi-Teng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
| | - Hai-Xiang Wei
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Tao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li-Ming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Hang Lin
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China
| | - Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, 410008, Changsha, Hunan Province, P. R. China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, P. R. China.
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China.
| |
Collapse
|
48
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
49
|
Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166431. [PMID: 35533903 DOI: 10.1016/j.bbadis.2022.166431] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.
Collapse
|
50
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|