1
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025; 480:3429-3454. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Luo Y, Luo W, Cao Y, Wang Z. m6A demethylase FTO/ALKBH5 promotes diabetes-induced endothelial cell dysfunction by negatively regulating lncRNA H19. Exp Mol Pathol 2025; 143:104970. [PMID: 40381572 DOI: 10.1016/j.yexmp.2025.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Endothelial cell dysfunction induced by glucose is the most important cause of diabetic vascular complications, which are the leading causes of blindness, disability, renal failure, heart failure, stroke, and even death in diabetic patients. RNA m6A modification is involved in the pathogenesis of human disease. However, the role and underlying mechanism of RNA m6A modification in high glucose-induced endothelial cell dysfunction is not well understood. Herein, this study first demonstrated that m6A levels were decreased and that the demethylases FTO and ALKBH5 were upregulated in diabetic patients and an STZ-induced diabetic mouse model. This study revealed that high glucose induced decreased m6A levels and increased expression of FTO and ALKBH5, and silencing of FTO and ALKBH5 restored high glucose-induced decreases in m6A levels and dysfunction of HUVECs. Next, this study systematically screened differentially expressed lncRNAs, including H19, in HUVECs under high glucose conditions. This study revealed that FTO-ALKBH5 inhibited H19 expression by decreasing m6A modification in H19 transcripts. In addition, this study demonstrated the role of the FTO/ALKBH5/H19 pathway in high glucose-induced cellular dysfunction of HUVECs. Ultimately, this study uncovered that silencing of H19 promoted the expression of cell cycle-related genes, including PTEN, p21 and p27 via interacting with EZH2 and affecting the H3K27me3 histone modification. Overall, this study is the first to dissect the regulation of lncRNA by m6A modification in hyperglycaemia, identifying a new regulatory pathway in high glucose-induced cellular dysfunction and providing biomarkers with the potential to serve as therapeutic targets for high glucose-induced cellular dysfunction.
Collapse
Affiliation(s)
- Yanli Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Wanjun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yanan Cao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhanpeng Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 410008, PR China
| |
Collapse
|
3
|
Qian X, Li X, Zheng Z, Liu L, Li J, Yang J, Lu B, Chen E, Zhang H, Ye B, Lu Y, Liu P. METTL3 orchestrates cancer progression by m 6A-dependent modulation of oncogenic lncRNAs. Int J Biol Macromol 2025; 310:143299. [PMID: 40253016 DOI: 10.1016/j.ijbiomac.2025.143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
RNA modifications, particularly N6-methyladenosine (m6A), play crucial roles in gene expression regulation. While extensively studied in the context of mRNA, the impact of m6A on long non-coding RNAs (lncRNAs) remains elusive. This research aimed to reveal the regulatory landscape of m6A in lncRNA expression. In a comprehensive analysis across 6219 samples spanning 12 cancer types, we unveiled METTL3 as the most potent regulator of lncRNA expression among the examined 19 m6A regulators. A total of 397 METTL3-mediated m6A-modified lncRNAs (mmlncRs) were unveiled across 12 cancer types, indicating a consistent mechanism of METTL3-mediated lncRNA regulation. Functional assays demonstrated that METTL3 knockout significantly impeded lung cancer cell proliferation and progression. Leveraging RNA-seq and MeRIP-seq, we identified C1RL-AS1 as a bona fide m6A target of METTL3 in lung cancer, revealing its oncogenic role. Mechanistically, METTL3 depletion disrupts m6A modification on C1RL-AS1, leading to its downregulated expression. YTHDF2 binds to C1RL-AS1, maintaining its stability in a m6A-dependent manner. This study provides a valuable resource for the exploration of mmlncRs as promising therapeutic targets in cancers, shedding light on the intricate regulatory networks orchestrated by METTL3.
Collapse
Affiliation(s)
- Xinyi Qian
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xufan Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhihong Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lian Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Bo Ye
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
4
|
Jin Y, Tao H, Liu Y, Liu S, Tang X. LINC00704 boosts the immunologic escape of colorectal cancer cells by upregulating TLR4 by binding with miR- 203a- 3p. Eur J Med Res 2025; 30:263. [PMID: 40211393 PMCID: PMC11983970 DOI: 10.1186/s40001-025-02514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor and is the second most common cause of cancer-related deaths worldwide. Immune escape suppresses anti-tumor immunity and facilitates tumor cells to proliferate. MiR- 203a- 3p regulates cancer progression and LINC00704 may bind with miR- 203a- 3p to inhibit its effects. METHODS In this study, the levels of miR- 203a- 3p and LINC00704 were tested in tumor tissue and non-cancer tissues in vivo. In further in vitro experiments, transfection, cell vitality, apoptosis, and proliferation ability were detected. The expression level of TLR4 was also examined. Finally, a luciferase assay was conducted to detect whether LINC00704 could bind with miR- 203a- 3p. RESULTS A rise in LINC00704 mRNA was observed in CRC tissues while miR- 203a- 3p was reduced. LINC00704 boosts the proliferation of cells and inhibits cell apoptosis. LINC00704 regulates Toll- 1ike receptor- 4 (TLR4) expression through miR- 203a- 3p, thereby modulating cell viability. CRC cell immune escape was facilitated by LINC00704 via miR- 203a- 3p. CONCLUSION LINC00704 promotes CRC cell immunologic escape by upgrading TLR4 by binding with miR- 203a- 3p.
Collapse
Affiliation(s)
- Yalei Jin
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Hai Tao
- Dept. of Orthopedics, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Street, Wuchang District, Wuhan, Hubei, China
| | - Yuwei Liu
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Sha Liu
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China
| | - Xiaoyan Tang
- Dept. of General Practice, Zhongnanhongnan Hospital of Wuhanuhan Universityniversity, No169 Donghu Road, Wuchang District, Wuhan, Hubei, China.
| |
Collapse
|
5
|
ZHANG HENG, YANG XIAO, GUO YUJIN, ZHAO HAIBO, JIANG PEI, YU QINGQING. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture. Oncol Res 2025; 33:837-849. [PMID: 40191723 PMCID: PMC11964869 DOI: 10.32604/or.2024.053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - XIAO YANG
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - YUJIN GUO
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| | - HAIBO ZHAO
- Department of Oncology, Jining No.1 People’s Hospital, Jining, 272002, China
| | - PEI JIANG
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, 272002, China
| | - QING-QING YU
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| |
Collapse
|
6
|
Mao Z, Li M, Wang S. Targeting m 6A RNA Modification in Tumor Therapeutics. Curr Oncol 2025; 32:159. [PMID: 40136363 PMCID: PMC11941731 DOI: 10.3390/curroncol32030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalent eukaryotic RNA modification N6-methyladenosine (m6A), which is distributed in more than 50% of cases, has demonstrated significant implications in both normal development and disease progression, particularly in the context of cancer. This review aims to discuss the potential efficacy of targeting tumor cells through modulation of m6A RNA levels. Specifically, we discuss how the upregulation or downregulation of integral or specific targets is effective in treating different tumor types and patients. Additionally, we will cover the factors influencing the efficacy of m6A RNA targeting in tumor treatment. Our review will focus on the impact of targeting m6A mRNA on genes and cells and assess its potential as a therapeutic strategy for tumors. Despite the challenges involved, further research on m6A RNA in tumors and its integration with existing tumor therapy approaches is warranted.
