1
|
Wu Q, Siddharth S, Verma D, Parida S, Sharma D. TRIM29 upregulation contributes to chemoresistance in triple negative breast cancer via modulating S100P-β-catenin axis. Cell Commun Signal 2025; 23:244. [PMID: 40420099 DOI: 10.1186/s12964-025-02233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Triple negative breast cancer, an inherently aggressive disease, is further impaired by the limited therapeutic options and chemotherapy-resistance; hence, elucidating the signaling nodes underlying chemotherapy resistance is of major interest. Focusing on the differentially expressed genes in recurrent TNBC, we identified TRIM29, a ubiquitin ligase belonging to TRIM family, as a uniquely enriched protein in chemoresistant TNBC. Here, we demonstrate that chemoresistant TNBC cells are inherently aggressive, exhibiting elevated growth and migration potential compared to chemosensitive cells, and in particular, they possess higher TRIM29 expression whose expression level modulation results in altered chemosensitivity. TRIM29 overexpression reduces chemotherapy response whereas TRIM29 knockout not only increases chemosensitivity but also reduces TNBC tumor growth. Tumor-dissociated cells maintain TRIM29 knockout status as well as exhibit similar functional alterations as chemoresistant TNBC cells. Mechanistically, RNA-sequencing of parental-chemosensitive, chemoresistant-inherently overexpressing TRIM29 and chemoresistant-TRIM29 knockout TNBC cells reveals a unique set of genes (S100P, SERPINB3, SERPINB4, CEACAM5, CEACAM6 and CDH6) showing significant upregulation with the acquisition of chemoresistance and downregulation with the TRIM29 knockout. Furthermore, an enrichment of β-catenin pathway in chemoresistant TNBC cells is observed. We uncovered a functional network where S100P, a metastasis inducing secretory factor, bidirectionally interacts with TRIM29, and modulates the expression of SERPINB3, SERPINB4, CEACAM5, CEACAM6 as well as β-catenin pathway genes. Showing the functional importance, S100P inhibitor reduces the growth and mammosphere formation in chemoresistant TNBC. Moreover, combining β-catenin inhibitor with chemotherapy shows synergistic inhibition of chemoresistant TNBC cells. Indeed, higher expression of TRIM29, S100P and β-catenin associates with reduced recurrence free survival. This work proposes TRIM29 as an important node that modulates a unique gene network in chemoresistant TNBC and whose biological impact is mediated by modulation of S100P and β-catenin.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Sumit Siddharth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| | - Deepak Verma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Sheetal Parida
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA
| | - Dipali Sharma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
2
|
Mirzaei Y, Hüffel M, McCann S, Bannach-Brown A, Tolba RH, Steitz J. Animal models in preclinical metastatic breast cancer immunotherapy research: A systematic review and meta-analysis of efficacy outcomes. PLoS One 2025; 20:e0322876. [PMID: 40334000 PMCID: PMC12057864 DOI: 10.1371/journal.pone.0322876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer, particularly metastatic breast cancer (MBC), presents aggressive clinical challenges with limited treatment success. Immunotherapy has emerged as a promising approach, however, discrepancies between preclinical animal models and human cancers complicate translation to clinical outcomes. This systematic review and meta-analysis evaluated the effect of immunotherapy on primary and metastatic tumor regression in animal models of MBC and assessed the models' appropriateness and reproducibility to improve future preclinical study design. Following a preregistered protocol in PROSPERO (CRD42021207033), we conducted searches in MEDLINE, Embase, and Web of Science databases, yielding 2255 studies for title/abstract screening and 108 studies included after full-text screening. All included studies used mouse models, assessing primary outcomes through tumor volume or weight and metastatic outcomes via nodule count or bioluminescence. Only 14% of studies fully reported experimental animal characteristics, and 43% provided detailed experimental procedures. Of 105 articles (293 comparisons) included in the meta-analysis, pooled effect sizes indicated significant reductions in both primary and metastatic tumors. However, high heterogeneity across studies and wide prediction intervals suggested substantial variability in model responses to immunotherapy. Univariable and multivariable meta-regressions failed to significantly explain this heterogeneity, suggesting additional factors may influence outcomes. Trim-and-fill and Egger's regression tests indicated funnel plot asymmetry, implying potential publication bias and small study effects. While our analysis demonstrated positive effects of immunotherapy on MBC and highlighted variability in animal tumor models, addressing model-related heterogeneity and enhancing methodological transparency are essential to improve reproducibility and clinical translatability.
Collapse
Affiliation(s)
- Yalda Mirzaei
- Institute for Laboratory Animal Science, Uniklinik RWTH Aachen, Aachen, Germany
| | - Martina Hüffel
- Institute for Laboratory Animal Science, Uniklinik RWTH Aachen, Aachen, Germany
| | - Sarah McCann
- Berlin Institute of Health at Charité (BIH), BIH QUEST Center for Responsible Research, Berlin, Germany
| | - Alexandra Bannach-Brown
- Berlin Institute of Health at Charité (BIH), BIH QUEST Center for Responsible Research, Berlin, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science, Uniklinik RWTH Aachen, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Uniklinik RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Dai YW, Wu ZX, Cheng Y, Wu HD, Chen JW, Lv LX, Wang ZQ, Li HF, Yan CZ, Bao JX, Liu CH, Dai XX. Formosanin C inhibits triple-negative breast cancer progression by suppressing the phosphorylation of STAT3 and the polarization of M2 macrophages. Breast Cancer Res Treat 2025; 211:71-89. [PMID: 39953272 DOI: 10.1007/s10549-025-07623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), is a highly aggressive tumor. Formosanin C (FC) is a diosgenin with immunomodulatory and antitumor properties, the precise mechanism through which it is against TNBC remains uncertain. OBJECTIVE Clarifying the mechanism of FC against TNBC. MATERIALS AND METHODS The impact of FC on two TNBC cell lines for 24 h was investigated through various techniques including the CCK8 assay, flow cytometry, transwell assay, scratch tests, immunoblot assay, and immunofluorescence. To elucidate the mechanism behind the anti-TNBC effect of FC, MDA-MB-231 cells were subjected to STAT3 overexpression. Moreover, the in vivo efficacy of FC was examined using a xenograft nude mice (BALB/C). Mice were divided into the control group (equal amount of PBS), the napabucasin group (5 mg/kg) and the FC groups (1 mg/kg, 2 mg/kg). The study duration was 30 days. RESULTS FC exhibited inhibitory effects against MDA-MB-231 and Hs578T cells. FC can decrease the migratory capacity of TNBC cells by inhibiting epithelial-mesenchymal transition (EMT). Meanwhile, we demonstrated that the inhibition of phosphorylation of STAT3 (Y705) is the crucial mechanism of FC against TNBC. Moreover, FC also hindered the polarization of macrophage M2. DISCUSSION AND CONCLUSION This study is the first to show that FC restrains the EMT of TNBC cells by obstructing the STAT3 pathway and hinders the M2 polarization of macrophages and immune evasion. Therefore, FC holds the possibility of being utilized as a therapeutic remedy for TNBC.
Collapse
Affiliation(s)
- Yin-Wei Dai
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Xuan Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Cheng
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao-Dong Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Wei Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin-Xi Lv
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zi-Qiong Wang
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Feng Li
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong-Zhi Yan
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing-Xia Bao
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong-Hui Liu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuan-Xuan Dai
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Li Y, Ding T, Zhang T, Liu S, Wang J, Zhou X, Guo Z, He Q, Zhang S. Leveraging Diverse Cell-Death Patterns to Decipher the Interactive Relation of Unfavorable Outcome and Tumor Microenvironment in Breast Cancer. Bioengineering (Basel) 2025; 12:420. [PMID: 40281780 PMCID: PMC12024675 DOI: 10.3390/bioengineering12040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Programmed cell death (PCD) dynamically influences breast cancer (BC) prognosis through interactions with the tumor microenvironment (TME). We investigated 13 PCD patterns to decipher their prognostic impact and mechanistic links to TME-driven outcomes. Our study aimed to explore the complex mechanisms underlying these interactions and establish a prognostic prediction model for breast cancer. METHODS Using TCGA and METABRIC datasets, we integrated single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA), and Least Absolute Shrinkage and Selection Operator (LASSO) to explore PCD-TME interactions. Multi-dimensional analyses included immune infiltration, genomic heterogeneity, and functional pathway enrichment. RESULTS Our results indicated that high apoptosis and pyroptosis activity, along with low autophagy, correlated with favorable prognosis, which was driven by enhanced anti-tumor immunity, including more M1 macrophage polarization and activated CD8+ T cells in TME. PCD-related genes could promote tumor metastasis and poor prognosis via VEGF/HIF-1/MAPK signaling and immune response, including Th1/Th2 cell differentiation, while new tumor event occurrences (metastasis/secondary cancers) were linked to specific clinical features and gene mutation spectrums, including TP53/CDH1 mutations and genomic instability. We constructed a six-gene LASSO model (BCAP31, BMF, GLUL, NFKBIA, PARP3, PROM2) to predict prognosis and identify high-risk BC patients (for five-year survival, AUC = 0.76 in TCGA; 0.74 in METABRIC). Therein, the high-risk subtype patients demonstrated a poorer prognosis, also characterized by lower microenvironment matrix and downregulated immunocyte infiltration. These six gene signatures also showed prognostic value with significant differential expression in gene and protein levels of BC samples. CONCLUSION Our study provided a comprehensive landscape of the cancer survival difference and related PCD-TME interaction axis and highlighted that high-apoptosis/pyroptosis states caused favorable prognosis, underlying mechanisms closely related with the TME where anti-tumor immunity would be beneficial for patient prognosis. These findings highlighted the model's potential for risk stratification in BC.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Ting Ding
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuangyu Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (Y.L.); (T.D.); (Z.G.); (Q.H.)
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
5
|
Huang X, Ali A, Yachioui DEI, Le Dévédec SE, Hankemeier T. Lipid dysregulation in triple negative breast cancer: Insights from mass spectrometry-based approaches. Prog Lipid Res 2025; 98:101330. [PMID: 39914749 DOI: 10.1016/j.plipres.2025.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers due to its aggressive nature and the absence of targeted treatments. Development of novel anti-cancer drugs for TNBC faces challenges stemming from its heterogeneity and high potential for metastasis. Metabolomics can be a useful technology in finding novel therapeutic targets and probing the heterogeneity of TNBC. Metabolomics has been enabled by advancements in mass spectrometry (MS)-based platforms that facilitated comprehensive profiling of TNBC metabolism. This review provides an overview of metabolomic changes in TNBC with emphasis on lipid alterations, and describes the key MS analytical techniques, providing the necessary background for examining the role of lipids in TNBC development.
