1
|
Verhezen T, Wouters A, Smits E, De Waele J. Powering immunity: mitochondrial dynamics in natural killer cells. Trends Mol Med 2025:S1471-4914(25)00106-6. [PMID: 40393875 DOI: 10.1016/j.molmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for eliminating malignant and infected cells, and have significant therapeutic potential against cancer and viral infections. However, their functionality is often impaired under pathological conditions. Emerging evidence identifies mitochondria as key regulators of NK cell metabolism, fitness, and fate. This review examines how mitochondrial dysfunction impacts on NK cell activity in cancer, viral infections, and inflammatory disorders. We discuss strategies to target mitochondrial architecture, dynamics, and function as potential therapies to restore NK cell fitness. Finally, we highlight unanswered questions and future directions to better understand mitochondrial regulation in NK cells and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
2
|
Gao X, Wang T, Liu C, Li Y, Zhang W, Zhang M, Yao Y, Gao C, Liu R, Sun C. The integrated single-cell analysis interpret the lactate metabolism-driven immune suppression in triple-negative breast cancer. Discov Oncol 2025; 16:784. [PMID: 40377730 PMCID: PMC12084458 DOI: 10.1007/s12672-025-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Individuals with triple-negative breast cancer (TNBC) exhibit elevated lactate levels, which offers a valuable lead for investigating the molecular mechanisms underlying the tumor microenvironment (TME) and identifying more efficacious treatments. METHODS TNBC samples were classified based on lactate-associated genes. A single-cell transcriptomic approach was employed to examine functional differences across cells with varying lactate metabolism. Immunohistochemistry was used to explore the relationship between lactate metabolism and the CXCL12/CXCR4 signaling axis. In addition, utilizing machine learning techniques, we constructed a prognostic model based on lactic acid phenotype genes. RESULTS Lactate-associated gene-based stratification revealed increased immune cell infiltration and immune checkpoint expression in Lactate Cluster 1. Elevated lactate metabolism scores were observed in both cancer-associated fibroblasts (CAFs) and malignant cells. CAFs with high lactate metabolism exhibited immune suppression through the CXCL12/CXCR4 axis. Immunohistochemistry confirmed elevated LDHA, LDHB, CXCL12, and CXCR4 levels in the high lactate group. CONCLUSION This study elucidates the complex interplay between lactate and immune cells in TNBC and highlights the CXCL12/CXCR4 axis as a key pathway through which lactate mediates immune suppression, offering new insights into metabolic regulation within the TME. Furthermore, we developed a prognostic model based on lactate metabolism phenotype genes to predict the prognosis of TNBC patients and guide immunotherapy.
Collapse
Affiliation(s)
- Xinhai Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, 999078, Macao, China
| | - Tianhua Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, 999078, Macao, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, 999078, Macao, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong, China
| | - Minpu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, 999078, Macao, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, Shandong, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, Shandong, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, 261000, Weifang, Shandong, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, Shandong, China.
| |
Collapse
|
3
|
De Castro V, Abdellaoui O, Dehecq B, Ndao B, Mercier-Letondal P, Dauvé A, Garnache-Ottou F, Adotévi O, Loyon R, Godet Y. Characterization of the aryl hydrocarbon receptor as a potential candidate to improve cancer T cell therapies. Cancer Immunol Immunother 2025; 74:200. [PMID: 40358739 PMCID: PMC12075070 DOI: 10.1007/s00262-025-04065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The efficacy of T-cell-based cancer therapies can be limited by the tumor microenvironment which can lead to T cell dysfunction. Multiple studies, particularly in murine models, have demonstrated the capacity of the aryl hydrocarbon receptor (AHR) to negatively regulate antitumor T cell functions. AHR is a cytoplasmic receptor and transcription factor that was originally identified as a xenobiotic sensor, but has since been shown to play a significant role in the gene regulation of various immune cells, including T cells. Given the insights from murine studies, AHR emerges as a promising candidate to invalidate for optimizing T cell-based cancer therapies. However, the controversial role of AHR in human T cells underscores the need for a more comprehensive characterization of AHR expressing T cells. This study aims to investigate the regulatory mechanisms of AHR in human T cell biology to better understand its impact on reducing antitumor immune responses. Here, we knocked-out AHR in human T cells using CRISPR-Cas9 technology to characterize AHR's function in an in vitro chronic stimulation model. Engineered T cells exhibited enhanced effector- and memory-like profiles and expressed reduced amount of CD39 and TIGIT. AHR knockout enhanced human CAR-T cells' functionality and persistence upon tumor chronic stimulation. Collectively, these results highlight the role of AHR in human CAR-T cells efficiency.