Collapse
Affiliation(s)
- Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
7
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
8
|
Xu J, Ren Y, Lu J, Qin F, Yang D, Tang C, Yang Y, Xu J, Liu T, Yi P. Genome-wide profiling of N6-methyladenosine-modified pseudogene-derived long noncoding RNAs reveals the tumour-promoting and innate immune-restraining function of RPS15AP12 in ovarian cancer. Clin Transl Med 2025; 15:e70249. [PMID: 40000433 PMCID: PMC11859666 DOI: 10.1002/ctm2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Pseudogene-derived lncRNAs are widely dysregulated in cancer. Technological advancements have facilitated the functional characterization of increasing pseudogenes in cancer progression. However, the association between pseudogenes and RNA N6-methyladenosine (m6A) modification in cancer, as well as the underlying mechanisms, remains largely unexplored. METHODS We analyzed the expression of 12 146 pseudogenes and comprehensively examined the m6A modification of RNAs derived from them and their paralogs. Through integrative analysis of multi-omics data, we explored the associations between pseudogene dysregulation and m6A, identifying critical pseudogenes involved in HGSOC progression. Tumour promotion role of RPS15AP12 and its cognate parent gene was characterized by cell proliferation, transwell assays, and scratch assays in ovarian cells and xenograft nude mice. RNA decay assays were used to reveal the participation of m6A in decreasement of RPS15AP12 lncRNA stability. Luciferase reporter assays were performed to verify that RPS15AP12 enhances RPS15A expression by competitively binding to miR-96-3p. Western blot and phosphorylation assays were performed to investigate the impairment of RPS15AP12 towards the sensors of MAVS (RIG-I and MDA5), and downstream p-TBK1 and p-IRF3. Finally, ELISA assays were performed to explore the regulatory role of RPS15AP12 in IFN-β expression. RESULTS M6A is distributed across over a thousand pseudogenes, and hypomethylation leads to their upregulation in HGSOC. We identified a processed pseudogene, RPS15AP12, upregulated by FTO-mediated m6A demethylation. RPS15AP12 enhances the growth ability and metastatic capabilities of ovarian cancer (OC) cells via functioning as a competitive endogenous RNA (ceRNA) for its host gene, RPS15A, through the sequestration of miR-96-3p. Importantly, the deletion of RPS15AP12 diminishes the expression of RPS15A, leading to the upregulation of anti-tumour immune responses by activating RIG-I and MDA5 and downstream p-TBK1 and p-IRF3 as well as IFN-β levels. CONCLUSION Our findings expand the understanding of m6A-modulated pseudogenes in tumour growth and anti-tumour innate immunity in OC. KEY POINTS Genome-wide profiling reveals the redistribution of m6A modification on pseudogene-derived lncRNAs and m6A redistribution-relevant dysregulation of pseudogenes in HGSOC. RPS15AP12, as a representative processed pseudogene, is up-regulated by FTO-mediated demethylation and acts as a miRNA sponge to promote RPS15A expression via competitively binding to miR-96-3p. RPS15AP12/RPS15A axis inhibits MAVS sensors (RIG-I and MDA5) and downstream IFN-β levels in ovarian cancer.
Collapse
Affiliation(s)
- Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yifei Ren
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyDaping HospitalArmy Medical UniversityChongqingChina
| | - Jiayi Lu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fengjiang Qin
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyChongqing University Fuling HospitalChongqingChina
| | - Dan Yang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunyan Tang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Yang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tao Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
9
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 PMCID: PMC11852398 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
10
|
Wang Q, Zuo H, Sun H, Xiao X, Wang Z, Li T, Luo X, Wang Y, Wang T, Li J, Gao L. Ntoco Promotes Ferroptosis via Hnrnpab-Mediated NF-κB/Lcn2 Axis Following Traumatic Brain Injury in Mice. CNS Neurosci Ther 2025; 31:e70282. [PMID: 39976282 PMCID: PMC11840698 DOI: 10.1111/cns.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/11/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE Emerging evidence highlights the involvement of long non-coding RNAs (lncRNAs) and ferroptosis in the pathogenesis of traumatic brain injury (TBI). However, the regulatory role of lncRNAs in TBI-induced ferroptosis remains poorly understood. This study aims to investigate the role of a specific lncRNA, noncoding transcript of chemokine (C-C motif) ligand 4 (Ccl4) overlapping (Ntoco), in the regulation of ferroptosis following TBI and explore its potential as a therapeutic target. METHODS The expression levels of Ntoco following controlled cortical injury (CCI) in mice were measured using real-time PCR. Behavioral tests post-injury were assessed using the rotarod test and Morris water maze, and lesion volume was evaluated using micro-MRI. Ntoco binding proteins were identified using RNA pull-down and RNA immunoprecipitation. RNA sequencing was employed to identify Ntoco-related pathways. Western blotting and co-immunoprecipitation were used to measure protein levels and ubiquitination processes. RESULTS Ntoco upregulation was observed in CCI mice. Ntoco knockdown inhibited neuron ferroptosis, reduced lesion volume, and improved spatial memory following TBI. Ntoco overexpression promoted ferroptosis in neurons. Mechanistically, Ntoco facilitated K48-linked ubiquitination and degradation of proteins by binding to Hnrnpab, suppressing the NF-κB/Lcn2 signaling pathway. This included reduced phosphorylation of IkBα, increased phosphorylation of IKKα/β, nuclear translocation of the NF-κB p65 subunit, and elevated Lcn2 expression. CONCLUSION Our findings suggest that Ntoco plays a crucial role in TBI-induced ferroptosis by modulating the NF-κB/Lcn2 signaling pathway. Targeting Ntoco may provide a promising therapeutic strategy to mitigate ferroptosis and improve outcomes following TBI.
