1
|
Boukansa S, Mouhrach I, Agy FE, Gamrani S, Bouguenouch L, Serraj M, Amara B, Ouadnouni Y, Smahi M, Alami B, Mellas N, Benbrahim Z, Fatemi HE. Molecular Testing for EGFR Mutation in Moroccan NSCLC Patients: CHU Hassan II-Fez Experience. Int J Surg Pathol 2025; 33:585-595. [PMID: 39285702 DOI: 10.1177/10668969241268379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Epidermal growth factor receptor (EGFR) mutation screening in non-small cell lung cancer (NSCLC) is now used to guide treatment decisions to identify patients with EGFR positive mutations that predict response to EGFR tyrosine kinase inhibitors. This study aimed to explore with a prospective study the current testing practices and the predictive value of EGFR mutations in a series of 261 patients with NSCLC. EGFR mutation testing was conducted using 2 different assays: bidirectional Sanger sequencing of polymerase chain reaction (PCR) and real-time PCR on the Rotor-Gene Q instrument. Epidermal growth factor receptor mutation testing was performed for 261 patients with lung cancer. Exons 18 to 21 were successfully analyzed in 113 tumors by Direct sequencing and in 148 tumors by real-time PCR. The prevalence of positive EGFR-mutations in each method was 22.1% (N = 25) and 24.3% (N = 36), respectively (P = .3). In total, EGFR mutations were detected in 59 patients among 261 patients with NSCLC. A statistically significant association between female sex, nonsmoking history, nonsolid major pattern, and a higher EGFR mutation frequency. In this study, we investigated clinicopathological differences between tumors harboring exon 19del and those harboring L858R. We did not find any significant differences between the 2 mutations and gender or smoking features, interestingly, the prevalence of patients aged >60 years was significantly higher in the L858R group than in the exon 19del group (81.8% vs 55.8%, P = .05). A significant association was observed between exon 19 deletions and the papillary major pattern, but no correlation was detected between exon 21 mutation and any histological pattern. This prospective study documented the real-world clinical testing of EGFR mutation in Moroccan NSCLC patients. Our experience confirms the need to develop standards-based guidelines for the routine performance and evaluation of EGFR testing to improve clinical care for this subset of lung cancer. On the other hand, our study demonstrated that tumors with exon 19 deletions and L858R harbor specific clinicopathological features in NSCLC.
Collapse
Affiliation(s)
- Sara Boukansa
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ismail Mouhrach
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fatima El Agy
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanaa Gamrani
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yassine Ouadnouni
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Smahi
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Badreeddine Alami
- Department of Radiology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nawfel Mellas
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zineb Benbrahim
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hinde El Fatemi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Wei L, Lao Y, Fu T, Xie Z, Wang Y, Yang T, Huang L, Liu J, Shu M, Tian T, Li S, He Q, Zhou J, Zhang X, Wang H, Du J, Wang X, Yang Z, Bai L, Ke Z. Distinct Role of TP53 Co-mutations in Different EGFR Subtypes Mediating the Response to EGFR Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Clin Lung Cancer 2025:S1525-7304(25)00078-6. [PMID: 40382269 DOI: 10.1016/j.cllc.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND TP53 co-mutations are closely associated with poor outcomes in patients with EGFR-mutant non-small cell lung cancer (NSCLC). Our study aimed to explore whether TP53 co-mutations affect survival and response to EGFR tyrosine kinase inhibitors (TKIs) in patients with different EGFR subtypes. PATIENTS AND METHODS We retrospectively analyzed 240 NSCLC with EGFR mutation (MT) from the First Affiliated Hospital of Sun Yat-sen University. The effects of TP53 co-mutations on the response to EGFR TKIs were evaluated in EGFR-mutant patients. RESULTS Among various EGFR-mutant subtypes, patients with EGFRL858R/TP53MT exhibited significantly worse progression-free survival (PFS) than those without TP53 co-mutations (7.9 months vs. 19.8 months, HR = 1.53, 95% CI: 1.03-2.28, P = .032), whereas a similar trend did not reappear in subgroups of EGFR19del (P = .730) and EGFRothers (P = .495). Specifically, patients with EGFRL858R/TP53MT who were treated with second-generation TKIs exhibited worse PFS than those without TP53 co-mutations. TP53 co-mutations were identified as the only independent risk factor for PFS by multivariate analysis. Moreover, TP53 co-mutations mediated the acquisition of resistance in patients harboring EGFRL858R, and concomitant mutations in additional tumor suppressor genes (TSGs) (RB1, NF1, ARID1A, and BRCA1) represented a subgroup characterized by an aggressive disease phenotype with worse PFS. CONCLUSION TP53 co-mutations are associated with poor survival and may cooperate with other genomic events to facilitate resistance in NSCLC harboring EGFRL858R. Sequential therapeutic interventions beyond EGFR-TKIs monotherapy may extend the survival of patients with EGFRL858R/TP53MT.