Collapse
Affiliation(s)
- Valentine De Castro
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
| | - Oumaïma Abdellaoui
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
| | - Barbara Dehecq
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
| | - Babacar Ndao
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
| | | | - Alexandra Dauvé
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francine Garnache-Ottou
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
- Service d'hématologie et d'immunologie cellulaire, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Olivier Adotévi
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
- Service d'oncologie médicale, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Romain Loyon
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France
| | - Yann Godet
- Université Marie et Louis Pasteur, EFS, INSERM UMR1098 RIGHT, 25000, Besançon, France.
| |
Collapse
|
4
|
Wang Y, Wilfahrt D, Jonker P, Lontos K, Cai C, Cameron B, Xie B, Peralta RM, Schoedel ER, Gunn WG, AminiTabrizi R, Shah H, Rivadeneira DB, Muir A, Delgoffe GM. Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. Nat Cell Biol 2025; 27:835-846. [PMID: 40258951 DOI: 10.1038/s41556-025-01650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025]
Abstract
Nutrient stress represents an important barrier for anti-tumour immunity, and tumour interstitial fluid often contains metabolites that hinder immune function. However, it is difficult to isolate the effects of tumour nutrient stress from other suppressive factors. Thus, we used a chemically defined cell culture medium based on the metabolomic profile of tumour interstitial fluid: tumour interstitial fluid medium (TIFM). Culture of CD8+ T cells in TIFM limited cell expansion and impaired CD8+ T cell effector functions upon restimulation, suggesting that tumour nutrient stress alone is sufficient to drive T cell dysfunction. We identified phosphoethanolamine (pEtn), a phospholipid intermediate, as a driver of T cell dysfunction. pEtn dampened T cell receptor signalling by depleting T cells of diacylglycerol required for T cell receptor signal transduction. The reduction of pEtn accumulation in tumours improved intratumoural T cell function and tumour control, suggesting that pEtn accumulation plays a dominant role in immunosuppression in the tumour microenvironment.
Collapse
Affiliation(s)
| | - Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Patrick Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | - Chufan Cai
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronal M Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - William G Gunn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Chen P, Yang J, Jin S, Li Y, Li D, Zhong C, Zhang Y, Xia Q, Fan X, Lin H. TMEM158 promotes ICC metastasis via inducing lactic acid mediated reduction of actin skeleton stiffness of ICC cells. J Adv Res 2025:S2090-1232(25)00222-X. [PMID: 40220896 DOI: 10.1016/j.jare.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION The survival rate of patients with intrahepatic cholangiocarcinoma (ICC) is extremely low mainly because of its high metastatic characteristic, pushing us to explore effective targets inhibiting the metastasis of ICC. OBJECTIVES To explore potential therapeutical targets to restrict the metastasis of ICC. METHODS The potential targets were screened via RNA sequencing and verified in cells and tissues. The prognostic value of TMEM158 was explored in ICC patients. The abilities of TMEM158 on affecting the metastasis of ICC were detected in cells and mice models. The cell actin skeleton stiffness was measured by phalloidin staining. The effect of TMEM158 on lactic acid (LA) generation was explored via metabolic flow and relative mechanism was detected by co-immunoprecipitation and immunofluorescence. The relationship between HIF-1A and TMEM158 was explored by dual luciferase reporter gene experiment. RESULTS TMEM158 was identified as a potential candidate over-expressed in ICC, especially with metastasis, that is linked to reduced overall survival. Besides, functional studies indicated that TMEM158 silencing inhibits ICC metastasis in vivo and in vitro through decreasing cell actin skeleton stiffness of ICC cells, and visa versa. Moreover, mechanically, lactic acid (LA) is validated as the bridge connecting TMEM158 and skeleton stiffness and TMEM158 induces the generation of LA via interaction with and activating Ras protein and subsequently enhancing glucose transporter 3 (Glut3) mediated glycolysis in ICC cells. Finally, HIF-1A directly targets the promoter region of TMEM158 and thus increases its level in ICC. CONCLUSION TMEM158 reduced the actin skeleton stiffness of ICC cells through activating Ras protein mediated generation of LA, which finally results in enhanced metastasis of ICC. Our work provides a preclinical evidence of concept for TMEM158 as a novel candidate inhibiting the metastasis of ICC.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Yujie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310018, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310018, China; Internet and Artificial Intelligence Office, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