Collapse
Affiliation(s)
- Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Hanjun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Huaqin Sun
- SCU‐CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of PediatricsWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Zhao Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Tao Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Juanjuan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
Liu G, Yang J, Li R, Li W, Liu D, Zhang N, Zhao Y, He Z, Gu S. Roles of N 6-methyladenosine in LncRNA changes and oxidative damage in cadmium-induced pancreatic β-cells. Toxicology 2025; 511:154053. [PMID: 39798863 DOI: 10.1016/j.tox.2025.154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
N6-methyladenosine (m6A) modification and LncRNAs play crucial regulatory roles in various pathophysiological processes, yet roles of m6A modification and the relationship between m6A modification and LncRNAs in cadmium-induced oxidative damage of pancreatic β-cells have not been fully elucidated. In this study, m6A agonist entacapone and inhibitor 3-deazadenosine were used to identify the effects of m6A on cadmium-induced oxidative damage as well as LncRNA changes. Our results indicate that elevated levels of m6A modification by entacapone can rescue the cell viability and attenuate the cell apoptosis, while the inhibition levels of m6A modification can exacerbate the cell death. Furthermore, the elevation of m6A modification can recover cadmium-induced oxidative damage to pancreatic β-cells, which characterized as inhibition the ROS accumulation, MDA contents, protein expressions of Nrf2 and Ho-1, while elevation the expressions of Sod1 and Gclc. On the contrary, the reduction levels of m6A modification can exacerbate the cadmium-induced oxidative damage. More importantly, six significantly differentially expressed LncRNAs were selected according to our preliminary sequencing data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253072) and there is a clear correlation between the levels of these LncRNAs and m6A modification after cadmium treatment. Interestingly, the intervention of m6A modification levels can significantly affect the levels of these LncRNAs. In detail, the stimulation of m6A modification reversed the changes of cadmium-induced LncRNAs, while the m6A modification inhibition can significantly exacerbate the changes of cadmium-induced LncRNAs. In conclusion, our data revealed critical roles of m6A modification in cadmium-induced LncRNAs and oxidative damage. Our findings point to a new direction for future studies on the molecular mechanisms of pancreatic β-cell damage induced by cadmium.
Collapse
Affiliation(s)
- Guofen Liu
- School of Public Health, Dali University, Dali, Yunnan, China; Yiyang Vocational and Technical College, Yiyang, Hunan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Jie Yang
- College of Engineering, Dali University, Dali, Yunnan, China
| | - Rongxian Li
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Wenhong Li
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - De Liu
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Nan Zhang
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Yuan Zhao
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Zuoshun He
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China
| | - Shiyan Gu
- School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China.
| |
Collapse
|
12
|
Liu J, Li X, Yang P, He Y, Hong W, Feng Y, Ye Z. LIN28A-dependent lncRNA NEAT1 aggravates sepsis-induced acute respiratory distress syndrome through destabilizing ACE2 mRNA by RNA methylation. J Transl Med 2025; 23:15. [PMID: 39762837 PMCID: PMC11702040 DOI: 10.1186/s12967-024-06032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS. However, the precise mechanisms underlying sepsis-induced ARDS remain unclear. METHODS Here RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), RNA stability was determined by RNA decay assay while RNA antisense purification (RAP) was used to identify RNA-protein interaction. Besides, co-immunoprecipitation (Co-IP) was utilized to detect protein-protein interaction. Moreover, mice were injected with lipopolysaccharide (LPS) to establish sepsis-induced ARDS model in vivo. RESULTS This study revealed that long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) aggravated lung injury through suppressing angiotensin-converting enzyme 2 (ACE2) in sepsis-induced ARDS models in vitro and in vivo. Mechanistically, NEAT1 declined ACE2 mRNA stability through heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) in lipopolysaccharide (LPS)-treated alveolar type II epithelial cells (AT-II cells). Besides, NEAT1 destabilized ACE2 mRNA depending on RNA methylation by forming methylated NEAT1/hnRNPA2B1/ACE2 mRNA complex in LPS-treated AT-II cells. Moreover, lin-28 homolog A (LIN28A) improved NEAT1 stability whereas insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) augmented NEAT1 destabilization by associating with LIN28A to disrupt the combination of LIN28A and NEAT1 in LPS-treated AT-II cells. Nevertheless, hnRNPA2B1 increased NEAT1 stability by blocking the interaction between LIN28A and IGF2BP3 in LPS-treated AT-II cells. CONCLUSIONS These findings uncover mechanisms of sepsis-triggering ARDS and provide promising therapeutic targets for sepsis-induced ARDS.
Collapse
Affiliation(s)
- Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Peng Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yufeng He
- Intensive Care Unit, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Weilong Hong
- Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Zhiqiang Ye
- Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Taheri Z, Zaki-Dizaji M. Epigenetically Regulating Non-coding RNAs in Colorectal Cancer: Promises and Potentials. Middle East J Dig Dis 2025; 17:40-53. [PMID: 40322568 PMCID: PMC12048831 DOI: 10.34172/mejdd.2025.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/09/2024] [Indexed: 05/08/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. Despite advancements in understanding its molecular causes and improved drug therapies, patient survival rates remain low. The main reasons for the high mortality rate are cancer metastasis and the emergence of drug-resistant cancer cell populations. While genetic changes are recognized as the main driver of CRC occurrence and progression, recent studies suggest that epigenetic regulation is a crucial marker in cancer, influencing the interplay between genetics and the environment. Research has shown the significant regulatory roles of non-coding RNAs (ncRNAs) in CRC development. This review explores epigenetically regulated ncRNAs and their functions, aiming to understand key regulatory mechanisms that impact CRC development. Additionally, it discusses the potential use of these ncRNAs in CRC diagnosis, prognosis, and targeted treatments.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
16
|
Li J, Wang X, Wang H. RNA modifications in long non-coding RNAs and their implications in cancer biology. Bioorg Med Chem 2024; 113:117922. [PMID: 39299080 DOI: 10.1016/j.bmc.2024.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Long non-coding RNAs (lncRNAs) represent the most diverse class of RNAs in cells and play crucial roles in maintaining cellular functions. RNA modifications, being a significant factor in regulating RNA biology, have been found to be extensively present in lncRNAs and exert regulatory effects on their behavior and biological functions. Most common types of RNA modifications in lncRNAs include N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). In this review, we summarize the major RNA modification types associated with lncRNAs, the regulatory roles of each modification, and the implications of modified lncRNAs in tumorigenesis and development. By examining these aspects, we aim to provide insights into the role of RNA modifications in lncRNAs and their potential impact on cancer biology.
Collapse
Affiliation(s)
- Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Wei L, Liu S, Xie Z, Tang G, Lei X, Yang X. The interaction between m6A modification and noncoding RNA in tumor microenvironment on cancer progression. Int Immunopharmacol 2024; 140:112824. [PMID: 39116490 DOI: 10.1016/j.intimp.2024.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cancer development is thought to be closely related to aberrant epigenetic regulation, aberrant expression of specific non-coding RNAs (ncRNAs), and tumor microenvironment (TME). The m6A methylation is one of the most abundant RNA modifications found in eukaryotes, and it can determine the fate of RNA at the post-transcriptional level through a variety of mechanisms, which affects important biological processes in the organism. The m6A methylation modification is involved in RNA processing, regulation of RNA nuclear export or localisation, RNA degradation and RNA translation. This process affects the function of mRNAs and ncRNAs, thereby influencing the biological processes of cancer cells. TME accelerates and promotes cancer generation and progression during tumor development. The m6A methylation interacting with ncRNAs is closely linked to TME formation. Mutual regulation and interactions between m6A methylation and ncRNAs in TME create complex networks and mediate the progression of various cancers. In this review, we will focus on the interactions between m6A modifications and ncRNAs in TME, summarising the molecular mechanisms by which m6A interacts with ncRNAs to affect TME and their roles in the development of different cancers. This work will help to deepen our understanding of tumourigenesis and further explore new targets for cancer therapy.
