1
|
Dennis MJ, Abrahami D, Vieira MC, Benjumea D, Boyd M, Shao A, Kelton J, Patel SP. Real-World Analysis of Disparities in Biomarker Testing and Use of Recommended Targeted Therapies in Metastatic Non-Small Cell Lung Cancer in the United States. JCO Precis Oncol 2025; 9:e2400449. [PMID: 40373260 DOI: 10.1200/po-24-00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE Guidelines recommend biomarker testing and biomarker-informed therapies in patients with metastatic non-small cell cancer (mNSCLC); however, the use remains suboptimal. METHODS To understand contemporary testing and treatment patterns, retrospective data from 42,037 patients with mNSCLC in a nationwide electronic health record-derived deidentified database from January 2011 to April 2023 were used to quantify testing rates, test positivity, and use of biomarker-informed therapies, stratified by key demographics to identify potential disparities. Multivariable logistic regression was conducted to include patient characteristics associated with the receipt of biomarker testing and subsequent biomarker-informed therapies. RESULTS A total of 34,510 patients (82.1%) received ≥one biomarker test(s). Biomarker testing and use of biomarker-informed therapies increased for all studied biomarkers (EGFR, ALK, ROS1, PD-L1, BRAF, RET, MET) over time, with highest rates observed in 2023: EGFR (88.7% and 79.5%, respectively) and ALK (87.7% and 84.3%, respectively). In multivariate logistic regression, patient sex, race, Eastern Cooperative Oncology Group at baseline, insurance type, smoking status at baseline, and histology were all significantly associated with odds of receiving biomarker testing. Covariates statistically associated with receipt of biomarker-informed therapy varied by biomarker without a clear pattern of association. Although the use of biomarker testing and biomarker-informed therapies has increased in recent years, gaps and potential disparities remain. CONCLUSION Analysis of contemporary trends in biomarker testing and use of targeted therapies in mNSCLC in the United States highlight improvements in recent years. However, these rates remain suboptimal in specific strata of the patient population, including differences in racial groups and insurance groups, indicating further work is needed to bridge remaining gaps.
Collapse
|
2
|
Shen Y, Chen JQ, Li XP. Differences between lung adenocarcinoma and lung squamous cell carcinoma: Driver genes, therapeutic targets, and clinical efficacy. Genes Dis 2025; 12:101374. [PMID: 40083325 PMCID: PMC11904499 DOI: 10.1016/j.gendis.2024.101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/22/2024] [Indexed: 03/16/2025] Open
Abstract
With the rapid advancements in second-generation gene sequencing technologies, a growing number of driver genes and associated therapeutic targets have been unveiled for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). While they are clinically classified as non-small cell lung cancer (NSCLC), they display distinct genomic features and substantial variations in clinical efficacy, underscoring the need for particular attention. Hence, this review provides a comprehensive overview of the latest advancements in driver genes, epigenetic targets, chemotherapy, targeted therapy, and immunotherapy for LUAD and LUSC. Additionally, it delves into the distinctions in signaling pathways and pivotal facets of clinical management specific to these two categories of lung cancer. Moreover, we furnish pertinent details regarding clinical trials pertaining to driver genes and epigenetics, thus establishing a theoretical foundation for the realization of precision treatments for LUAD and LUSC.
Collapse
Affiliation(s)
- Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie-Qi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Mechahougui H, Gutmans J, Gouasmi R, Smekens L, Friedlaender A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int J Mol Sci 2025; 26:3757. [PMID: 40332392 PMCID: PMC12027668 DOI: 10.3390/ijms26083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
BRAF mutations are critical drivers in cancers such as melanoma, colorectal cancer, and non-small-cell lung cancer. The most common mutation, BRAF V600E, is a key therapeutic target. Targeted treatments with BRAF and MEK inhibitors have significantly improved progression-free and overall survival in melanoma patients. However, in cancers like metastatic colorectal cancer, BRAF mutations are associated with poor outcomes due to aggressive disease behavior and resistance to conventional chemotherapy. Despite progress, resistance to BRAF/MEK inhibitors remains a major challenge, often driven by secondary mutations in the mitogen-activated protein kinase (MAPK) pathway, activation of alternative pathways such as phosphoinositide 3-kinases (PI3Ks)/protein kinase B (AKT), or changes in the tumor microenvironment. These challenges have motivated ongoing research into combining BRAF inhibitors with immunotherapies to enhance and prolong treatment effectiveness. Future research must also account for the role of the cancer's tissue of origin, as the biological context significantly influences response to targeted therapies, highlighting the need for a deeper understanding of tumor biology, micro-environment, and genetics.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France;
| | - Laure Smekens
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (J.G.); (L.S.)
| | | |
Collapse
|
4
|
Feng X, Zeng R, Lyu M, Chen X, Xu Z, Hu Y, Bao Z, Sun X, Zhao J, Zhou L, Zhou J, Gao B, Dong L, Xiang Y. Clinical and molecular characteristics, therapeutic strategies, and prognosis of non-small cell lung cancer patients harboring primary and acquired BRAF mutations. Front Oncol 2025; 15:1514653. [PMID: 40242250 PMCID: PMC11999832 DOI: 10.3389/fonc.2025.1514653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Background The differences in clinical characteristics and treatment prognosis in NSCLC patients harboring primary and acquired BRAF mutations are still poorly understood. Methods From Oct 2017 to Dec 2023, 10, 211 lung cancer patients at Shanghai Ruijin Hospital were reviewed. 88 primary and 15 acquired BRAF-mutated NSCLC patients resistant to EGFR TKIs were included in the study. Results Primary BRAF-mutated patients preferentially occurred in the elderly (median age: 67 vs 61, p=0.015), males (53.4% vs 26.7%, p=0.056), former/current smokers (36.5% vs 6.7%, p=0.033), non-adenocarcinoma (11.4% vs 0%, P=0.351) compared to acquired BRAF-mutated patients. Significant differences in gender (33.3% vs 62.3%, p=0.012), smoking history (22.2% vs 43.1%, p=0.063), and adenocarcinomas (100% vs 83.6%, p=0.028) were observed between primary BRAF/EGFR co-mutated and non-co-mutated groups. While primary and acquired BRAF/EGFR co-mutated patients had similar clinical characteristics, with EGFR mutations being the most common coexisting oncogene (30.7% and 93.3%). The genotype of EGFR mutations differed, with acquired BRAF-mutated cases showing more complexity and a higher rate of dual EGFR mutations (35.7%) compared to primary cases. For primary BRAF/EGFR co-mutated patients, no matter what kinds of therapies, the EGFR 19del patients had a better prognosis than non-19del patients, and the first line mPFS was NR and 9.0 months (95% CI: 7.7-10.3 months) (p=0.0062), respectively. Dabrafenib and trametinib plus 3rd EGFR TKIs improved the prognosis of primary BRAF/EGFR non-19del co-mutated patients, achieving ORR and mPFS of 100% (3/3) and 12 months. For acquired co-mutated patients, the mPFS for 5 patients was 8.6 months (95% CI: 5.4-11.8 months). No new safety concerns and > grade 3 AEs were noted. Conclusion Together, our study demonstrates that primary and acquired BRAF-mutant patients show distinct differences in some clinical and molecular characteristics, but acquired BRAF/EGFR co-mutated and primary BRAF/EGFR non-19del co-mutated patients may both respond to triple-targeted therapy.
Collapse
Affiliation(s)
- Xiangran Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zeng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengchen Lyu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xianwen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jingya Zhao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Beili Gao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
5
|
Jia B, Wang S, Zhang F, Wang Z, An T, Wang Y, Zhuo M, Li J, Yang X, Chen H, Chi Y, Wang J, Zhai X, Nuersulitan R, Wang X, Tai Y, Liu Y, Guan G, Zhao Y, Wang Y, Zhang M, Liu X, Lu L, Li H, Wang Y, Shen F, Liu Z, Wang Z, Man L, Zhang J, Shi M, Li Y, Jiang C, Yan J, Jin X, Jin B, Zhao J. Prevalence, genetic variations and clinical outcomes of BRAF-V600 mutated advanced NSCLC in China: a retrospective real-world multi-centre study. EBioMedicine 2025; 114:105652. [PMID: 40138888 PMCID: PMC11986240 DOI: 10.1016/j.ebiom.2025.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Due to the low incidence of BRAF mutations, limited data is available about their prevalence and clinical characteristics. Moreover, comparative real-world efficacy of dabrafenib combined with trametinib versus other treatment regimens, especially in Chinese patients, is also lacking. METHODS Patients who had BRAF genetic testing from the Lung Cancer Big Data Precise Treatment Collaboration Group (LANDSCAPE) database were included as Cohort I. The LANDSCAPE database comprises next-generation sequencing (NGS) data of 175,336 patients with lung cancer, originating from 6 Chinese genetic testing institutions. Cohort II included patients with unresectable locally advanced or metastatic NSCLC with a primary BRAF mutation from 19 centres in China from December 2015 to September 2022. FINDINGS In Cohort I, of patients with NSCLC, 6249 (3.56%, 95% CI: 3.48%-3.65%) were confirmed to harbour a BRAF mutation. BRAF V600E accounted for 24.6% (1539/6249) of all patients with BRAF-mutated NSCLC. In Cohort II, a total of 129 patients with locally advanced or metastatic BRAF-mutated NSCLC were included. Of 112 patients who received NGS testing, 80 (71.4%) patients had concomitant mutations. The median first-line real-world progression-free survival (rwPFS) of dabrafenib plus trametinib for patients with BRAF V600 mutations was 25.0 months (N = 37), which was numerically longer than first-line immunotherapy-based therapy (N = 12, 15.7 months), and chemotherapy (N = 17, 9.2 months). INTERPRETATION This study indicates that dabrafenib plus trametinib could be considered as the optimal treatment option for Chinese patients with NSCLC harbouring BRAF V600 mutations. FUNDING National Natural Science Foundation of China (82072583); Beijing Municipal Administration of Hospitals Incubating Program (PX2020044); Beijing Hospitals Authority Youth Programme (QML20231113); Science Foundation of Peking University Cancer Hospital (2022-17); Peking University Cancer Hospital Inner Mongolia Hospital Public Hospital Reform and High-Quality Development Demonstration Project (Gastrointestinal Cancer + Thoracic Cancer) Research Fund (2024YNYB006).