6
|
Jiang K, Liu H, Chen X, Wang Z, Wang X, Gu X, Tong Y, Ba X, He Y, Wu J, Deng W, Wang Q, Tang K. Reprogramming of Glucose Metabolism by Nanocarriers to Improve Cancer Immunotherapy: Recent Advances and Applications. Int J Nanomedicine 2025; 20:4201-4234. [PMID: 40207307 PMCID: PMC11980946 DOI: 10.2147/ijn.s513207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
Although immunotherapy has made significant progress in cancer treatment, its limited responsiveness has greatly hindered widespread clinical application. The Warburg effect in tumor cells creates a tumor microenvironment (TME) characterized by hypoxia, low glucose levels, and high lactate levels, which severely inhibits the antitumor immune response. Consequently, targeting glucose metabolism to reprogram the TME is considered an effective strategy for reversing immunosuppression and immune evasion. Numerous studies have been conducted on enhancing cancer immunotherapy efficacy through the delivery of glucose metabolism modulators via nanocarriers. This review provides a comprehensive overview of the glucose metabolic characteristics of tumors and their impacts on the immune system, as well as nanodelivery strategies targeting glucose metabolism to enhance immunotherapy. These strategies include inhibiting key glycolytic enzymes, blocking glucose and lactate transporters, and utilizing glucose oxidase and lactate oxidase. Furthermore, this article reviews recent advancements in synergistic antitumor therapy involving glucose metabolism-targeted therapy combined with other treatments, such as chemotherapy, radiotherapy (RT), phototherapy, and immunotherapy. Finally, we discuss the limitations and future prospects of nanotechnology targeting glucose metabolism therapy, hoping to provide new directions and ideas to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Hongming Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Garstka MA, Kedzierski L, Maj T. Diabetes can impact cellular immunity in solid tumors. Trends Immunol 2025; 46:295-309. [PMID: 40133163 DOI: 10.1016/j.it.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Cancer is increasingly prevalent worldwide, often coexisting with type 2 diabetes (T2D). Recent breakthroughs reveal the immune system's pivotal role in eliminating tumors and how the metabolic environment, such as glucose availability, affects antitumor immunity. Diabetes is known to dysregulate both innate and adaptive immune responses, while cancer creates an immunosuppressive microenvironment. We hypothesize that diabetes in cancer subjects may exacerbate this immunosuppression. Here, we examine the current understanding of the interplay between T2D and solid tumors and the associated challenges. Despite inconsistencies in data from mouse models and human tissues, evidence suggests that T2D can impact the antitumor response. Possible mechanisms may involve myeloid cells, inducing local immunosuppression and impairing antigen presentation, and certain lymphoid cell populations, exhibiting exhaustion.
Collapse
Affiliation(s)
- Malgorzata A Garstka
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China; Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maj
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
8
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
9
|
Procházková J, Kahounová Z, Vondráček J, Souček K. Aryl hydrocarbon receptor as a drug target in advanced prostate cancer therapy - obstacles and perspectives. Transcription 2025; 16:47-66. [PMID: 38547312 PMCID: PMC11970783 DOI: 10.1080/21541264.2024.2334106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2025] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor that is primarily known as an intracellular sensor of environmental pollution. After five decades, the list of synthetic and toxic chemicals that activate AhR signaling has been extended to include a number of endogenous compounds produced by various types of cells via their metabolic activity. AhR signaling is active from the very beginning of embryonal development throughout the life cycle and participates in numerous biological processes such as control of cell proliferation and differentiation, metabolism of aromatic compounds of endogenous and exogenous origin, tissue regeneration and stratification, immune system development and polarization, control of stemness potential, and homeostasis maintenance. AhR signaling can be affected by various pharmaceuticals that may help modulate abnormal AhR signaling and drive pathological states. Given their role in immune system development and regulation, AhR antagonistic ligands are attractive candidates for immunotherapy of disease states such as advanced prostate cancer, where an aberrant immune microenvironment contributes to cancer progression and needs to be reeducated. Advanced stages of prostate cancer are therapeutically challenging and characterized by decreased overall survival (OS) due to the metastatic burden. Therefore, this review addresses the role of AhR signaling in the development and progression of prostate cancer and discusses the potential of AhR as a drug target for the treatment of advanced prostate cancer upon entering the phase of drug resistance and failure of