1
|
Pettas T, Lachanoudi S, Karageorgos FF, Ziogas IA, Fylaktou A, Papalois V, Katsanos G, Antoniadis N, Tsoulfas G. Immunotherapy and liver transplantation for hepatocellular carcinoma: Current and future challenges. World J Transplant 2025; 15:98509. [DOI: 10.5500/wjt.v15.i2.98509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
Despite existing curative options like surgical removal, tissue destruction techniques, and liver transplantation for early-stage hepatocellular carcinoma (HCC), the rising incidence and mortality rates of this global health burden necessitate continuous exploration of novel therapeutic strategies. This review critically assesses the dynamic treatment panorama for HCC, focusing specifically on the burgeoning role of immunotherapy in two key contexts: early-stage HCC and downstaging advanced HCC to facilitate liver transplant candidacy. It delves into the unique immunobiology of the liver and HCC, highlighting tumor-mediated immune evasion mechanisms. Analyzing the diverse immunotherapeutic approaches including checkpoint inhibitors, cytokine modulators, vaccines, oncolytic viruses, antigen-targeting antibodies, and adoptive cell therapy, this review acknowledges the limitations of current diagnostic markers alpha-fetoprotein and glypican-3 and emphasizes the need for novel biomarkers for patient selection and treatment monitoring. Exploring the rationale for neoadjuvant and adjuvant immunotherapy in early-stage HCC, current research is actively exploring the safety and effectiveness of diverse immunotherapeutic approaches through ongoing clinical trials. The review further explores the potential benefits and challenges of combining immunotherapy and liver transplant, highlighting the need for careful patient selection, meticulous monitoring, and novel strategies to mitigate post-transplant complications. Finally, this review delves into the latest findings from the clinical research landscape and future directions in HCC management, paving the way for optimizing treatment strategies and improving long-term survival rates for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Sofia Lachanoudi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Vassilios Papalois
- Department of Transplant Surgery, Imperial College Renal and Transplant Centre, London W12 0HS, United Kingdom
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Petty NE, Radtke S, Kanestrom G, Fields E, Humbert O, Fiorenza S, Llewellyn MJ, Laszlo GS, Thomas J, Burger Z, Swing K, Zhu H, Jerome KR, Turtle CJ, Walter RB, Kiem HP. Protection of CD33-modified hematopoietic stem cell progeny from CD33-directed CAR T cells in rhesus macaques. Blood Adv 2025; 9:2367-2378. [PMID: 39928955 DOI: 10.1182/bloodadvances.2024015016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT The treatment of monogenetic disorders, such as hemoglobinopathies and lysosomal storage diseases, has markedly improved with the advent of cell and gene therapies, particularly allogeneic or gene-modified autologous stem cell transplantations. However, therapeutic efficacy is reliant on maintaining engraftment above a critical threshold. To maintain such engraftment levels, we and others have pursued approaches to shield edited cells from antibody or chimeric antigen receptor (CAR) T-cell-mediated selection. Here, we focused on CD33, which is expressed early on hematopoietic stem and progenitor cells (HSPCs) as well as on myeloid progenitors. Rhesus macaques were engrafted with HSPCs edited to ablate CD33 using either CRISPR/CRISPR-associated protein 9 or adenine base editor. Both editing strategies showed similar post-transplant recovery kinetics and yielded equivalent levels of engraftment. We then created a V-set domain-specific CAR construct (CAR33), validated its functionality in vitro, and treated both animals with autologous CAR33 T cells. CAR33 T cells expanded after infusion and caused specific depletion of CD33WT but not CD33null progeny, leading to a transient enrichment for gene-edited cells in the blood. No depletion was seen in the bone marrow stem cell compartment with CD34+CD90+ HSCs expressing lower levels of CD33 in comparison to monocytes. Thus, we show proof of concept and safety of an epitope editing-based enrichment/protection strategy in macaques.
Collapse
Affiliation(s)
- Nicholas E Petty
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Greta Kanestrom
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Emily Fields
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olivier Humbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mallory J Llewellyn
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - George S Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Justin Thomas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA
| | - Zach Burger
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kyle Swing
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Cameron J Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
3
|
Wegner VD, Feile A, Alb M, Hudecek M, Hewitt P, Mosig AS. Short-Chain Fatty Acids Modulate Anti-ROR1 CAR T-Cell Function and Exhaustion in an Intestinal Adenocarcinoma-on-Chip Model. Adv Healthc Mater 2025; 14:e2405003. [PMID: 40249196 DOI: 10.1002/adhm.202405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a promising approach for cancer treatment, with receptor tyrosine kinase-like orphan receptor 1 (ROR1) emerging as a novel target in malignancies. This study investigates how short-chain fatty acids (SCFAs), key microbiota-derived metabolites, modulate anti-ROR1 CAR T-cell efficacy using a physiologically relevant intestinal adenocarcinoma-on-chip model that replicates the human intestinal microenvironment. The findings demonstrate that propionate and butyrate inhibit anti-ROR1 CAR T-cell function by reducing infiltration, cytotoxicity, and cytokine release while preserving junctional integrity within the tumor model. Mechanistically, these SCFAs inhibit histone deacetylase activity and promote a phenotype switch toward regulatory T-cells, as indicated by increased expression of FoxP3 and RORγt. Additionally, propionate and butyrate upregulate PD-1 and TIM-3, markers of T-cell exhaustion and immune tolerance, and induce a dose- and time-dependent reduction in proinflammatory cytokines. In contrast, acetate and pentanoate promote a proinflammatory T helper 17 phenotype. These results highlight the immunomodulatory effects of SCFAs on CAR T-cell function, emphasizing the need to consider microbiota-derived metabolites in CAR T-cell therapies.
Collapse
Affiliation(s)
- Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| | - Adrian Feile
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| | - Miriam Alb
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie (IZI), Außenstelle Würzburg Zelluläre Immuntherapie, 97080, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie (IZI), Außenstelle Würzburg Zelluläre Immuntherapie, 97080, Würzburg, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
4
|
Wali AF, Talath S, Sridhar SB, El-Tanani M, Rangraze IR. Endosialin-directed CAR-T cell therapy: A promising approach for targeting triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167852. [PMID: 40318845 DOI: 10.1016/j.bbadis.2025.167852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/03/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
In triple-negative breast cancer, this review article explores into the utilization of Chimeric antigen receptor T-cell (CAR-T) cell therapy to target cells expressing endosialin. Even with all the new treatments available, breast cancer still kills more women than any other disease. Drug resistance and ineffective cancer cell targeting are two major problems with targeted medications, chemotherapy, and surgery. Among cancer treatments, CAR-T cell therapy stands out. To identify endosialin as a therapeutic target, it is essential to understand its molecular structure and its involvement in tumor angiogenesis and progression. An effective target for CAR-T cells is breast cancer, which overexpresses endosialin. The development of CARs that are specific to endosialin and the results of early trials are covered in relation to CAR-T cell therapy that targets endosialin. Perhaps the most effective cancer treatment is endosialin targeting, since it is expressed only in tumors and plays a crucial role in the course of cancer. This article reviews endosialin-directed CAR-T cell breast cancer treatments' safety and efficacy from current and completed clinical trials. Despite promising results, these trials reveal that clinical translation must overcome significant challenges. The report suggests further research and combination tactics to improve endosialin-targeted CAR-T cell treatment.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sathvik B Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
5
|
Roex G, Gordon KS, Lion E, Birnbaum ME, Anguille S. Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review. J Immunother Cancer 2025; 13:e010658. [PMID: 40210240 PMCID: PMC11987143 DOI: 10.1136/jitc-2024-010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has been highly successful in the treatment of B-cell hematological malignancies. CARs are modular synthetic molecules that can redirect immune cells towards target cells with antibody-like specificity. Despite their modularity, CARs used in the clinic are currently composed of a limited set of domains, mostly derived from IgG, CD8α, 4-1BB, CD28 and CD3ζ. The current low throughput CAR screening workflows are labor-intensive and time-consuming, and lie at the basis of the limited toolbox of CAR building blocks available. High throughput screening methods facilitate simultaneous investigation of hundreds of thousands of CAR domain combinations, allowing discovery of novel domains and increasing our understanding of how they behave in the context of a CAR. Here we review the growing body of reports that employ these high throughput screening and computational methods to advance CAR design. We summarize and highlight the important differences between the different studies and discuss their limitations and future considerations for further improvements. In conclusion, while still in its infancy, high throughput screening of CARs has the capacity to vastly expand the CAR domain toolbox and improve our understanding of CAR design. This knowledge could be foundational for translating CAR therapy beyond hematological malignancies and push the frontiers in personalized medicine.