Collapse
Affiliation(s)
- Liushan Wei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Shun Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Zhizhong Xie
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Guotao Tang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
18
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 PMCID: PMC11573915 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
19
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Ren Y, Sun X, Chen X, Shao S, Tang J, Xu Z, Xu Y, Kang H, Wang L. The transcription factor ZNF248 promotes colorectal cancer metastasis by binding to ZEB1. J Cancer 2024; 15:5440-5450. [PMID: 39247604 PMCID: PMC11375549 DOI: 10.7150/jca.92886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors globally, with metastasis emerging as the leading cause of mortality in CRC patients. Transcription factors play pivotal roles in the metastatic process. Using bioinformatics tools, we analyzed the TCGA-COAD and GES146587 datasets and identified ZNF248 participating in tumor progression. By analyzing 100 CRC patient tissues, it is found that ZNF248 is highly expressed in cancer tissue as well as in CRC cell lines identified by qRT-PCR. Our study discovered that ZNF248 enhances CRC cell migratory and invasive capabilities. A positive correlation was found between ZNF248 and epithelial-mesenchymal transition (EMT)-related markers (ZEB1, snail1), while E-cadherin exhibited a negative correlation with ZNF248. In addition, the analysis of the TCGA dataset demonstrated a strong correlation between the mRNA level of ZNF248 and ZEB1 expressions. Furthermore, it is found that the overexpression of ZEB1 could reverse CRC cell invasion and migration, along with the inhibition on EMT marker expressions induced by the RNA interference with ZNF248. Immunohistochemical analysis indicated a substantial association of ZNF248 expression with the lymph node metastasis, and with the liver metastasis (P =0.01, P =0.01), and a positive correlation between ZNF248 and ZEB1 expression (P =0.021) was also identified. Using Chip-PCR assay, it is found that ZNF248 bound to the ZEB1 promoter region. These findings showed that ZNF248 promotes CRC metastasis in vivo, revealed its role as an oncogene in CRC by targeting ZEB1 and activating the EMT pathway, which provided novel and promising biomarkers for CRC therapy through targeting ZEB1.
Collapse
Affiliation(s)
- Yanying Ren
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoxu Sun
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Chen
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuai Shao
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - JingTong Tang
- Department of Gastrointestinal Surgery, the first Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhaohui Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Haonan Kang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Liming Wang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
21
|
Fan J, Zhong L, Yan F, Li X, Li L, Zhao H, Han Z, Wang R, Tao Z, Zheng Y, Ma Q, Luo Y. Alteration of N6-methyladenosine modification profiles in the neutrophilic RNAs following ischemic stroke. Neuroscience 2024; 553:56-73. [PMID: 38945353 DOI: 10.1016/j.neuroscience.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the most extensive RNA methylation modifications in eukaryotes and participates in the pathogenesis of numerous diseases including ischemic stroke. Peripheral blood neutrophils are forerunners after ischemic brain injury and exert crucial functions. This study aims to explore the transcriptional profiles of m6A modification in neutrophils of patients with ischemic stroke. RESULTS We found that the expression levels of m6A regulators FTO and YTHDC1 were notably decreased in the neutrophils following ischemic stroke, and FTO expression was negatively correlated with neutrophil counts and neutrophil-to-lymphocyte ratio (NLR). The m6A mRNA&lncRNA epigenetic transcriptome microarray identified 416 significantly upregulated and 500 significantly downregulated mRNA peaks in neutrophils of ischemic stroke patients. Moreover, 48 mRNAs and 18 lncRNAs were hypermethylated, and 115 mRNAs and 29 lncRNAs were hypomethylated after cerebral ischemia. Gene ontology (GO) analysis identified that these m6A-modified mRNAs were primarily enriched in calcium ion transport, long-term synaptic potentiation, and base-excision repair. The signaling pathways involved were EGFR tyrosine kinase inhibitor resistance, ErbB, and base excision repair signaling pathway. MeRIP-qPCR validation results showed that NRG1 and GDPD1 were significantly hypermethylated, and LIG1, CHRND, lncRNA RP11-442J17.2, and lncRNA RP11-600P1.2 were significantly hypomethylated after cerebral ischemia. Moreover, the expression levels of major m6A regulators Mettl3, Fto, Ythdf1, and Ythdf3 were obviously declined in the brain and leukocytes of post-stroke mouse models. CONCLUSION This study explored the RNA m6A methylation pattern in the neutrophils of ischemic stroke patients, indicating that it is an intervention target of epigenetic regulation in ischemic stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China.
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
22
|
Luo Q, Shen F, Zhao S, Dong L, Wei J, Hu H, Huang Q, Wang Q, Yang P, Liang W, Li W, He F, Cao J. LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions. J Exp Clin Cancer Res 2024; 43:225. [PMID: 39135122 PMCID: PMC11321182 DOI: 10.1186/s13046-024-03145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China
- Department of Thyroid surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Sheng Zhao
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Lan Dong
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jianchang Wei
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - He Hu
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qing Huang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Qiang Wang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Ping Yang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wenlong Liang
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Wanglin Li
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Feng He
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - Jie Cao
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
- Guangzhou Digestive Disease Center, Department of Gastrointestinal Surgery, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
23
|
Wang A, Zeng Y, Zhang W, Zhao J, Gao L, Li J, Zhu J, Liu Z, Huang JA. N 6-methyladenosine-modified SRPK1 promotes aerobic glycolysis of lung adenocarcinoma via PKM splicing. Cell Mol Biol Lett 2024; 29:106. [PMID: 39095708 PMCID: PMC11295518 DOI: 10.1186/s11658-024-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear. METHODS Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism. RESULTS The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD. CONCLUSION It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
24
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
25
|
Zhu A, Zong Y, Gao X. Development of a disulfidptosis-related lncRNA prognostic signature for enhanced prognostic assessment and therapeutic strategies in lung squamous cell carcinoma. Sci Rep 2024; 14:17804. [PMID: 39090162 PMCID: PMC11294474 DOI: 10.1038/s41598-024-68423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Limited treatment options and poor prognosis present significant challenges in the treatment of lung squamous cell carcinoma (LUSC). Disulfidptosis impacts cancer progression and prognosis. We developed a prognostic signature using disulfidptosis-related long non-coding RNAs (lncRNAs) to predict the prognosis of LUSC patients. Gene expression matrices and clinical information for LUSC were downloaded from the TCGA database. Co-expression analysis identified 209 disulfidptosis-related lncRNAs. LASSO-Cox regression analysis identified nine key lncRNAs, forming the basis for establishing a prognostic model. The model's validity was confirmed by Kaplan-Meier and ROC curves. Cox regression analysis identified the risk score (RS) as an independent prognostic factor inversely correlated with overall survival. A nomogram based on the RS demonstrated good predictive performance for LUSC patient prognosis. The relationship between RS and immune function was explored using ESTIMATE, CIBERSORT, and ssGSEA algorithms. According to the TIDE database, a negative correlation was found between RS and immune therapy responsiveness. The GDSC database revealed that 49 drugs were beneficial for the low-risk group and 25 drugs for the high-risk group. Silencing C10orf55 expression in SW900 cells reduced invasiveness and migration potential. In summary, this lncRNA model based on TCGA-LUSC data effectively predicts prognosis and assists clinical decision-making.