first-line androgen deprivation therapy.Abbreviation: ADC: antibody-drug conjugate; ADT: androgen deprivation therapy; AhR: aryl hydrocarbon receptor; AR: androgen receptor; ARE: androgen response element; ARPI: androgen receptor pathway inhibitor; mCRPC: metastatic castration-resistant prostate cancer; DHT: 5a-dihydrotestosterone; FICZ: 6-formylindolo[3,2-b]carbazole; 3-MC: 3-methylcholanthrene; 6-MCDF: 6-methyl-1,3,8-trichlorodibenzofuran; MDSCs: myeloid-derived suppressor cells; PAHs: polycyclic aromatic hydrocarbons; PCa: prostate cancer; TAMs: tumor-associated macrophages; TF: transcription factor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TME: tumor microenvironment; TRAMP: transgenic adenocarcinoma of the mouse prostate; TROP2: tumor associated calcium signal transducer 2.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
10
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
12
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
13
|
Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, Xu L, Hoch A, Jayavelu ND, Haddad EK, IMPACC Network, Reed EF, Kraft M, McComsey GA, Metcalf JP, Ozonoff A, Esserman D, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen LB, van Bakel H, Wilson M, Eckalbar WL, Maecker HT, Langelier CR, Steen H, Altman MC, Montgomery RR, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen KK, Fragiadakis GK, Becker PM, Sekaly RP, Ehrlich LI, Fourati S, Peters B, Kleinstein SH, Guan L. Integrated longitudinal multiomics study identifies immune programs associated with acute COVID-19 severity and mortality. J Clin Invest 2024; 134:e176640. [PMID: 38690733 PMCID: PMC11060740 DOI: 10.1172/jci176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).
Collapse
Affiliation(s)
| | - Cole Maguire
- The University of Texas at Austin, Austin, Texas, USA
| | | | - Pramod Shinde
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Casey P. Shannon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Providence Research, Vancouver, British Columbia, Canada
| | - Leqi Xu
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Annmarie Hoch
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Elias K. Haddad
- Drexel University, Tower Health Hospital, Philadelphia, Pennsylvania, USA
| | - IMPACC Network
- The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) Network is detailed in Supplemental Acknowledgments
| | - Elaine F. Reed
- David Geffen School of Medicine at the UCLA, Los Angeles, California, USA
| | - Monica Kraft
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Grace A. McComsey
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Jordan P. Metcalf
- Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Al Ozonoff
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Charles B. Cairns
- Drexel University, Tower Health Hospital, Philadelphia, Pennsylvania, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Lindsey B. Rosen
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Hanno Steen
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Bali Pulendran
- Stanford University School of Medicine, Palo Alto, California, USA
| | - Joann Diray-Arce
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Rafick P. Sekaly
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | | | - Slim Fourati
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Leying Guan
- Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
15
|
Xie Y, Wang M, Qiao L, Qian Y, Xu W, Sun Q, Luo S, Li C. Photothermal-Enhanced Dual Inhibition of Lactate/Kynurenine Metabolism for Promoting Tumor Immunotherapy. SMALL METHODS 2024; 8:e2300945. [PMID: 37906051 DOI: 10.1002/smtd.202300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Traditionally referred to as "metabolic junk", lactate has now been recognized as essential "energy currency" and crucial "messenger" that contributes to tumor evolution, immunosuppression, etc., thus presenting a promising strategy for antitumor interventions. Similarly, kynurenine (Kyn) also exerts an immunosuppressive function, thereby significantly compromising the effectiveness of immunotherapy. This study proposes and validates a strategy for enhancing immunotherapy through photothermal-assisted depletion of lactate sustained by cycle-like O2 supply, with blocking the tryptophan (Trp)/Kyn metabolic pathway. In brief, a nanozyme therapeutic agent (PNDPL) is constructed, which mainly consists of PtBi nanozymes, lactate oxidase (LOX) and the indoleamine 2,3-dioxygenase (IDO) inhibitor NLG919. The PtBi nanozymes, which exhibit a catalase (CAT)-like activity, form a positive feedback loop with LOX to consume lactate while self-supplying O2 . Moreover, PtBi nanozymes retain enzyme-like performance even in a slightly acidic tumor microenvironment. Under 1064 nm irradiation, photothermal therapy (PTT) not only induces tumor cell death but also accelerates lactate exhaustion. Therefore, the combination of lactate depletion-induced starvation therapy and PTT, along with the blocking of IDO-mediated immune escape, effectively inhibits tumor growth and reverses immunosuppressive microenvironment, thus preventing tumor metastasis. This study represents the first investigation into the synergistic antitumor effects by lactate metabolism regulation and IDO-related immunotherapy.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Wencheng Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