Collapse
Affiliation(s)
- Gils Roex
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Ragon Institute of Mass General MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
- Division of Hematology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
6
|
Ouladan S, Orouji E. Chimeric Antigen Receptor-T Cells in Colorectal Cancer: Pioneering New Avenues in Solid Tumor Immunotherapy. J Clin Oncol 2025; 43:994-1005. [PMID: 39805063 PMCID: PMC11895826 DOI: 10.1200/jco-24-02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC. This review explores the potential of CAR-T cell therapy in CRC by analyzing clinical trials and highlighting prominent CRC-specific targets. We discuss the challenges such as immunosuppressive microenvironment, tumor heterogeneity, and physical barriers that limit CAR-T efficacy. Emerging strategies, such as logic-gated and dual-targeting CAR-T cells, offer practical solutions to overcome these hurdles. Furthermore, we explore the combination of CAR-T cell therapy with immune checkpoint inhibitors to enhance T-cell persistence and tumor infiltration. As the field continues to evolve, CAR-T cell therapies hold significant potential for revolutionizing the treatment landscape of CRC.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
7
|
Lee HN, Lee S, Hong J, Yoo H, Jeong J, Kim Y, Shin HM, Jang M, Lee C, Kim H, Seong J. Novel FRET-based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor-T Cell Function. SMALL METHODS 2025; 9:e2401016. [PMID: 39258379 PMCID: PMC11926508 DOI: 10.1002/smtd.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented. Using this biosensor, scFv variants for mesothelin-targeting CARs and identified as a novel scFv with enhanced CAR-T cell functionality despite its lower affinity than the original screened. The original CAR promoted internalization and trogocytosis, disrupting stable IS formation and impairing functionality are further observed. These findings emphasize the importance of enhancing IS quality rather than maximizing scFv affinity for superior CAR-T cell responses. Therefore, the FRET-based IS biosensor is a powerful tool for predicting CAR-T cell function, enabling the efficient engineering of next-generation CARs with enhanced antitumor potency.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Soojin Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jisu Hong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jiyun Jeong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
| | - Yong‐Woo Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
| | - Hyun Mu Shin
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| | - Chang‐Han Lee
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Hang‐Rae Kim
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- BK21 FOUR Biomedical Science ProjectSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Jihye Seong
- Department of PharmacologySeoul National University College of MedicineSeoul03080Republic of Korea
- Medical Research InstituteSeoul National University College of MedicineSeoul03080Republic of Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Republic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheon25159Republic of Korea
- Cancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
8
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2025; 117:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
9
|
Cardle II, Scherer DR, Jensen MC, Pun SH, Sellers DL. In Situ Bioconjugation of Synthetic Peptides onto Universal Chimeric Antigen Receptor T Cells for Targeted Cancer Immunotherapies. ACS NANO 2025; 19:5750-5768. [PMID: 39869930 DOI: 10.1021/acsnano.4c16824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials in vivo by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting. SpyCatcher003-modified CARs, nicknamed DB5 CARs, displayed fast, low-nanomolar reaction kinetics with a synthetic αvβ6-binding peptide that incorporates a SpyTag003 peptide via branched peptide synthesis to comprise a bifunctional intermediate. Prearming DB5 CAR T cells or prelabeling target cells with the bifunctional peptide produced selective CD4+ and CD8+ CAR T-cell responses against αvβ6+ cancer cells in vitro. Furthermore, the synthetic targeting intermediate showed robust DB5 CAR T-cell arming in vivo and selectively reduced αvβ6+ tumor progression in a dual flank xenograft model. We demonstrate the versatility and therapeutic potential of "Cyborg" CAR T-cell therapies that utilize synthetic biomaterials to direct CAR T-cell activity via highly selective bioconjugation that occurs in vivo.
Collapse
Affiliation(s)
- Ian I Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
| | - Dylan R Scherer
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle, Washington 98101, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
10
|
Jaeger-Ruckstuhl CA, Specht JM, Voutsinas JM, MacMillan HR, Wu Q(V, Muhunthan V, Berger C, Pullarkat S, Wright JH, Yeung CC, Hyun TS, Seaton B, Aicher LD, Song X, Pierce RH, Lo Y, Cole GO, Lee SM, Newell EW, Maloney DG, Riddell SR. Phase I Study of ROR1-Specific CAR-T Cells in Advanced Hematopoietic and Epithelial Malignancies. Clin Cancer Res 2025; 31:503-514. [PMID: 39466024 PMCID: PMC11788652 DOI: 10.1158/1078-0432.ccr-24-2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed in hematopoietic and epithelial cancers but has limited expression on normal adult tissues. This phase I study evaluated the safety of targeting ROR1 with autologous T lymphocytes engineered to express a ROR1 chimeric antigen receptor (CAR). Secondary objectives evaluated the persistence, trafficking, and antitumor activity of CAR-T cells. PATIENTS AND METHODS Twenty-one patients with ROR1+ tumors received CAR-T cells at one of four dose levels: 3.3 × 105, 1 × 106, 3.3 × 106, and 1 × 107 cells/kg body weight, administered after lymphodepletion with cyclophosphamide/fludarabine or oxaliplatin/cyclophosphamide. Cohort A included patients with chronic lymphocytic leukemia (CLL, n = 3); cohort B included patients with triple-negative breast cancer (TNBC, n = 10) or non-small cell lung cancer (NSCLC, n = 8). A second infusion was administered to one patient in cohort A with residual CLL in the marrow and three patients in cohort B with stable disease after first infusion. RESULTS Treatment was well tolerated, apart from one dose-limiting toxicity at dose level 4 in a patient with advanced NSCLC. Two of the three (67%) patients with CLL showed robust CAR-T-cell expansion and a rapid antitumor response. In patients with NSCLC and TNBC, CAR-T cells expanded to variable levels and infiltrated tumors poorly and 1 of 18 patients (5.5%) achieved partial response by RECIST 1.1. CONCLUSIONS ROR1 CAR-T cells were well tolerated in most patients. Antitumor activity was observed in CLL but was limited in TNBC and NSCLC. Immunogenicity of the CAR and lack of sustained tumor infiltration were identified as limitations. See related commentary by Kobold, p. 437.