Collapse
Affiliation(s)
- Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of Thoracic Medical Oncology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot, 010020, China
| | - Shuo Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Fengyuan Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jingjing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyu Zhai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Reyizha Nuersulitan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yidi Tai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yiliang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Guohui Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanbin Zhao
- Department of Thoracic Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Mengmeng Zhang
- Respiratory Department, Dezhou Linyi People's Hospital, Dezhou, 251500, China
| | - Xiuju Liu
- Department of Respiratory Medicine, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Lin Lu
- Department of Oncology, Chaoyang Central Hospital, Chaoyang, 122000, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanlei Wang
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Fengqian Shen
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, 475000, China
| | - Zhiliang Liu
- Pulmonary and Critical Care Medicine, TangShan Central Hospital, Tangshan, 063008, China
| | - Zhen Wang
- Department of Hematology and Oncology, 988th Hospital of the PLA Joint Logistic Support Force, Jiaozuo, 454003, China
| | - Li Man
- Department of Oncology, Anshan Cancer Hospital, Anshan, 114036, China
| | - Jiwei Zhang
- Oncology Department, Dezhou Municipal Hospital, Dezhou, 253012, China
| | - Minmin Shi
- Oncology Department II, Jincheng Second People's Hospital, Jincheng, 048000, China
| | - Yong Li
- Hematology and Oncology Department, Huanghua People's Hospital, Huanghua, 061100, China
| | - Caihong Jiang
- Department of Medical Oncology, Ordos Central Hospital, Ordos, 017000, China
| | - Jingjing Yan
- Department of Respiratory and Critical Care Medicine, Hebei Petrochina Central Hospital, Langfang, 065000, China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bo Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
6
|
Charoenthanadhol T, Chaisuriya N, Putraveephong S. Small cell transformation in a patient with BRAF V600E-mutated advanced non-small cell lung cancer. BMJ Case Rep 2025; 18:e262278. [PMID: 40139792 DOI: 10.1136/bcr-2024-262278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) with a BRAF V600E mutation is rare and associated with a worse prognosis compared with wild-type BRAF. The first-line treatment options include a combination of a BRAF inhibitor and a MEK inhibitor or immunotherapy with or without chemotherapy. Unlike advanced NSCLC with common EGFR mutations or ALK rearrangements, the mechanisms of resistance are poorly understood. We report a case of small cell transformation after treatment with a BRAF inhibitor and a MEK inhibitor, which illustrates one potential resistance mechanism. We extrapolated therapeutic data from de novo small cell lung cancer to this case. However, the outcome was unsatisfactory.
Collapse
Affiliation(s)
| | - Nipon Chaisuriya
- Pathology, Khon Kaen University Faculty of Medicine, Khon Kaen, Khon Kaen, Thailand
| | | |
Collapse
|
7
|
Parisi C, Planchard D. BRAF in non-small cell lung cancer: From molecular mechanisms to clinical practice. Cancer 2025; 131 Suppl 1:e35781. [PMID: 40172088 DOI: 10.1002/cncr.35781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 04/04/2025]
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations are found in up to 4% of patients with non-small cell lung cancer (NSCLC). Approximately 2% of advanced NSCLC cases harbor a BRAF V600E (class I) mutation. Because targeted therapies inhibiting BRAF (e.g., dabrafenib and encorafenib) and MEK (trametinib and binimetinib) are associated with improved outcomes as first- or second-line treatment for BRAF V600E-mutant NSCLC, both European Society for Medical Oncology and National Comprehensive Cancer Network guidelines recommend testing for the BRAF V600E oncogenic driver at the time of diagnosis. In recent years, the treatment landscape of this molecular subgroup has seen great development. Different therapeutic strategies including anti-programmed death ligand 1 antibodies and kinase inhibitors have been assessed thus far, with novel agents (e.g., pan-BRAF inhibitors) and therapeutic associations underway in preclinical and clinical trials. This review describes the current understanding of the BRAF clinicopathologic role in NSCLC, with a special focus on published trials assessing currently approved therapies. Mechanisms of drug resistance and future perspectives on the therapeutic approach of BRAF-deregulated NSCLC are also summarized.
Collapse
Affiliation(s)
- Claudia Parisi
- Thoracic Cancer Group, Department of Medical Oncology, Gustave Roussy and International Center for Thoracic Cancers, Villejuif, France
- Paris-Saclay University, Villejuif, Kremlin-Bicêtre, France
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - David Planchard
- Thoracic Cancer Group, Department of Medical Oncology, Gustave Roussy and International Center for Thoracic Cancers, Villejuif, France
- Paris-Saclay University, Villejuif, Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Xin S, Wen M, Tian Y, Dong H, Wan Z, Jiang S, Meng F, Xiong Y, Han Y. Impact of histopathological subtypes on invasive lung adenocarcinoma: from epidemiology to tumour microenvironment to therapeutic strategies. World J Surg Oncol 2025; 23:66. [PMID: 40016762 PMCID: PMC11866629 DOI: 10.1186/s12957-025-03701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/02/2025] [Indexed: 03/01/2025] Open
Abstract
Lung adenocarcinoma is the most prevalent type of lung cancer, with invasive lung adenocarcinoma being the most common subtype. Screening and early treatment of high-risk individuals have improved survival; however, significant differences in prognosis still exist among patients at the same stage, especially in the early stages. Invasive lung adenocarcinoma has different histological morphologies and biological characteristics that can distinguish its prognosis. Notably, several studies have found that the pathological subtypes of invasive lung adenocarcinoma are closely associated with clinical treatment. This review summarised the distribution of various pathological subtypes of invasive lung adenocarcinoma in the population and their relationship with sex, smoking, imaging features, and other histological characteristics. We comprehensively analysed the genetic characteristics and biomarkers of the different pathological subtypes of invasive lung adenocarcinoma. Understanding the interaction between the pathological subtypes of invasive lung adenocarcinoma and the tumour microenvironment helps to reveal new therapeutic targets for lung adenocarcinoma. We also extensively reviewed the prognosis of various pathological subtypes and their effects on selecting surgical methods and adjuvant therapy and explored future treatment strategies.
Collapse
Affiliation(s)
- Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
- Department of Thoracic Surgery, 962 Hospital of the Joint Logistics Support Force, Harbin, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Zitong Wan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwestern University, Xi'an, 710069, China
| | - Suxin Jiang
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Fancheng Meng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
- Innovation Center for Advanced Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
- Department of Thoracic Surgery, First Medical Center, Chinese PLA General Hospital and PLA Medical School, Beijing, China.
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Shaanxi, , Xi'an, 710038, China.
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China.
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, 30 Fucheng Road, Haidian District, Shaanxi, , Beijing, 100142, China.
| |
Collapse
|
9
|
Saha A, Raja T, Dutt Dwary A, Ghosh I, Narayan Mahapatra P, Mukhopadhay T. BRAF inhibitors with or without MEK inhibitors in advanced BRAF-positive non-small cell lung cancer: A systematic review. J Oncol Pharm Pract 2025:10781552251322452. [PMID: 39973323 DOI: 10.1177/10781552251322452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
OBJECTIVE About 1% to 5% of cases of non-small cell lung cancer (NSCLC) have been found to have a BRAF mutation. There is no phase III data, despite the fact that numerous phase II and retrospective studies have demonstrated the efficacy of single agent BRAF inhibition and combination BRAF/MEK inhibition in patient groups that have received treatment and those who have not. Our goal in this systematic review was to provide an overview of the available evidence in this context. DATA SOURCES A thorough search was conducted in the PubMed, Medline, Embase, and Cochrane databases for English-language papers published between January 2000 and December 2023 that had full text accessibility. Independently, one author screened the eligible studies that fit our predetermined requirements. A synthesis of the qualitative data was conducted, and the design and quality of the studies were evaluated. DATA SUMMARY There were 2952 articles found using the search method. Twelve publications with a total of 753 patients were included after two rounds of screening. 33-75% was the objective response rate (ORR). 64-100% was the disease control rate (DCR). The time span for the answer varied from 6.4 to 16.7 months. The range of the median progression-free survival (PFS) was 1.2 to 17.5 months. The range of the median overall survival (OS) was 1.7-25.5 months. When comparing studies with single agent BRAF inhibitors to those reporting the results of BRAF plus MEK inhibitors, the response rates, duration of response, and survival were better in the former case. When untreated patients receiving BRAF/MEK inhibitor therapy were compared to previously treated patients, the results were also improved. Hypertension, pyrexia, hyponatremia, neutropenia, dyspnoea, anaemia, abnormal liver function, asthenia, and cutaneous epidermoid carcinoma were among the frequently reported grade ≥3 toxicity. CONCLUSIONS Patients with advanced NSCLC that include a BRAF mutation have demonstrated encouraging clinical outcomes with a manageable safety profile when treated with BRAF inhibitors, either in combination with or without MEK inhibitor therapy. In patients who had not received treatment before, combination treatment produced greater results.
Collapse
Affiliation(s)
- Animesh Saha
- Department of Oncology, Apollo Multi-speciality Hospitals, Kolkata, India
| | - T Raja
- Department of Medical Oncology, Apollo Speciality Cancer Hospital, Chennai, India
| | - Amit Dutt Dwary
- Department of Oncology, Apollo Multi-speciality Hospitals, Kolkata, India
| | - Indranil Ghosh
- Department of Oncology, Apollo Multi-speciality Hospitals, Kolkata, India
| | | | - Tanmoy Mukhopadhay
- Department of Oncology, Apollo Multi-speciality Hospitals, Kolkata, India
| |
Collapse
|
10
|
Arter ZL, Shieh K, Nagasaka M, Ou SHI. Comprehensive Survey of AACR GENIE Database of Tumor Mutation Burden (TMB) Among All Three Classes (I, II, III) of BRAF Mutated ( BRAF+) NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2025; 16:1-9. [PMID: 39995769 PMCID: PMC11847431 DOI: 10.2147/lctt.s493835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Background BRAF mutations are generally divided into three classes based on the different altered mechanism of activation. Methods We queried the public AACR GENIE database (version 13.1), which includes tumor mutation burden (TMB) data, to explore potential molecular differences among the three classes of non-small cell lung cancer (NSCLC). Results Out of 20,713 unique NSCLC patients, 324 (1.6%) were BRAF mutations positive (BRAF+) class I, 260 (1.3%) class II, and 236 (1.1%) class III. The distribution of patient characteristics, including sex, age, and race, remains uniform across the three classes. The median TMB (mt/MB) was 6.5, 9.5, and 10.3 for class I, II, and III, respectively. The mean TMB was 61.5 ± 366.1 for class I, 40.5 ± 156.2 for class II, and 129.4 ± 914.8 for class III. About 30.5% of BRAF V600E+ patients had TMB ≥ 10; 47.7% of class II had TMB ≥ 10; and 52.5% of class III had TMB ≥ 10. For those patients with TMB ≥ 10, the median TMB was 45, 28.9, 18.4 for class I, II, and III, respectively. For TMB ≥ 10 patients, TP53 mutation was the most common co-alterations across all 3 classes. Conclusion A substantial proportion of BRAF+ NSCLC patients exhibited a TMB ≥ 10, among all three classes of BRAF mutation classification, including BRAF V600E+ NSCLC. Class III mutations appeared to have the highest median TMB, followed by class II, and then class I.