16
|
Wang B, Mao Z, Ye J, Jiao X, Zhang T, Wang Q, Han S, Zhang Y, Wang C, Dong T, Cui B. Glycolysis Induced by METTL14 Is Essential for Macrophage Phagocytosis and Phenotype in Cervical Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:723-736. [PMID: 38197667 PMCID: PMC10828180 DOI: 10.4049/jimmunol.2300339] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024]
Abstract
N 6-methyladenosine (m6A) is the most abundant mRNA modification in mammals and it plays a vital role in various biological processes. However, the roles of m6A on cervical cancer tumorigenesis, especially macrophages infiltrated in the tumor microenvironment of cervical cancer, are still unclear. We analyzed the abnormal m6A methylation in cervical cancer, using CaSki and THP-1 cell lines, that might influence macrophage polarization and/or function in the tumor microenvironment. In addition, C57BL/6J and BALB/c nude mice were used for validation in vivo. In this study, m6A methylated RNA immunoprecipitation sequencing analysis revealed the m6A profiles in cervical cancer. Then, we discovered that the high expression of METTL14 (methyltransferase 14, N6-adenosine-methyltransferase subunit) in cervical cancer tissues can promote the proportion of programmed cell death protein 1 (PD-1)-positive tumor-associated macrophages, which have an obstacle to devour tumor cells. Functionally, changes of METTL14 in cervical cancer inhibit the recognition and phagocytosis of macrophages to tumor cells. Mechanistically, the abnormality of METTL14 could target the glycolysis of tumors in vivo and vitro. Moreover, lactate acid produced by tumor glycolysis has an important role in the PD-1 expression of tumor-associated macrophages as a proinflammatory and immunosuppressive mediator. In this study, we revealed the effect of glycolysis regulated by METTL14 on the expression of PD-1 and phagocytosis of macrophages, which showed that METTL14 was a potential therapeutic target for treating advanced human cancers.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhonghao Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Qi Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Chunling Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
17
|
Jin Y, Xia Y, Du H, Xiang T, Lan B, Wei S, Li H, Huang H. Super-enhancer-associated EEPD1 facilitates EMT-mediated metastasis by regulating the PI3K/AKT/mTOR pathway in gastric cancer. Biochem Biophys Res Commun 2023; 689:149188. [PMID: 37976838 DOI: 10.1016/j.bbrc.2023.149188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
This study focused on exploring the mechanism of the EMT mediated by endonuclease/exonuclease/phosphatase family domain-containing 1 (EEPD1) in gastric cancer metastasis. Through bioinformatics analysis, EEPD1 was found to be a target gene of super enhancers (SEs) in gastric cancer tissues. EEPD1 exhibited higher expression levels in tumor tissues and was associated with poor prognosis. In vitro and in vivo studies have demonstrated that silencing EEPD1 significantly suppressed the proliferation, metastasis, and invasion of gastric cancer cells. Furthermore, EEPD1 knockdown was involved in the regulation of the EMT and suppressed expression of AKT, a downstream component of the PI3K pathway, leading to a reduction in the phosphorylation levels of AKT and its downstream molecule, mTOR. These results showed the potential of EEPD1 as a prognostic indicator and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yong Jin
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Clinical Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China; Division of Gastroenterology and Hepatology, Department of Medicine and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hong Du
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Tingting Xiang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bingxue Lan
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hongyu Li
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
18
|
Gu X, Wei H, Suo C, Shen S, Zhu C, Chen L, Yan K, Li Z, Bian Z, Zhang P, Yuan M, Yu Y, Du J, Zhang H, Sun L, Gao P. Itaconate promotes hepatocellular carcinoma progression by epigenetic induction of CD8 + T-cell exhaustion. Nat Commun 2023; 14:8154. [PMID: 38071226 PMCID: PMC10710408 DOI: 10.1038/s41467-023-43988-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Itaconate is a well-known immunomodulatory metabolite; however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we find that macrophage-derived itaconate promotes HCC by epigenetic induction of Eomesodermin (EOMES)-mediated CD8+ T-cell exhaustion. Our results show that the knockout of immune-responsive gene 1 (IRG1), responsible for itaconate production, suppresses HCC progression. Irg1 knockout leads to a decreased proportion of PD-1+ and TIM-3+ CD8+ T cells. Deletion or adoptive transfer of CD8+ T cells shows that IRG1-promoted tumorigenesis depends on CD8+ T-cell exhaustion. Mechanistically, itaconate upregulates PD-1 and TIM-3 expression levels by promoting succinate-dependent H3K4me3 of the Eomes promoter. Finally, ibuprofen is found to inhibit HCC progression by targeting IRG1/itaconate-dependent tumor immunoevasion, and high IRG1 expression in macrophages predicts poor prognosis in HCC patients. Taken together, our results uncover an epigenetic link between itaconate and HCC and suggest that targeting IRG1 or itaconate might be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Pinggen Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengqiu Yuan