Collapse
MESH Headings
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- Receptor Tyrosine Kinase-like Orphan Receptors/genetics
- Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Female
- Middle Aged
- Male
- Aged
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Adult
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Treatment Outcome
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
Collapse
Affiliation(s)
- Carla A. Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jennifer M. Specht
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jenna M. Voutsinas
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hugh R. MacMillan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Qian (Vicky) Wu
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Carolina Berger
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shalini Pullarkat
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jocelyn H. Wright
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Cecilia C.S. Yeung
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Teresa S. Hyun
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Brandon Seaton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lauri D. Aicher
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Xiaoling Song
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Robert H. Pierce
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Gabriel O. Cole
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sylvia M. Lee
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - David G. Maloney
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stanley R. Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
11
|
Grunewald L, Andersch L, Helmsauer K, Schwiebert S, Klaus A, Henssen AG, Straka T, Lodrini M, Wicha SG, Fuchs S, Hertwig F, Westermann F, Vitali A, Caramel C, Büchel G, Eilers M, Astrahantseff K, Eggert A, Höpken UE, Schulte JH, Blankenstein T, Anders K, Künkele A. Targeting MYCN upregulates L1CAM tumor antigen in MYCN-dysregulated neuroblastoma to increase CAR T cell efficacy. Pharmacol Res 2025; 212:107608. [PMID: 39828101 DOI: 10.1016/j.phrs.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Current treatment protocols have limited success against MYCN-amplified neuroblastoma. Adoptive T cell therapy presents an innovative strategy to improve cure rates. However, L1CAM-targeting CAR T cells achieved only limited response against refractory/relapsed neuroblastoma so far. We investigated how oncogenic MYCN levels influence tumor cell response to CAR T cells, as one possible factor limiting clinical success. A MYCN-inducible neuroblastoma cell model was created. L1CAM-CAR T cell effector function was assessed (activation markers, cytokine release, tumor cytotoxicity) after coculture with the model or MYCN-amplified neuroblastoma cell lines. RNA sequencing datasets characterizing the model were compared to publicly available RNA/proteomic datasets. MYCN-directed L1CAM regulation was explored using public ChIP-sequencing datasets. Synergism between CAR T cells and the indirect MYCN inhibitor, MLN8237, was assessed in vitro using the Bliss model and in vivo in an immunocompromised mouse model. Inducing high MYCN levels in the neuroblastoma cell model reduced L1CAM expression and, consequently, L1CAM-CAR T cell effector function in vitro. Primary neuroblastomas possessing high MYCN levels expressed lower levels of both the L1CAM transcript and L1CAM tumor antigen. MLN8237 treatment restored L1CAM tumor expression and L1CAM-CAR T cell effector function. Combining MLN8237 and L1CAM-CAR T cell treatment synergistically enhanced MYCN-overexpressing tumor cytotoxicity in vitro and in vivo concomitant with severe in vivo toxicity. We identify target antigen downregulation as source of resistance against L1CAM-CAR T cells in MYCN-driven neuroblastoma cells. These data suggest that L1CAM-CAR T cell therapy combined with pharmacological MYCN inhibition may benefit patients with MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Laura Grunewald
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Lena Andersch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Freie Universität Berlin, Kaiserswerther Str. 16-18, Berlin 14195, Germany
| | - Konstantin Helmsauer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Lindenberger Weg 80, Berlin 13125, Germany
| | - Silke Schwiebert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anika Klaus
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anton G Henssen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Lindenberger Weg 80, Berlin 13125, Germany
| | - Teresa Straka
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Marco Lodrini
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, Hamburg 20146, Germany
| | - Steffen Fuchs
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, Berlin 10178, Germany
| | - Falk Hertwig
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Frank Westermann
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Alice Vitali
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carlotta Caramel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Gabriele Büchel
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, Würzburg 97080, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Kathy Astrahantseff
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Angelika Eggert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle Str. 10, Berlin 13125, Germany
| | - Johannes H Schulte
- Universitätsklinik für Kinder, und Jugendmedizin, Department of Pediatric Hematology and Oncology, Hoppe-Seyler-Straße 1, Tübingen 72076, Germany
| | - Thomas Blankenstein
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle Str. 10, Berlin 13125, Germany
| | - Kathleen Anders
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany
| | - Annette Künkele
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, Berlin 13353, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, Berlin 10117, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, Berlin 10178, Germany.
| |
Collapse
|
12
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
13
|
Inthanachai T, Boonkrai C, Phakham T, Pisitkun T, Thaiwong R, Chuthaphakdikun V, Sakunrangsit N, Limprasutr V, Chinsuwan T, Hirankarn N, Suppipat K, Watanabe N, Tawinwung S. Novel B7-H3 CAR T cells show potent antitumor effects in glioblastoma: a preclinical study. J Immunother Cancer 2025; 13:e010083. [PMID: 39863300 PMCID: PMC11784176 DOI: 10.1136/jitc-2024-010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy. METHODS Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining. B7-H3-specific mAbs were developed by immunizing mice with human B7-H3, screening with ELISA, and analyzing kinetics with surface plasmon resonance. These mAbs were used to create second-generation CAR constructs, which were evaluated in vitro and in vivo for their antitumor function. RESULTS We identified four mAb clones from immunized mice, with three demonstrating high specificity and affinity. The second-generation B7-H3 CAR T cells derived from these mAbs exhibited robust cytotoxicity against B7-H3-positive targets and successfully infiltrated and eliminated tumor spheroids in vitro. In a xenograft mouse model of glioblastoma, these CAR T cells, particularly those derived from clone A2H4, eradicated the primary tumor, and effectively controlled rechallenge tumor, resulting in prolonged survival of the xenograft mice. In vivo T cell trafficking revealed high accumulation and persistence of A2H4-derived CAR T cells at the tumor site. CONCLUSIONS Our results provide novel B7-H3-targeted CAR T cells with high efficacy, paving the way for clinical translation of solid tumor treatment.
Collapse
Affiliation(s)
- Thananya Inthanachai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattapoom Thaiwong
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vichaya Chuthaphakdikun
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nithidol Sakunrangsit
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Vudhiporn Limprasutr
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Laboratory Animal Center, Chulalongkorn University, Bangkok, Thailand
| | - Thanyavi Chinsuwan
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Khalifeh M, Salman H. Engineering resilient CAR T cells for immunosuppressive environment. Mol Ther 2025:S1525-0016(25)00039-5. [PMID: 39863931 DOI: 10.1016/j.ymthe.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion. Mechanisms of resistance include T cell exhaustion, dysfunction, and the impact of the TME. Chronic antigenic stimulation leads to CAR T cell exhaustion. CAR construct design, including co-stimulatory domains, hinge, transmembrane regions, promoters, the affinity of the binder site, and on/off rate plays a crucial role in modulating CAR T cell function and resistance. This review discusses the impact of the in vitro development of CAR T cells, albeit in relation to the TME, on therapeutic outcomes. The use of alternative cell sources, multi-antigen targeting, and reengineering the TME, are discussed. The review emphasizes the need for continued innovation in CAR T cell design and manufacturing to optimize therapeutic efficacy and durability, especially in the face of varying environmental challenges.
Collapse
Affiliation(s)
- Malak Khalifeh
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA
| | - Huda Salman
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Harthorn A, Kuo TH, Torres SW, Lobb RR, Hackel BJ. Expression-Dependent Tumor Pretargeting via Engineered Avidity. Mol Pharm 2025; 22:558-572. [PMID: 39704255 DOI: 10.1021/acs.molpharmaceut.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether. Advanced technologies to enhance the selectivity for tumor targeting are sorely needed. We have engineered a binding platform that is quantitatively dependent upon expression levels, via avidity-driven specificity, rather than binarily reliant on the presence or absence of a biomarker. We systematically varied monomeric binding affinity by engineering affibodies to target carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and folate receptor 1 (FolR1). Two identical affibody ligands were tethered, with varying polypeptide linker lengths, to a nanobody that binds Alfa peptide to create a bispecific, trivalent protein for use in pretargeted radioligand therapy. Expression-dependent targeting was achieved in both systems: with 110 nM monomeric affinity to CEACAM5 with a two-amino-acid linker or with 250 nM monomeric affinity for FolR1 and a 10 amino acid linker. The latter bispecific, trivalent achieved over 25-fold differentiation between FolR1high and FolR1low cells in a mixed culture. Similar selectivity was achieved in a size-efficient bivalent molecule lacking a central nanobody. Moreover, the avid bivalent affibody molecule exhibited minimal inhibition by soluble antigen, whereas high-affinity bivalent antibody was inhibited by 97 ± 2%, which is indicative of serum inhibition of shed antigen. This work advances design principles for achieving expression-dependent tumor targeting via low-affinity, high-avidity ligands.