Collapse
Affiliation(s)
- Xiaoyue Huang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Dounia E I Yachioui
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
Martínez-López A, Infante G, Mendiburu-Eliçabe M, Machuca A, Antón OM, González-Fernández M, Luque-García JL, Clarke RB, Castillo-Lluva S. SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts. Cell Oncol (Dordr) 2025; 48:437-453. [PMID: 39432155 PMCID: PMC11996949 DOI: 10.1007/s13402-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer. METHODS We used pharmacological and genetic approaches to analyse the functional crosstalk between breast tumor cells and CAFs. We treated breast CAFs with the SUMO1 inhibitor ginkgolic acid (GA) at two different concentrations and conditioned media was used to analyse the proliferation, migration, and invasion of breast cancer cells from different molecular subtypes. Additionally, we performed quantitative proteomics (SILAC) to study the differential signalling pathways expressed in CAFs treated with low or high concentrations of GA. We confirmed these results both in vitro and in vivo. Moreover, we used samples from metastatic breast cancer patients to evaluate the use of GA as a therapeutic strategy. RESULTS Inhibition of SUMOylation with ginkgolic acid (GA) induces death in breast cancer cells but does not affect the viability of CAFs, indicating that CAFs are resistant to this therapy. While CAF viability is unaffected, CAF-conditioned media (CM) is altered by GA, impacting tumor cell behaviour in different ways depending on the overall degree to which SUMO1-SUMOylated proteins are dysregulated. Breast cancer cell lines exhibited a concentration-dependent response to conditioned media (CM) from CAFs. At a low concentration of GA (10 µM), there was an increase in proliferation, migration and invasion of breast cancer cells. However, at a higher concentration of GA (30 µM), these processes were inhibited. Similarly, analysis of tumor development revealed that at 10 µM of GA, the tumors were heavier and there was a greater degree of metastasis compared to the tumors treated with the higher concentration of GA (30 µM). Moreover, some of these effects could be explained by an alteration in the activity of the GTPase Rac1 and the activation of the AKT signalling pathway. The results obtained using SILAC suggest that different concentrations of GA affected cellular processes differentially, possibly influencing the secretome of CAFs. Treatment of metastatic breast cancer with GA demonstrated the use of SUMOylation inhibition as an alternative therapeutic strategy. CONCLUSION The study highlights the importance of SUMOylation in the tumor microenvironment, specifically in cancer-associated fibroblasts (CAFs). Targeting SUMOylation in CAFs affects their signalling pathways and secretome in a concentration-dependent manner, regulating the protumorigenic properties of CAFs.
Collapse
Affiliation(s)
- Angelica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Guiomar Infante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés Machuca
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Olga M Antón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mónica González-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
7
|
Pai S, Murthy SV. Molecular Subtypes and Ki-67 index in Breast Carcinoma with Special Emphasis on Triple Negative Breast Cancer. A 3-year Study in a Tertiary Care Center. Indian J Surg Oncol 2025; 16:478-490. [PMID: 40337051 PMCID: PMC12052743 DOI: 10.1007/s13193-023-01773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2023] [Indexed: 05/09/2025] Open
Abstract
Purpose Molecular subtyping of breast carcinoma and Ki-67 index has gained prominence in the recent past, as conventional factors such as surgical margins, tumor size, grade and lymph node involvement, are not sufficient to assess prognosis and make better therapeutic decisions. These subtypes include Luminal A, Luminal B, Triple Negative breast cancer (TNBC), and HER2-enriched subtypes. This study aimed to analyze the molecular subtypes and Ki-67 index in prognosis of breast carcinoma. Method This retrospective study was conducted in the department of Pathology in a tertiary care center over a period of 3 years. All invasive breast carcinomas (IDC) which were molecularly subtyped and Ki-67 indexed were included in the study. Statistical analysis was done using SPSS software. Results and Discussion Out of 253 cases, 231 cases (91.3%) were IDC-NST and 22 cases (8.7%) were special types. Metaplastic and papillary tumors were associated with higher grade and high Ki-67 value. TNBC (35.2%) showing a majority of high-grade tumors, was the most prevalent subtype followed by Luminal A (32%) showing low grade, unlike other studies which showed luminal A to be most common subtype. The rare PR positive subtype was also observed in our study. Conclusion TNBC and HER 2-positive subtypes exhibited bad prognosis with higher histological grade, high Ki-67 index and higher age at presentation whereas Luminal A subtype, with lower grade and low Ki-67 index showed better prognosis. Thus, this vast array of predictive and prognostic information obtained by molecular subtyping will help clinicians in not only distinguishing between low-risk and high-risk subtypes but also in customization of the treatment and follow-up of the patients.
Collapse
Affiliation(s)
- Shweta Pai
- Department of Pathology, ESIC Medical College and Post Graduate Institute of Medical Science and Research, Rajajinagar, Bangalore, India
| | - Srinivasa V Murthy
- Department of Pathology, ESIC Medical College and Post Graduate Institute of Medical Science and Research, Rajajinagar, Bangalore, India
| |
Collapse
|
8
|
De K, Jana M, Chowdhury B, Calaf GM, Roy D. Role of PARP Inhibitors: A New Hope for Breast Cancer Therapy. Int J Mol Sci 2025; 26:2773. [PMID: 40141415 PMCID: PMC11942994 DOI: 10.3390/ijms26062773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Tumors formed by the unchecked growth of breast cells are known as breast cancer. The second most frequent cancer in the world is breast cancer. It is the most common cancer among females. In 2022, 2,296,840 women were diagnosed with breast cancer. The therapy of breast cancer is evolving through the development of Poly (ADP-ribose) polymerase (PARP) inhibitors, which are offering people with specific genetic profiles new hope as research into the disease continues. It focuses on patients with BRCA1 and BRCA2 mutations. This review summarizes the most recent research on the mechanisms of action of PARP inhibitors and their implications for breast cancer therapy. We review how therapeutic applications are developing and highlight recent studies showing the effectiveness of these medicines whether used alone or in combination. Furthermore, the significance of customized therapy is highlighted in enhancing patient outcomes as we address the function of genetic testing in identifying candidates for PARP inhibition. Recommendations for future research areas to maximize the therapeutic potential of PARP inhibitors are also included, along with challenges and limits in their clinical usage. The objective of this review is to improve our comprehension of the complex interaction between breast cancer biology and PARP inhibition. This knowledge will help to guide screening approaches, improve clinical practice, and support preventive initiatives for people at risk.
Collapse
Affiliation(s)
- Kamalendu De
- Department of Biological Sciences (Botany), Midnapore City College, Midnapore 721129, West Bengal, India;
| | - Malabendu Jana
- Department of Neurological Science, Rush University School of Medicine, Chicago, IL 773, USA;
| | - Bhabadeb Chowdhury
- HIV Dynamics and Replication Program, National Institute of Health, Frederick, MD 21702, USA;
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of The City University of New York, Bronx, NY 718, USA;
| |
Collapse
|
9
|
Malighetti F, Villa M, Villa AM, Pelucchi S, Aroldi A, Cortinovis DL, Canova S, Capici S, Cazzaniga ME, Mologni L, Ramazzotti D, Cordani N. Prognostic Biomarkers in Breast Cancer via Multi-Omics Clustering Analysis. Int J Mol Sci 2025; 26:1943. [PMID: 40076569 PMCID: PMC11900291 DOI: 10.3390/ijms26051943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease with diverse molecular subtypes, which complicates prognosis and treatment. In this study, we performed a multi-omics clustering analysis using the Cancer Integration via MultIkernel LeaRning (CIMLR) method on a large BC dataset from The Cancer Genome Atlas (TCGA) to identify key prognostic biomarkers. We identified three genes-LMO1, PRAME, and RSPO2-that were significantly associated with poor prognosis in both the TCGA dataset and an additional dataset comprising 146 metastatic BC patients. Patients' stratification based on the expression of these three genes revealed distinct subtypes with markedly different overall survival (OS) outcomes. Further validation using almost 2000 BC patients' data from the METABRIC dataset and RNA sequencing data from therapy-resistant cell lines confirmed the upregulation of LMO1 and PRAME, respectively, in patients with worse prognosis and in resistant cells, also suggesting their potential role in drug resistance. Our findings highlight LMO1 and PRAME as potential biomarkers for identifying high-risk BC patients and informing targeted treatment strategies. This study provides valuable insights into the multi-omics landscape of BC and underscores the importance of personalized therapeutic approaches based on molecular profiles.
Collapse
Affiliation(s)
- Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Alberto Maria Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
- Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Diego Luigi Cortinovis
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
- Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Stefania Canova
- Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Serena Capici
- Phase 1 Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Marina Elena Cazzaniga
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
- Phase 1 Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (F.M.); (M.V.); (A.M.V.); (S.P.); (A.A.); (D.L.C.); (M.E.C.); (L.M.); (D.R.)
| |
Collapse
|
10
|
Chatterjee P, Banerjee S. A computational and structural approach to identify malignant non-synonymous FOXM1 single nucleotide polymorphisms in triple-negative breast cancer. Sci Rep 2025; 15:964. [PMID: 39762471 PMCID: PMC11704209 DOI: 10.1038/s41598-024-85100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated. Single nucleotide polymorphisms (SNPs) are the most common genetic variations causing functional and structural aberrations in proteins enhancing cancer susceptibility. This computational investigation attempted to identify the malignant FOXM1 non-synonymous SNPs (nsSNPs) and evaluate their role in affecting the conformational and functional stability, evolutionary conservation, post-translational modifications, and malignant susceptibility of the protein. Out of a huge data pool of 8826 FOXM1 SNPs using several in-silico sequence-based tools and structural approaches, four SNPs viz. E235Q, R256C, G429E and S756P were identified as pathogenic nsSNPs and among the shortlisted variants molecular dynamics simulations identified E235Q as the most damaging malignant SNP, followed by S756P. Additionally, the defective drug and DNA binding motif of E235Q and S756P were also determined in our study. Thus, although further in-vitro validations are awaited the findings of this in-silico work can be used as a blueprint for malignant nsSNP identification of FOXM1 aiding in clinical TNBC therapeutics.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Kawamura Y, Shimomura A, Taniyama T, Hirai H, Hashimoto K, Honda Y, Kitagawa D, Kaneko H, Shimizu C. Preoperative Systemic Chemotherapy Including Immune Checkpoint Inhibitors for Patients with Tumor-Associated Dermatomyositis. Case Rep Oncol 2025; 18:231-238. [PMID: 39980498 PMCID: PMC11825135 DOI: 10.1159/000543579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs), used in cancer immunotherapy, enhance the immune system's ability to attack cancer cells. However, this activation can lead to severe immune-associated adverse events due to overactivation. In autoimmune diseases, the immune system mistakenly targets the body's tissues, producing autoantibodies that cause inflammation and tissue damage. Despite the increasing use of ICIs, limited information exists on their effects and potential harms in patients with active autoimmune diseases, making it challenging to predict outcomes and manage risks for these patients. Case Presentation We report a case of a patient with breast cancer presenting with a rash and muscle weakness. The simultaneous onset of these symptoms, along with the rapid growth of the breast tumor, led to a diagnosis of tumor-associated dermatomyositis (DM). The patient presented with locally advanced triple-negative breast cancer and received preoperative chemotherapy, including ICIs. Conclusion The administration of preoperative chemotherapy, including ICIs, to a patient with breast cancer and tumor-associated DM was found to be a safe and effective treatment approach. There is a need to better understand the interplay between ICIs and autoimmune diseases and to develop safe and effective treatment strategies for this unique patient population.