Collapse
Affiliation(s)
- Zhaohui Liao Arter
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Kevin Shieh
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Sai-Hong Ignatius Ou
- Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| |
Collapse
|
11
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
Swalduz A, Beau-Faller M, Planchard D, Mazieres J, Bayle-Bleuez S, Debieuvre D, Fallet V, Geier M, Cortot A, Couraud S, Daniel C, Domblides C, Pichon E, Fabre E, Larivé S, Lerolle U, Tomasini P, Wislez M, Missy P, Morin F, Westeel V, Auliac JB. Real-world efficacy of the dabrafenib-trametinib (D-T) combination in BRAF V600E-mutated metastatic non-small cell lung cancer (NSCLC): Results from the IFCT-2004 BLaDE cohort. Lung Cancer 2025; 199:108038. [PMID: 39616778 DOI: 10.1016/j.lungcan.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND BRAF V600E mutations occur in 2-5 % of advanced non-small cell lung cancer (NSCLC) patients. The dabrafenib-trametinib (D-T) combination was associated with improved and durable OS in patients in phase II. This study (IFCT-2004 BLaDE study) reported the efficacy of D-T combination in a large retrospective French real-world multicenter cohort of patients with advanced BRAF V600E-mutated NSCLC. METHOD Patients with advanced BRAF V600E-mutated NSCLC diagnosed between 01.01.2016 and 31.12.2019 and treated with D-T in combination, regardless of the treatment line, were included. The primary endpoint was the 12-month OS rate (%) in patients receiving D-T as a second-line therapy or beyond. RESULTS A total of 163 patients were included: 50.3 % were female, 30.2 % were never smokers, 95.1 % had adenocarcinoma, and 78.2 % had a PDL1 ≥ 1 %. The median age was 68.3 years. At D-T initiation, 80.8 % of patients had a PS of 0/1, 78.6 % had stage IV disease, and 20.9 % had brain metastasis. At the cutoff, the median follow-up was 27.4 months. The 12-month OS rate in patients receiving D + T as a second-line therapy or beyond (n = 119) was 67.4 %, with a median progression-free survival (mPFS) of 10.4 months. Among the 44 patients who received D + T as a first-line therapy, the 12-month OS rate was 67.4 %, with an mPFS of 18.2 months. D-T discontinuation for toxicity was reported in 10.3 % of patients. CONCLUSIONS To our knowledge, this is the largest retrospective cohort of BRAF-mutated patients reported. The findings confirmed the significant efficacy of D-T in combination with BRAF V600E-mutated metastatic NSCLC in pretreated and untreated patients. These results under real-world conditions are consistent with those of other registered studies.
Collapse
Affiliation(s)
- Aurélie Swalduz
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France.
| | - Michèle Beau-Faller
- Centre Hospitalier Universitaire Strasbourg, Laboratoire d'Onco-Biologie & Oncologie Thoracique Hôpital de Hautepierre & Nouvel Hôpital Civil, INSERM UMR 1260 - Nanomédecine Régénérative, Université de Strasbourg - CRBS, Strasbourg, France
| | - David Planchard
- Gustave Roussy, Cancer Medicine Department, Villejuif, France
| | | | | | - Didier Debieuvre
- Groupe Hospitalier de la Région Mulhouse Sud-Alsace, Hôpital Emile Muller, GHRMSA - Mulhouse, Mulhouse, France
| | - Vincent Fallet
- Tenon Hospital, Assistance Publique Hôpitaux de Paris, Department of Pneumology and Thoracic Oncology and GRC4, Theranoscan, Sorbonne Université, Paris, France
| | - Margaux Geier
- University Hospital of Brest, Department of Medical Oncology France
| | - Alexis Cortot
- Department of Thoracic Oncology, CHU de Lille, CNRS, Inserm, Institut Pasteur de Lille, UMR9020-U1277-CANTHER, Lille, France
| | - Sébastien Couraud
- Acute Respiratory Medicine and Thoracic Oncology Department, & CIRCAN Program Coordinator, Cancer Institute of Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Bénite, France
| | | | - Charlotte Domblides
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Eric Pichon
- Centre Hospitalier Universitaire, Tours, France
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Hôpital européen Georges Pompidou, APHP-Centre, Carpem Cancer Institute, Paris, France
| | | | - Ulrike Lerolle
- Clinique Saint-Joseph, Service de Pneumologie, Trélazé, France
| | - Pascale Tomasini
- APHM, Hôpital Nord, Service d'Oncologie Multidisciplinaire & Innovations Thérapeutiques, Marseille, France
| | - Marie Wislez
- APHP, Hôpital Cochin, Service de Pneumologie, Unité d'Oncologie Thoracique, Paris, France
| | - Pascale Missy
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | - Franck Morin
- Intergroupe Francophone de Cancérologie Thoracique, Paris, France
| | | | | |
Collapse
|
13
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
14
|
Eser M, Hekimoglu G, Yarar MH, Canbek S, Ozcelik M. KRAS G12C mutation in NSCLC in a small genetic center: insights into sotorasib therapy response potential. Sci Rep 2024; 14:26581. [PMID: 39496639 PMCID: PMC11535051 DOI: 10.1038/s41598-024-75208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Lung cancer remains a significant health challenge, characterized by aberrant tissue growth within the pulmonary system. Early carcinogenic events often involve genomic instability and the emergence of a mutator phenotype. In this study, we aimed to explore the mutator phenotype in 89 patients diagnosed with non-small-cell lung cancer (NSCLC). RNA isolation from formalin-fixed paraffin-embedded (FFPE) tissue samples was performed using the Promega ReliaPrep RNA Miniprep System, facilitating gene amplification relevant to cancer through the Archer® FusionPlexComprehensiveThyroid and Lung (CTL) kit. Next-generation sequencing (NGS) on the Illumina NextSeq platform enabled comprehensive analysis of target areas. Utilizing Archer Analysis software, secondary analyses involving data cleansing, alignment, and variant/fusion identification were executed against the human reference genome hg19 (GRCh37). Expression patterns were visualized using HeatMap graphics. Our findings revealed a notable presence of KRAS gene mutations in approximately 20% of NSCLC patients. Among these mutations, the G12C variant was predominant at 50%, followed by G12V and G12D variants at 11.2% each. Notably, patients harboring the G12C variant responded favorably to sotorasib medication. These results underscore the importance of mutational profiling and targeted therapeutic approaches in managing NSCLC, particularly highlighting the promising efficacy of sotorasib in G12C-mutated cases.
Collapse
Affiliation(s)
- Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gulam Hekimoglu
- Department of Histology and Embryology, Hamidiye International Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Murat Hakki Yarar
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sezin Canbek
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Melike Ozcelik
- Department of Medical Oncology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
15
|
Ikeda S, Hasegawa K, Kachi K, Yanagisawa A, Kawakami S, Hamasaki S, Watanabe S, Yoshikawa A, Takahama T, Nakagawa K. Patient-Initiated Nationwide Survey on Testing for Actionable Oncogenic Drivers in Non-Small Cell Lung Cancer in Japan. Cancer Med 2024; 13:e70375. [PMID: 39494523 PMCID: PMC11532810 DOI: 10.1002/cam4.70375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Previous reports indicated still low implementation rates of multigene testing for advanced non-small cell lung cancer (NSCLC) in Japan. METHODS This is a retrospective study launched at the initiative of lung cancer patients. Patients with stage IV NSCLC from January 2019 to December 2022 were investigated for testing of 8 actionable oncogenic drivers with targeted therapies available as of 2022. RESULTS A total of 15,719 patients were included. Between 2019 and 2022, the percentage of patients who were not tested for any actionable oncogenic drivers remained the same, ranging from 21.5% to 33.1%. However, since late 2021, the percentage of patients tested for five or more actionable oncogenic drivers has increased. Across hospital categories and regions, the number of actionable oncogenic drivers tested was similar. CONCLUSIONS This patient-initiated national survey in Japan reveals the recent nationwide increase in testing rates for actionable oncogenic drivers in Advanced NSCLC.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Respiratory MedicineKanagawa Cardiovascular and Respiratory CenterYokohamaJapan
| | - Kazuo Hasegawa
- Japan Lung Cancer AllianceYokohamaJapan
- General Incorporated Association Alliance for Lung CancerYokohamaJapan
| | - Kenta Kachi
- General Incorporated Association Alliance for Lung CancerYokohamaJapan
| | | | - Sachiko Kawakami
- General Incorporated Association Alliance for Lung CancerYokohamaJapan
| | - Shinsuke Hamasaki
- General Incorporated Association Alliance for Lung CancerYokohamaJapan
| | | | | | - Takayuki Takahama
- Department of Medical OncologyKindai University Faculty of MedicineOsakasayamaJapan
| | - Kazuhiko Nakagawa
- Department of Medical OncologyKindai University Faculty of MedicineOsakasayamaJapan
| |
Collapse
|
16
|
Ngelangel CA, Sy FF. BRAF mutant PD-L1 positive metastatic musculoskeletal lesions from primary lung adenocarcinoma treated with combination vemurafenib and pembrolizumab: a case report. J Med Case Rep 2024; 18:450. [PMID: 39334445 PMCID: PMC11437808 DOI: 10.1186/s13256-024-04773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND B-Raf mutation positivity, B-Raf mutation positivity occurrence with programmed death ligand 1 overexpression, and musculoskeletal metastasis are singly rare in non-small cell lung cancer, and even rarer is all occurring in one patient. CASE PRESENTATION A Filipino 63-year-old male had B-Raf mutation positive and programmed death ligand 1 overexpressed symptomatic metastatic musculoskeletal lesions from lung adenocarcinoma treated with a BRAF inhibitor, vemurafenib, in combination with an immune checkpoint inhibitor, pembrolizumab. He exhibited significant reduction in pain and burden of musculoskeletal metastatic lesions. CONCLUSION Although a rare occurrence and known to have a poor prognosis, B-Raf mutation positive programmed death ligand 1 overexpressed lung adenocarcinoma presenting with metastatic musculoskeletal lesions can respond favorably to a combination immune checkpoint inhibitor and BRAF inhibitor medication.
Collapse
Affiliation(s)
- Corazon A Ngelangel
- University of the Philippines-Philippine General Hospital Division of Medical Oncology, Manila, Philippines.
- Asian Cancer Institute-Asian Hospital & Medical Center, Muntinlupa City, Philippines.
| | - Florge Francis Sy
- University of the Philippines-Philippine General Hospital Division of Medical Oncology, Manila, Philippines
| |
Collapse
|
17
|
Liu L, Soler J, Reckamp KL, Sankar K. Emerging Targets in Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:10046. [PMID: 39337530 PMCID: PMC11432526 DOI: 10.3390/ijms251810046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lung cancer is responsible for a high burden of disease globally. Over the last two decades, the discovery of targetable oncogenic genomic alterations has revolutionized the treatment landscape for early-stage and advanced non-small cell lung cancer (NSCLC). New molecular drivers continue to emerge as promising therapeutic targets, including KRAS non-G12C, RAF/MEK, HER3, Nectin-4, folate receptor alpha, ITGB6, and PRMT5. In this review, we summarize the emerging molecular targets with a potential clinical impact in advanced NSCLC, elaborating on their clinical characteristics and specific mechanisms and molecular pathways for which targeted treatments are currently available. Additionally, we present an aggregate of ongoing clinical trials investigating the available treatment options targeting such alterations, in addition to their current recruitment status and preliminary efficacy data. These advancements may guide further research endeavors and inform future treatment strategies to improve the management of and transform outcomes for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Louisa Liu
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua Soler
- Riverside School of Medicine, University of California, Riverside, CA 92521, USA
| | - Karen L Reckamp
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kamya Sankar
- Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
18
|
Ramalingam SS, Carlisle JW. Encorafenib plus binimetinib for BRAF V600E-mutant metastatic NSCLC: clinical implications of the phase 2 PHAROS study. Future Oncol 2024; 20:2503-2508. [PMID: 39225598 PMCID: PMC11537293 DOI: 10.1080/14796694.2024.2391270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Drs. Ramalingam and Carlisle discuss the incidence and pathophysiology of BRAF V600E-mutant metastatic non-small cell lung cancer and current treatment options. The podcast provides an overview of the data from the recent Pfizer-sponsored phase 2 PHAROS (NCT03915951) study, which were the basis for the recent US Food and Drug Administration approval of encorafenib plus binimetinib for BRAF V600E-mutant metastatic non-small cell lung cancer.