Collapse
Affiliation(s)
- Abbigael Harthorn
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Tse-Han Kuo
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Sarah W Torres
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Roy R Lobb
- MRB Biotherapeutics, Newton Center, Massachusetts 02459, United States
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- MRB Biotherapeutics, Newton Center, Massachusetts 02459, United States
| |
Collapse
|
16
|
Adachi Y, Terakura S, Osaki M, Okuno Y, Sato Y, Sagou K, Takeuchi Y, Yokota H, Imai K, Steinberger P, Leitner J, Hanajiri R, Murata M, Kiyoi H. Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway. Nat Commun 2024; 15:10376. [PMID: 39658572 PMCID: PMC11631977 DOI: 10.1038/s41467-024-54794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sagou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
18
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
19
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Li S, Shi L, Zhao L, Guo Q, Li J, Liu ZL, Guo Z, Cao YJ. Split-design approach enhances the therapeutic efficacy of ligand-based CAR-T cells against multiple B-cell malignancies. Nat Commun 2024; 15:9751. [PMID: 39528513 PMCID: PMC11555413 DOI: 10.1038/s41467-024-54150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
To address immune escape, multi-specific CAR-T-cell strategies use natural ligands that specifically bind multiple receptors on malignant cells. In this context, we propose a split CAR design comprising a universal receptor expressed on T cells and ligand-based switch molecules, which preserves the natural trimeric structure of ligands like APRIL and BAFF. Following optimization of the hinges and switch labeling sites, the split-design CAR-T cells ensure the native conformation of ligands, facilitating the optimal formation of immune synapses between target cancer cells and CAR-T cells. Our CAR-T-cell strategy demonstrates antitumor activities against various B-cell malignancy models in female mice, potentially preventing immune escape following conventional CAR-T-cell therapies in the case of antigen loss or switching. This ligand-based split CAR design introduces an idea for optimizing CAR recognition, enhancing efficacy and potentially improving safety in clinical translation, and may be broadly applicable to cellular therapies based on natural receptors or ligands.
Collapse
Affiliation(s)
- Shuhong Li
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Licai Shi
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Lijun Zhao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qiaoru Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Jun Li
- Fundamenta Therapeutics Co., Ltd, Suzhou, Jiangsu, China
| | - Ze-Lin Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
22
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Kua L, Ng CH, Tan JW, Tan HC, Seh CC, Wong F, Ong R, Rooney CM, Tan J, Chen Q, Horak ID, Tan KW, Low L. Novel OX40 and 4-1BB derived spacers enhance CD30 CAR activity and safety in CD30 positive lymphoma models. Mol Ther 2024; 32:3504-3521. [PMID: 38946142 PMCID: PMC11489532 DOI: 10.1016/j.ymthe.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
The chimeric antigen receptor (CAR) derived from the CD30 specific murine antibody, HRS-3, has produced promising clinical efficacy with a favorable safety profile in the treatment of relapsed or refractory CD30-positive lymphomas. However, persistence of the autologous CAR-T cells was brief, and many patients relapsed a year after treatment. The lack of persistence may be attributed to the use of a wild-type immunoglobulin (Ig)G1 spacer that can associate with Fc receptors. We first identified the cysteine-rich domain (CRD) 5 of CD30 as the primary binding epitope of HRS-3 and armed with this insight, attempted to improve the HRS-3 CAR functionality with a panel of novel spacer designs. We demonstrate that HRS-3 CARs with OX40 and 4-1BB derived spacers exhibited similar anti-tumor efficacy, circumvented interactions with Fc receptors, and secreted lower levels of cytokines in vitro than a CAR employing the IgG1 spacer. Humanization of the HRS-3 scFv coupled with the 4-1BB spacer preserved potent on-target, on-tumor efficacy, and on-target, off-tumor safety. In a lymphoma mouse model of high tumor burden, T cells expressing humanized HRS-3 CD30.CARs with the 4-1BB spacer potently killed tumors with low levels of circulating inflammatory cytokines, providing a promising candidate for future clinical development in the treatment of CD30-positive malignancies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Disease Models, Animal
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Ki-1 Antigen/immunology
- Ki-1 Antigen/metabolism
- Lymphoma/therapy
- Lymphoma/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, OX40/metabolism
- Receptors, OX40/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lindsay Kua
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Chee Hoe Ng
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Jin Wei Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | | | | | - Fiona Wong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Richard Ong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel Tan
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Ivan D Horak
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Kar Wai Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Lionel Low
- Tessa Therapeutics Ltd, Singapore 138673, Singapore.
| |
Collapse
|
24
|
Alb M, Reiche K, Rade M, Sewald K, Loskill P, Cipriano M, Maulana TI, van der Meer AD, Weener HJ, Clerbaux LA, Fogal B, Patel N, Adkins K, Lund E, Perkins E, Cooper C, van den Brulle J, Morgan H, Rubic-Schneider T, Ling H, DiPetrillo K, Moggs J, Köhl U, Hudecek M. Novel strategies to assess cytokine release mediated by chimeric antigen receptor T cells based on the adverse outcome pathway concept. J Immunotoxicol 2024; 21:S13-S28. [PMID: 39655500 DOI: 10.1080/1547691x.2024.2345158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 12/18/2024] Open
Abstract
The success of cellular immunotherapies such as chimeric antigen receptor (CAR) T cell therapy has led to their implementation as a revolutionary treatment option for cancer patients. However, the safe translation of such novel immunotherapies, from non-clinical assessment to first-in-human studies is still hampered by the lack of suitable in vitro and in vivo models recapitulating the complexity of the human immune system. Additionally, using cells derived from human healthy volunteers in such test systems may not adequately reflect the altered state of the patient's immune system thus potentially underestimating the risk of life-threatening conditions, such as cytokine release syndrome (CRS) following CAR T cell therapy. The IMI2/EU project imSAVAR (immune safety avatar: non-clinical mimicking of the immune system effects of immunomodulatory therapies) aims at creating a platform for novel tools and models for enhanced non-clinical prediction of possible adverse events associated with immunomodulatory therapies. This platform shall in the future guide early non-clinical safety assessment of novel immune therapeutics thereby also reducing the costs of their development. Therefore, we review current opportunities and challenges associated with non-clinical in vitro and in vivo models for the safety assessment of CAR T cell therapy ranging from organ-on-chip models up to advanced biomarker screening.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/therapy
- Cytokine Release Syndrome/diagnosis
- Animals
- T-Lymphocytes/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cytokines/metabolism
- Cytokines/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Miriam Alb
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kristin Reiche
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Rade
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Katherina Sewald
- Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM, Hannover, Germany
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | - Tengku Ibrahim Maulana
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | | | - Huub J Weener
- Applied Stem Cell Technologies, University of Twente, Enschede, the Netherlands
| | | | - Birgit Fogal
- Department on Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceutical, Inc, Ridgefield, CT, USA
| | - Nirav Patel
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Karissa Adkins
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Emma Lund
- Labcorp Drug Development Inc, Derbyshire, UK
| | | | | | | | - Hannah Morgan
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Hui Ling
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | - Jonathan Moggs
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Ulrike Köhl
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| |
Collapse
|
25
|
Pe KCS, Jewmoung S, Rad SAH, Chantarat N, Chanswangphuwana C, Tashiro H, Suppipat K, Tawinwung S. Optimization of anti-TIM3 chimeric antigen receptor with CD8α spacer and TNFR-based costimulation for enhanced efficacy in AML therapy. Biomed Pharmacother 2024; 179:117388. [PMID: 39243430 DOI: 10.1016/j.biopha.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
CAR T cell therapy for AML remains limited due to the lack of a proper target without on-target off-tumor toxicity. TIM3 is a promising target due to its high expression on AML cells and absence in most normal hematopoietic cells. Previous reports have shown that each CAR component impacts CAR functionality. Here, we optimized TIM-3 targeting CAR T cells for AML therapy. We generated CARs targeting TIM3 with two different non-signaling domains: an IgG2-CH3 spacer with CD28 transmembrane domain (CH3/CD28) and a CD8α spacer with CD8α transmembrane domain (CD8/CD8), and evaluated their characteristics and function. Incorporating the non-signaling CH3/CD28 domain resulted in unstable CAR expression in anti-TIM3 CAR T cells, leading to lower surface CAR expression over time and reduced cytotoxic function compared to anti-TIM3 CARs with the CD8/CD8 domain. Both types of anti-TIM3 CAR T cells transiently exhibited fratricide, which subsided overtime, and both CAR T cells achieved substantial T cell expansion. To further optimize the design, we explored the effects of different costimulatory domains. Compared with CD28 costimulation, 4-1BB and CD27 combined with a CD8/CD8 non-signaling domain showed higher cytokine secretion, superior antitumor activity, and enhanced T-cell persistence after repeated antigen exposure. These findings emphasize the impact of the optimal design of CAR constructs that provide efficient function. In the context of anti-TIM3 CAR T cells, using a CD8α spacer and transmembrane domain with TNFR-based costimulation is a promising CAR design to improve anti-TIM3 CAR T cell function for AML therapy.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Animals
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Immunotherapy, Adoptive/methods
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cell Line, Tumor
- Mice
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Kristine Cate S Pe
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirirut Jewmoung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Natthida Chantarat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chantiya Chanswangphuwana
- Division of Hematology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Research Affair, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand.