Collapse
Affiliation(s)
- Yukino Kawamura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Taniyama
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hoshie Hirai
- Department of Breast Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuki Hashimoto
- Department of Breast Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yayoi Honda
- Department of Breast Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Dai Kitagawa
- Department of Breast Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kaneko
- Division of Rheumatic Disease, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chikako Shimizu
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fang Q, Fang Q, Cheng R, Feng T, Xin W. CAPE activates AMPK and Foxo3 signaling to induce growth inhibition and ferroptosis in triple-negative breast cancer. PLoS One 2024; 19:e0315037. [PMID: 39729481 DOI: 10.1371/journal.pone.0315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC. METHODS MDA-MB-231 and MDA-MB-468 cells were treated with CAPE. CCK8 and colony formation assays were performed to analyze cell proliferation. Western blot, TUNEL and Annexin V-FITC/PI staining methods were employed to assess cell apoptosis. ROS, MDA, SOD, GSH, C11-bodipy staining, along with measurements of GPX4 and Ferritin levels, were utilized for ferroptosis detection. Western blot and immunofluorescence analysis were used to assess key regulatory molecules. The cells were subjected to treatments involving ferroptosis inhibition, AMPK inhibition, or Foxo3 inhibition, followed by CAPE administration to assess cell proliferation, apoptosis, and ferroptosis. Tumor xenografts were used to evaluate the antitumor efficacy of CAPE. RESULTS CAPE not only suppressed cell proliferation but also promoted apoptosis followed by ferroptosis. Co-incubation with Fer-1 (a ferroptosis inhibitor) diminished CAPE's suppressive effects on proliferation and apoptosis induction. CAPE treatment enhanced the phosphorylation of AMPK and promoted the nuclear translocation of Foxo3. Inhibition of both AMPK and Foxo3 by siRNAs or inhibitors (Compc, TIC10) reversed the growth retardation induced by CAPE as well as its pro-apoptotic effects leading to ferroptosis. Specifically, AMPK inhibition abrogated the CAPE-induced nuclear translocation of Foxo3. CAPE significantly inhibited tumor growth in nude mice bearing TNBC xenografts. CONCLUSION CAPE possesses a resistance effect on TNBC via activation of AMPK and Foxo3 signaling pathways.
Collapse
Affiliation(s)
- Qilu Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| | - Qichuan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Rui Cheng
- School of Pharmacy, Nanchang University, Jiangxi, Nanchang, China
| | - Tingting Feng
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| | - Wenxiu Xin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Kunnumakkara AB. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: evidence from clinical trials. Mil Med Res 2024; 11:76. [PMID: 39668367 PMCID: PMC11636053 DOI: 10.1186/s40779-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
The extensive heterogeneity and the limited availability of effective targeted therapies contribute to the challenging prognosis and restricted survival observed in triple-negative breast cancer (TNBC). Recent research indicates the aberrant expression of diverse tyrosine kinases (TKs) within this cancer, contributing significantly to tumor cell proliferation, survival, invasion, and migration. The contemporary paradigm shift towards precision medicine has highlighted TKs and their receptors as promising targets for pharmacotherapy against a range of malignancies, given their pivotal roles in tumor initiation, progression, and advancement. Intensive investigations have focused on various monoclonal antibodies (mAbs) and small molecule inhibitors that specifically target proteins such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), cellular mesenchymal-epithelial transition factor (c-MET), human epidermal growth factor receptor 2 (HER2), among others, for combating TNBC. These agents have been studied both in monotherapy and in combination with other chemotherapeutic agents. Despite these advances, a substantial terrain of unexplored potential lies within the realm of TK targeted therapeutics, which hold promise in reshaping the therapeutic landscape. This review summarizes the various TK targeted therapeutics that have undergone scrutiny as potential therapeutic interventions for TNBC, dissecting the outcomes and revelations stemming from diverse clinical investigations. A key conclusion from the umbrella clinical trials evidences the necessity for in-depth molecular characterization of TNBCs for the maximum efficiency of TK targeted therapeutics, either as standalone treatments or a combination. Moreover, our observation highlights that the outcomes of TK targeted therapeutics in TNBC are substantially influenced by the diversity of the patient cohort, emphasizing the prioritization of individual patient genetic/molecular profiles for precise TNBC patient stratification for clinical studies.
Collapse
Affiliation(s)
- Kasshish Mehta
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Morgan E, O'Neill C, Shah R, Langselius O, Su Y, Frick C, Fink H, Bardot A, Walsh PM, Woods RR, Gonsalves L, Nygård JF, Negoita S, Ramirez-Pena E, Gelmon K, Antone N, Mutebi M, Siesling S, Cardoso F, Gralow J, Soerjomataram I, Arnold M. Metastatic recurrence in women diagnosed with non-metastatic breast cancer: a systematic review and meta-analysis. Breast Cancer Res 2024; 26:171. [PMID: 39605105 PMCID: PMC11603627 DOI: 10.1186/s13058-024-01881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/10/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND To assess proportions of metastatic recurrence in women initially diagnosed with non-metastatic breast cancer by stage at diagnosis, breast cancer subtype, calendar period and age. METHODS A systematic search of MEDLINE and Web of Science databases (January 2010-12 May 2022) was conducted. Studies reporting the proportion of distant metastatic recurrence in women with non-metastatic breast cancer were identified and outcomes and characteristics were extracted. Risk of bias was assessed independently by two reviewers. Random-effects meta-analyses of proportions were used to calculate pooled estimates and 95% confidence intervals (CIs). RESULTS 193 studies covering over 280,000 patients were included in the main analysis. Pooled proportions of metastatic recurrence increased with longer median follow-up time from 12.2% (95% CI 10.5-14.0%) at 1-4 years post diagnosis, 14.3% (95% CI 12.9-15.7%) at 5-9 years to 23.3% (95% CI 20.1-26.8) at 10 years or more. Regional variation was observed with pooled estimates ranging from 11.0% (95% CI 8.5-13.7%) in Europe to 26.4% (95% CI 16.7-37.4%) in Africa (1-4 years follow-up). Proportions of recurrence were higher in studies with diagnosis before 2000 (22.2%, 95% CI 15.1-30.3) compared to studies with diagnosis from 2000 onwards (12.8%, 95% CI 11.7-14.0). At 1-4 years median follow-up, pooled proportions of metastatic recurrence were higher in women with hormone receptor negative (15.2%, 95% CI 12.0-18.7%) compared with receptor positive disease (9.6%, 95% CI 6.2-13.6%) and in women with locally advanced (33.2%, 95% CI 24.7-42.3%) relative to early disease at initial diagnosis (4.8%, 95% CI 2.5-7.8%). Proportions were higher in those under 50 years compared with 70+ years, 18.6% (95% CI 15.9-21.4%) versus 13.3% (95% CI 9.2, 18.0%), respectively. Heterogeneity was high in all meta-analyses and results should be interpreted with caution. CONCLUSIONS Higher proportions of metastatic recurrence in patients initially diagnosed at an advanced stage and in earlier calendar period emphasises the importance of early detection and treatment advancements. As the global number of breast cancer survivors increases, research and health policy efforts should be directed towards timely diagnosis and access to effective treatments and care. STUDY REGISTRATION PROSPERO CRD42022314500.
Collapse
Affiliation(s)
- Eileen Morgan
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| | | | - Richa Shah
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Oliver Langselius
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Yaqi Su
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Clara Frick
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Hanna Fink
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Aude Bardot
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | | | - Lou Gonsalves
- Connecticut Department of Public Health, Connecticut Tumor Registry, Hartfort, CT, USA
| | - Jan F Nygård
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Serban Negoita
- Data Quality, Analysis, and Interpretation Branch, Division of Cancer Control and Population Sciences, Surveillance Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Esmeralda Ramirez-Pena
- Data Quality, Analysis, and Interpretation Branch, Division of Cancer Control and Population Sciences, Surveillance Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Nicoleta Antone
- Breast Cancer Center, Institute of Oncology "Ion Chiricuta", Cluj-Napoca-Napoca, Romania
| | - Miriam Mutebi
- Breast Surgical Oncology, Aga Khan University Hospital, Nairobi, Kenya
| | - Sabine Siesling
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of Health Technology and Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation and ABC Global Alliance, Lisbon, Portugal
| | - Julie Gralow
- American Society of Clinical Oncology, Alexandria, VA, USA
| | - Isabelle Soerjomataram
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Melina Arnold
- Cancer Surveillance Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
15
|
Combs JE, Murray AB, Lomelino CL, Mboge MY, Mietzsch M, Horenstein NA, Frost SC, McKenna R, Becker HM. Disruption of the Physical Interaction Between Carbonic Anhydrase IX and the Monocarboxylate Transporter 4 Impacts Lactate Transport in Breast Cancer Cells. Int J Mol Sci 2024; 25:11994. [PMID: 39596062 PMCID: PMC11593560 DOI: 10.3390/ijms252211994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC50 of ~90 nM. This value is similar to the Ki for inhibition of CAIX activity. Furthermore, it is shown that BGal2C blocks hypoxia-induced lactate transport in MDA-MB-231 and MCF-7 breast cancer cells, both of which express CAIX. As in oocytes, BGal2C interferes with the physical interaction between CAIX and MCTs in both cell types. Finally, X-ray crystallographic studies highlight unique interactions between BGal2C and a CAIX-mimic that are not observed within the CAII active site and which may underlie the strong specificity of BGal2C for CAIX. These studies demonstrate the utility of a novel sulfonamide in interfering with elevated proton and lactate flux, a hallmark of many solid tumors.
Collapse
Affiliation(s)
- Jacob E. Combs
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | | | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
16
|
Jin LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, Jin HC, Wang CQ. Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 2024; 479:3037-3047. [PMID: 38145448 DOI: 10.1007/s11010-023-04907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.
Collapse
Affiliation(s)
- Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hua-Jun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Ping Lu
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
17
|
He M, Jiang YZ, Gong Y, Fan L, Liu XY, Liu Y, Tang LC, Mo M, Hou YF, Di GH, Liu GY, Yu KD, Wu J, Yan X, Zeng XH, Fu DY, Song CG, Zhuang ZG, Wu KJ, Wang J, Wang ZH, Shao ZM. Intensive chemotherapy versus standard chemotherapy among patients with high risk, operable, triple negative breast cancer based on integrated mRNA-lncRNA signature (BCTOP-T-A01): randomised, multicentre, phase 3 trial. BMJ 2024; 387:e079603. [PMID: 39442958 PMCID: PMC11497771 DOI: 10.1136/bmj-2024-079603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To evaluate the feasibility of using a multigene signature to tailor individualised adjuvant therapy for patients with operable triple negative breast cancer. DESIGN Randomised, multicentre, open label, phase 3 trial. SETTING 7 cancer centres in China between 3 January 2016 and 17 July 2023. PARTICIPANTS Female patients aged 18-70 years with early triple negative breast cancer after definitive surgery. INTERVENTIONS After risk stratification using the integrated signature, patients at high risk were randomised (1:1) to receive an intensive adjuvant treatment comprising four cycles of docetaxel, epirubicin, and cyclophosphamide followed by four cycles of gemcitabine and cisplatin (arm A; n=166) or a standard treatment of four cycles of epirubicin and cyclophosphamide followed by four cycles of docetaxel (arm B; n=170). Patients at low risk received the same adjuvant chemotherapy as arm B (arm C; n=168). MAIN OUTCOME MEASURES The primary endpoint was disease-free survival in the intention-to-treat analysis for arm A versus arm B. Secondary endpoints included disease-free survival for arm C versus arm B, recurrence-free survival, overall survival, and safety. RESULTS Among the 504 enrolled patients, 498 received study treatment. At a median follow-up of 45.1 months, the three year disease-free survival rate was 90.9% for patients in arm A and 80.6% for patients in arm B (hazard ratio 0.51, 95% confidence interval (CI) 0.28 to 0.95; P=0.03). The three year recurrence-free survival rate was 92.6% in arm A and 83.2% in arm B (hazard ratio 0.50, 95% CI 0.25 to 0.98; P=0.04). The three year overall survival rate was 98.2% in arm A and 91.3% in arm B (hazard ratio 0.58, 95% CI 0.22 to 1.54; P=0.27). The rates of disease-free survival (three year disease-free survival 90.1% v 80.6%; hazard ratio 0.57, 95% CI 0.33 to 0.98; P=0.04), recurrence-free survival (three year recurrence-free survival 94.5% v 83.2%; 0.42, 0.22 to 0.81; P=0.007), and overall survival (three year overall survival 100% v 91.3%; 0.14, 0.03 to 0.61; P=0.002) were significantly higher in patients in arm C than in those in arm B with the same chemotherapy regimen. The incidence of grade 3-4 treatment related adverse events were 64% (105/163), 51% (86/169), and 54% (90/166) for arms A, B, and C, respectively. No treatment related deaths occurred. CONCLUSIONS The multigene signature showed potential for tailoring adjuvant chemotherapy for patients with operable triple negative breast cancer. Intensive regimens incorporating gemcitabine and cisplatin into anthracycline/taxane based therapy significantly improved disease-free survival with manageable toxicity. TRIAL REGISTRATION ClinicalTrials.gov NCT02641847.