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinzhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, Xu L, Hoch A, Jayavelu ND, Network I, Haddad EK, Reed EF, Kraft M, McComsey GA, Metcalf J, Ozonoff A, Esserman D, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen LB, van Bakel H, Wilson M, Eckalbar W, Maecker H, Langelier CR, Steen H, Altman MC, Montgomery RR, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen KK, Fragiadakis GK, Becker PM, Augustine AD, Sekaly RP, Ehrlich LIR, Fourati S, Peters B, Kleinstein SH, Guan L. Integrated longitudinal multi-omics study identifies immune programs associated with COVID-19 severity and mortality in 1152 hospitalized participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565292. [PMID: 37986828 PMCID: PMC10659275 DOI: 10.1101/2023.11.03.565292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.
Collapse
|
20
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
21
|
Dou X, Fu Q, Long Q, Liu S, Zou Y, Fu D, Xu Q, Jiang Z, Ren X, Zhang G, Wei X, Li Q, Campisi J, Zhao Y, Sun Y. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nat Metab 2023; 5:1887-1910. [PMID: 37903887 PMCID: PMC10663165 DOI: 10.1038/s42255-023-00912-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
Senescent cells remain metabolically active, but their metabolic landscape and resulting implications remain underexplored. Here, we report upregulation of pyruvate dehydrogenase kinase 4 (PDK4) upon senescence, particularly in some stromal cell lines. Senescent cells display a PDK4-dependent increase in aerobic glycolysis and enhanced lactate production but maintain mitochondrial respiration and redox activity, thus adopting a special form of metabolic reprogramming. Medium from PDK4+ stromal cells promotes the malignancy of recipient cancer cells in vitro, whereas inhibition of PDK4 causes tumor regression in vivo. We find that lactate promotes reactive oxygen species production via NOX1 to drive the senescence-associated secretory phenotype, whereas PDK4 suppression reduces DNA damage severity and restrains the senescence-associated secretory phenotype. In preclinical trials, PDK4 inhibition alleviates physical dysfunction and prevents age-associated frailty. Together, our study confirms the hypercatabolic nature of senescent cells and reveals a metabolic link between cellular senescence, lactate production, and possibly, age-related pathologies, including but not limited to cancer.
Collapse
Affiliation(s)
- Xuefeng Dou
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Fu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixia Xu
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhirui Jiang
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Ren
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guilong Zhang
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
- Department of Pharmacology, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Limeta A, Gatto F, Herrgård MJ, Ji B, Nielsen J. Leveraging high-resolution omics data for predicting responses and adverse events to immune checkpoint inhibitors. Comput Struct Biotechnol J 2023; 21:3912-3919. [PMID: 37602228 PMCID: PMC10432706 DOI: 10.1016/j.csbj.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023] Open
Abstract
A long-standing goal of personalized and precision medicine is to enable accurate prediction of the outcomes of a given treatment regimen for patients harboring a disease. Currently, many clinical trials fail to meet their endpoints due to underlying factors in the patient population that contribute to either poor responses to the drug of interest or to treatment-related adverse events. Identifying these factors beforehand and correcting for them can lead to an increased success of clinical trials. Comprehensive and large-scale data gathering efforts in biomedicine by omics profiling of the healthy and diseased individuals has led to a treasure-trove of host, disease and environmental factors that contribute to the effectiveness of drugs aiming to treat disease. With increasing omics data, artificial intelligence allows an in-depth analysis of big data and offers a wide range of applications for real-world clinical use, including improved patient selection and identification of actionable targets for companion therapeutics for improved translatability across more patients. As a blueprint for complex drug-disease-host interactions, we here discuss the challenges of utilizing omics data for predicting responses and adverse events in cancer immunotherapy with immune checkpoint inhibitors (ICIs). The omics-based methodologies for improving patient outcomes as in the ICI case have also been applied across a wide-range of complex disease settings, exemplifying the use of omics for in-depth disease profiling and clinical use.