| |
Collapse
|
26
|
Liu C, Wang Q, Li L, Gao F, Zhang Y, Zhu Y. The peptide-based bispecific CAR T cells target EGFR and tumor stroma for effective cancer therapy. Int J Pharm 2024; 663:124558. [PMID: 39111352 DOI: 10.1016/j.ijpharm.2024.124558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND PURPOSE The efficacy of chimeric antigen receptor (CAR)-T cell for solid tumors is limited partially because of the lack of tumor-specific antigens and off-target effects. Low molecular weight peptides allowed CAR T cell to display several antigen receptors to reduce off-target effects. Here, we develop a peptide-based bispecific CAR for EGFR and tumor stroma, which are expressed in a variety of tumor types. EXPERIMENTAL APPROACH AND KEY RESULTS The peptide-based CAR T cells show excellent proliferation, cytotoxicity activity and are only activated by tumor cells overexpressing EGFR instead of normal cells with low EGFR expressing. In mouse xenograft models, the peptide bispecific CAR T cells can be delivered into the inner of tumor masses and thus are effective in inhibiting tumor growth. Meanwhile, they show strong expansion capacity and the property of maintaining long-term function in vivo. During treatment, no off-tumor toxicity is observed on healthy organs expressing lower levels of EGFR. CONCLUSIONS & IMPLICATIONS Our findings demonstrate that peptide-based bispecific CAR T holds great potential in solid tumor therapy due to an excellent targeting ability towards tumors and tumor microenvironment.
Collapse
Affiliation(s)
- Cuijuan Liu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Qianqian Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Fan Gao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuanyue Zhang
- Department of Oncology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
27
|
Weinberg ZY, Soliman SS, Kim MS, Shah DH, Chen IP, Ott M, Lim WA, El-Samad H. De novo-designed minibinders expand the synthetic biology sensing repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575267. [PMID: 38293112 PMCID: PMC10827046 DOI: 10.1101/2024.01.12.575267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Synthetic and chimeric receptors capable of recognizing and responding to user-defined antigens have enabled "smart" therapeutics based on engineered cells. These cell engineering tools depend on antigen sensors which are most often derived from antibodies. Advances in the de novo design of proteins have enabled the design of protein binders with the potential to target epitopes with unique properties and faster production timelines compared to antibodies. Building upon our previous work combining a de novo-designed minibinder of the Spike protein of SARS-CoV-2 with the synthetic receptor synNotch (SARSNotch), we investigated whether minibinders can be readily adapted to a diversity of cell engineering tools. We show that the Spike minibinder LCB1 easily generalizes to a next-generation proteolytic receptor SNIPR that performs similarly to our previously reported SARSNotch. LCB1-SNIPR successfully enables the detection of live SARS-CoV-2, an improvement over SARSNotch which can only detect cell-expressed Spike. To test the generalizability of minibinders to diverse applications, we tested LCB1 as an antigen sensor for a chimeric antigen receptor (CAR). LCB1-CAR enabled CD8+ T cells to cytotoxically target Spike-expressing cells. We further demonstrate that two other minibinders directed against the clinically relevant epidermal growth factor receptor are able to drive CAR-dependent cytotoxicity with efficacy similar to or better than an existing antibody-based CAR. Our findings suggest that minibinders represent a novel class of antigen sensors that have the potential to dramatically expand the sensing repertoire of cell engineering tools.
Collapse
Affiliation(s)
| | | | - Matthew S. Kim
- Tetrad Gradudate Program, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
| | - Devan H. Shah
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA
| | - Irene P. Chen
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
| | - Melanie Ott
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
| | - Wendell A. Lim
- Cell Design Institute, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Hana El-Samad
- Department of Biochemistry & Biophysics, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
- Altos Labs, San Francisco CA
| |
Collapse
|
28
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
30
|
Maulana TI, Teufel C, Cipriano M, Roosz J, Lazarevski L, van den Hil FE, Scheller L, Orlova V, Koch A, Hudecek M, Alb M, Loskill P. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. Cell Stem Cell 2024; 31:989-1002.e9. [PMID: 38754430 DOI: 10.1016/j.stem.2024.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.
Collapse
Affiliation(s)
- Tengku Ibrahim Maulana
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Claudia Teufel
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany
| | - Madalena Cipriano
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074 Tübingen, Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Lisa Lazarevski
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lukas Scheller
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany
| | - Valeria Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - André Koch
- Department of Women's Health Tübingen, Eberhard Karls University-Tübingen, 72076 Tübingen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany; Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Außenstelle Würzburg Zelluläre Immuntherapie, 97082 Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97078 Würzburg, Germany.
| | - Peter Loskill
- Department of Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University-Tübingen, 72074 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074 Tübingen, Germany.
| |
Collapse
|
31
|
Boutier H, Loureiro LR, Hoffmann L, Arndt C, Bartsch T, Feldmann A, Bachmann MP. UniCAR T-Cell Potency-A Matter of Affinity between Adaptor Molecules and Adaptor CAR T-Cells? Int J Mol Sci 2024; 25:7242. [PMID: 39000348 PMCID: PMC11241561 DOI: 10.3390/ijms25137242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although Chimeric Antigen Receptor (CAR) T-cells have shown high efficacy in hematologic malignancies, they can cause severe to life-threatening side effects. To address these safety concerns, we have developed adaptor CAR platforms, like the UniCAR system. The redirection of UniCAR T-cells to target cells relies on a Target Module (TM), containing the E5B9 epitope and a tumor-specific binding moiety. Appropriate UniCAR-T activation thus involves two interactions: between the TM and the CAR T-cell, and the TM and the target cell. Here, we investigate if and how alterations of the amino acid sequence of the E5B9 UniCAR epitope impact the interaction between TMs and the UniCAR. We identify the new epitope E5B9L, for which the monoclonal antibody 5B9 has the greatest affinity. We then integrate the E5B9L peptide in previously established TMs directed to Fibroblast Activation Protein (FAP) and assess if such changes in the UniCAR epitope of the TMs affect UniCAR T-cell potency. Binding properties of the newly generated anti-FAP-E5B9L TMs to UniCAR and their ability to redirect UniCAR T-cells were compared side-by-side with the ones of anti-FAP-E5B9 TMs. Despite a substantial variation in the affinity of the different TMs to the UniCAR, no significant differences were observed in the cytotoxic and cytokine-release profiles of the redirected T-cells. Overall, our work indicates that increasing affinity of the UniCAR to the TM does not play a crucial role in such adaptor CAR system, as it does not significantly impact the potency of the UniCAR T-cells.