Collapse
Affiliation(s)
- Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Lao
- Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tiantian Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Leilei Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahua Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China
| | - Huipin Wang
- Department of Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Juan Du
- Department of Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xinwei Wang
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Lihong Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Feng X, Zeng R, Lyu M, Chen X, Xu Z, Hu Y, Bao Z, Sun X, Zhao J, Zhou L, Zhou J, Gao B, Dong L, Xiang Y. Clinical and molecular characteristics, therapeutic strategies, and prognosis of non-small cell lung cancer patients harboring primary and acquired BRAF mutations. Front Oncol 2025; 15:1514653. [PMID: 40242250 PMCID: PMC11999832 DOI: 10.3389/fonc.2025.1514653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Background The differences in clinical characteristics and treatment prognosis in NSCLC patients harboring primary and acquired BRAF mutations are still poorly understood. Methods From Oct 2017 to Dec 2023, 10, 211 lung cancer patients at Shanghai Ruijin Hospital were reviewed. 88 primary and 15 acquired BRAF-mutated NSCLC patients resistant to EGFR TKIs were included in the study. Results Primary BRAF-mutated patients preferentially occurred in the elderly (median age: 67 vs 61, p=0.015), males (53.4% vs 26.7%, p=0.056), former/current smokers (36.5% vs 6.7%, p=0.033), non-adenocarcinoma (11.4% vs 0%, P=0.351) compared to acquired BRAF-mutated patients. Significant differences in gender (33.3% vs 62.3%, p=0.012), smoking history (22.2% vs 43.1%, p=0.063), and adenocarcinomas (100% vs 83.6%, p=0.028) were observed between primary BRAF/EGFR co-mutated and non-co-mutated groups. While primary and acquired BRAF/EGFR co-mutated patients had similar clinical characteristics, with EGFR mutations being the most common coexisting oncogene (30.7% and 93.3%). The genotype of EGFR mutations differed, with acquired BRAF-mutated cases showing more complexity and a higher rate of dual EGFR mutations (35.7%) compared to primary cases. For primary BRAF/EGFR co-mutated patients, no matter what kinds of therapies, the EGFR 19del patients had a better prognosis than non-19del patients, and the first line mPFS was NR and 9.0 months (95% CI: 7.7-10.3 months) (p=0.0062), respectively. Dabrafenib and trametinib plus 3rd EGFR TKIs improved the prognosis of primary BRAF/EGFR non-19del co-mutated patients, achieving ORR and mPFS of 100% (3/3) and 12 months. For acquired co-mutated patients, the mPFS for 5 patients was 8.6 months (95% CI: 5.4-11.8 months). No new safety concerns and > grade 3 AEs were noted. Conclusion Together, our study demonstrates that primary and acquired BRAF-mutant patients show distinct differences in some clinical and molecular characteristics, but acquired BRAF/EGFR co-mutated and primary BRAF/EGFR non-19del co-mutated patients may both respond to triple-targeted therapy.
Collapse
Affiliation(s)
- Xiangran Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zeng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengchen Lyu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xianwen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jingya Zhao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Beili Gao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
4
|
Long-Mira E, Bontoux C, Rignol G, Hofman V, Lassalle S, Benzaquen J, Boutros J, Lalvée-Moret S, Zahaf K, Lespinet-Fabre V, Bordone O, Maistre S, Bonnetaud C, Cohen C, Berthet JP, Marquette CH, Vouret-Craviari V, Ilié M, Hofman P. Exploring the Expression of CD73 in Lung Adenocarcinoma with EGFR Genomic Alterations. Cancers (Basel) 2025; 17:1034. [PMID: 40149368 PMCID: PMC11941413 DOI: 10.3390/cancers17061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors (ICIs) benefit some lung cancer patients, but their efficacy is limited in advanced lung adenocarcinoma (LUAD) with EGFR mutations (EGFRm), largely due to a non-immunogenic tumour microenvironment (TME). Furthermore, EGFRm LUAD patients often experience increased toxicity with ICIs. CD73, an ectonucleotidase involved in adenosine production, promotes tumour immune evasion and could represent a novel therapeutic target. This study investigates CD73 expression in LUAD with EGFR alterations and its clinico-pathological correlations. METHODS CD73 expression in tumour (CD73TC) and stromal (CD73SC) cells was assessed in 76 treatment-naive LUAD patients using immunohistochemistry (IHC) (D7F9A clone) alongside IHC PD-L1 (22C3 clone). EGFR alterations were identified by molecular sequencing and FISH. Event-free survival (EFS) was analysed based on CD73TC expression. RESULTS CD73TC expression was observed in 66% of cases, with high expression (Tumour Proportion Score > 50%) correlating with improved EFS (p = 0.045). CD73TC and PD-L1 expression were not significantly correlated (p = 0.44), although a weak inverse trend was observed. CD73SC expression was detected in 18% of cases, predominantly in early-stage (p = 0.037), PD-L1-negative (p = 0.030), and non-EGFR-amplified (p = 0.0018) tumours. No significant associations were found with disease stage, histological subtype, EGFR mutation type, and amplification. CONCLUSIONS CD73 expression in EGFRm LUAD is heterogeneous and associated with diverse TME profiles. These findings support the potential of CD73 as a predictive biomarker and therapeutic target, highlighting its clinical relevance in EGFRm LUAD.