Collapse
Affiliation(s)
- Ankang Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yan Zong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xingcai Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Esmaeili N, Bakheet A, Tse W, Liu S, Han X. Interaction of the intestinal cytokines-JAKs-STAT3 and 5 axes with RNA N6-methyladenosine to promote chronic inflammation-induced colorectal cancer. Front Oncol 2024; 14:1352845. [PMID: 39136000 PMCID: PMC11317299 DOI: 10.3389/fonc.2024.1352845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Ahmed Bakheet
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - William Tse
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Xiaonan Han
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH, United States
| |
Collapse
|
27
|
Qi J, Li J, Zhu X, Zhao S. Endothelial cell specific molecule 1 promotes epithelial-mesenchymal transition of cervical cancer via the E-box binding homeobox 1. PLoS One 2024; 19:e0304597. [PMID: 38954708 PMCID: PMC11218952 DOI: 10.1371/journal.pone.0304597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE To investigate the mechanism of endothelial cell specific molecule 1 (ESM1) promoting cervical cancer cell proliferation and EMT characteristics through zinc finger E-box binding homeobox 1 (ZEB1)/EMT pathway. METHODS The correlation between ESM1 expression and prognosis of cervical cancer patients was analyzed by bioinformatics. SiHa, HeLa cell lines and corresponding control cell lines with stable ESM1 expression were obtained. Cell proliferation ability was detected by CCK-8 assay. The invasion and migration ability of Hela and SiHa cells were detected by Transwell assay and scratch closure assay. Expressions of EMT-related markers E-cadherin and Vimentin were detected by real-time PCR. The ability of silenced ESM1 to tumor formation in vivo was detected by tumor formation in nude mice. The effects of aloe-emodin on inhibit ESM1 expression and its inhibitory effect on cervical cancer cells in vitro and in vivo were analyzed by the same method. RESULTS ESM1 was highly expressed in cervical cancer, and the high expression of ESM1 was associated with poor prognosis of cervical cancer patients. CCK-8 results showed that the proliferation, invasion and migration of Hela and SiHa cells were significantly reduced after siRNA interfered with ESM1 expression. Overexpression of ESM1 promoted the proliferation and migration of cervical cancer cells. Mechanism studies have shown that the oncogenic effect of ESM1 is realized through the ZEB1/PI3K/AKT pathway. High throughput drug screening found that aloe-emodin can target ESM1. Inhibitory effect of aloe emodin on ESM1/ZEB1/EMT signaling pathway and cervical cancer cells. CONCLUSION The silencing of ESM1 expression may inhibit the proliferation, invasion, metastasis and epithelial-mesenchymal transformation of cervical cancer cells by inhibiting ZEB1/PI3K/AKT. Aloe-emodin is a potential treatment for cervical cancer, which can play an anti-tumor role by inhibiting ESM1/ZEB1.
Collapse
Affiliation(s)
- Jie Qi
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jie Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Gynecologic Oncology, Jilin Cancer Hospital, Chaoyang District, Changchun, Jilin, People’s Republic of China
| | - Sufen Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
28
|
Zeng W, Shi C, Deng L, Fu W, Zhang J. LncRNA HOTTIP facilitated tumor growth via stimulating the hnRNPA2B1/DKK1/Wnt/β-catenin regulatory axis in hepatocellular carcinoma. Genes Dis 2024; 11:101013. [PMID: 38481876 PMCID: PMC10933460 DOI: 10.1016/j.gendis.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 01/03/2025] Open
Affiliation(s)
- Weiqiang Zeng
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuanjian Shi
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, China
| | - Liqiang Deng
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, China
| | - Weiming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinfang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, China
| |
Collapse
|
29
|
Dou Z, Ma XT, Piao MN, Wang JP, Li JL. Overview of the interplay between m6A methylation modification and non-coding RNA and their impact on tumor cells. Transl Cancer Res 2024; 13:3106-3125. [PMID: 38988908 PMCID: PMC11231769 DOI: 10.21037/tcr-23-2401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.
Collapse
Affiliation(s)
- Zheng Dou
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Ting Ma
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Na Piao
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Wang
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Li Li
- Department of Radiation Oncology, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, Li W, Li X, Chen M, Gu L, Sun Y, Xiao Z, Shen J. Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther 2024; 31:816-830. [PMID: 38351139 PMCID: PMC11192634 DOI: 10.1038/s41417-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
RNA modification, especially N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine methylation, participates in the occurrence and progression of cancer through multiple pathways. The function and expression of these epigenetic regulators have gradually become a hot topic in cancer research. Mutation and regulation of noncoding RNA, especially lncRNA, play a major role in cancer. Generally, lncRNAs exert tumor-suppressive or oncogenic functions and its dysregulation can promote tumor occurrence and metastasis. In this review, we summarize N6-methyladenosine, 5-methylcytosine, and N7-methylguanosine modifications in lncRNAs. Furthermore, we discuss the relationship between epigenetic RNA modification and lncRNA interaction and cancer progression in various cancers. Therefore, this review gives a comprehensive understanding of the mechanisms by which RNA modification affects the progression of various cancers by regulating lncRNAs, which may shed new light on cancer research and provide new insights into cancer therapy.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Linwei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
31
|
Song H, Adu-Amankwaah J, Zhao Q, Yang D, Liu K, Bushi A, Zhao J, Yuan J, Tan R. Decoding long non‑coding RNAs: Friends and foes in cancer development (Review). Int J Oncol 2024; 64:61. [PMID: 38695241 PMCID: PMC11095623 DOI: 10.3892/ijo.2024.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer remains a formidable adversary, challenging medical advancements with its dismal prognosis, low cure rates and high mortality rates. Within this intricate landscape, long non‑coding RNAs (lncRNAs) emerge as pivotal players, orchestrating proliferation and migration of cancer cells. Harnessing the potential of lncRNAs as therapeutic targets and prognostic markers holds immense promise. The present comprehensive review delved into the molecular mechanisms underlying the involvement of lncRNAs in the onset and progression of the top five types of cancer. By meticulously examining lncRNAs across diverse types of cancer, it also uncovered their distinctive roles, highlighting their exclusive oncogenic effects or tumor suppressor properties. Notably, certain lncRNAs demonstrate diverse functions across different cancers, confounding the conventional understanding of their roles. Furthermore, the present study identified lncRNAs exhibiting aberrant expression patterns in numerous types of cancer, presenting them as potential indicators for cancer screening and diagnosis. Conversely, a subset of lncRNAs manifests tissue‑specific expression, hinting at their specialized nature and untapped significance in diagnosing and treating specific types of cancer. The present comprehensive review not only shed light on the intricate network of lncRNAs but also paved the way for further research and clinical applications. The unraveled molecular mechanisms offer a promising avenue for targeted therapeutics and personalized medicine, combating cancer proliferation, invasion and metastasis.