Collapse
Affiliation(s)
- Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer W Carlisle
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Young RWC, Rodriguez GR, Kucera J, Carrera D, Antevil JL, Trachiotis GD. Molecular Markers, Immune Therapy, and Non-Small Cell Lung Cancer-State-of-the-Art Review for Surgeons. J Laparoendosc Adv Surg Tech A 2024; 34:786-797. [PMID: 38900703 DOI: 10.1089/lap.2024.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background: Lung cancer is a leading cause of cancer deaths in the United States. An increasing understanding of relevant non-small cell lung cancer (NSCLC) biomarkers has led to the recent development of molecular-targeted therapies and immune checkpoint inhibitors that have revolutionized treatment for patients with advanced and metastatic disease. The purpose of this review is to provide surgeons with a state-of-the-art understanding of the current medical and surgical treatment trends and their implications in the future of management of NSCLC. Materials and Methods: A systematic search of PubMed was conducted to identify English language articles published between January 2010 and March 2024 focusing on molecular markers, tumor targeting, and immunotherapy in the diagnosis and treatment of NSCLC. Case series, observational studies, randomized trials, guidelines, narrative reviews, systematic reviews, and meta-analyses were included. Results: There is now increasing data to suggest that molecular-targeted therapies and immune therapies have a role in the neoadjuvant setting. Advances in intraoperative imaging allow surgeons to perform increasingly parenchymal-sparing lung resections without compromising tumor margins. Liquid biopsies can noninvasively detect targetable mutations in cancer cells and DNA from a blood draw, potentially allowing for earlier diagnosis, personalized therapy, and long-term monitoring for disease recurrence. Conclusions: The management of NSCLC has advanced dramatically in recent years fueled by a growing understanding of the cancer biology of NSCLC. Advances in medical therapies, surgical techniques, and diagnostic and surveillance modalities continue to evolve but have already impacted current treatment strategies for NSCLC, which are encompassed in this review.
Collapse
Affiliation(s)
- Robert W C Young
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - Gustavo R Rodriguez
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - John Kucera
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Daniel Carrera
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
| | - Jared L Antevil
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
- Division of Cardiothoracic Surgery and Heart Center, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| | - Gregory D Trachiotis
- Department of Surgery, George Washington University Hospital, Washington, District of Columbia, USA
- Division of Cardiothoracic Surgery and Heart Center, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Beasley MB. Immunohistochemistry of Lung Cancer Biomarkers. Adv Anat Pathol 2024; 31:333-343. [PMID: 38666761 DOI: 10.1097/pap.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Immunohistochemical (IHC) staining represents a comparatively inexpensive testing method that is attractive as a potential alternative to molecular sequencing methods or fluorescence in situ hybridization for pulmonary biomarker testing. While a variety of IHC tests directed at actionable genetic alterations have been developed and evaluated since the advent of targeted therapy, specific antibody clones for anaplastic lymphoma kinase, ROS-1, and potentially neurotrophic tropmyosin receptor kinase have been the primary antibodies that provide sufficiently robust results to be utilized as either a primary testing or screening method to direct targeted therapy. Antibodies for a variety of other targets such as epidermal growth factor receptors, for example, have lacked sufficient sensitivity and specificity to cover the range of mutations that may occur and are generally not recommended in lieu of molecular testing with the exception of limited resource settings. IHC is also used as a predictive marker for response to immunotherapy through evaluation of programmed death ligand 1 expression. In addition, multiple antibody-drug conjugates (ADCs) are under investigation, designed to deliver drugs directly to tumor cells through binding to specific target antigens. Some ADCs have already received accelerated FDA approval, and IHC was incorporated in many clinical trials evaluating ADC efficacy. As such, it is anticipated that ADCs may have a companion diagnostic IHC to guide patient selection.
Collapse
Affiliation(s)
- Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY
| |
Collapse
|
21
|
Liu D, Ding K, Yin K, Peng Z, Li X, Pan Y, Jin X, Xu Y. A real world analysis of secondary BRAF variations after targeted therapy resistance in driver gene positive NSCLC. Sci Rep 2024; 14:20302. [PMID: 39218919 PMCID: PMC11366755 DOI: 10.1038/s41598-024-71143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Secondary BRAF variations have been identified as a mechanism of resistance to tyrosine kinase inhibitors (TKIs) in patients with driver gene-positive NSCLC. Nevertheless, there is still a lack of consensus regarding the characteristics and subsequent treatment strategies for these patients. We retrospectively reviewed the medical records of patients with driver gene-positive NSCLC who received TKIs therapy at Zhejiang Cancer Hospital between May 2016 and December 2023. The clinical and genetic characteristics of these patients were assessed, along with the impact of various treatment strategies on survival. This study enrolled 27 patients with advanced NSCLC, in whom BRAF variations occurred at a median time of 28 months after the initiation of targeted therapy. The multivariate accelerated failure time (AFT) model revealed that, compared to chemotherapy-based regimens group, the combined targeted therapy group (p < 0.001) and the combined local treatment group for oligo-progression (p < 0.001) significantly extended patient survival. In contrast, continuing the original signaling pathway's targeted monotherapy was associated with shorter survival (p = 0.034). The median global OS for each treatment group was as follows: chemotherapy-based regimens group, 45 months; combined targeted therapy group, 59 months; combined local treatment group for patients with oligo-progression, 46 months; and targeted monotherapy group, 36 months. Study results indicate that the combination targeted therapy group (including TKIs, BRAF inhibitors, and/or MEK inhibitors) and the localized treatment group are more effective than traditional chemotherapy-based regimens in improving survival. Additionally, continuing targeted monotherapy along the original signaling pathway proves less effective than chemotherapy-based regimens.
Collapse
Affiliation(s)
- DuJiang Liu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - KaiBo Ding
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - KaiLai Yin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - ZhongSheng Peng
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Xinyue Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
| | - Yang Pan
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - XuanHong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - YanJun Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
22
|
Li S, Yang L, Ding X, Sun H, Dong X, Yang F, Wang M, Zhang H, Li Y, Li B, Liu C. USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. Oncogenesis 2024; 13:27. [PMID: 39030175 PMCID: PMC11271578 DOI: 10.1038/s41389-024-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, 266071, Qingdao, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, 266034, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, 266000, Qingdao, China.
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| |
Collapse
|
23
|
Zhang H, Zhang Y, Zhu Y, Dong T, Liu Z. Understanding the treatment response and resistance to targeted therapies in non-small cell lung cancer: clinical insights and perspectives. Front Oncol 2024; 14:1387345. [PMID: 39055566 PMCID: PMC11269125 DOI: 10.3389/fonc.2024.1387345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Lung cancer remains the leading cause of mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with a generally poor prognosis. In recent years, advances in targeted therapy and sequencing technology have brought significant improvement in the therapeutic outcomes of patients with advanced NSCLC. Targeted inhibitors directed against specific mutated or rearranged oncogenes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1(ROS1) among others, exhibit promising anti-tumor activity. Unfortunately, some patients develop acquired resistance and disease progression soon after initial remission. Despite the continuous development of new drugs and strategies to overcome drug resistance, it is still a major challenge in the treatment of NSCLC. The landscape of targeted therapy for NSCLC is evolving rapidly in response to the pace of scientific research. This study aimed to provide a comprehensive review of tumor target antigens and agents related to targeted therapy in NSCLC.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Imyanitov EN, Mitiushkina NV, Kuligina ES, Tiurin VI, Venina AR. Pathways and targeting avenues of BRAF in non-small cell lung cancer. Expert Opin Ther Targets 2024; 28:613-622. [PMID: 38941191 DOI: 10.1080/14728222.2024.2374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION BRAF is a serine-threonine kinase implicated in the regulation of MAPK signaling cascade. BRAF mutation-driven activation occurs in approximately 2-4% of treatment-naive non-small cell carcinomas (NSCLCs). BRAF upregulation is also often observed in tumors with acquired resistance to receptor tyrosine kinase inhibitors (TKIs). AREAS COVERED This review describes the spectrum of BRAF mutations and their functional roles, discusses treatment options available for BRAF p.V600 and non-V600 mutated NSCLCs, and identifies some gaps in the current knowledge. EXPERT OPINION Administration of combined BRAF/MEK inhibitors usually produces significant, although often a short-term, benefit to NSCLC patients with BRAF V600 (class 1) mutations. There are no established treatments for BRAF class 2 (L597, K601, G464, G469A/V/R/S, fusions, etc.) and class 3 (D594, G596, G466, etc.) mutants, which account for up to two-thirds of BRAF-driven NSCLCs. Many important issues related to the use of immune therapy for the management of BRAF-mutated NSCLC deserve further investigation. The rare occurrence of BRAF mutations in NSCLC is compensated by high overall incidence of lung cancer disease; therefore, clinical studies on BRAF-associated NSCLC are feasible.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| |
Collapse
|
25
|
Kimbrough EO, Marin-Acevedo JA, Drusbosky LM, Mooradian A, Zhao Y, Manochakian R, Lou Y. Sex- and Age-Associated Differences in Genomic Alterations among Patients with Advanced Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2024; 16:2366. [PMID: 39001428 PMCID: PMC11240325 DOI: 10.3390/cancers16132366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Genomic mutations impact non-small cell lung cancer (NSCLC) biology. The influence of sex and age on the distribution of these alterations is unclear. We analyzed circulating-tumor DNA from individuals with advanced NSCLC from March 2018 to October 2020. EGFR, KRAS, ALK, ROS1, BRAF, NTRK, ERBB2, RET, MET, PIK3CA, STK11, and TP53 alterations were assessed. We evaluated the differences by sex and age (<70 and ≥70) using Fisher's exact test. Of the 34,277 samples, 30,790 (89.83%) had a detectable mutation and 19,923 (58.12%) had an alteration of interest. The median age of the ctDNA positive population was 69 (18-102), 16,756 (54.42%) were female, and 28,835 (93.65%) had adenocarcinoma. Females had more alterations in all the assessed EGFR mutations, KRAS G12C, and ERBB2 ex20 ins. Males had higher numbers of MET amp and alterations in STK11 and TP53. Patients <70 years were more likely to have alterations in EGFR exon 19 del/exon 20 ins/T790M, KRAS G12C/D, ALK, ROS1, BRAF V600E, ERBB2 Ex20ins, MET amp, STK11, and TP53. Individuals ≥70 years were more likely to have alterations in EGFR L861Q, MET exon 14 skipping, and PIK3CA. We provided evidence of sex- and age-associated differences in the distribution of genomic alterations in individuals with advanced NSCLC.