Collapse
Affiliation(s)
- Min He
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Gong
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Fan
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Chen Tang
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Mo
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Cancer Prevention and Clinical Statistics Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Feng Hou
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xia Yan
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Hua Zeng
- Breast Center, Chongqing Cancer Hospital, Chongqing University, Chongqing, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Chuan-Gui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zhi-Gang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University, Shanghai, China
| | - Ke-Jin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jie Wang
- Department of Breast Surgery, The International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong-Hua Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer and Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
19
|
Ma T, Liu XY, Cai SL, Zhang J. Development and validation of a nomogram for predicting rapid relapse in triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Front Cell Dev Biol 2024; 12:1417366. [PMID: 39286481 PMCID: PMC11402701 DOI: 10.3389/fcell.2024.1417366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) accounts for disproportionately poor outcomes in breast cancer, driven by a subset of rapid-relapse TNBC (rrTNBC) with marked chemoresistance, rapid metastatic spread, and poor survival. This study aimed to develop and validate a nomogram based on clinicopathological characteristics to predict rapid relapse in TNBC patients treated with neoadjuvant chemotherapy (NAC) first. Methods The clinicopathological data of 504 TNBC patients treated with NAC first in Tianjin Medical University Cancer Hospital were analyzed retrospectively, with 109 rapid relapsed patients, and 395 non-rapid relapsed patients, respectively. Based on clinicopathologic characteristics, and follow-up data were analyzed. The independent predictors of clinicopathological characteristics were identified by logistic regression analysis and then used to build a nomogram. The concordance index (C-index), the area under the curve (AUC) of receiver operating characteristic (ROC), and calibration plots were used to evaluate the performance of the model. Results Univariate and multivariate logistic regression analyses showed that age at diagnosis (age≥50 years, OR = 0.325,95% CI:0.137-0.771), Nodal staging (N3 staging, OR = 13.669,95% CI:3.693-50.592),sTIL expression levels (sTIL intermediate expression, OR = 0.272,95% CI:0.109-0.678; sTIL high expression, OR = 0.169,95% CI:0.048-0.594), and NAC response (ORR, OR = 0.059,95% CI:0.024-0.143) were independent predictors of rapid relapse in TNBC patients treated with NAC firstly. Among these independent predictors, age ≥ 50 years, sTIL intermediate expression, sTIL high expression, and ORR in NAC were independent protective factors for rapid relapse in TNBC NAC patients. N3 staging was an independent risk factor for rapid relapse in TNBC NAC patients. The ROC curve, calibration curve, and decision curve analysis were used to validate the model. The C-Index of the training sets and validation sets were 0.938 and 0.910, respectively. The Brier scores of the training sets and validation sets were 0.076 and 0.097, respectively. Conclusion This study developed and verified a nomogram for predicting rapid relapse in TNBC NAC patients, and the predictive model had high discrimination and accuracy.
Collapse
Affiliation(s)
- Tao Ma
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xin-Yu Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shuang-Long Cai
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
20
|
Ge Y, Wei X, Liu JN, Sun PL, Gao H. New insights into acinic cell carcinoma of the breast: clinicopathology, origin of histology, molecular features, prognosis, and treatment. Front Oncol 2024; 14:1438179. [PMID: 39286022 PMCID: PMC11402605 DOI: 10.3389/fonc.2024.1438179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Acinic cell carcinoma (AciCC) of the breast is a rare malignant epithelial neoplasm, with approximately 60 cases reported in the literature. It predominantly affects women and exhibits significant histological heterogeneity. The diagnosis of breast AciCC is primarily based on the presence of eosinophilic and/or basophilic granular cytoplasm and markers of serous acinar differentiation. Despite being considered a low-grade variant of conventional triple-negative breast cancer (TNBC), over 25% of patients with breast AciCC have adverse clinical outcomes. Additionally, in early research, microglandular adenosis (MGA) and atypical MGA were considered potential precursors for various breast cancers, including intraductal carcinoma, invasive ductal carcinoma, adenoid cystic carcinoma, metaplastic carcinoma, and AciCC. Similarly, some studies have proposed that breast AciCC should be considered a type of carcinoma developing in MGA with acinic cell differentiation rather than a distinct entity. Therefore, the pathogenesis of breast AciCC has not yet been clarified. Moreover, to the best of our knowledge, the literature has not summarized the latest prognosis and treatment of breast AciCC. In this review, we synthesized the current literature and the latest developments, aiming at exploring the clinicopathology, histological origin, molecular features, prognosis, and treatment of breast AciCC from a novel perspective.
Collapse
Affiliation(s)
- Yunjie Ge
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xianping Wei
- Department of Clinical Research, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jing-Nan Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Zhang Y, Tang L, Liu H, Cheng Y. The Multiple Functions of HB-EGF in Female Reproduction and Related Cancer: Molecular Mechanisms and Targeting Strategies. Reprod Sci 2024; 31:2588-2603. [PMID: 38424408 DOI: 10.1007/s43032-024-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Heparin-binding growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) ligand family which has a crucial role in women's health. However, there is a lack of comprehensive review to summarize the significance of HB-EGF. Therefore, this work first described the expression patterns of HB-EGF in the endometrium and ovary of different species and gestational time. Then, the focus was on exploring how it promotes the successful implantation and regulates the process of decidualization and the function of ovarian granulosa cells as an intermediate molecule. Otherwise, we also focused on the clinical and prognostic significance of HB-EGF in female-related cancers (including ovarian cancer, cervical cancer, and endometrial cancer) and breast cancer. Lastly, the article also summarizes the current drugs targeting HB-EGF in the treatment of ovarian cancer and breast cancer. Overall, these studies found that the expression of HB-EGF in the endometrium is spatiotemporal and species-specific. And it mediates the dialogue between the blastocyst and endometrium, promoting synchronous development of the blastocyst and endometrium as an intermediate molecule. HB-EGF may serve as a potentially valuable prognostic clinical indicator in tumors. And the specific inhibitor of HB-EGF (CRM197) has a certain anti-tumor ability, which can exert synergistic anti-tumor effects with conventional chemotherapy drugs. However, it also suggests that more research is needed in the future to elucidate its specific mechanisms and to accommodate clinical studies with a larger sample size to clarify its clinical value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
22
|
Yang C, Liu H, Feng X, Shi H, Jiang Y, Li J, Tan J. Research hotspots and frontiers of neoadjuvant therapy in triple-negative breast cancer: a bibliometric analysis of publications between 2002 and 2023. Int J Surg 2024; 110:4976-4992. [PMID: 39143709 PMCID: PMC11326012 DOI: 10.1097/js9.0000000000001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with poor prognosis, and neoadjuvant therapy (NAT) has emerged as an important component in managing advanced-stage patients by providing surgical opportunities and improving survival outcomes. A search of publications on NAT for TNBC from 2002 to 2023 was conducted through the Web of Science core collection. A comprehensive bibliometric analysis was conducted on the data using CiteSpace, VOSviewer, and Bibliometrix. The analysis revealed a continuous and steady growth in the number of articles published in this field over the past 20 years. The United States has made significant contributions to this field, with The University of Texas MD Anderson Cancer Center publishing the most articles. Loibl, S. from Germany was found to be the most published author with 54 articles. Analysis of the journals showed that the Journal of Clinical Oncology is the most cited journal. Combined with the keyword co-occurrence analysis and clustering analysis, current research topic focuses on treatment regimens and disease prognosis. Dual-map overlay of the journals indicates that the research trend is gradually shifting from molecular biology and genetics to immunology and clinical research. Combination therapy, including immunotherapy, may be the future direction for NAT treatment of TNBC. Overall, this study provides valuable insights into the current research status, latest advancements, and emerging development trend of NAT for TNBC.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Hui Liu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University
| | - Xing Feng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
- Department of Hepatobiliary, Breast and Thyroid Surgery, The People’s Hospital of Liangping District, Chongqing, China
| | - Han Shi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Yuchan Jiang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Junfeng Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Jinxiang Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
23
|
Wang YC, Shueng PW, Hu CY, Tung FI, Chen MH, Liu TY. Hyaluronic acid-based injectable formulation developed to mitigate metastasis and radiation-induced skin fibrosis in breast cancer treatment. Carbohydr Polym 2024; 336:122136. [PMID: 38670762 DOI: 10.1016/j.carbpol.2024.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
The standard treatment for early-stage breast cancer involves breast-conserving surgery followed by adjuvant radiotherapy. However, approximately 20 % of patients experience distant metastasis, and adjuvant radiotherapy often leads to radiation-induced skin fibrosis (RISF). In this study, we develop an on-site injectable formulation composed of selenocystamine (SeCA) and hyaluronic acid (HyA), referred to as SeCA cross-linked HyA (SCH) agent, and investigate its potential to mitigate metastasis and prevent RISF associated with breast cancer therapy. SCH agents are synthesized using the nanoprecipitation method to modulate cell-cell tight junctions and tissue inflammation. The toxicity assessments reveal that SCH agents with a higher Se content (Se payload 17.4 μg/mL) are well tolerated by L929 cells compared to SeCA (Se payload 3.2 μg/mL). In vitro, SCH agents significantly enhance cell-cell tight junctions and effectively mitigate migration and invasion of breast cancer cells (4T1). In vivo, SCH agents mitigate distant lung metastasis. Furthermore, in animal models, SCH agents reduce RISF and promote wound repair. These findings highlight the potential of SCH agents as a novel therapeutic formulation for effectively mitigating metastasis and reducing RISF. This holds great promise for improving clinical outcomes in breast cancer patients undergoing adjuvant radiotherapy.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chan-Yu Hu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan; Department of Health and Welfare, College of City Management, University of Taipei, Taipei 111036, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
24
|
Abd El-Aziz YS, Toit-Thompson TD, McKay MJ, Molloy MP, Stoner S, McDowell B, Moon E, Sioson L, Sheen A, Chou A, Gill AJ, Jansson PJ, Sahni S. Novel combinatorial autophagy inhibition therapy for triple negative breast cancers. Eur J Pharmacol 2024; 973:176568. [PMID: 38604544 DOI: 10.1016/j.ejphar.2024.176568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) has the worst prognosis among breast cancer subtypes. It is characterized by lack of estrogen, progesterone and human epidermal growth factor 2 receptors, and thus, have limited therapeutic options. Autophagy has been found to be correlated with poor prognosis and aggressive behaviour in TNBC. This study aimed to target autophagy in TNBC via a novel approach to inhibit TNBC progression. METHODS Immunoblotting and confocal microscopy were carried out to examine the effect of tumor microenvironmental stressors on autophagy. Cellular proliferation and migration assays were used to test the effect of different autophagy inhibitors and standard chemotherapy alone or in combination. In vivo xenograft mouse model was utilized to assess the effect of autophagy inhibitors alone or in combination with Paclitaxel. High resolution mass spectrometry based proteomic analysis was performed to explore the mechanisms behind chemoresistance in TNBC. Lastly, immunohistochemistry was done to assess the correlation between autophagy related proteins and clinical characteristics in TNBC tissue specimens. RESULTS Metabolic stressors were found to induce autophagy in TNBC cell lines. Autophagy initiation inhibitors, SAR405 and MRT68921, showed marked synergy in their anti-proliferative activity in both chemosensitive and chemoresistant TNBC cell models. Paradoxically, positive expression of autophagosome marker LC3 was shown to be associated with better overall survival of TNBC patients. CONCLUSION In this study, a novel combination between different autophagy inhibitors was identified which inhibited tumor cell proliferation in both chemosensitive and chemoresistant TNBC cells and could result in development of a novel treatment modality against TNBC.