Collapse
Affiliation(s)
- Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dongqi Yang
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuntao Liu
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinxiang Yuan
- Lin He Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
32
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
33
|
Wu X, Chen X, Liu X, Jin B, Zhang Y, Wang Y, Xu H, Wan X, Zheng Y, Xu L, Xiao Y, Chen Z, Wang H, Mao Y, Lu X, Sang X, Zhao L, Du S. LINC02257 regulates colorectal cancer liver metastases through JNK pathway. Heliyon 2024; 10:e30841. [PMID: 38826728 PMCID: PMC11141284 DOI: 10.1016/j.heliyon.2024.e30841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as critical regulators of colorectal cancer (CRC) progression, but their roles and underlying mechanisms in colorectal cancer liver metastases (CRLMs) remain poorly understood. Methods To explore the expression patterns and functions of lncRNAs in CRLMs, we analyzed the expression profiles of lncRNAs in CRC tissues using the TCGA database and examined the expression patterns of lncRNAs in matched normal, CRC, and CRLM tissues using clinical samples. We further investigated the biological roles of LINC02257 in CRLM using in vitro and in vivo assays, and verified its therapeutic potential in a mouse model of CRLM. Results Our findings showed that LINC02257 was highly expressed in metastatic CRC tissues and its expression was negatively associated with overall survival. Functionally, LINC02257 promoted CRC cell growth, migration, metastasis, and inhibited cell apoptosis in vitro, and enhanced liver metastasis in vivo. Mechanistically, LINC02257 up-regulated phosphorylated c-Jun N-terminal kinase (JNK) to promote CRLM. Conclusions Our study revealed that LINC02257 played a key role in the proliferation and metastasis of CRC cells through the LINC02257/JNK axis. Targeting this axis may represent a promising therapeutic strategy for the treatment of liver metastases in patients with CRC.
Collapse
Affiliation(s)
- Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaokun Chen
- Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuke Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxin Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengju Chen
- Pooling Medical Research Institutes, Beijing, China
| | - Haiwen Wang
- Pooling Medical Research Institutes, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Zheng M, Wu L, Xiao R, Cai J, Chen W, Shen S. Fbxo45 facilitates the malignant progression of breast cancer by targeting Bim for ubiquitination and degradation. BMC Cancer 2024; 24:619. [PMID: 38773471 PMCID: PMC11110447 DOI: 10.1186/s12885-024-12382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Breast cancer is one of the common malignancies in women. Evidence has demonstrated that FBXO45 plays a pivotal role in oncogenesis and progression. However, the role of FBXO45 in breast tumorigenesis remains elusive. Exploration of the regulatory mechanisms of FBXO45 in breast cancer development is pivotal for potential therapeutic interventions in patients with breast cancer. METHODS Hence, we used numerous approaches to explore the functions of FBXO45 and its underlaying mechanisms in breast cancer pathogenesis, including CCK-8 assay, EdU assay, colony formation analysis, apoptosis assay, RT-PCR, Western blotting, immunoprecipitation, ubiquitination assay, and cycloheximide chase assay. RESULTS We found that downregulation of FBXO45 inhibited cell proliferation, while upregulation of FBXO45 elevated cell proliferation in breast cancer. Silencing of FBXO45 induced cell apoptosis, whereas overexpression of FBXO45 inhibited cell apoptosis in breast cancer. Moreover, FBXO45 interacted with BIM and regulated its ubiquitination and degradation. Furthermore, knockdown of FBXO45 inhibited cell proliferation via regulation of BIM pathway. Notably, overexpression of FBXO45 facilitated tumor growth in mice. Strikingly, FBXO45 expression was associated with poor survival of breast cancer patients. CONCLUSION Our study could provide the rational for targeting FBXO45 to obtain benefit for breast cancer patients. Altogether, modulating FBXO45/Bim axis could be a promising strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Linfeng Wu
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Rongyao Xiao
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Jiaohao Cai
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Weike Chen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Shurong Shen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
| |
Collapse
|
35
|
Wu J, Yi T, Zhuo C, Wang D, Zhang M, Hu R, Wu D, Hou G, Xing Y. m 6A-induced TRIB3 regulates Hippo pathway through interacting with LATS1 to promote the progression of lung adenocarcinoma. J Cell Physiol 2024; 239:e31220. [PMID: 38372068 DOI: 10.1002/jcp.31220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated that dysregulation of the Hippo/Yes-associated protein (YAP) axis is associated with tumor progression and therapy resistance in various cancer types, including lung adenocarcinoma (LUAD). Understanding the regulation of Hippo signaling in LUAD is of great significance. Elevated levels of TRIB3, a pseudo kinase, have been observed in certain lung malignancies and are associated with an unfavorable prognosis. Our research aims to investigate whether increased TRIB3 levels enhance the malignant characteristics of LUAD cells and tumor progression through its interaction with the Hippo signaling pathway. In this study, we reported a positive correlation between elevated expression of TRIB3 and LUAD progression. Additionally, TRIB3 has the ability to enhance TEAD luciferase function and suppress Hippo pathway activity. Moreover, TRIB3 increases total YAP protein levels and promotes YAP nuclear localization. Mechanistic experiments revealed that TRIB3 directly interacts with large tumor suppressor kinase 1 (LATS1), thereby suppressing Hippo signaling. Moreover, the decrease in METTL3-mediated N6-methyladenosine modification of TRIB3 results in a substantial elevation of its expression levels in LUAD cells. Collectively, our research unveils a novel discovery that TRIB3 enhances the growth and invasion of LUAD cells by interacting with LATS1 and inhibiting the Hippo signaling pathway. TRIB3 may serve as a potential biomarker for an unfavorable prognosis and a target for novel treatments in YAP-driven lung cancer.
Collapse
Affiliation(s)
- Jiamei Wu
- Department of Basic Medical Science, Baicheng Medical College, Baicheng, Jilin, P. R. China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, Guangxi, P. R. China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi, P. R. China
| | - Chenyi Zhuo
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi, P. R. China
| | - Duanduan Wang
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Ming Zhang
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Dan Wu
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yutong Xing
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| |
Collapse
|
36
|
Xu YF, Dang Y, Kong WB, Wang HL, Chen X, Yao L, Zhao Y, Zhang RQ. Regulation of TMEM100 expression by epigenetic modification, effects on proliferation and invasion of esophageal squamous carcinoma. World J Clin Oncol 2024; 15:554-565. [PMID: 38689624 PMCID: PMC11056859 DOI: 10.5306/wjco.v15.i4.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a high morbidity and mortality rate. TMEM100 has been shown to be suppressor gene in a variety of tumors, but there are no reports on the role of TMEM100 in esophageal cancer (EC). AIM To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion. METHODS Firstly, we found the expression of TMEM100 in EC through The Cancer Genome Atlas database. The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification. To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100. Finally, we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases (MAPK) pathway. RESULTS In the present study, by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects. Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells (cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting. CONCLUSION TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK pathway. Promoter methylation may play a key role in regulating TMEM100 expression.