Collapse
Affiliation(s)
- Hugo Boutier
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Lydia Hoffmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Martarelli N, Capurro M, Mansour G, Jahromi RV, Stella A, Rossi R, Longetti E, Bigerna B, Gentili M, Rosseto A, Rossi R, Cencini C, Emiliani C, Martino S, Beeg M, Gobbi M, Tiacci E, Falini B, Morena F, Perriello VM. Artificial Intelligence-Powered Molecular Docking and Steered Molecular Dynamics for Accurate scFv Selection of Anti-CD30 Chimeric Antigen Receptors. Int J Mol Sci 2024; 25:7231. [PMID: 39000338 PMCID: PMC11242627 DOI: 10.3390/ijms25137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.
Collapse
Affiliation(s)
- Nico Martarelli
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Michela Capurro
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Gizem Mansour
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (G.M.); (M.B.); (M.G.)
| | - Ramina Vossoughi Jahromi
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Arianna Stella
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Roberta Rossi
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Emanuele Longetti
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Barbara Bigerna
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Marco Gentili
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Ariele Rosseto
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Riccardo Rossi
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Chiara Cencini
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, 06122 Perugia, Italy; (C.C.); (C.E.); (S.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, 06122 Perugia, Italy; (C.C.); (C.E.); (S.M.)
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, 06122 Perugia, Italy; (C.C.); (C.E.); (S.M.)
| | - Marten Beeg
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (G.M.); (M.B.); (M.G.)
| | - Marco Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (G.M.); (M.B.); (M.G.)
| | - Enrico Tiacci
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnologies, Via del Giochetto, University of Perugia, 06122 Perugia, Italy; (C.C.); (C.E.); (S.M.)
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (N.M.); (M.C.); (R.V.J.); (A.S.); (R.R.); (E.L.); (B.B.); (M.G.); (A.R.); (R.R.); (E.T.); (B.F.)
| |
Collapse
|
33
|
Kennewick KT, Yamaguchi Y, Gibson J, Gerdts EA, Jeang B, Tilakawardane D, Murad JP, Chang WC, Wright SL, Thiel MS, Forman SJ, Stern LA, Priceman SJ. Nonsignaling extracellular spacer regulates tumor antigen selectivity of CAR T cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200789. [PMID: 38939825 PMCID: PMC11208731 DOI: 10.1016/j.omton.2024.200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 06/29/2024]
Abstract
Advancing chimeric antigen receptor (CAR)-engineered T cells for the treatment of solid tumors is a major focus in the field of cellular immunotherapy. Several hurdles have hindered similar CAR T cell clinical responses in solid tumors as seen in hematological malignancies. These challenges include on-target off-tumor toxicities, which have inspired efforts to optimize CARs for improved tumor antigen selectivity and overall safety. We recently developed a CAR T cell therapy targeting prostate stem cell antigen (PSCA) for prostate and pancreatic cancers, showing improved preclinical antitumor activity and T cell persistence by optimizing the intracellular co-stimulatory domain. Similar studies were undertaken to optimize HER2-directed CAR T cells with modifications to the intracellular co-stimulatory domain for selective targeting of breast cancer brain metastasis. In the present study, we evaluate various nonsignaling extracellular spacers in these CARs to further improve tumor antigen selectivity. Our findings suggest that length and structure of the extracellular spacer can dictate the ability of CARs to selectively target tumor cells with high antigen density, while sparing cells with low antigen density. This study contributes to CAR construct design considerations and expands our knowledge of tuning solid tumor CAR T cell therapies for improved safety and efficacy.
Collapse
Affiliation(s)
- Kelly T. Kennewick
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ethan A. Gerdts
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Dileshni Tilakawardane
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - John P. Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Sarah L. Wright
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Michalina S. Thiel
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lawrence A. Stern
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Kumar Utkarsh
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Namita Srivastava
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sachin Kumar
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Azhar Khan
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shabirul Haque
- Department of Autoimmune Diseases, Feinstein Institute for Medical Research, Northwell Health, 350, Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
35
|
Inamdar VV, Hao S, Stephan SB, Stephan MT. Biomaterial-based scaffolds for direct in situ programming of tumor-infiltrating T lymphocytes. J Control Release 2024; 370:310-317. [PMID: 38677524 DOI: 10.1016/j.jconrel.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Adoptive cell therapy with tumor-infiltrating T cells (TILs) has generated exciting clinical trial results for the treatment of unresectable solid tumors. However, solid tumors remain difficult targets for adoptively transferred T cells, due in part to poor migration of TILs to the tumor, physical barriers to infiltration, and active suppression of TILs by the tumor. Furthermore, a highly skilled team is required to obtain tumor tissue, isolate and expand the TILs ex vivo, and reinfuse them into the patient, which drives up costs and limits patient access. Here, we describe a cell-free polymer implant designed to recruit, genetically reprogram and expand host T cells at tumor lesions in situ. Importantly, the scaffold can be fabricated on a large scale and is stable to lyophilization. Using a mouse breast cancer model, we show that the implants quickly and efficiently amass cancer-specific host lymphocytes at the tumor site in quantities sufficient to bring about long-term tumor regression. Given that surgical care is the mainstay of cancer treatment for many patients, this technology could be easily implemented in a clinical setting as an add-on to surgery for solid tumors. Furthermore, the approach could be broadened to recruit and genetically reprogram other therapeutically desirable host cells, such as macrophages, natural killer cells or dendritic cells, potentially boosting the antitumor effectiveness of the implant even more.
Collapse
Affiliation(s)
- V V Inamdar
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - S Hao
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - S B Stephan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - M T Stephan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA; Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
36
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
37
|
Tran TM, Chand Thakuri BK, Nurmukhambetova S, Lee JJ, Hu P, Tran NQ, Steimle B, Dash P, Schneider D. Armored TGFβRIIDN ROR1-CAR T cells reject solid tumors and resist suppression by constitutively-expressed and treatment-induced TGFβ1. J Immunother Cancer 2024; 12:e008261. [PMID: 38609317 PMCID: PMC11029479 DOI: 10.1136/jitc-2023-008261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy target receptor tyrosine kinase-like orphan receptor 1 (ROR1) is broadly expressed in hematologic and solid tumors, however clinically-characterized ROR1-CAR T cells with single chain variable fragment (scFv)-R12 targeting domain failed to induce durable remissions, in part due to the immunosuppressive tumor microenvironment (TME). Herein, we describe the development of an improved ROR1-CAR with a novel, fully human scFv9 targeting domain, and augmented with TGFβRIIDN armor protective against a major TME factor, transforming growth factor beta (TGFβ). METHODS CAR T cells were generated by lentiviral transduction of enriched CD4+ and CD8+ T cells, and the novel scFv9-based ROR1-CAR-1 was compared with the clinically-characterized ROR1-R12-scFv-based CAR-2 in vitro and in vivo. RESULTS CAR-1 T cells exhibited greater CAR surface density than CAR-2 when normalized for %CAR+, and produced more interferon (IFN)-γ tumor necrosis factor (TNF)-α and interleukin (IL)-2 in response to hematologic (Jeko-1, RPMI-8226) and solid (OVCAR-3, Capan-2, NCI-H226) tumor cell lines in vitro. In vivo, CAR-1 and CAR-2 both cleared hematologic Jeko-1 lymphoma xenografts, however only CAR-1 fully rejected ovarian solid OVCAR-3 tumors, concordantly with greater expansion of CD8+ and CD4+CAR T cells, and enrichment for central and effector memory phenotype. When equipped with TGFβ-protective armor TGFβRIIDN, CAR-1 T cells resisted TGFβ-mediated pSmad2/3 phosphorylation, as compared with CAR-1 alone. When co-cultured with ROR-1+ AsPC-1 pancreatic cancer line in the presence of TGFβ1, armored CAR-1 demonstrated improved recovery of killing function, IFN-γ, TNF-α and IL-2 secretion. In mouse AsPC-1 pancreatic tumor xenografts overexpressing TGFβ1, armored CAR-1, in contrast to CAR-1 alone, achieved complete tumor remissions, and yielded accelerated expansion of CAR+ T cells, diminished circulating active TGFβ1, and no apparent toxicity or weight loss. Unexpectedly, in AsPC-1 xenografts without TGFβ overexpression, TGFβ1 production was specifically induced by ROR-1-CAR T cells interaction with ROR-1 positive tumor cells, and the TGFβRIIDN armor conferred accelerated tumor clearance. CONCLUSIONS The novel fully human TGFßRIIDN-armored ROR1-CAR-1 T cells are highly potent against ROR1-positive tumors, and withstand the inhibitory effects of TGFß in solid TME. Moreover, TGFβ1 induction represents a novel, CAR-induced checkpoint in the solid TME, which can be circumvented by co-expressing the TGβRIIDN armor on T cells.