Collapse
Affiliation(s)
- Yomna S Abd El-Aziz
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Taymin du Toit-Thompson
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia
| | - Matthew J McKay
- Kolling Institute of Medical Research, University of Sydney, Australia
| | - Mark P Molloy
- Kolling Institute of Medical Research, University of Sydney, Australia
| | - Shihani Stoner
- Kolling Institute of Medical Research, University of Sydney, Australia
| | - Betty McDowell
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Amy Sheen
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Anthony J Gill
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
| | - Patric J Jansson
- Kolling Institute of Medical Research, University of Sydney, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia.
| |
Collapse
|
25
|
Lee M, Yoo TK, Chae BJ, Lee A, Cha YJ, Lee J, Ahn SG, Kang J. Luminal androgen receptor subtype and tumor-infiltrating lymphocytes groups based on triple-negative breast cancer molecular subclassification. Sci Rep 2024; 14:11278. [PMID: 38760384 PMCID: PMC11101432 DOI: 10.1038/s41598-024-61640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
In our previous study, we developed a triple-negative breast cancer (TNBC) subtype classification that correlated with the TNBC molecular subclassification. In this study, we aimed to evaluate the predictor variables of this subtype classification on the whole slide and to validate the model's performance by using an external test set. We explored the characteristics of this subtype classification and investigated genomic alterations, including genomic scar signature scores. First, TNBC was classified into the luminal androgen receptor (LAR) and non-luminal androgen receptor (non-LAR) subtypes based on the AR Allred score (≥ 6 and < 6, respectively). Then, the non-LAR subtype was further classified into the lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD) groups based on stromal tumor-infiltrating lymphocytes (TILs) (< 20%, > 20% but < 60%, and ≥ 60%, respectively). This classification showed fair agreement with the molecular classification in the test set. The LAR subtype was characterized by a high rate of PIK3CA mutation, CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2) deletion, and a low homologous recombination deficiency (HRD) score. The non-LAR LD TIL group was characterized by a high frequency of NOTCH2 and MYC amplification and a high HRD score.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jieun Lee
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, Zhao W, Hu G, Yang Q. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer 2024; 23:102. [PMID: 38755678 PMCID: PMC11097450 DOI: 10.1186/s12943-024-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Sun
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
27
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
28
|
Kuzmin E, Baker TM, Lesluyes T, Monlong J, Abe KT, Coelho PP, Schwartz M, Del Corpo J, Zou D, Morin G, Pacis A, Yang Y, Martinez C, Barber J, Kuasne H, Li R, Bourgey M, Fortier AM, Davison PG, Omeroglu A, Guiot MC, Morris Q, Kleinman CL, Huang S, Gingras AC, Ragoussis J, Bourque G, Van Loo P, Park M. Evolution of chromosome-arm aberrations in breast cancer through genetic network rewiring. Cell Rep 2024; 43:113988. [PMID: 38517886 PMCID: PMC11063629 DOI: 10.1016/j.celrep.2024.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.
Collapse
Affiliation(s)
- Elena Kuzmin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| | | | | | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Kento T Abe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Schwartz
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph Del Corpo
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Dongmei Zou
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Genevieve Morin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alain Pacis
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Yang Yang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Constanza Martinez
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Jarrett Barber
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Mathieu Bourgey
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Peter G Davison
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Sidong Huang
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Peter Van Loo
- The Francis Crick Institute, NW1 1AT London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada.
| |
Collapse
|
29
|
Carbajal-Ochoa W, Bravo-Solarte DC, Bernal AM, Anampa JD. Benefit of adjuvant chemotherapy in lymph node-negative, T1b and T1c triple-negative breast cancer. Breast Cancer Res Treat 2024; 203:257-269. [PMID: 37833449 DOI: 10.1007/s10549-023-07132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Current guidelines recommendations regarding chemotherapy in small (T1b and T1c), node-negative triple-negative breast cancer (TNBC) differ due to lack of high-quality data. Our study aimed to assess the benefit of adjuvant chemotherapy in patients with T1bN0M0 and T1cN0M0 TNBC. METHODS We obtained data from the Surveillance, Epidemiology, and End Results database for patients with node-negative, T1b/T1c TNBC diagnosed between 2010 and 2020. Logistic regresion models assessed variables associated with chemotherapy administration. We evaluated the effect of chemotherapy on overall survival (OS) and breast cancer specific survival (BCSS) with Kaplan-Meier methods and Cox proportional hazards methods. RESULTS We included 11,510 patients: 3,388 with T1b and 8,122 with T1c TNBC. During a median follow-up of 66 months, 305 patients with T1b and 995 with T1c died. After adjusting for clinicopathological, demographic and treatment factors, adjuvant chemotherapy improved OS in T1b TNBC (HR, 0.52; 95% CI, 0.41-0.68 p < 0.001) but did not improve BCSS (HR, 0.70; 95% CI, 0.45-1.07; p = 0.10); the association between chemotherapy and BCSS was not statistically significant in any subgroup. In T1c TNBC, adjuvant chemotherapy improved OS (HR, 0.54; 95% CI, 0.47-0.62; p < 0.001) and BCSS (HR, 0.79; 95% CI, 0.63-0.99; p = 0.043); the benefit of chemotherapy in OS varied by age (Pinteraction=0.024); moreover, the benefit in BCSS was similar in all subgroups. CONCLUSIONS Our study results support the use of adjuvant chemotherapy in patients with node-negative, T1c TNBC. Patients with node-negative, T1b TNBC had excellent long-term outcomes; furthermore, chemotherapy was not associated with improved BCSS in these patients.
Collapse
Affiliation(s)
- Walter Carbajal-Ochoa
- Department of Medical Oncology, Catalan Institute of Oncology/Josep Trueta Hospital, Girona, Spain
| | | | - Ana M Bernal
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA
| | - Jesus D Anampa
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd, Bronx, NY, 10461, USA.
| |
Collapse
|
30
|
Asemota S, Effah W, Young KL, Holt J, Cripe L, Ponnusamy S, Thiyagarajan T, Hwang DJ, He Y, Mcnamara K, Johnson D, Wang Y, Grimes B, Khosrosereshki Y, Hollingsworth TJ, Fleming MD, Pritchard FE, Hendrix A, Khan F, Fan M, Makowski L, Yin Z, Sasano H, Hayes DN, Pfeffer LM, Miller DD, Narayanan R. Identification of a targetable JAK-STAT enriched androgen receptor and androgen receptor splice variant positive triple-negative breast cancer subtype. Cell Rep 2023; 42:113461. [PMID: 37979170 PMCID: PMC10872270 DOI: 10.1016/j.celrep.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Kirsten L Young
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Keely Mcnamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yinan Wang
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN 38138, USA
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - T J Hollingsworth
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Martin D Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Farhan Khan
- Department of Pathology, Methodist Hospital, Memphis, TN 38104, USA
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Zheng Yin
- Biomedical and Informatics Services Core, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - D Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Lawrence M Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
31
|
Zhu M, Zhao Q, Zhang W, Xu H, Zhang B, Zhang S, Duan Y, Liao C, Yang X, Chen Y. Hydroxypropyl-β-cyclodextrin inhibits the development of triple negative breast cancer by enhancing antitumor immunity. Int Immunopharmacol 2023; 125:111168. [PMID: 37939513 DOI: 10.1016/j.intimp.2023.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-β-cyclodextrin (HP-β-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-β-CD on TNBC are not fully understood. To examine the influence of HP-β-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-β-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-β-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-β-CD-inhibited TNBC growth. Mechanistically, HP-β-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-β-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-β-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-β-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-β signaling pathway. In summary, our study suggests that HP-β-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-β-CD may hold promise as a potential antitumor drug.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
32
|
Nam YH. A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion. Diagnostics (Basel) 2023; 13:3486. [PMID: 37998622 PMCID: PMC10670204 DOI: 10.3390/diagnostics13223486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
This study was conducted to identify the risk causes and predictive models based on the clinical features of patients with breast cancer classified as triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBCs) using Korean cancer statistics. A total of 2045 cases that underwent three types of hormone receptor tests were obtained from Korean cancer data in 2016. Research data were analyzed with the software SPSS Ver. 26.0. TNBC and non-TNBCs accounted for 12.4% and 87.6% of the data, respectively. Tubular and lobular tumors occurred most frequently in the external quadrant of the breast (C50.4-C50.5; 43.1%). Compared to non-TNBCs, the incidence of TNBC was the most common in patients under the age of 39 (19.5%), followed by those over the age of 70 (17.3%). Tumors larger than 2 cm accounted for 16.0%, which was higher than the number of tumors smaller than 2 cm. Cases in stage IV cancer represented 21.7% of the data. Additionally, 21.0% of the patients were in the SEER stage of distant metastasis, which was the most prevalent SEER (surveillance, epidemiology, and end outcomes) stage. Neoadjuvant therapy was administered more frequently, with a rate of 24.1%. In the logistic regression and decision-making tree model, the variables that affected TNBC were age, differentiation grade, and neoadjuvant therapy. The predictive accuracies of logistic regression and decision-making tree models were 87.8% and 87.6%, respectively. In a decision-marking tree model, the differentiation grades of TNBC affect neoadjuvant therapy, and neoadjuvant therapy affects the cancer stage. Therefore, in order to promote the health of breast cancer patients, it is urgent to apply an intensive early health check-up program for those in their 40s and 50s with a high prevalence of TNBC. For patients with breast cancer, in TNBC cases, except for poorly differentiated cases, neoadjuvant therapy must be applied first at all differentiation grades. The establishment of a policy system is necessary for the success of this process.
Collapse
Affiliation(s)
- Young-Hee Nam
- Department of Health Administration, Namseoul University, Cheonan 31020, Republic of Korea
| |
Collapse
|
33
|
He H, Wang S, Zhang W, Gao S, Guan H, Zhou P. Downregulation of TAB182 promotes cancer stem-like cell properties and therapeutic resistance in triple-negative breast cancer cells. BMC Cancer 2023; 23:1101. [PMID: 37953246 PMCID: PMC10642046 DOI: 10.1186/s12885-023-11552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.