Collapse
Affiliation(s)
- Angelo Limeta
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | | | - Boyang Ji
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
23
|
Goldmann O, Medina E. Myeloid-derived suppressor cells impair CD4+ T cell responses during chronic Staphylococcus aureus infection via lactate metabolism. Cell Mol Life Sci 2023; 80:221. [PMID: 37480485 PMCID: PMC10363054 DOI: 10.1007/s00018-023-04875-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Staphylococcus aureus is an important cause of chronic infections resulting from the failure of the host to eliminate the pathogen. Effective S. aureus clearance requires CD4+ T cell-mediated immunity. We previously showed that myeloid-derived suppressor cells (MDSC) expand during staphylococcal infections and support infection chronicity by inhibiting CD4+ T cell responses. The aim of this study was to elucidate the mechanisms underlying the suppressive effect exerted by MDSC on CD4+ T cells during chronic S. aureus infection. It is well known that activated CD4+ T cells undergo metabolic reprogramming from oxidative metabolism to aerobic glycolysis to meet their increased bioenergetic requirements. In this process, pyruvate is largely transformed into lactate by lactate dehydrogenase with the concomitant regeneration of NAD+, which is necessary for continued glycolysis. The by-product lactate needs to be excreted to maintain the glycolytic flux. Using SCENITH (single-cell energetic metabolism by profiling translation inhibition), we demonstrated here that MDSC inhibit CD4+ T cell responses by interfering with their metabolic activity. MDSC are highly glycolytic and excrete large amount of lactate in the local environment that alters the transmembrane concentration gradient and prevent removal of lactate by activated CD4+ T. Accumulation of endogenous lactate impedes the regeneration of NAD+, inhibit NAD-dependent glycolytic enzymes and stop glycolysis. Together, the results of this study have uncovered a role for metabolism on MDSC suppression of CD4+ T cell responses. Thus, reestablishment of their metabolic activity may represent a mean to improve the functionality of CD4+ T cells during chronic S. aureus infection.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
24
|
Shrestha M, Wang DY, Ben-David Y, Zacksenhaus E. CDK4/6 inhibitors and the pRB-E2F1 axis suppress PVR and PD-L1 expression in triple-negative breast cancer. Oncogenesis 2023; 12:29. [PMID: 37230983 DOI: 10.1038/s41389-023-00475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Immune-checkpoint (IC) modulators like the poliovirus receptor (PVR) and programmed death ligand 1 (PD-L1) attenuate innate and adaptive immune responses and are potential therapeutic targets for diverse malignancies, including triple-negative breast cancer (TNBC). The retinoblastoma tumor suppressor, pRB, controls cell growth through E2F1-3 transcription factors, and its inactivation drives metastatic cancer, yet its effect on IC modulators is contentious. Here, we show that RB-loss and high E2F1/E2F2 signatures correlate with expression of PVR, CD274 (PD-L1 gene) and other IC modulators and that pRB represses whereas RB depletion and E2F1 induce PVR and CD274 in TNBC cells. Accordingly, the CDK4/6 inhibitor, palbociclib, suppresses both PVR and PD-L1 expression. Palbociclib also counteracts the effect of CDK4 on SPOP, leading to its depletion, but the overall effect of palbociclib is a net reduction in PD-L1 level. Hydrochloric acid, commonly used to solubilize palbociclib, counteracts its effect and induces PD-L1 expression. Remarkably, lactic acid, a by-product of glycolysis, also induces PD-L1 as well as PVR. Our results suggest a model in which CDK4/6 regulates PD-L1 turnover by promoting its transcription via pRB-E2F1 and degradation via SPOP and that the CDK4/6-pRB-E2F pathway couples cell proliferation with the induction of multiple innate and adaptive immunomodulators, with direct implications for cancer progression, anti-CDK4/6- and IC-therapies.
Collapse
Affiliation(s)
- Mariusz Shrestha
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada.