Collapse
Affiliation(s)
- ErinMarie O Kimbrough
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Hematology and Oncology, Division of Internal Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Julian A Marin-Acevedo
- Department of Hematology and Oncology, Division of Internal Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | | | - Ariana Mooradian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Hematology and Medical Oncology, University of Florida, Jacksonville, FL 32209, USA
| | - Yujie Zhao
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
26
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
27
|
Shi Y, Han X, Zhao Q, Zheng Y, Chen J, Yu X, Fang J, Liu Y, Huang D, Liu T, Shen H, Luo S, Yu H, Cao Y, Zhang X, Hu P. Tunlametinib (HL-085) plus vemurafenib in patients with advanced BRAF V600-mutant solid tumors: an open-label, single-arm, multicenter, phase I study. Exp Hematol Oncol 2024; 13:60. [PMID: 38867257 PMCID: PMC11167782 DOI: 10.1186/s40164-024-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Tunlametinib (HL-085) is a novel, highly selective MEK inhibitor with substantial clinical activities in patients with NRAS-mutant melanoma. This phase I study evaluated the safety and preliminary efficacy of tunlametinib plus vemurafenib in patients with advanced BRAF V600-mutant solid tumors. METHODS Patients with confirmed advanced BRAF V600-mutant solid tumors who had progressed on or shown intolerance or no available standard therapies were enrolled and received tunlametinib plus vemurafenib. This study consisted of a dose-escalation phase and a dose-expansion phase. Primary end points of this study were safety, the recommended phase II dose (RP2D), and preliminary efficacy. RESULTS From August 17, 2018 to April 19, 2022, 72 patients were enrolled. No dose-limiting toxicities occurred, and the maximum tolerated dose was not reached. The RP2D for BRAF V600-mutant non-small cell lung cancer (NSCLC) patients was tunlametinib 9 mg plus vemurafenib 720 mg, twice daily (BID, bis in die). Until the data cut-off date of December 15, 2023, of 33 NSCLC patients with evaluable disease, the objective response rate (ORR) was 60.6% (20/33; 95% confidence interval [CI], 42.1-77.1), the median progression free survival (PFS) was 10.5 months (95%CI, 5.6-14.5) and median duration of response (DoR) was 11.3 months (95%CI, 6.8-NE). At the RP2D, ORR was 60.0% (9/15; 95% CI, 32.3-83.7), the median PFS was 10.5 months (95%CI, 5.6 -NE) and median DoR was 11.3 months (95%CI, 3.9-NE). Of 24 colorectal cancer patients with evaluable disease, the ORR was 25.0% (6/24; 95% CI, 5.6-NE). All 72 patients had treatment-related adverse events (TRAEs), and the most common grade 3-4 TRAEs were anemia (n = 13, 18.1%) and blood creatine phosphokinase increased (n = 10, 13.9%). Tunlametinib was absorbed rapidly with Tmax of 0.5-1 h. Vemurafeinib did not influence the system exposure of tunlametinib and vice versa, indicating no drug-drug interaction for this combination. CONCLUSIONS Tunlametinib (HL-085) plus vemurafenib had a favorable safety profile and showed promising antitumor activity in patients with BRAF V600-mutant solid tumors. The RP2D for NSCLC was tunlametinib 9 mg BID plus vemurafeinib 720 mg BID. TRIAL REGISTRATION ClinicalTrials.gov, NCT03781219.
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Qian Zhao
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
| | - YuLong Zheng
- Department of Oncology, the First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, 310006, People's Republic of China
| | - Jianhua Chen
- Thoracic Medicine Department I, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan Province, 410006, People's Republic of China
| | - Xinmin Yu
- Department of Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang Province, 310022, People's Republic of China
| | - Jian Fang
- Thoracic Oncology Second Department, Beijing Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Yutao Liu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong Shen
- Department of Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Suxia Luo
- Department of Medical Oncology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Hongsheng Yu
- Department of Radiation Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Yu Cao
- Phase I Clinical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266000, People's Republic of China
| | - Xi Zhang
- Department of Clinical Research and Development, Shanghai Kechow Pharma, Inc, Shanghai, 201203, People's Republic of China
| | - Pei Hu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
| |
Collapse
|
28
|
Sbrana A, Cappelli S, Petrini I, Bernardini L, Massa V, Carrozzi L, Chella A. Dabrafenib-trametinib in BRAF V600-mutated non-small-cell lung cancer: a single center real world experience. Future Oncol 2024; 20:1745-1751. [PMID: 38709118 PMCID: PMC11486151 DOI: 10.1080/14796694.2024.2340898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Aim: We retrospectively evaluated the effect of dabrafenib/trametinib combination in patients with BRAF-mutated non-small-cell lung cancer (NSCLC) treated in a single center from 2017 to 2022.Patients: The response and safety data of 42 patients (27 treated in first-line and 15 as second/subsequent lines) were analyzed.Results: The objective response was 73.8%, with no differences between patients undergoing first- or second-line. A longer, statistically significant median progression-free survival (PFS) was observed in patients receiving the combination in first-line vs those in the second/subsequent lines (19.9 months [95% CI: 19.7-20] vs 13.1 months [95% CI: 8.6-17.6], respectively; p = 0.012). The median overall survival (OS) was 29.9 months (95% CI: 14.1-45.7) for patients treated with the combination in first-line and 22.4 months (95% CI: 14.6-30.2) for those treated in subsequent lines. The combination was well toleratedConclusion: We confirm the efficacy of dabrafenib/trametinib in BRAF-V600-mutated NSCLC.
Collapse
Affiliation(s)
- Andrea Sbrana
- Service of Pneumo-Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical & Molecular Pathology & Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Sabrina Cappelli
- Service of Pneumo-Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Iacopo Petrini
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, Italy
| | - Laura Bernardini
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, Italy
| | - Valentina Massa
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, Italy
| | - Laura Carrozzi
- Department of Surgical, Medical & Molecular Pathology & Critical Care Medicine, University of Pisa, Pisa, Italy
- Pneumology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Chella
- Service of Pneumo-Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
29
|
Planchard D, Sanborn RE, Negrao MV, Vaishnavi A, Smit EF. BRAF V600E-mutant metastatic NSCLC: disease overview and treatment landscape. NPJ Precis Oncol 2024; 8:90. [PMID: 38627602 PMCID: PMC11021522 DOI: 10.1038/s41698-024-00552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024] Open
Abstract
In this review, we cover the current understanding of BRAF mutations and associated clinical characteristics in patients with metastatic NSCLC, approved and emerging treatment options, BRAF sequencing approaches, and unmet needs. The BRAFV600E mutation confers constitutive activity of the MAPK pathway, leading to enhanced growth, proliferation, and survival of tumor cells. Testing for BRAF mutations enables patients to be treated with therapies that directly target BRAFV600E and the MAPK pathway, but BRAF testing lags behind other oncogene testing in metastatic NSCLC. Additional therapies targeting BRAFV600E mutations provide options for patients with metastatic NSCLC. Emerging therapies and combinations under investigation could potentially overcome issues of resistance and target non-V600E mutations. Therefore, because targeted therapies with enhanced efficacy are on the horizon, being able to identify BRAF mutations in metastatic NSCLC may become even more important.
Collapse
Affiliation(s)
- David Planchard
- Thoracic Cancer Group, Department of Medical Oncology, Gustave Roussy, Villejuif, France.
| | - Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Vaishnavi
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Egbert F Smit
- Department of Pulmonary Disease, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
30
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
31
|
Watanabe H, Inoue Y, Karayama M, Yazawa S, Mochizuka Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Shinmura K, Inui N, Suda T. Characterization of BRAFThr599dup Mutation as a Targetable Driver Mutation Identified in Lung Adenocarcinoma by Comprehensive Genomic Profiling. JCO Precis Oncol 2024; 8:e2300538. [PMID: 38662982 DOI: 10.1200/po.23.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024] Open
Abstract
PURPOSE Understanding the function of BRAF mutants is crucial for determining the best treatment strategy. This study aimed to characterize a rare BRAF variant, BRAFThr599dup, which was identified in a patient with lung adenocarcinoma (LUAD) by comprehensive genomic profiling. MATERIALS AND METHODS We report a case of LUAD with BRAFThr599dup treated with dabrafenib and trametinib. We conditionally expressed wild-type BRAF, BRAFV600E, or BRAFThr599dup in Ba/F3 cells and BEAS-2B cells. Ba/F3 cells carrying double-mutant BRAF (BRAFThr599dup/R509H, BRAFV600E/R509H, or BRAFK601E/R509H) that lacked the dimerizing ability were also established. Knockout of endogenous BRAF or CRAF in Ba/F3-BRAFThr599dup cells and Ba/F3-BRAFV600E cells was performed using the CRISPR/Cas9 system. Cell viability, mitogen-activated protein kinase (MAPK) signaling activity, and sensitivity to dabrafenib and trametinib were evaluated. RESULTS The patient was revealed to have BRAFThr599dup-positive tumor cells as a predominant clone, and dabrafenib and trametinib treatment showed modest efficacy. In Ba/F3 cells, both BRAFThr599dup and BRAFV600E similarly caused interleukin-3-independent proliferation and activated the MAPK pathway. Moreover, BRAFThr599dup and BRAFV600E similarly caused a significant increase in the anchorage-independent growth ability of BEAS-2B cells. Along with Ba/F3-BRAFV600E cells, Ba/F3-BRAFThr599dup cells were highly sensitive to a monomer-specific BRAF inhibitor, dabrafenib, with a half-maximal inhibitory concentration value of 29.7 nM. In the absence of wild-type BRAF, wild-type CRAF, or an intact dimer interface, the ability to induce oncogenic addiction and MAPK pathway activation in Ba/F3-BRAFThr599dup cells was not affected, which was in contrast to the findings in the BRAFK601E/R509H double-mutant model. CONCLUSION BRAFThr599dup is a potent driver oncogene that activates the MAPK pathway without the requirement for dimerization in vitro. Because BRAFThr599dup has been recurrently reported across various cancer types, our findings should be further investigated both mechanistically and clinically.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shusuke Yazawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasutaka Mochizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
32
|
Fujimoto K, Ikeda S, Tabata E, Kaneko T, Sagawa S, Yamada C, Kumagai K, Fukushima T, Haga S, Watanabe M, Muraoka T, Sekine A, Baba T, Ogura T. KRASG12C Inhibitor as a Treatment Option for Non-Small-Cell Lung Cancer with Comorbid Interstitial Pneumonia. Cancers (Basel) 2024; 16:1327. [PMID: 38611005 PMCID: PMC11010978 DOI: 10.3390/cancers16071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) with comorbid interstitial pneumonia (IP) is a population with limited treatment options and a poor prognosis. Patients with comorbid IP are at high risk of developing fatal drug-induced pneumonitis, and data on the safety and efficacy of molecularly targeted therapies are lacking. KRAS mutations have been frequently detected in patients with NSCLC with comorbid IP. However, the low detection rate of common driver gene mutations, such as epidermal growth factor receptor and anaplastic lymphoma kinase, in patients with comorbid IP frequently results in inadequate screening for driver mutations, and KRAS mutations may be overlooked. Recently, sotorasib and adagrasib were approved as treatment options for advanced NSCLC with KRASG12C mutations. Although patients with comorbid IP were not excluded from clinical trials of these KRASG12C inhibitors, the incidence of drug-induced pneumonitis was low. Therefore, KRASG12C inhibitors may be a safe and effective treatment option for NSCLC with comorbid IP. This review article discusses the promise and prospects of molecular-targeted therapies, especially KRASG12C inhibitors, for NSCLC with comorbid IP, along with our own clinical experience.