Collapse
Affiliation(s)
- Huan He
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, People's Republic of China
| | - Shaozheng Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Wen Zhang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shanshan Gao
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
34
|
Liu H, Capuani S, Badachhape AA, Di Trani N, Davila Gonzalez D, Vander Pol RS, Viswanath DI, Saunders S, Hernandez N, Ghaghada KB, Chen S, Nance E, Annapragada AV, Chua CYX, Grattoni A. Intratumoral nanofluidic system enhanced tumor biodistribution of PD-L1 antibody in triple-negative breast cancer. Bioeng Transl Med 2023; 8:e10594. [PMID: 38023719 PMCID: PMC10658527 DOI: 10.1002/btm2.10594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/08/2023] [Accepted: 08/01/2023] [Indexed: 12/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICI), pembrolizumab and atezolizumab, were recently approved for treatment-refractory triple-negative breast cancer (TNBC), where those with Programmed death-ligand 1 (PD-L1) positive early-stage disease had improved responses. ICIs are administered systemically in the clinic, however, reaching effective therapeutic dosing is challenging due to severe off-tumor toxicities. As such, intratumoral (IT) injection is increasingly investigated as an alternative delivery approach. However, repeated administration, which sometimes is invasive, is required due to rapid drug clearance from the tumor caused by increased interstitial fluid pressure. To minimize off-target drug biodistribution, we developed the nanofluidic drug-eluting seed (NDES) platform for sustained intratumoral release of therapeutic via molecular diffusion. Here we compared drug biodistribution between the NDES, intraperitoneal (IP) and intratumoral (IT) injection using fluorescently labeled PD-L1 monoclonal antibody (αPD-L1). We used two syngeneic TNBC murine models, EMT6 and 4T1, that differ in PD-L1 expression, immunogenicity, and transport phenotype. We investigated on-target (tumor) and off-target distribution using different treatment approaches. As radiotherapy is increasingly used in combination with immunotherapy, we sought to investigate its effect on αPD-L1 tumor accumulation and systemic distribution. The NDES-treated cohort displayed sustained levels of αPD-L1 in the tumor over the study period of 14 days with significantly lower off-target organ distribution, compared to the IP or IT injection. However, we observed differences in the biodistribution of αPD-L1 across tumor models and with radiation pretreatment. Thus, we sought to extensively characterize the tumor properties via histological analysis, diffusion evaluation and nanoparticles contrast-enhanced CT. Overall, we demonstrate that ICI delivery via NDES is an effective method for sustained on-target tumor delivery across tumor models and combination treatments.
Collapse
Affiliation(s)
- Hsuan‐Chen Liu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | | | - Nicola Di Trani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | | | - Robin S. Vander Pol
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Dixita I. Viswanath
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Texas A&M University College of MedicineBryanTexasUSA
- Texas A&M University College of MedicineHoustonTexasUSA
| | - Shani Saunders
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Nathanael Hernandez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Ketan B. Ghaghada
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of RadiologyTexas Children's HospitalHoustonTexasUSA
| | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research InstituteHoustonTexasUSA
- Neal Cancer CenterHouston Methodist Research InstituteHoustonTexasUSA
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
| | - Elizabeth Nance
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Ananth V. Annapragada
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of RadiologyTexas Children's HospitalHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
35
|
Martorana F, Di Grazia G, Rosano GN, Vecchio GM, Conti C, Nucera S, Magro G, Vigneri P. More Than Meets the Eye: A Case of Breast Cancer Switching from Being Luminal-Androgen-Receptor-Positive to Being Hormone-Receptor-Positive. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1875. [PMID: 37893593 PMCID: PMC10608003 DOI: 10.3390/medicina59101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Triple-negative breast cancer (TNBC) represents about 15% of all breast cancers and is usually characterized by aggressive clinical behavior and a poor prognosis. Four TNBC subgroups have been previously defined with different molecular profiles: (i) luminal androgen receptor (LAR), (ii) mesenchymal (MES), (iii) basal-like immunosuppressed (BLIS) and (iv) basal-like immune-activated (BLIA). Among these, LAR is characterized by the expression of the androgen receptor (AR), and exhibits genomic characteristics that resemble luminal breast cancers, with a still undefined prognosis and clinical behavior. Here, we report a case of a woman affected by recurring LAR TNBC, which underwent phenotypic changes throughout its natural history. After the initial diagnosis of LAR breast cancer, the patient experienced local recurrence with strong expression of the estrogen receptor. Due to this finding, she started treatment with a CDK4/6-inhibitor and an aromatase inhibitor, followed by oral vinorelbine, both with dismal outcomes. Then, she received everolimus and exemestane, which determined temporary disease stabilization. An extensive NGS analysis of tumor tissue showed PIK3CA and HER2 mutations. Our case is consistent with previous reports of LAR breast cancer and underlines the potential utility of re-biopsy and molecular testing in breast cancer (BC), especially in rare subtypes.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Di Grazia
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Giovanni Nunzio Rosano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Giada Maria Vecchio
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Chiara Conti
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Sabrina Nucera
- Department of Human Pathology “G. Barresi”, University of Messina, 98131 Messina, Italy; (G.D.G.); (C.C.); (S.N.)
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.N.R.); (G.M.V.); (G.M.)
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
36
|
Manni A, Sun YW, Schell TD, Lutsiv T, Thompson H, Chen KM, Aliaga C, Zhu J, El-Bayoumy K. Complementarity between Microbiome and Immunity May Account for the Potentiating Effect of Quercetin on the Antitumor Action of Cyclophosphamide in a Triple-Negative Breast Cancer Model. Pharmaceuticals (Basel) 2023; 16:1422. [PMID: 37895893 PMCID: PMC10610118 DOI: 10.3390/ph16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy targeting program cell death protein 1 (PD-1) in addition to chemotherapy has improved the survival of triple-negative breast cancer (TNBC) patients. However, the development of resistance and toxicity remain significant problems. Using the translationally relevant 4T1 mouse model of TNBC, we report here that dietary administration of the phytochemical quercetin enhanced the antitumor action of Cyclophosphamide, a cytotoxic drug with significant immunogenic effects that is part of the combination chemotherapy used in TNBC. We observed that quercetin favorably modified the host fecal microbiome by enriching species such as Akkermansia muciniphilia, which has been shown to improve response to anti-PD-1 therapy. We also show that quercetin and, to a greater extent, Cyclophosphamide increased the systemic frequency of T cells and NK cells. In addition, Cyclophosphamide alone and in combination with quercetin reduced the frequency of Treg, which is consistent with an antitumor immune response. On the other hand, Cyclophosphamide did not significantly alter the host microbiome, suggesting complementarity between microbiome- and immune-mediated mechanisms in potentiating the antitumor action of Cyclophosphamide by quercetin. Overall, these results support the potential for microbiota-centered dietary intervention to overcome resistance to chemoimmunotherapy in TNBC.
Collapse
Affiliation(s)
- Andrea Manni
- Penn State Health Milton S. Hershey Medical Center, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Todd D. Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (H.T.)
| | - Henry Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (H.T.)
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA (K.-M.C.); (C.A.)
| |
Collapse
|
37
|
Sunassee ED, Jardim-Perassi BV, Madonna MC, Ordway B, Ramanujam N. Metabolic Imaging as a Tool to Characterize Chemoresistance and Guide Therapy in Triple-Negative Breast Cancer (TNBC). Mol Cancer Res 2023; 21:995-1009. [PMID: 37343066 PMCID: PMC10592445 DOI: 10.1158/1541-7786.mcr-22-1004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.
Collapse
Affiliation(s)
- Enakshi D. Sunassee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
38
|
Parsons HA, Blewett T, Chu X, Sridhar S, Santos K, Xiong K, Abramson VG, Patel A, Cheng J, Brufsky A, Rhoades J, Force J, Liu R, Traina TA, Carey LA, Rimawi MF, Miller KD, Stearns V, Specht J, Falkson C, Burstein HJ, Wolff AC, Winer EP, Tayob N, Krop IE, Makrigiorgos GM, Golub TR, Mayer EL, Adalsteinsson VA. Circulating tumor DNA association with residual cancer burden after neoadjuvant chemotherapy in triple-negative breast cancer in TBCRC 030. Ann Oncol 2023; 34:899-906. [PMID: 37597579 PMCID: PMC10898256 DOI: 10.1016/j.annonc.2023.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND We aimed to examine circulating tumor DNA (ctDNA) and its association with residual cancer burden (RCB) using an ultrasensitive assay in patients with triple-negative breast cancer (TNBC) receiving neoadjuvant chemotherapy. PATIENTS AND METHODS We identified responders (RCB 0/1) and matched non-responders (RCB 2/3) from the phase II TBCRC 030 prospective study of neoadjuvant paclitaxel versus cisplatin in TNBC. We collected plasma samples at baseline, 3 weeks and 12 weeks (end of therapy). We created personalized ctDNA assays utilizing MAESTRO mutation enrichment sequencing. We explored associations between ctDNA and RCB status and disease recurrence. RESULTS Of 139 patients, 68 had complete samples and no additional neoadjuvant chemotherapy. Twenty-two were responders and 19 of those had sufficient tissue for whole-genome sequencing. We identified an additional 19 non-responders for a matched case-control analysis of 38 patients using a MAESTRO ctDNA assay tracking 319-1000 variants (median 1000 variants) to 114 plasma samples from 3 timepoints. Overall, ctDNA positivity was 100% at baseline, 79% at week 3 and 55% at week 12. Median tumor fraction (TFx) was 3.7 × 10-4 (range 7.9 × 10-7-4.9 × 10-1). TFx decreased 285-fold from baseline to week 3 in responders and 24-fold in non-responders. Week 12 ctDNA clearance correlated with RCB: clearance was observed in 10 of 11 patients with RCB 0, 3 of 8 with RCB 1, 4 of 15 with RCB 2 and 0 of 4 with RCB 3. Among six patients with known recurrence, five had persistent ctDNA at week 12. CONCLUSIONS Neoadjuvant chemotherapy for TNBC reduced ctDNA TFx by 285-fold in responders and 24-fold in non-responders. In 58% (22/38) of patients, ctDNA TFx dropped below the detection level of a commercially available test, emphasizing the need for sensitive tests. Additional studies will determine whether ctDNA-guided approaches can improve outcomes.