Collapse
Affiliation(s)
- Yue-Feng Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Yan Dang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Wei-Bo Kong
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Han-Lin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Xiu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Long Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Yuan Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| |
Collapse
|
37
|
Zhang T, Zhao F, Li J, Sun X, Zhang X, Wang H, Fan P, Lai L, Li Z, Sui T. Programmable RNA 5-methylcytosine (m5C) modification of cellular RNAs by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res 2024; 52:2776-2791. [PMID: 38366553 PMCID: PMC11014266 DOI: 10.1093/nar/gkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
5-Methylcytosine (m5C), an abundant RNA modification, plays a crucial role in regulating RNA fate and gene expression. While recent progress has been made in understanding the biological roles of m5C, the inability to introduce m5C at specific sites within transcripts has hindered efforts to elucidate direct links between specific m5C and phenotypic outcomes. Here, we developed a CRISPR-Cas13d-based tool, named reengineered m5C modification system (termed 'RCMS'), for targeted m5C methylation and demethylation in specific transcripts. The RCMS editors consist of a nuclear-localized dCasRx conjugated to either a methyltransferase, NSUN2/NSUN6, or a demethylase, the catalytic domain of mouse Tet2 (ten-eleven translocation 2), enabling the manipulation of methylation events at precise m5C sites. We demonstrate that the RCMS editors can direct site-specific m5C incorporation and demethylation. Furthermore, we confirm their effectiveness in modulating m5C levels within transfer RNAs and their ability to induce changes in transcript abundance and cell proliferation through m5C-mediated mechanisms. These findings collectively establish RCMS editors as a focused epitranscriptome engineering tool, facilitating the identification of individual m5C alterations and their consequential effects.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Feiyu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Jinze Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiaodi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Xiyun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Hejun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Peng Fan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000,China
| |
Collapse
|
38
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
Li X, Ding Z, Tong Y. Correlations of m 6A Methylation-Related lncRNAs with the Prognosis of Papillary Thyroid Carcinoma. Int J Gen Med 2024; 17:775-790. [PMID: 38476625 PMCID: PMC10929225 DOI: 10.2147/ijgm.s449827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancer. Recurrence makes the prognosis for some patients with PTC worse. Increasing evidence have suggested that N6-methyladenosine (m6A) RNA methylation plays an important role in tumorigenesis. However, the significance of m6A-related lncRNAs in the malignant progression of PTC remains unknown. In this study, we explored the significance of M6A-related lncrnas in the malignant progression of PTC. Patients and Methods Transcriptome and clinical data of PTC were achieved and integrated from The Cancer Genome Atlas (TCGA). Firstly, a Spearman correlation analysis was performed to obtain m6A RNA methylation-associated lncRNAs. Next, We constructed a prognostic signature and assessed the accuracy of the signature by receiver operating characteristic (ROC) curve and Kaplan Meier survival analyses. Furthermore, functional enrichment analysis was performed on the high- and low-risk groups. Finally, we determined prognostic gene expression in clinical samples using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results We identified 56 differentially expressed lncRNAs associated with m6A RNA methylation. Univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses showed that the survival-related lncRNAs associated with m6A RNA methylation were detected, which showed superior calibration and discrimination. Moreover, the biological processes related to energy metabolism were significantly activated in the high-risk group. Finally, the co-expressed genes of lncRNAs in the risk model were significantly enriched in biological processes related to copper ion response. Finally, we validated the expression levels of three prognostic genes in clinical samples using RT-qPCR. Conclusion Our study revealed m6A RNA methylation-associated lncRNAs were significantly associated with disease-free survival in patients with papillary thyroid cancer, which would improve our understanding of the relationship between m6A RNA methylation-associated lncRNAs and PTC.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| | - Zigang Ding
- Department of General Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| | - Yun Tong
- Department of Pain, The Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| |
Collapse
|
40
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
41
|
Ozato Y, Hara T, Meng S, Sato H, Tatekawa S, Uemura M, Yabumoto T, Uchida S, Ogawa K, Doki Y, Eguchi H, Ishii H. RNA methylation in inflammatory bowel disease. Cancer Sci 2024; 115:723-733. [PMID: 38263895 PMCID: PMC10920996 DOI: 10.1111/cas.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
RNA modifications, including the renowned m6A, have recently garnered significant attention. This chemical alteration, present in mRNA, exerts a profound influence on protein expression levels by affecting splicing, nuclear export, stability, translation, and other critical processes. Although the role of RNA methylation in the pathogenesis and progression of IBD and colorectal cancer has been reported, many aspects remain unresolved. In this comprehensive review, we present recent studies on RNA methylation in IBD and colorectal cancer, with a particular focus on m6A and its regulators. We highlight the pivotal role of m6A in the pathogenesis of IBD and colorectal cancer and explore the potential applications of m6A modifications in the diagnosis and treatment of these diseases.
Collapse
Grants
- 18KK0251 19K22658 20H00541 21K19526 Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 22K19559 23K19505 16H06279 (PAGS) Ministry of Education, Culture, Sports, Science and Technology
- grant nos. 17cm0106414h0002 JP21lm0203007 Ministry of Education, Culture, Sports, Science and Technology
- 2021-48 Mitsubishi Foundation
- Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Yuki Ozato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| | - Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Shotaro Tatekawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Mamoru Uemura
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA MedicineAalborg UniversityCopenhagen SVDenmark
| | - Kazuhiko Ogawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational Research, Osaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
42
|
Li B, Xiong X, Xu J, Peng D, Nie G, Wen N, Wang Y, Lu J. METTL3-mediated m 6A modification of lncRNA TSPAN12 promotes metastasis of hepatocellular carcinoma through SENP1-depentent deSUMOylation of EIF3I. Oncogene 2024; 43:1050-1062. [PMID: 38374407 DOI: 10.1038/s41388-024-02970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/β-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianze Xiong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dingzhong Peng
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guilin Nie
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ningyuan Wen
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaoqun Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiong Lu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
44
|
Li M, Zhu J, Lv Z, Qin H, Wang X, Shi H. Recent Advances in RNA-Targeted Cancer Therapy. Chembiochem 2024; 25:e202300633. [PMID: 37961028 DOI: 10.1002/cbic.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Ribonucleic acid (RNA) plays a pivotal role in gene regulation and protein biosynthesis. Interfering the physiological function of key RNAs to induce cell apoptosis holds great promise for cancer treatment. Many RNA-targeted anti-cancer strategies have emerged continuously. Among them, RNA interference (RNAi) has been recognized as a promising therapeutic modality for various disease treatments. Nevertheless, the primary obstacle in siRNA delivery-escaping the endosome and crossing the plasma membrane severely impedes its therapeutic potential. Thus far, a variety of nanosystems as well as carrier-free bioconjugation for siRNA delivery have been developed and employed to enhance the drug delivery and anti-tumor efficiency. Besides, the use of small molecules to target specific RNA structures and disrupt their function, along with the covalent modification of RNA, has also drawn tremendous attention recently owing to high therapeutic efficacy. In this review, we will provide an overview of recent progress in RNA-targeted cancer therapy including various siRNA delivery strategies, RNA-targeting small molecules, and newly emerged covalent RNA modification. Finally, challenges and future perspectives faced in this research field will be discussed.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Hongni Qin
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
45
|
Chen K, Zhang J, Meng L, Kong L, Lu M, Wang Z, Wang W. The epigenetic downregulation of LncGHRLOS mediated by RNA m6A methylase ZCCHC4 promotes colorectal cancer tumorigenesis. J Exp Clin Cancer Res 2024; 43:44. [PMID: 38326863 PMCID: PMC10848513 DOI: 10.1186/s13046-024-02965-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.