Collapse
Affiliation(s)
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohoma 236-0051, Japan; (K.F.); (E.T.); (T.K.); (S.S.); (C.Y.); (K.K.); (T.F.); (S.H.); (M.W.); (T.M.); (A.S.); (T.B.); (T.O.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bao LC, Padovan A, Boscolo Bragadin A, Calvetti L, Guarneri V, Bonanno L, Indraccolo S. Efficacy of osimertinib and the role of sequential liquid biopsy in patients diagnosed with NSCLC harboring EGFR and BRAF mutations at baseline: insights from two case reports. Front Oncol 2024; 14:1363069. [PMID: 38529368 PMCID: PMC10961462 DOI: 10.3389/fonc.2024.1363069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) and B-Raf (BRAF) mutations are two of the most important drivers identified in non-small-cell lung cancer (NSCLC). This report highlights two cases of patients diagnosed with metastatic NSCLC bearing concurrent EGFR and BRAF mutations at baseline and treated with osimertinib as first-line treatment. Molecular profiling was conducted in the tissue and plasma at the time of initial diagnosis, and subsequent repeated liquid biopsy examinations were planned after 10 days, 28 days, and at the time of radiological progression in the frame of the prospective translational study REM. These cases suggest that osimertinib may maintain its therapeutic effectiveness even in patients presenting with a baseline BRAF co-mutation. Notably, radiological responses align with liquid biopsy observations: in both instances, follow-up liquid biopsies indicate the clearance of EGFR-mutated circulating tumor DNA (ctDNA).
Collapse
Affiliation(s)
- Loc Carlo Bao
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alessia Padovan
- Basic and Translational Oncology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | | | - Lorenzo Calvetti
- Department of Oncology, Azienda ULSS 8 Berica, San Bortolo General Hospital, Vicenza, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Laura Bonanno
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Stefano Indraccolo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Basic and Translational Oncology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
34
|
Odintsov I, Sholl LM. Prognostic and predictive biomarkers in non-small cell lung carcinoma. Pathology 2024; 56:192-204. [PMID: 38199926 DOI: 10.1016/j.pathol.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally, with the highest mortality rates among both men and women. Most lung cancers are diagnosed at late stages, necessitating systemic therapy. Modern clinical management of lung cancer relies heavily upon application of biomarkers, which guide the selection of systemic treatment. Here, we provide an overview of currently approved and emerging biomarkers of non-small cell lung cancer (NSCLC), including EGFR, ALK, ROS1, RET, NTRK1-3, KRAS, BRAF, MET, ERBB2/HER2, NRG1, PD-L1, TROP2, and CEACAM5. For practical purposes, we divide these biomarkers into genomic and protein markers, based on the tested substrate. We review the biology and epidemiology of the genomic and proteomic biomarkers, discuss optimal diagnostic assays for their detection, and highlight their contribution to the contemporary clinical management of NSCLC.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Ma S, Wang R, Peng Q, Liu Y, Qian J, Li M, Li K, Huang Z, Wu L, Xie D. Is there a prognostic difference among stage I lung adenocarcinoma patients with different BRAF-mutation status? Thorac Cancer 2024; 15:715-721. [PMID: 38362771 PMCID: PMC10961218 DOI: 10.1111/1759-7714.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The data of the prognostic role of V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations in early-stage lung adenocarcinoma (LUAD) patients is scarce. This study aimed to investigate the proportion, clinicopathological features, and prognostic significance of patients with stage I LUAD carrying BRAF mutations. METHODS We collected 431 patients with pathological stage I LUAD from cBioPortal for Cancer Genomics and 1604 LUAD patients tested for BRAF V600E and epidermal growth factor receptor (EGFR) mutations from Shanghai Pulmonary Hospital. Survival curves were drawn by the Kaplan-Meier method and compared by log-rank test. Cox proportional hazard models, propensity-score matching (PSM), and overlap weighting (OW) were performed in this study. The primary endpoint was recurrence-free survival (RFS). RESULTS The proportion of BRAF mutations was estimated at 5.6% in a Caucasian cohort. BRAF V600E mutations were detected in six (1.4%) patients in Caucasian populations and 16 (1.0%) patients in Chinese populations. Two BRAF V600E-mutant patients were detected to have concurrent EGFR mutations, one for 19-del and one for L858R. For pathological stage I LUAD patients, BRAF mutations were not significantly associated with worse RFS than wild-type BRAF patients (HR = 1.111; p = 0.885). After PSM and OW, similar results were presented (HR = 1.352; p = 0.742 and HR = 1.246; p = 0.764, respectively). BRAF V600E mutation status also lacked predictive significance for RFS (HR, 1.844; p = 0.226; HR = 1.144; p = 0.831 and HR = 1.466; p = 0.450, respectively). CONCLUSIONS In this study, we demonstrated that BRAF status may not be capable of predicting prognosis in stage I LUAD patients. There is a need for more data to validate our findings.
Collapse
Affiliation(s)
- Shang‐Shang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Rang‐Rang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Qiao Peng
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Yu'e Liu
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Jia‐Yi Qian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Ming‐Jun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Zhi‐Ye Huang
- School of MedicineTongji UniversityShanghaiP. R. China
| | - Lei‐Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
36
|
Chimbangu CT, Xi L, Ya Z, Jiayue Z, Xiao M, Ying W, Xingxu Y, Liu X. A literature review of a meta-analysis of BRAF mutations in non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e34654. [PMID: 38394545 PMCID: PMC11309698 DOI: 10.1097/md.0000000000034654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/18/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The research on the relationship between the Braf Proto-oncogene (BRAF) mutation and lung cancer has generated conflicting findings. Nevertheless, there is an argument suggesting that assessing the BRAF status could offer benefits in terms of managing and prognosing individuals with non-small cell lung cancer (NSCLC). To present a comprehensive overview of this subject, we undertook an up-to-date meta-analysis of pertinent publications. METHODS We conducted an extensive literature search utilizing Medical Subject Headings keywords, namely "BRAF", "mutation", "lung", "tumor", "NSCLC", and "neoplasm", across multiple databases, including PubMed, EMBASE, ISI Science Citation Index, and CNKI. For each study, we calculated and evaluated the odds ratio and confidence interval, focusing on the consistency of the eligible research. RESULTS The meta-analysis unveiled a noteworthy correlation between BRAF mutation and lung cancer. No significant evidence was found regarding the connection between smoking and staging among individuals with BRAF mutations. Furthermore, a substantial disparity in the rate of BRAF mutations was observed between males and females. CONCLUSION Our meta-analysis revealed a significant correlation between BRAF mutations and NSCLC. Moreover, we observed a higher incidence of BRAF lung mutations in females compared to males. Additionally, the BRAFV600E mutation was found to be more prevalent among female patients and nonsmokers.
Collapse
Affiliation(s)
| | - Li Xi
- Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Zhou Ya
- Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Zhao Jiayue
- Department of Oncology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Meng Xiao
- Department of Oncology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Wang Ying
- Department of Oncology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Yu Xingxu
- Department of Oncology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Xiaomei Liu
- Department of Oncology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou, China
| |
Collapse
|
37
|
Keogh RJ, Barr MP, Keogh A, McMahon D, O’Brien C, Finn SP, Naidoo J. Genomic Landscape of NSCLC in the Republic of Ireland. JTO Clin Res Rep 2024; 5:100627. [PMID: 38333230 PMCID: PMC10850121 DOI: 10.1016/j.jtocrr.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction The identification of genomic "targets" through next-generation sequencing (NGS) of patient's NSCLC tumors has resulted in a rapid expansion of targeted treatment options for selected patients. This retrospective study aims to identify the proportion of patients with advanced NSCLC in the Republic of Ireland whose tumors harbor actionable genomic alterations through broad NGS panel testing. Methods Institutional review board approval was obtained before study initiation. Patients with NSCLC whose tumors underwent genomic testing through the largest available NGS panel at a nationally funded Cancer Molecular Diagnostics laboratory (St. James's Hospital) between June 2017 and June 2022 were identified. Patient demographics and tumor-related data were collected by retrospective review from all cancer centers in Ireland, referring to the Cancer Molecular Diagnostics laboratory. A total of 203 (9%) tumor samples were excluded due to insufficient neoplastic cell content. Genomic data were collected through retrospective search of Ion Reporter software. The spectrum and proportion of patients with oncogenic driver mutations were evaluated using descriptive statistics (SPSS version 29.0). Results In total, 2052 patients were identified. Patients were referred from 23 different hospital sites and all four geographic regions (Leinster = 1091, 53%; Munster = 763, 37.2%; Connacht = 191, 9.3%; Ulster = 7, 0.3%). Median age was 69 (range: 26-94) years; 53% were male. The most common tumor histologic subtype was adenocarcinoma (77%, n = 1577). An actionable genomic alteration was identified in 1099 cases (53%), the most common of which was KRAS (n = 657, 32%). Less frequently, NSCLC tumors harbored the following: MET exon 14 skipping (n = 53, 2.6%), MET amplification (n = 26, 1.3%), EGFR (n = 181, 8.8%), HER2 (n = 35, 1.7%), and BRAF (n = 72, 3.5%) mutations. Fusions were detected in 76 patients (3.7%) including ALK (n = 44, 58%), RET (n = 11, 14.5%), ROS1 (n = 16, 21%), and FGFR3 (n = 5, 6.6%), whereas no NTRK fusion was identified. Co-alterations were detected in 114 patients (5.6%), the most common of which was KRAS/PIK3CA (n = 19, 17%), EGFR/PIK3CA (n = 10, 8.5%), and KRAS/IDH1 (n = 9, 8%). Other co-alterations of interest identified included KRAS G12A/ROS1 fusion (n = 1) and KRAS G12C/BRAF G469A (n = 2). Conclusions This is the first retrospective study to comprehensively characterize the genomic landscape of NSCLC in Ireland, using the broadest available NGS panel. Actionable alterations were identified in 53.4% of the patients, and KRAS was the most common oncogenic driver alteration. Our study revealed a lower prevalence of patients whose tumor harbors ALK, ROS1, and RET fusions, compared with similar data sets.