Collapse
Affiliation(s)
- H A Parsons
- Medical Oncology, Dana-Farber Cancer Institute, Boston; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston.
| | - T Blewett
- Broad Institute of MIT and Harvard, Cambridge
| | - X Chu
- Data Science, Dana-Farber Cancer Institute, Boston
| | - S Sridhar
- Broad Institute of MIT and Harvard, Cambridge
| | - K Santos
- Medical Oncology, Dana-Farber Cancer Institute, Boston
| | - K Xiong
- Broad Institute of MIT and Harvard, Cambridge
| | | | - A Patel
- Medical Oncology, Dana-Farber Cancer Institute, Boston
| | - J Cheng
- Broad Institute of MIT and Harvard, Cambridge
| | - A Brufsky
- University of Pittsburgh School of Medicine, Pittsburgh
| | - J Rhoades
- Broad Institute of MIT and Harvard, Cambridge
| | | | - R Liu
- Broad Institute of MIT and Harvard, Cambridge
| | - T A Traina
- Memorial Sloan Kettering Cancer Center, New York
| | - L A Carey
- The University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill
| | - M F Rimawi
- Baylor College of Medicine Dan L. Duncan Comprehensive Cancer Center, Houston
| | - K D Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis
| | - V Stearns
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore
| | - J Specht
- Seattle Cancer Care Alliance, Seattle
| | - C Falkson
- The University of Alabama at Birmingham, Birmingham
| | - H J Burstein
- Medical Oncology, Dana-Farber Cancer Institute, Boston; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston
| | - A C Wolff
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore
| | - E P Winer
- Medical Oncology, Dana-Farber Cancer Institute, Boston; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston
| | - N Tayob
- Data Science, Dana-Farber Cancer Institute, Boston
| | - I E Krop
- Medical Oncology, Dana-Farber Cancer Institute, Boston; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston
| | | | - T R Golub
- Broad Institute of MIT and Harvard, Cambridge
| | - E L Mayer
- Medical Oncology, Dana-Farber Cancer Institute, Boston; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston.
| | | |
Collapse
|
39
|
Wei L, Zhang Q, Zhong C, He L, Zhang Y, Armaly AM, Aubé J, Welch DR, Xu L, Wu X. Functional inhibition of the RNA-binding protein HuR sensitizes triple-negative breast cancer to chemotherapy. Mol Oncol 2023; 17:1962-1980. [PMID: 37357618 PMCID: PMC10552894 DOI: 10.1002/1878-0261.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC); however, chemoresistance compromises its efficacy. The RNA-binding protein Hu antigen R (HuR) could be a potential therapeutic target to enhance the chemotherapy efficacy. HuR is known to mainly stabilize its target mRNAs, and/or promote the translation of encoded proteins, which are implicated in multiple cancer hallmarks, including chemoresistance. In this study, a docetaxel-resistant cell subline (231-TR) was established from the human TNBC cell line MDA-MB-231. Both the parental and resistant cell lines exhibited similar sensitivity to the small molecule functional inhibitor of HuR, KH-3. Docetaxel and KH-3 combination therapy synergistically inhibited cell proliferation in TNBC cells and tumor growth in three animal models. KH-3 downregulated the expression levels of HuR targets (e.g., β-Catenin and BCL2) in a time- and dose-dependent manner. Moreover, KH-3 restored docetaxel's effects on activating Caspase-3 and cleaving PARP in 231-TR cells, induced apoptotic cell death, and caused S-phase cell cycle arrest. Together, our findings suggest that HuR is a critical mediator of docetaxel resistance and provide a rationale for combining HuR inhibitors and chemotherapeutic agents to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Lanjing Wei
- Bioengineering ProgramThe University of KansasLawrenceKSUSA
| | - Qi Zhang
- Department of Molecular BiosciencesThe University of KansasLawrenceKSUSA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer ScienceThe University of KansasLawrenceKSUSA
| | - Lily He
- Department of Pharmacology, Toxicology & TherapeuticsThe University of Kansas Medical CenterKansas CityKSUSA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & TherapeuticsThe University of Kansas Medical CenterKansas CityKSUSA
| | - Ahlam M. Armaly
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North CarolinaChapel HillNCUSA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North CarolinaChapel HillNCUSA
| | - Danny R. Welch
- Department of Cancer BiologyThe University of Kansas Medical CenterKansas CityKSUSA
- The University of Kansas Cancer CenterThe University of Kansas Medical CenterKansas CityKSUSA
| | - Liang Xu
- Department of Molecular BiosciencesThe University of KansasLawrenceKSUSA
- The University of Kansas Cancer CenterThe University of Kansas Medical CenterKansas CityKSUSA
- Department of Radiation OncologyThe University of Kansas Medical CenterKansas CityKSUSA
| | - Xiaoqing Wu
- The University of Kansas Cancer CenterThe University of Kansas Medical CenterKansas CityKSUSA
- Higuchi Biosciences CenterThe University of KansasLawrenceKSUSA
| |
Collapse
|
40
|
Bravo-Solarte DC, Zhang F, Anampa JD. Assessment of Use and Impact of Chemotherapy in Lymph Node-Negative, T1a Triple-Negative Breast Cancer. Clin Breast Cancer 2023; 23:763-773.e6. [PMID: 37648557 DOI: 10.1016/j.clbc.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Current treatment guidelines suggest considering adjuvant chemotherapy in high-risk patients with T1a, node-negative triple-negative breast cancer (TNBC); however, limited quality data support this statement. Our population-based study assessed the efficacy of adjuvant chemotherapy and factors associated with its administration in node-negative, T1a TNBC. MATERIALS AND METHODS We obtained data from the Surveillance, Epidemiology, and End Results database for patients with T1aN0 TNBC diagnosed between 2010 and 2019. We utilized the Kaplan-Meier method and Cox regression model to analyze the overall survival (OS) and breast cancer-specific survival (BCSS) in chemotherapy benefit. We performed stratified models to identify differences in OS and BCSS between those who received chemotherapy and those who did not across subgroups. Competing risk analysis was conducted to assess differences in risk of breast cancer death in patients with chemotherapy administration versus no chemotherapy. Additionally, propensity score matching was executed to assess survival analysis in a matched cohort. RESULTS We included 1739 patients with T1a TNBC. Patients who received chemotherapy were younger, had higher histological grade and ductal histology subtype, were more likely to be married and undergo mastectomy. Our study did not show improvement in OS (HR, 0.63; 95% CI, 0.35-1.13; P = .122) or BCSS (HR, 0.95; 95% CI, 0.37-2.43; P = .908) after chemotherapy use. We did not identify any subgroup of patients that may benefit from chemotherapy. Without chemotherapy, 8-year risk of breast cancer death is 2.75% for these patients. CONCLUSION Adjuvant chemotherapy is not associated with benefit on OS or BCSS in node-negative, T1a TNBC.
Collapse
Affiliation(s)
| | - Frank Zhang
- Department of Internal Medicine, Montefiore Medical Center, Bronx, NY
| | | |
Collapse
|
41
|
Kaushik AC, Zhao Z. Machine learning-driven exploration of drug therapies for triple-negative breast cancer treatment. Front Mol Biosci 2023; 10:1215204. [PMID: 37602329 PMCID: PMC10436744 DOI: 10.3389/fmolb.2023.1215204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death in women among all cancer types. It is highly heterogeneous in nature, which means that the tumors have different morphologies and there is heterogeneity even among people who have the same type of tumor. Several staging and classifying systems have been developed due to the variability of different types of breast cancer. Due to high heterogeneity, personalized treatment has become a new strategy. Out of all breast cancer subtypes, triple-negative breast cancer (TNBC) comprises ∼10%-15%. TNBC refers to the subtype of breast cancer where cells do not express estrogen receptors, progesterone receptors, or human epidermal growth factor receptors (ERs, PRs, and HERs). Tumors in TNBC have a diverse set of genetic markers and prognostic indicators. We scanned the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases for potential drugs using human breast cancer cell lines and drug sensitivity data. Three different machine-learning approaches were used to evaluate the prediction of six effective drugs against the TNBC cell lines. The top biomarkers were then shortlisted on the basis of their involvement in breast cancer and further subjected to testing for radion resistance using data from the Cleveland database. It was observed that Panobinostat, PLX4720, Lapatinib, Nilotinib, Selumetinib, and Tanespimycin were six effective drugs against the TNBC cell lines. We could identify potential derivates that may be used against approved drugs. Only one biomarker (SETD7) was sensitive to all six drugs on the shortlist, while two others (SRARP and YIPF5) were sensitive to both radiation and drugs. Furthermore, we did not find any radioresistance markers for the TNBC. The proposed biomarkers and drug sensitivity analysis will provide potential candidates for future clinical investigation.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
42
|
Rhome R, Wright J, De Souza Lawrence L, Stearns V, Wolff A, Zellars R. Concurrent chemotherapy with partial breast irradiation in triple negative breast cancer patients may improve disease control compared with sequential therapy. Front Oncol 2023; 13:1146754. [PMID: 37503312 PMCID: PMC10370352 DOI: 10.3389/fonc.2023.1146754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose To report outcomes on a subset of patients with triple negative breast cancer (TNBC) treated on prospective trials with post-lumpectomy partial breast irradiation and concurrent chemotherapy (PBICC) and compare them to a retrospectively assessed similar cohort treated with whole breast irradiation after adjuvant chemotherapy (WBIaC). Methods and materials Women with T1-2, N0-1 invasive breast cancer with ≥ 2mm lumpectomy margins were offered therapy on one of two PBICC trials. PBI consisted of 40.5 Gy in 15 daily 2.7 Gy fractions delivered concurrently with the first 2 cycles of adjuvant chemotherapy. The comparison cohort received WBI to a median dose of 60.7 Gy, (including boost, range 42.5 - 66 Gy), after completion of non-concurrent, adjuvant chemotherapy. We evaluated disease-free survival (DFS), and local/loco-regional/distant recurrence-free survival (RFS). We compared survival rates using Kaplan-Meier curves and log-rank test of statistical significance. Results Nineteen patients with TNBC were treated with PBICC on prospective protocol, and 49 received WBIaC. At a median follow-up of 35.5 months (range 4.8-71.9), we observed no deaths in the PBICC cohort and 2 deaths in the WBIaC cohort (one from disease recurrence). With a median time of 23.4 (range 4.8 to 47) months, there were 7 recurrences (1 nodal, 4 local, 4 distant), all in the WBIaC group. At 5 years, there was a trend towards increased local RFS (100% vs. 85.4%, p=0.17) and loco-regional RFS (100% vs. 83.5, p=0.13) favoring the PBICC cohort. There was no significant difference in distant RFS between the two groups (100% vs. 94.4%, p=0.36). Five-year DFS was 100% with PBICC vs.78.9% (95% CI: 63.2 to 94.6%, p=0.08) with WBIaC. Conclusion This study suggests that PBICC may offer similar and possibly better outcomes in patients with TNBC compared to a retrospective cohort treated with WBIaC. This observation is hypothesis-generating for prospective trials.