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada
| | - Yaacov Ben-David
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, 550014, Guiyang, Guizhou, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, Rm. 5R406, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
25
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Altieri DC. Mitochondria in cancer: clean windmills or stressed tinkerers? Trends Cell Biol 2023; 33:293-299. [PMID: 36055942 PMCID: PMC9938083 DOI: 10.1016/j.tcb.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
There is now a consensus that mitochondria are important tumor drivers, sophisticated biological machines that can engender a panoply of key disease traits. How this happens, however, is still mostly elusive. The opinion presented here is that what cancer exploits are not the normal mitochondria of oxygenated and nutrient-replete tissues, but the unfit, damaged, and dysfunctional organelles generated by the hostile environment of tumor growth. These 'ghost' mitochondria survive quality control and thwart cell death to relay multiple comprehensive 'danger signals' of metabolic starvation, cellular stress, and reprogrammed gene expression. The result is a new, treacherous cellular phenotype, proliferatively quiescent but highly motile, that enables tumor cell escape from a threatening environment and colonization of distant, more favorable sites (metastasis).
Collapse
Affiliation(s)
- Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Tsao SY. Potential of mRNA vaccines to become versatile cancer vaccines. World J Clin Oncol 2022; 13:663-674. [PMID: 36160466 PMCID: PMC9476609 DOI: 10.5306/wjco.v13.i8.663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
For centuries, therapeutic cancer vaccines have been developed and tried clinically. Way back in the late 19th century, the Father of Immunotherapy, William Coley had discovered that bacterial toxins were effective for inoperable sarcomas. In the 1970s, the Bacillus Calmette-Guérin (BCG) vaccine was repurposed, e.g., for advanced melanomas. Then, therapeutic cancer vaccines based on tumor-associated antigens (found on the surfaces of cancer cells) were tried clinically but apparently have not made a really significant clinical impact. For repurposed pathogen vaccines, only the BCG vaccine was approved in 1989 for local application to treat nonmuscle-invading bladder cancers. Although the mildly toxic vaccine adjuvants deliberately added to conventional pathogen vaccines are appropriate for seasonal applications, when repurposed for continual oncology usage, toxicity may be problematic. In 2010, even with the approval of sipuleucel-T as the very first cancer vaccine (dendritic cell) developed for designated prostate cancers, it has also not made a really significant clinical impact. Perhaps more "user friendly" cancer vaccines should be explored. As from approximately 30 years ago, the safety and effectiveness of mRNA vaccination for oncology had already been studied, the current coronavirus disease 2019 pandemic, though disastrous, has given such progressively advancing technology a kickstart. For oncology, other virtues of mRNA vaccines seem advantageous, e.g., rapid and versatile development, convenient modular design, and entirely cell-free synthesis, are being progressively recognized. Moreover, mRNAs encoding various oncology antigens for vaccination may also be tested with the combi-nation of relatively non-toxic modalities of oncology treatments, e.g., metformin or metronomic (low-dose, prolonged administration) chemotherapy. Admittedly, robust clinical data obtained through good quality clinical trials are mandatory.
Collapse
Affiliation(s)
- Shiu-Ying Tsao
- Department of Oncology, Hong Kong SAR Oncology Centre, Hong Kong SAR 999077, China
| |
Collapse
|
29
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
30
|
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol 2022; 13:868695. [PMID: 35685630 PMCID: PMC9171538 DOI: 10.3389/fphar.2022.868695] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Recently, in the field of cancer treatment, the paradigm has changed to immunotherapy that activates the immune system to induce cancer attacks. Among them, immune checkpoint inhibitors (ICI) are attracting attention as excellent and continuous clinical results. However, it shows not only limitations such as efficacy only in some patients or some indications, but also side-effects and resistance occur. Therefore, it is necessary to understand the factors of the tumor microenvironment (TME) that affect the efficacy of immunotherapy, that is, the mechanism by which cancer grows while evading or suppressing attacks from the immune system within the TME. Tumors can evade attacks from the immune system through various mechanisms such as restricting antigen recognition, inhibiting the immune system, and inducing T cell exhaustion. In addition, tumors inhibit or evade the immune system by accumulating specific metabolites and signal factors within the TME or limiting the nutrients available to immune cells. In order to overcome the limitations of immunotherapy and develop effective cancer treatments and therapeutic strategies, an approach is needed to understand the functions of cancer and immune cells in an integrated manner based on the TME. In this review, we will examine the effects of the TME on cancer cells and immune cells, especially how cancer cells evade the immune system, and examine anti-cancer strategies based on TME.
Collapse
Affiliation(s)
- Seong Keun Kim
- Cellus Inc., Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| | - Sun Wook Cho
- Cellus Inc., Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- *Correspondence: Seong Keun Kim, ; Sun Wook Cho,
| |
Collapse
|