Collapse
Affiliation(s)
- Ke Chen
- Vascular Surgery Department, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Jingcheng Zhang
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lei Meng
- General Surgery Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingshang Kong
- General Surgery Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Lu
- General Surgery Department, Anhui Provincial Hospital, Hefei, China
| | - Zhengguang Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wenbin Wang
- General Surgery Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
46
|
Yan H, Huang W, Rao J, Yan D, Yuan J. Demethylase FTO-Mediated m6A Modification of lncRNA MEG3 Activates Neuronal Pyroptosis via NLRP3 Signaling in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:1023-1043. [PMID: 37676392 DOI: 10.1007/s12035-023-03622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Neuronal death following ischemia is the primary cause of death and disability in patients with ischemic stroke. N6-methyladenosine (m6A) modification plays essential role in various physiological and pathological conditions, but its role and mechanism in ischemic neuronal death remain unclear. In the present study, neuronal pyroptosis was an important event in brain injury caused by ischemic stroke, and the upregulation of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) following cerebral ischemia was a key factor in activating ischemic neuronal pyroptosis via NLRP3/caspase-1/GSDMD signaling. Moreover, we first demonstrated that the demethylase fat mass and obesity-associated protein (FTO), which was decreased following ischemia, regulated MEG3 expression in an m6A-dependent manner by affecting its stability, thereby activating neuronal pyroptosis via NLRP3/caspase-1/GSDMD signaling, and ultimately leading to ischemic brain damage. Therefore, the present study provides new insights for the mechanism of ischemic stroke, and suggests that FTO may be a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jie Rao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
47
|
Zhou Y, Huang Q, Wu C, Xu Y, Guo Y, Yuan X, Xu C, Zhou L. m 6A‑modified HOXC10 promotes HNSCC progression via co‑activation of ADAM17/EGFR and Wnt/β‑catenin signaling. Int J Oncol 2024; 64:10. [PMID: 38063205 PMCID: PMC10734666 DOI: 10.3892/ijo.2023.5598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 12/18/2023] Open
Abstract
The homeobox (HOX) gene family plays a fundamental role in carcinogenesis. However, the oncogenic mechanism of HOXC10 in head and neck squamous cell carcinoma (HNSCC) remains unclear. In the present study, it was revealed that HOXC10 expression was significantly higher in HNSCC tissues than in adjacent tissues, and a high level of HOXC10 was closely associated with worse clinical outcomes. HOXC10 overexpression promoted HNSCC cell proliferation, migration, and invasion, both in vitro and in vivo. Mechanistically, chromatin immunoprecipitation sequencing revealed that HOXC10 drove the transcriptional activation of a disintegrin and metalloproteinase 17 (ADAM17), and the ADAM17/epidermal growth factor receptor (EGFR)/ERK1/2 signaling pathway facilitating the proliferation of HNSCC. Furthermore, mass spectrometric analysis indicated that HOXC10 interacted with ribosomal protein S15A (RPS15A) and enhanced RPS15A protein expression, activating the Wnt/β‑catenin pathway and contributing to invasion and metastasis of HNSCC. Additionally, the methylated RNA immune precipitation and RNA antisense purification assays showed that N6‑methyladenosine (m6A) writer, methyltransferase‑like 3, catalyzed m6A modification of the HOXC10 transcript, m6A reader insulin like growth factor 2 mRNA binding protein (IGF2BP)1 and IGF2BP3 involved in recognizing and stabilizing m6A‑tagged HOXC10 mRNA. In summary, the present study identified HOXC10 as a promising candidate oncogene in HNSCC. The m6A modification‑mediated HOXC10 promoted proliferation, migration, and invasion of HNSCC through co‑activation of ADAM17/EGFR and Wnt/β‑catenin signaling, providing a novel diagnostic and prognostic biomarker and a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Yujuan Zhou
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Ye Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Yang Guo
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Xiaohui Yuan
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Chengzhi Xu
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
48
|
Wang Z, Chen C, Shu J, Ai J, Liu Y, Cao H, Jia Y, Qin Y. Single-cell N 6-methyladenosine-related genes function within the tumor microenvironment to affect the prognosis and treatment sensitivity in patients with gastric cancer. Cancer Cell Int 2024; 24:44. [PMID: 38273348 PMCID: PMC10811812 DOI: 10.1186/s12935-024-03227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fifth for morbidity and third for mortality worldwide. The N6-methyladenosine (m6A) mRNA methylation is crucial in cancer biology and progression. However, the relationship between m6A methylation and gastric tumor microenvironment (TME) remains to be elucidated. METHODS We combined single-cell and bulk transcriptome analyses to explore the roles of m6A-related genes (MRG) in gastric TME. RESULTS Nine TME cell subtypes were identified from 23 samples. Fibroblasts were further grouped into four subclusters according to different cell markers. M6A-mediated fibroblasts may guide extensive intracellular communications in the gastric TME. The m6A-related genes score (MRGs) was output based on six differentially expressed single-cell m6A-related genes (SCMRDEGs), including GHRL, COL4A1, CAV1, GJA1, TIMP1, and IGFBP3. The protein expression level was assessed by immunohistochemistry. We identified the prognostic value of MRGs and constructed a nomogram model to predict GC patients' overall survival. MRGs may affect treatment sensitivity in GC patients. CONCLUSION Our study visualized the cellular heterogeneity of TME at the single-cell level, revealed the association between m6A mRNA modification and intracellular communication, clarified MRGs as an independent risk factor of prognosis, and provided a reference for follow-up treatment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiaoyu Ai
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yihan Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haoyue Cao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Lin H, Hu S, Li Y, Li S, Teng D, Yang Y, Liu B, Du X. H3K27ac-activated LncRNA NUTM2A-AS1 Facilitated the Progression of Colorectal Cancer Cells via MicroRNA-126-5p/FAM3C Axis. Curr Cancer Drug Targets 2024; 24:1222-1234. [PMID: 38347779 DOI: 10.2174/0115680096277956240119065938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silenced of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haiguan Lin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Shidong Hu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuxuan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Da Teng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Yang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyan Liu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Du
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Nylund P, Garrido-Zabala B, Kalushkova A, Wiklund HJ. The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma. Front Oncol 2023; 13:1303677. [PMID: 38148842 PMCID: PMC10750364 DOI: 10.3389/fonc.2023.1303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|