Collapse
Affiliation(s)
- Tri Minh Tran
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | | | | | - Jia-Jye Lee
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Peirong Hu
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Ngoc Q Tran
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Brittany Steimle
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Pradyot Dash
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Dina Schneider
- Lentigen Technology Inc., a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| |
Collapse
|
38
|
Funk MA, Heller G, Waidhofer-Söllner P, Leitner J, Steinberger P. Inhibitory CARs fail to protect from immediate T cell cytotoxicity. Mol Ther 2024; 32:982-999. [PMID: 38384128 PMCID: PMC11163222 DOI: 10.1016/j.ymthe.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Chimeric antigen receptors (CARs) equipped with an inhibitory signaling domain (iCARs) have been proposed as strategy to increase on-tumor specificity of CAR-T cell therapies. iCARs inhibit T cell activation upon antigen recognition and thereby program a Boolean NOT gate within the CAR-T cell. If cancer cells do not express the iCAR target antigen while it is highly expressed on healthy tissue, CAR/iCAR coexpressing T cells are supposed to kill cancer cells but not healthy cells expressing the CAR antigen. In this study, we employed a well-established reporter cell system to demonstrate high potency of iCAR constructs harboring BTLA-derived signaling domains. We then created CAR/iCAR combinations for the clinically relevant antigen pairs B7-H3/CD45 and CD123/CD19 and show potent reporter cell suppression by iCARs targeting CD45 or CD19. In primary human T cells αCD19-iCARs were capable of suppressing T cell proliferation and cytokine production. Surprisingly, the iCAR failed to veto immediate CAR-mediated cytotoxicity. Likewise, T cells overexpressing PD-1 or BTLA did not show impaired cytotoxicity toward ligand-expressing target cells, indicating that inhibitory signaling by these receptors does not mediate protection against cytotoxicity by CAR-T cells. Future approaches employing iCAR-equipped CAR-T cells for cancer therapy should therefore monitor off-tumor reactivity and potential CAR/iCAR-T cell dysfunction.
Collapse
Affiliation(s)
- Maximilian A Funk
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria; University Hospital LMU Munich, Department of Medicine III, Munich, Germany; Gene Center, LMU Munich, Cancer and Immunometabolism Research Group, Munich, Germany; German Cancer Consortium (DKTK), Munich Site and German Cancer Research Center, Heidelberg, Germany
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
40
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
41
|
Wang L, Matsumoto M, Akahori Y, Seo N, Shirakura K, Kato T, Katsumoto Y, Miyahara Y, Shiku H. Preclinical evaluation of a novel CAR-T therapy utilizing a scFv antibody highly specific to MAGE-A4 p230-239/HLA-A∗02:01 complex. Mol Ther 2024; 32:734-748. [PMID: 38243600 PMCID: PMC10928314 DOI: 10.1016/j.ymthe.2024.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Despite the revolutionary success of chimeric antigen receptor (CAR)-T therapy for hematological malignancies, successful CAR-T therapies for solid tumors remain limited. One major obstacle is the scarcity of tumor-specific cell-surface molecules. One potential solution to overcome this barrier is to utilize antibodies that recognize peptide/major histocompatibility complex (MHCs) in a T cell receptor (TCR)-like fashion, allowing CAR-T cells to recognize intracellular tumor antigens. This study reports a highly specific single-chain variable fragment (scFv) antibody against the MAGE-A4p230-239/human leukocyte antigen (HLA)-A∗02:01 complex (MAGE-A4 pMHC), screened from a human scFv phage display library. Indeed, retroviral vectors encoding CAR, utilizing this scFv antibody as a recognition component, efficiently recognized and lysed MAGA-A4+ tumor cells in an HLA-A∗02:01-restricted manner. Additionally, the adoptive transfer of T cells modified by the CAR-containing glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related receptor (GITR) intracellular domain (ICD), but not CD28 or 4-1BB ICD, significantly suppressed the growth of MAGE-A4+ HLA-A∗02:01+ tumors in an immunocompromised mouse model. Of note, a comprehensive analysis revealed that a broad range of amino acid sequences of the MAGE-A4p230-239 peptide were critical for the recognition of MAGE-A4 pMHC by these CAR-T cells, and no cross-reactivity to analogous peptides was observed. Thus, MAGE-A4-targeted CAR-T therapy using this scFv antibody may be a promising and safe treatment for solid tumors.