Collapse
Affiliation(s)
- Ryan Rhome
- Department of Radiation Oncology, Indiana University Hospital, Indianapolis, IN, United States
| | - Jean Wright
- Department of Radiation Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | | | - Vered Stearns
- Department of Oncology, Division of Women’s Malignancies, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Antonio Wolff
- Department of Oncology, Division of Women’s Malignancies, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Richard Zellars
- Department of Radiation Oncology, Indiana University Hospital, Indianapolis, IN, United States
| |
Collapse
|
43
|
Sutera P, Skinner H, Witek M, Mishra M, Kwok Y, Davicioni E, Feng F, Song D, Nichols E, Tran PT, Bergom C. Histology Specific Molecular Biomarkers: Ushering in a New Era of Precision Radiation Oncology. Semin Radiat Oncol 2023; 33:232-242. [PMID: 37331778 PMCID: PMC10446901 DOI: 10.1016/j.semradonc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Histopathology and clinical staging have historically formed the backbone for allocation of treatment decisions in oncology. Although this has provided an extremely practical and fruitful approach for decades, it has long been evident that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. As efficient and affordable DNA and RNA sequencing have become available, the ability to provide precision therapy has become within grasp. This has been realized with systemic oncologic therapy, as targeted therapies have demonstrated immense promise for subsets of patients with oncogene-driver mutations. Further, several studies have evaluated predictive biomarkers for response to systemic therapy within a variety of malignancies. Within radiation oncology, the use of genomics/transcriptomics to guide the use, dose, and fractionation of radiation therapy is rapidly evolving but still in its infancy. The genomic adjusted radiation dose/radiation sensitivity index is one such early and exciting effort to provide genomically guided radiation dosing with a pan-cancer approach. In addition to this broad method, a histology specific approach to precision radiation therapy is also underway. Herein we review select literature surrounding the use of histology specific, molecular biomarkers to allow for precision radiotherapy with the greatest emphasis on commercially available and prospectively validated biomarkers.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heath Skinner
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Witek
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Felix Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Daniel Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
44
|
Guven DC, Yildirim HC, Kus F, Erul E, Kertmen N, Dizdar O, Aksoy S. Optimal adjuvant treatment strategies for TNBC patients with residual disease after neoadjuvant treatment. Expert Rev Anticancer Ther 2023; 23:1049-1059. [PMID: 37224429 DOI: 10.1080/14737140.2023.2218090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION The therapeutic armamentarium for the neoadjuvant treatment of triple-negative breast cancer (TNBC) has significantly expanded with the hopes of improving pathological complete response (pCR) rates and the possibility of a cure. However, the data on optimal adjuvant treatment strategies for patients with residual disease after neoadjuvant treatment is limited. AREAS COVERED We discuss the available data on adjuvant treatment for residual TNBC after neoadjuvant treatment considering clinical trials. Additionally, we discuss ongoing trials to give perspectives on how the field may evolve in the next decade. EXPERT OPINION The available data support the use of adjuvant capecitabine for all patients and either adjuvant capecitabine or olaparib for patients with germline BRCA1 and BRCA2 mutations, according to availability. The CREATE-X study of capecitabine and OlympiA study of olaparib demonstrated disease-free and overall survival benefits. There is an unmet need for studies comparing these two options for patients with germline BRCA mutations. Further research is needed to delineate the use of immunotherapy in the adjuvant setting, molecular targeted therapy for patients with molecular alterations other than germline BRCA mutation, combinations, and antibody-drug conjugates to further improve outcomes.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Hasan Cagri Yildirim
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Fatih Kus
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Enes Erul
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
45
|
Zhao F, Nie J, Ma M, Chen X, He X, Wang B, Hou Y. Assessing the Role of Different Heterogeneous Regions in DCE-MRI for Predicting Molecular Subtypes of Breast Cancer based on Network Architecture Search and Vision Transformer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083342 DOI: 10.1109/embc40787.2023.10340066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Breast cancer, the most common female malignancy, is highly heterogeneous, manifesting as different molecular subtypes. It is clinically important to distinguish between these molecular subtypes due to marked differences in prognosis, treatment and survival outcomes. In this study, we first performed convex analysis of mixtures (CAM) analysis on both intratumoral and peritumoral regions in DCE-MRI to generate multiple heterogeneous regions. Then, we developed a vision transformer (ViT)-based DL model and performed network architecture search (NAS) to evaluate all the combination of different heterogeneous regions for predicting molecular subtypes of breast cancer. Experimental results showed that the input plasma from both peritumoral and intratumoral regions, and the fast-flow kinetics from intratumoral regions were critical for predicting different molecular subtypes, achieving an area under receiver operating characteristic curve (AUROC) value of 0.66-0.68.Clinical Relevance- This study reduces the redundancy in multiple heterogeneous subregions and supports the precise prediction of molecular subtypes, which is of potential importance for the medicine care and treatment planning of patients with breast cancer.
Collapse
|
46
|
Obidiro O, Battogtokh G, Akala EO. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 2023; 15:1796. [PMID: 37513983 PMCID: PMC10384267 DOI: 10.3390/pharmaceutics15071796] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has a negative expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). The survival rate for TNBC is generally worse than other breast cancer subtypes. TNBC treatment has made significant advances, but certain limitations remain. Treatment for TNBC can be challenging since the disease has various molecular subtypes. A variety of treatment options are available, such as chemotherapy, immunotherapy, radiotherapy, and surgery. Chemotherapy is the most common of these options. TNBC is generally treated with systemic chemotherapy using drugs such as anthracyclines and taxanes in neoadjuvant or adjuvant settings. Developing resistance to anticancer drugs and off-target toxicity are the primary hindrances to chemotherapeutic solutions for cancer. It is imperative that researchers, clinicians, and pharmaceutical companies work together to develop effective treatment options for TNBC. Several studies have suggested nanotechnology as a potential solution to the problem of suboptimal TNBC treatment. In this review, we summarized possible treatment options for TNBC, including chemotherapy, immunotherapy, targeted therapy, combination therapy, and nanoparticle-based therapy, and some solutions for the treatment of TNBC in the future. Moreover, we gave general information about TNBC in terms of its characteristics and aggressiveness.
Collapse
Affiliation(s)
| | | | - Emmanuel O. Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA; (O.O.); (G.B.)
| |
Collapse
|
47
|
Roy S, Lakritz S, Schreiber AR, Molina E, Kabos P, Wood M, Elias A, Kondapalli L, Bradley CJ, Diamond JR. Clinical outcomes of adjuvant taxane plus anthracycline versus taxane-based chemotherapy regimens in older adults with node-positive, triple-negative breast cancer: A SEER-Medicare study. Eur J Cancer 2023; 185:69-82. [PMID: 36965330 PMCID: PMC11918260 DOI: 10.1016/j.ejca.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer associated with an aggressive clinical course. Adjuvant chemotherapy reduces the risk of recurrence and improves survival in patients with node-positive TNBC. The benefit of anthracycline plus taxane (ATAX) regimens compared with non-anthracycline-containing, taxane-based regimens (TAX) in older women with node-positive TNBC is not well characterised. METHODS Using the Surveillance, Epidemiology, and End Results-Medicare database, we identified 1106 women with node-positive TNBC diagnosed at age 66 years and older between 2010 and 2015. We compared patient clinical characteristics according to adjuvant chemotherapy regimen (chemotherapy versus no chemotherapy and ATAX versus TAX). Logistic regression was performed to estimate the odds ratios (OR) and 95% confidence intervals (CIs). Kaplan-Meier survival curves were generated to estimate 3-year overall survival (OS) and cancer-specific survival (CSS). Cox proportional hazard models were used to analyse OS and CSS while controlling for patient and tumour characteristics. RESULTS Of the 1106 patients in our cohort, 767 (69.3%) received adjuvant chemotherapy with ATAX (364/767, 47.5%), TAX (297/767, 39%) or other regimens (106/767, 13.8%). Independent predictors of which patients were more likely to receive ATAX versus TAX included more extensive nodal involvement (≥4), age, marital/partner status and non-cardiac comorbidities. There was a statistically significant improvement in 3-year CSS (81.8% versus 71.4%) and OS (70.7% versus 51.3%) with the use of any chemotherapy in our cohort (P < 0.01). Three-year CSS and OS for patients who received ATAX versus TAX were similar at 82.8% versus 83.7% (P = 0.80) and 74.2% versus 72.7% (P = 0.79), respectively. There was a trend towards improved CSS and OS in patients with four or more positive lymph nodes who received ATAX versus TAX (hazard ratio 0.66, 95% CI: 0.36-1.23, P = 0.19 and hazard ratio 0.68, 95% CI: 0.41-1.14, P = 0.14, respectively). CONCLUSION Among older women with node-positive TNBC, a majority of patients received adjuvant chemotherapy, which was associated with an improvement in CSS and OS. When compared with TAX chemotherapy, there was a trend towards better outcomes with ATAX for patients with ≥4 nodes.
Collapse
Affiliation(s)
- Savannah Roy
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephanie Lakritz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna R Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Molina
- Population Health Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie Wood
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Elias
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lavanya Kondapalli
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cathy J Bradley
- Department of Health Systems, Management, and Policy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
48
|
Guo F, Ma J, Li C, Liu S, Wu W, Li C, Wang J, Wang J, Li Z, Zhai J, Sun F, Zhou Y, Guo C, Qian H, Xu B. PRR15 deficiency facilitates malignant progression by mediating PI3K/Akt signaling and predicts clinical prognosis in triple-negative rather than non-triple-negative breast cancer. Cell Death Dis 2023; 14:272. [PMID: 37072408 PMCID: PMC10113191 DOI: 10.1038/s41419-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast neoplasms with a higher risk of recurrence and metastasis than non-TNBC. Nevertheless, the factors responsible for the differences in the malignant behavior between TNBC and non-TNBC are not fully explored. Proline rich 15 (PRR15) is a protein involved in the progression of several tumor types, but its mechanisms are still controversial. Therefore, this study aimed to investigate the biological role and clinical applications of PRR15 on TNBC. PRR15 gene was differentially expressed between TNBC and non-TNBC patients, previously described as an oncogenic factor in breast cancer. However, our results showed a decreased expression of PRR15 that portended a favorable prognosis in TNBC rather than non-TNBC. PRR15 knockdown facilitated the proliferation, migration, and invasive ability of TNBC cells in vitro and in vivo, which was abolished by PRR15 restoration, without remarkable effects on non-TNBC. High-throughput drug sensitivity revealed that PI3K/Akt signaling was involved in the aggressive properties of PRR15 silencing, which was confirmed by the PI3K/Akt signaling activation in the tumors of PRR15Low patients, and PI3K inhibitor reversed the metastatic capacity of TNBC in mice. The reduced PRR15 expression in TNBC patients was positively correlated with more aggressive clinicopathological characteristics, enhanced metastasis, and poor disease-free survival. Collectively, PRR15 down-regulation promotes malignant progression through the PI3K/Akt signaling in TNBC rather than in non-TNBC, affects the response of TNBC cells to antitumor agents, and is a promising indicator of disease outcomes in TNBC.
Collapse
Affiliation(s)
- Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jialu Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Graduate School, Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chunxiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
49
|
Zhang W, Li E, Wang L, Lehmann BD, Chen XS. Transcriptome Meta-Analysis of Triple-Negative Breast Cancer Response to Neoadjuvant Chemotherapy. Cancers (Basel) 2023; 15:2194. [PMID: 37190123 PMCID: PMC10137141 DOI: 10.3390/cancers15082194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with varying responses to neoadjuvant chemotherapy (NAC). The identification of biomarkers to predict NAC response and inform personalized treatment strategies is essential. In this study, we conducted large-scale gene expression meta-analyses to identify genes associated with NAC response and survival outcomes. The results showed that immune, cell cycle/mitotic, and RNA splicing-related pathways were significantly associated with favorable clinical outcomes. Furthermore, we integrated and divided the gene association results from NAC response and survival outcomes into four quadrants, which provided more insights into potential NAC response mechanisms and biomarker discovery.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Emma Li
- California Academy of Mathematics and Science, 1000 E Victoria St, Carson, CA 90747, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian D. Lehmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - X. Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
50
|
Ma X, Wu X, Cao S, Zhao Y, Lin Y, Xu Y, Ning X, Kong D. Stretchable and Skin-Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205343. [PMID: 36727804 PMCID: PMC10074095 DOI: 10.1002/advs.202205343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Surgery represents a primary clinical treatment of solid tumors. The high risk of local relapse typically requires frequent hospital visits for postoperative adjuvant therapy. Here, device designs and system integration of a stretchable electronic device for wearable cancer treatment are presented. The soft electronic patch harnesses compliant materials to achieve conformal and stable attachment to the surgical wound. A composite nanotextile dressing is laminated to the electronic patch to allow the on-demand release of anticancer drugs under electro-thermal actuation. An additional flexible circuit and a compact battery complete an untethered wearable system to execute remote therapeutic commands from a smartphone. The successful implementation of combined chemothermotherapy to inhibit tumor recurrence demonstrates the promising potential of stretchable electronics for advanced wearable therapies without interfering with daily activities.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Xiaotong Wu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Shitai Cao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yinfeng Zhao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Yong Lin
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yurui Xu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Xinghai Ning
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Desheng Kong
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| |
Collapse
|