Collapse
Affiliation(s)
- Rachel J. Keogh
- Department of Medical Oncology, Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Martin P. Barr
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna Keogh
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Histopathology, St James’s Hospital, Dublin, Ireland
| | - David McMahon
- Department Medical Oncology, St James’s Hospital, Dublin, Ireland
| | - Cathal O’Brien
- Cancer Molecular Diagnostics Laboratory, St James’s Hospital, Dublin, Ireland
| | - Stephen P. Finn
- Thoracic Oncology Research Group, Trinity St James’s Cancer Institute, St James’s Hospital, Dublin, Ireland
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Histopathology, St James’s Hospital, Dublin, Ireland
- Cancer Molecular Diagnostics Laboratory, St James’s Hospital, Dublin, Ireland
| | - Jarushka Naidoo
- Department of Medical Oncology, Beaumont RCSI Cancer Centre, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
- RCSI University of Health Sciences, Dublin, Ireland
- Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Yan N, Zhang H, Guo S, Zhang Z, Xu Y, Xu L, Li X. Efficacy of chemo-immunotherapy in metastatic BRAF-mutated lung cancer: a single-center retrospective data. Front Oncol 2024; 14:1353491. [PMID: 38357200 PMCID: PMC10865094 DOI: 10.3389/fonc.2024.1353491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background The effectiveness of combining immune checkpoint inhibitors (ICIs) with chemotherapy in treating non-small cell lung cancers (NSCLCs) with BRAF mutations has not been sufficiently explored. Methods We compiled data from 306 NSCLC patients with identified BRAF mutations. We looked at efficacy by assessing the objective response rate (ORR) and disease control rate (DCR), as well as survival through measuring progression-free survival (PFS) and overall survival (OS). Results Out of the patient pool, 44 were treated with a regimen of immune-chemotherapy. Patients undergoing ICI in combination with chemotherapy had a median PFS of 4 months, and the median OS was recorded at 29 months. There was a notable increase in OS in patients receiving first-line treatment versus subsequent lines (29 vs 9.75 months, p=0.01); however, this was not the case with PFS (9 vs 4 months, p=0.46). The ORR for patients on ICIs was 36.3%. PFS and OS rates did not significantly differ between patients with the BRAF-V600E mutation and those with non-V600E mutations (p=0.75 and p=0.97, respectively). Additionally, we found a significant variation in PD-L1 expression between those who responded to treatment and those who didn't (p=0.04). Conclusion Our findings indicate that chemo-immunotherapy as an initial treatment may lead to improved OS in patients with BRAF-mutated NSCLC when compared to its use in subsequent lines of therapy. Further studies are needed to validate these results and to delve deeper into how specific types of BRAF mutations and PD-L1 expression levels might predict a patient's response to treatments in NSCLC.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingchun Xu
- Department of Medical Oncology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Berezowska S, Maillard M, Keyter M, Bisig B. Pulmonary squamous cell carcinoma and lymphoepithelial carcinoma - morphology, molecular characteristics and differential diagnosis. Histopathology 2024; 84:32-49. [PMID: 37936498 DOI: 10.1111/his.15076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Squamous cell carcinoma (SCC) comprises one of the major groups of non-small-cell carcinoma of the lung, and is subtyped into keratinising, non-keratinising and basaloid SCC. SCC can readily be diagnosed using histomorphology alone in keratinising SCC. Confirmatory immunohistochemical analyses should always be applied in non-keratinising and basaloid tumours to exclude differential diagnoses, most prominently adenocarcinoma and high-grade neuroendocrine carcinoma, which may have important therapeutic consequences. According to the World Health Organisation (WHO) classification 2015, the diagnosis of SCC can be rendered in resections of morphologically ambiguous tumours with squamous immunophenotype. In biopsies and cytology preparations in the same setting the current guidelines propose a diagnosis of 'non-small-cell carcinoma, favour SCC' in TTF1-negative and p40-positive tumours to acknowledge a possible sampling bias and restrict extended immunohistochemical evaluation in order to preserve tissue for molecular testing. Most SCC feature a molecular 'tobacco-smoke signature' with enrichment in GG > TT mutations, in line with the strong epidemiological association of SCC with smoking. Targetable mutations are extremely rare but they do occur, in particular in younger and non- or light-smoking patients, warranting molecular investigations. Lymphoepithelial carcinoma (LEC) is a poorly differentiated SCC with a syncytial growth pattern and a usually prominent lymphoplasmacytic infiltrate and frequent Epstein-Barr virus (EBV) association. In this review, we describe the morphological and molecular characteristics of SCC and LEC and discuss the most pertinent differential diagnoses.
Collapse
Affiliation(s)
- Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Marie Maillard
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mark Keyter
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Florez N, Kiel L, Riano I, Patel S, DeCarli K, Dhawan N, Franco I, Odai-Afotey A, Meza K, Swami N, Patel J, Sequist LV. Lung Cancer in Women: The Past, Present, and Future. Clin Lung Cancer 2024; 25:1-8. [PMID: 37940410 DOI: 10.1016/j.cllc.2023.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Lung cancer is the leading cause of cancer death for women in multiple countries including the United States. Women are exposed to unique risk factors that remain largely understudied such as indoor pollution, second-hand tobacco exposure, biological differences, gender differences in tolerability and response to therapy in lung cancer, and societal gender roles, that create distinct survivorship needs. Women continue to lack representation in lung cancer clinical trials and are typically treated with data generated from majority male patient study populations, which may be inappropriate to extrapolate and generalize to females. Current lung cancer treatment and screening guidelines do not incorporate sex-specific differences and physicians also often do not account for gender differences when choosing treatments or discussing survivorship needs. To best provide targeted treatment approaches, greater representation of women in lung cancer clinical trials and further research is necessary. Clinicians should understand the unique factors and consequences associated with lung cancer in women; thus, a holistic approach that acknowledges environmental and societal factors is necessary.
Collapse
Affiliation(s)
- Narjust Florez
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| | | | - Ivy Riano
- Section of Hematology and Medical Oncology, Dartmouth Cancer Center, Geisel School of Medicine Dartmouth, Lebanon, NH
| | - Shruti Patel
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
| | - Kathryn DeCarli
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Natasha Dhawan
- Section of Hematology and Medical Oncology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Ivy Franco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Kelly Meza
- Dana-Farber Cancer Institute, Boston, MA
| | - Nishwant Swami
- University of Massachusetts Medical School, Worcester, MA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | | | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Yatabe Y. Molecular pathology of non-small cell carcinoma. Histopathology 2024; 84:50-66. [PMID: 37936491 DOI: 10.1111/his.15080] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Currently, lung cancer is treated by the highest number of therapeutic options and the benefits are based on multiple large-scale sequencing studies, translational research and new drug development, which has promoted our understanding of the molecular pathology of lung cancer. According to the driver alterations, different characteristics have been revealed, such as differences in ethnic prevalence, median age and alteration patterns. Consequently, beyond traditional chemoradiotherapy, molecular-targeted therapy and treatment with immune check-point inhibitors (ICI) also became available major therapeutic options. Interestingly, clinical results suggest that the recently established therapies target distinct lung cancer proportions, particularly between the EGFR/ALK and PD-1/PD-L1-positive subsets, e.g. the kinase inhibitors target driver mutation-positive tumours, whereas driver mutation-negative tumours respond to ICI treatment. These therapeutic efficacy-related differences might be explained by the molecular pathogenesis of lung cancer. Addictive driver mutations promote tumour formation with powerful transformation performance, resulting in a low tumour mutation burden, reduced immune surveillance, and subsequent poor response to ICIs. In contrast, regular tobacco smoke exposure repeatedly injures the proximal airway epithelium, leading to accumulated genetic alterations. In the latter pathway, overgrowth due to alteration and immunological exclusion against neoantigens is initially balanced. However, tumours could be generated from certain clones that outcompete immunological exclusion and outgrow the others. Consequently, this cancer type responds to immune check-point treatment. These pathogenic differences are explained well by the two-compartment model, focusing upon the anatomical and functional composition of distinct cellular components between the terminal respiratory unit and the air-conducting system.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Li S, Gu Y, Geng Z, Li K, Hu Y, Liu Q, Fu R, Liu P. Tweezer PCR: A Highly Specific Method for Accurate Identification of Low-Abundance Mutations. Anal Chem 2023; 95:17679-17690. [PMID: 37971891 DOI: 10.1021/acs.analchem.3c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Somatic mutation is a valuable biomarker for tracking tumor progression and migration due to its distinctive feature in various tumors and its wide distribution throughout body fluids. However, accurately detecting somatic mutations from the abundant DNA of noncancerous origins remains a practical challenge in the clinic. Herein, we developed an ultraspecific method, called tweezer PCR, for detecting low-abundance mutations inspired by the design of DNA origami. The high specificity of tweezer PCR relies on a tweezer-shaped primer containing six basic functional units: a primer, a hairpin, a linker, a blocker, a spacer, and a toehold. After optimizing the structure of the tweezer-shaped primer and enhancing its specificity by adding additional Mg2+ and Na+, tweezer PCR distinguished as low as 20 copies of mutations from 2 million copies of wild-type templates per test. By testing synthesized plasmids and plasma samples gathered from nonsmall-cell lung cancer patients, tweezer PCR showed higher specificity and robustness for detecting low-copy-number mutations in contrast with digital droplet PCR. Additionally, the need for conventional instruments makes tweezer PCR a practically accessible method for testing low-abundance mutations. Because of its numerous advantages, we believe that tweezer PCR offers a precise, robust, and pragmatic tool for cancer screening, prognosis, and genotyping in the clinic.
Collapse
Affiliation(s)
- Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yin Gu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China
| | - Zhi Geng
- Shimadzu Research Laboratory (Shanghai) Co. Ltd, Shanghai 201206, China
| | - Kaiyi Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Qiang Liu
- Beijing Haidian Hospital, Beijing 100080, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
43
|
Daylan AEC, Miao E, Tang K, Chiu G, Cheng H. Lung Cancer in Never Smokers: Delving into Epidemiology, Genomic and Immune Landscape, Prognosis, Treatment, and Screening. Lung 2023; 201:521-529. [PMID: 37973682 DOI: 10.1007/s00408-023-00661-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Lung cancer in never smokers (LCINS) represents a growing and distinct entity within the broader landscape of lung malignancies. This review provides a comprehensive overview of LCINS, encompassing its epidemiologic trends, risk factors, distinct genomic alterations, clinical outcomes and the ongoing initiative aimed at formulating screening guidelines tailored to this unique population. As LCINS continues to gain prominence, understanding its intricate genomic landscape has become pivotal for tailoring effective therapeutic strategies. Moreover, LCINS does not meet the criteria for lung cancer screening as per the current guidelines. Hence, there is an urgent need to explore its heterogeneity in order to devise optimal screening guidelines conducive to early-stage detection. This review underscores the vital importance of detailed research to elucidate the multifaceted nature of LCINS, with the potential to shape future clinical management and screening recommendations for this unique and growing patient cohort.