Collapse
Affiliation(s)
- Linan Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masahiro Matsumoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan
| | - Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kazuko Shirakura
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoichi Katsumoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
42
|
Imai K, Takeuchi Y, Terakura S, Okuno S, Adachi Y, Osaki M, Umemura K, Hanajiri R, Shimada K, Murata M, Kiyoi H. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-cell Tumor Models. Mol Cancer Ther 2024; 23:381-393. [PMID: 37828726 DOI: 10.1158/1535-7163.mct-23-0408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting multiple antigens (Ag), may reduce the risk of immune escape following the loss of the target Ag and further increase the efficacy of treatment. We developed dual-targeting CAR-T cells that target CD19 and CD37 Ags and evaluated their antitumor effects. CD19/CD37 dual CAR-T cells were generated using cotransduction and simultaneous gene transfer of two types of lentiviral vectors transferring CD19CAR or CD37CAR genes, including the intracellular domains of CD28 and CD3ζ signaling domains. These dual CAR-T cells contained three fractions: CD19/CD37 bispecific CAR-T cells, single CD19CAR-T cells, and single CD37CAR-T cells. In the functional evaluation of CAR-T cells in vitro, CD19/CD37 dual CAR-T cells showed adequate proliferation and cytokine production in response to CD19 and CD37 antigen stimulation alone or in combination. Evaluation of intracellular signaling revealed that dual CAR-T cell-mediated signals were comparable with single CAR-T cells in response to CD19- and CD37-positive B-cell tumors. Although the cytotoxicity of CD19/CD37 dual CAR-T cells in both CD19- and CD37-positive B-cell tumors was similar to that of single CD19 and CD37CAR-T cells, against CD19 and CD37 Ag-heterogeneous tumor, dual CAR-T cells demonstrated significantly superior tumor lysis compared with single CAR-T cells. Furthermore, CD19/CD37 dual CAR-T cells effectively suppressed Ag-heterogeneous Raji cells in a xenograft mouse model. Collectively, these results suggest that CD19/CD37 dual CAR-T cells may be effective target-Ag-loss B-cell tumor models in vitro and in vivo, which represents a promising treatment for patients with relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
43
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
44
|
Partin AC, Bruno R, Shafaattalab S, Vander Mause E, Winters A, Daris M, Gahrs C, Jette CA, DiAndreth B, Sandberg ML, Hamburger AE, Kamb A, Riley TP. Geometric parameters that affect the behavior of logic-gated CAR T cells. Front Immunol 2024; 15:1304765. [PMID: 38343543 PMCID: PMC10853413 DOI: 10.3389/fimmu.2024.1304765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Clinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate. Here we show that the function of Tmod blockers targeting non-HLA-I antigens is dependent on the height of the blocker antigen and is generally compatible with small, membrane-proximal targets. We compensate for this apparent limitation by incorporating modular hinge units to artificially extend or retract the ligand-binding domains relative to the effector cell surface, thereby modulating Tmod activator and blocker function. By accounting for structural differences between activator and blocker targets, we developed a set of simple geometric parameters for Tmod receptor design that enables targeting of blocker antigens beyond HLA-I, thereby broadening the applications of logic-gated cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alexander Kamb
- A2 Biotherapeutics, Inc., Agoura Hills, CA, United States
| | | |
Collapse
|
45
|
Svec M, Dötsch S, Warmuth L, Trebo M, Fräßle S, Riddell SR, Jäger U, D’Ippolito E, Busch DH. A chimeric antigen receptor-based cellular safeguard mechanism for selective in vivo depletion of engineered T cells. Front Immunol 2024; 14:1268698. [PMID: 38274808 PMCID: PMC10808742 DOI: 10.3389/fimmu.2023.1268698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
Adoptive immunotherapy based on chimeric antigen receptor (CAR)-engineered T cells has exhibited impressive clinical efficacy in treating B-cell malignancies. However, the potency of CAR-T cells carriethe potential for significant on-target/off-tumor toxicities when target antigens are shared with healthy cells, necessitating the development of complementary safety measures. In this context, there is a need to selectively eliminate therapeutically administered CAR-T cells, especially to revert long-term CAR-T cell-related side effects. To address this, we have developed an effective cellular-based safety mechanism to specifically target and eliminate the transferred CAR-T cells. As proof-of-principle, we have designed a secondary CAR (anti-CAR CAR) capable of recognizing a short peptide sequence (Strep-tag II) incorporated into the hinge domain of an anti-CD19 CAR. In in vitro experiments, these anti-CAR CAR-T cells have demonstrated antigen-specific cytokine release and cytotoxicity when co-cultured with anti-CD19 CAR-T cells. Moreover, in both immunocompromised and immunocompetent mice, we observed the successful depletion of anti-CD19 CAR-T cells when administered concurrently with anti-CAR CAR-T cells. We have also demonstrated the efficacy of this safeguard mechanism in a clinically relevant animal model of B-cell aplasia induced by CD19 CAR treatment, where this side effect was reversed upon anti-CAR CAR-T cells infusion. Notably, efficient B-cell recovery occurred even in the absence of any pre-conditioning regimens prior anti-CAR CAR-T cells transfer, thus enhancing its practical applicability. In summary, we developed a robust cellular safeguard system for selective in vivo elimination of engineered T cells, offering a promising solution to address CAR-T cell-related on-target/off-tumor toxicities.
Collapse
Affiliation(s)
- Mortimer Svec
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Dötsch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Linda Warmuth
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Manuel Trebo
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Simon Fräßle
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stanley R. Riddell
- Translational Sciences and Therapeutics, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
46
|
Goddard ET, Linde MH, Srivastava S, Klug G, Shabaneh TB, Iannone S, Grzelak CA, Marsh S, Riggio AI, Shor RE, Linde IL, Guerrero M, Veatch JR, Snyder AG, Welm AL, Riddell SR, Ghajar CM. Immune evasion of dormant disseminated tumor cells is due to their scarcity and can be overcome by T cell immunotherapies. Cancer Cell 2024; 42:119-134.e12. [PMID: 38194912 PMCID: PMC10864018 DOI: 10.1016/j.ccell.2023.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
The period between "successful" treatment of localized breast cancer and the onset of distant metastasis can last many years, representing an unexploited window to eradicate disseminated disease and prevent metastases. We find that the source of recurrence-disseminated tumor cells (DTCs) -evade endogenous immunity directed against tumor neoantigens. Although DTCs downregulate major histocompatibility complex I, this does not preclude recognition by conventional T cells. Instead, the scarcity of interactions between two relatively rare populations-DTCs and endogenous antigen-specific T cells-underlies DTC persistence. This scarcity is overcome by any one of three immunotherapies that increase the number of tumor-specific T cells: T cell-based vaccination, or adoptive transfer of T cell receptor or chimeric antigen receptor T cells. Each approach achieves robust DTC elimination, motivating discovery of MHC-restricted and -unrestricted DTC antigens that can be targeted with T cell-based immunotherapies to eliminate the reservoir of metastasis-initiating cells in patients.
Collapse
Affiliation(s)
- Erica T Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Miles H Linde
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shivani Srivastava
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grant Klug
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Santino Iannone
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Candice A Grzelak
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sydney Marsh
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alessandra I Riggio
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryann E Shor
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian L Linde
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marissa Guerrero
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua R Veatch
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Annelise G Snyder
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Taheri FH, Hassani M, Sharifzadeh Z, Behdani M, Abdoli S, Sayadi M, Bagherzadeh K, Arashkia A, Abolhassani M. Tuning spacer length improves the functionality of the nanobody-based VEGFR2 CAR T cell. BMC Biotechnol 2024; 24:1. [PMID: 38178096 PMCID: PMC10768260 DOI: 10.1186/s12896-023-00827-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriately activated and also for the proper antigen recognition, the length and composition of the extracellular spacer are critical factors. RESULTS We constructed two third-generation nanobody-based VEGFR2-CARs containing either IgG1 hinge-CH2-CH3 region or hinge-only as long or short extracellular spacers, respectively. Both CARs also contained intracellular activating domains of CD28, OX40, and CD3ζ. The T cells from healthy individuals were transduced efficiently with the two CARs, and showed increased secretion of IL-2 and IFN-γ cytokines, and also CD69 and CD25 activation markers along with cytolytic activity after encountering VEGFR2+ cells. The VEGFR2-CAR T cells harboring the long spacer showed higher cytokine release and CD69 and CD25 expression in addition to a more efficient cytolytic effect on VEGFR2+ target cells. CONCLUSIONS The results demonstrated that the third-generation anti-VEGFR2 nanobody-based CAR T cell with a long spacer had a superior function and potentially could be a better candidate for solid tumor treatment.
Collapse
Affiliation(s)
- Fatemeh Hajari Taheri
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Mahmoud Hassani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sharifzadeh
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shahryar Abdoli
- Department of Medical Biotechnology, Golestan University of Medical Science, Gorgān, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohsen Abolhassani
- Hybridoma Lab, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Khodke P, Kumbhar BV. Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:157-198. [PMID: 38762269 DOI: 10.1016/bs.apcsb.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.
Collapse
Affiliation(s)
- Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India.
| |
Collapse
|
49
|
Kalim M, Jing R, Li X, Jiang Z, Zheng N, Wang Z, Wei G, Lu Y. Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2024; 6:22-50. [PMID: 38883270 PMCID: PMC11172397 DOI: 10.33696/immunology.6.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown potential in improving outcomes for individuals with hematological malignancies. However, achieving long-term full remission for blood cancer remains challenging due to severe life-threatening toxicities such as limited anti-tumor efficacy, antigen escape, trafficking restrictions, and limited tumor invasion. Furthermore, the interactions between CAR-T cells and their host tumor microenvironments have a significant impact on CAR-T function. To overcome these considerable hurdles, fresh methodologies and approaches are needed to produce more powerful CAR-T cells with greater anti-tumor activity and less toxicity. Despite advances in CAR-T research, microbial resistance remains a significant obstacle. In this review, we discuss and describe the basics of CAR-T structures, generations, challenges, and potential risks of infections in CAR-T cell therapy.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Guo Wei
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| |
Collapse
|
50
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|