Collapse
Affiliation(s)
- Ayse Ece Cali Daylan
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Emily Miao
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevin Tang
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Grace Chiu
- Scarsdale High School, Scarsdale, NY, USA
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
44
|
Ambrosini-Spaltro A, Rengucci C, Capelli L, Chiadini E, Calistri D, Bennati C, Cravero P, Limarzi F, Nosseir S, Panzacchi R, Valli M, Ulivi P, Rossi G. Clinicopathological Features of Non-Small Cell Lung Carcinoma with BRAF Mutation. Curr Oncol 2023; 30:10019-10032. [PMID: 37999148 PMCID: PMC10670100 DOI: 10.3390/curroncol30110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: BRAF mutations affect 4-5% of lung adenocarcinomas. This study aimed to analyze the clinicopathological features of lung carcinomas with BRAF mutations, focusing on V600E vs. non-V600E and the presence of co-mutations. (2) Methods: All BRAF-mutated lung carcinomas were retrieved from a molecular diagnostic unit (the reference unit for four different hospitals). The samples were analyzed using next-generation sequencing. Statistical analyses included log-rank tests for overall survival (OS) and progression-free survival (PFS). (3) Results: In total, 60 BRAF-mutated lung carcinomas were retrieved: 24 (40.0%) with V600E and 36 (60.0%) with non-V600E mutations, and 21 (35.0%) with other co-mutations and 39 (65.0%) with only BRAF mutations. Survival data were available for 54/60 (90.0%) cases. Targeted therapy was documented in 11 cases. Patients with V600E mutations exhibited a better prognosis than patients with non-V600E mutations (p = 0.008 for OS, p = 0.018 for PFS); this was confirmed in PFS (p = 0.036) when considering only patients who received no targeted therapy. Patients with co-mutations displayed no prognostic difference compared to patients carrying only BRAF mutations (p = 0.590 for OS, p = 0.938 for PFS). (4) Conclusions: BRAF-mutated lung carcinomas with V600E (40.0%) had a better prognosis than those without V600E. Concomitant co-mutations (35.0%) did not affect the prognosis.
Collapse
Affiliation(s)
| | - Claudia Rengucci
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.R.); (L.C.); (E.C.); (D.C.); (P.U.)
| | - Laura Capelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.R.); (L.C.); (E.C.); (D.C.); (P.U.)
| | - Elisa Chiadini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.R.); (L.C.); (E.C.); (D.C.); (P.U.)
| | - Daniele Calistri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.R.); (L.C.); (E.C.); (D.C.); (P.U.)
| | - Chiara Bennati
- Oncology Unit, Santa Maria Delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy;
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Francesco Limarzi
- Pathology Unit, Morgani-Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy;
| | - Sofia Nosseir
- Pathology Unit, Santa Maria Delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy;
| | | | - Mirca Valli
- Pathology Unit, Infermi Hospital, AUSL Romagna, 47923 Rimini, Italy;
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.R.); (L.C.); (E.C.); (D.C.); (P.U.)
| | - Giulio Rossi
- Pathology Unit, Department of Oncology, Fondazione Poliambulanza, 25124 Brescia, Italy;
| |
Collapse
|
45
|
Abdulhaleem M, Hunting JC, Wang Y, Smith MR, Agostino RDJ, Lycan T, Farris MK, Ververs J, Lo HW, Watabe K, Topaloglu U, Li W, Whitlow C, Su J, Wang G, Chan MD, Xing F, Ruiz J. Use of comprehensive genomic profiling for biomarker discovery for the management of non-small cell lung cancer brain metastases. Front Oncol 2023; 13:1214126. [PMID: 38023147 PMCID: PMC10661935 DOI: 10.3389/fonc.2023.1214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Clinical biomarkers for brain metastases remain elusive. Increased availability of genomic profiling has brought discovery of these biomarkers to the forefront of research interests. Method In this single institution retrospective series, 130 patients presenting with brain metastasis secondary to Non-Small Cell Lung Cancer (NSCLC) underwent comprehensive genomic profiling conducted using next generation circulating tumor deoxyribonucleic acid (DNA) (Guardant Health, Redwood City, CA). A total of 77 genetic mutation identified and correlated with nine clinical outcomes using appropriate statistical tests (general linear models, Mantel-Haenzel Chi Square test, and Cox proportional hazard regression models). For each outcome, a genetic signature composite score was created by summing the total genes wherein genes predictive of a clinically unfavorable outcome assigned a positive score, and genes with favorable clinical outcome assigned negative score. Results Seventy-two genes appeared in at least one gene signature including: 14 genes had only unfavorable associations, 36 genes had only favorable associations, and 22 genes had mixed effects. Statistically significant associated signatures were found for the clinical endpoints of brain metastasis velocity, time to distant brain failure, lowest radiosurgery dose, extent of extracranial metastatic disease, concurrent diagnosis of brain metastasis and NSCLC, number of brain metastases at diagnosis as well as distant brain failure. Some genes were solely associated with multiple favorable or unfavorable outcomes. Conclusion Genetic signatures were derived that showed strong associations with different clinical outcomes in NSCLC brain metastases patients. While these data remain to be validated, they may have prognostic and/or therapeutic impact in the future. Statement of translation relevance Using Liquid biopsy in NSCLC brain metastases patients, the genetic signatures identified in this series are associated with multiple clinical outcomes particularly these ones that lead to early or more numerous metastases. These findings can be reverse-translated in laboratory studies to determine if they are part of the genetic pathway leading to brain metastasis formation.
Collapse
Affiliation(s)
- Mohammed Abdulhaleem
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John C. Hunting
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Margaret R. Smith
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph D’ jr. Agostino
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Lycan
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael K. Farris
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James Ververs
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jimmy Ruiz
- Department of Internal Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
46
|
Sakai T, Matsumoto S, Ueda Y, Shibata Y, Ikeda T, Nakamura A, Kodani M, Ohashi K, Furuya N, Izumi H, Nosaki K, Umemura S, Zenke Y, Udagawa H, Sugiyama E, Yoh K, Goto K. Clinicogenomic Features and Targetable Mutations in NSCLCs Harboring BRAF Non-V600E Mutations: A Multi-Institutional Genomic Screening Study (LC-SCRUM-Asia). J Thorac Oncol 2023; 18:1538-1549. [PMID: 37543207 DOI: 10.1016/j.jtho.2023.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/08/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION BRAF non-V600E mutations occur in 1% to 2% of NSCLCs. Because of their rarity, the clinical backgrounds and outcomes of cytotoxic chemotherapy or immunotherapy remain unclear, and no targeted therapies are approved for BRAF non-V600E-mutant NSCLC. METHODS In this multi-institutional prospective lung cancer genomic screening project (LC-SCRUM-Asia), we evaluated the clinicogenomic characteristics and therapeutic outcomes of BRAF non-V600E-mutant NSCLC. RESULTS From March 2015 to November 2021, a total of 11,929 patients with NSCLC were enrolled. BRAF mutations were detected in 380 (3.5%), including the V600E (class I) in 119 (31%) and non-V600E in 261; the non-V600E were functionally classified into class II (122, 32%), class III (86, 23%), and non-classes I to III. Smokers and having concurrent RAS gene family or TP53 mutations were more frequently associated with class II or III than with class I. In patients with class III as compared with class I, the progression-free survival in response to platinum-containing chemotherapies (median, 5.3 versus 11.5 mo, p < 0.01) and the overall survival (median, 14.5 versus 34.8 mo, p < 0.02) were significantly shorter. Furthermore, class IIa mutations were significantly more frequent in our Asian cohort than in previously reported cohorts. The clinicogenomic features associated with class IIa were similar to those associated with class I, and one patient with NSCLC with K601E had a good response to dabrafenib plus trametinib. CONCLUSIONS Patients with NSCLCs with BRAF non-V600E, especially class III, were associated with poorer therapeutic outcomes than those with V600E. Furthermore, patients with NSCLC with class IIa had distinct clinicogenomic features, and further preclinical and clinical studies are needed to evaluate class IIa mutations as a therapeutic target.
Collapse
Affiliation(s)
- Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yasuto Ueda
- Department of Respiratory Medicine, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takaya Ikeda
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Masahiro Kodani
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eri Sugiyama
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
47
|
Choi HY, Chang JE. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci 2023; 24:13618. [PMID: 37686423 PMCID: PMC10487969 DOI: 10.3390/ijms241713618] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The development of targeted therapies has revolutionized cancer treatment, offering improved efficacy with reduced side effects compared with traditional chemotherapy. This review highlights the current landscape of targeted therapy in lung cancer, colorectal cancer, and prostate cancer, focusing on key molecular targets. Moreover, it aligns with US Food and Drug Administration (FDA)-approved drugs and drug candidates. In lung cancer, mutations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene rearrangements have emerged as significant targets. FDA-approved drugs like osimertinib and crizotinib specifically inhibit these aberrant pathways, providing remarkable benefits in patients with EGFR-mutated or ALK-positive lung cancer. Colorectal cancer treatment has been shaped by targeting the vascular endothelial growth factor (VEGF) and EGFR. Bevacizumab and cetuximab are prominent FDA-approved agents that hinder VEGF and EGFR signaling, significantly enhancing outcomes in metastatic colorectal cancer patients. In prostate cancer, androgen receptor (AR) targeting is pivotal. Drugs like enzalutamide, apalutamide, and darolutamide effectively inhibit AR signaling, demonstrating efficacy in castration-resistant prostate cancer. This review further highlights promising targets like mesenchymal-epithelial transition (MET), ROS1, BRAF, and poly(ADP-ribose) polymeras (PARP) in specific cancer subsets, along with ongoing clinical trials that continue to shape the future of targeted therapy.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
48
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
49
|
Puri M, Gawri K, Dawar R. Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review. Front Oncol 2023; 13:1141876. [PMID: 37645429 PMCID: PMC10461310 DOI: 10.3389/fonc.2023.1141876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 - 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC.
Collapse
Affiliation(s)
- Megha Puri
- Department of Internal Medicine, Saint Peter’s University Hospital, New Brunswick, NJ, United States
| | - Kunal Gawri
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, Buffalo, NY, United States
| | - Richa Dawar
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
50
|
Araghi M, Mannani R, Heidarnejad maleki A, Hamidi A, Rostami S, Safa SH, Faramarzi F, Khorasani S, Alimohammadi M, Tahmasebi S, Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int 2023; 23:162. [PMID: 37568193 PMCID: PMC10416536 DOI: 10.1186/s12935-023-02990-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer continues to be the leading cause of cancer-related death worldwide. In the last decade, significant advancements in the diagnosis and treatment of lung cancer, particularly NSCLC, have been achieved with the help of molecular translational research. Among the hopeful breakthroughs in therapeutic approaches, advances in targeted therapy have brought the most successful outcomes in NSCLC treatment. In targeted therapy, antagonists target the specific genes, proteins, or the microenvironment of tumors supporting cancer growth and survival. Indeed, cancer can be managed by blocking the target genes related to tumor cell progression without causing noticeable damage to normal cells. Currently, efforts have been focused on improving the targeted therapy aspects regarding the encouraging outcomes in cancer treatment and the quality of life of patients. Treatment with targeted therapy for NSCLC is changing rapidly due to the pace of scientific research. Accordingly, this updated study aimed to discuss the tumor target antigens comprehensively and targeted therapy-related agents in NSCLC. The current study also summarized the available clinical trial studies for NSCLC patients.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Mannani
- Vascular Surgeon, Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Adel Hamidi
- Razi Vaccine and Serum Research Institute, Arak Branch, karaj, Iran
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Khorasani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|