Collapse
Affiliation(s)
- Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Jonathan Benzaquen
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Jacques Boutros
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Salomé Lalvée-Moret
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Sophia Maistre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Charlotte Cohen
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Jean-Philippe Berthet
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Charles-Hugo Marquette
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Valerie Vouret-Craviari
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| |
Collapse
|
5
|
van der Wel JWT, de Langen AJ. Novel strategies for rare oncogenic drivers in non-small-cell lung cancer: An update from the 2024 Annual ESMO meeting. Lung Cancer 2025:108490. [PMID: 40118657 DOI: 10.1016/j.lungcan.2025.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Across the landscape of oncogene-addicted non-small-cell lung cancer (NSCLC), various tyrosine kinase inhibitors (TKIs) have been introduced in the last twenty years. During the 2024 Annual ESMO meeting new therapeutic options were presented for EGFR exon 20 insertion mutation, ALK fusion and ROS1 fusion positive advanced stage NSCLC. For EGFR exon 20 insertion mutation positive NSCLC, results from REZILIENT-1, a single arm phase II study with zipalertinib, were presented, showing an objective response rate (ORR) of 50% in patients that were pretreated with amivantamab, and 25% in patients pretreated with amivantamab and an EGFR exon 20 insertion-directed TKI. The vast majority of these patients also received platinum-doublet chemotherapy. For ALK, results from ALKOVE-1, a single arm phase I/II study with NVL-655, a next generation ALK TKI, were presented. The ORR was 35 % in patients pretreated with ≥ 2 ALK TKIs including lorlatinib and 57 % in patients pretreated with ≥ 1 ALK TKI, excluding lorlatinib. The median number of prior anticancer therapies was 3. Intracranial responses were seen in lorlatinib naïve- and lorlatinib pretreated patients and toxicity was manageable. In addition, results of the first-line randomized phase III INSPIRE study were presented, in which iruplinalkib, an ALK and ROS1 selective TKI, is being evaluated versus crizotinib. Iruplinalkib showed a superior median PFS (36.8 versus 14.55 months for crizotinib), but no difference in 36-month overall survival (OS) rate. Finally, results from ARROS-1, a single arm phase I/II study with zidesamtinib, a ROS1 selective and TRK-sparing TKI, were presented. An ORR of 73% was obtained in patients that were pretreated with crizotinib and an ORR of 38% in patients pretreated with repotrectinib. In this review, we will discuss the relevant study results presented at ESMO 2024 for these three genomic drivers and hypothesize on their respective place in the sequence of treatment options.
Collapse
Affiliation(s)
- J W T van der Wel
- Netherlands Cancer Institute, Department of Thoracic Oncology, Amsterdam, The Netherlands
| | - A J de Langen
- Netherlands Cancer Institute, Department of Thoracic Oncology, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hirata T, Watanabe K, Hosomi Y, Yoh K, Usui K, Kishi K, Naka G, Tamano S, Uemura K, Kunitoh H. Observational study of the efficacy and safety of first-line osimertinib and later treatments for uncommon epidermal growth factor receptor-activating mutation-positive advanced non-small cell lung cancer. Jpn J Clin Oncol 2025; 55:269-274. [PMID: 39703183 PMCID: PMC11882500 DOI: 10.1093/jjco/hyae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is a first-line therapy for advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR mutations, including both sensitizing and T790M resistance mutations. Its real-world efficacy against uncommon EGFR mutations remains under-researched. METHODS The REIWA study, a multicentric, prospective, observational study conducted in Japan from September 2018 to August 2020, enrolled patients with advanced or recurrent EGFR mutation-positive NSCLC receiving osimertinib. Data on clinical outcomes, safety, disease progression, and subsequent treatments were collected for patients with uncommon EGFR mutations. RESULTS Of 583 patients receiving osimertinib, 39 (6.7%) had an uncommon EGFR mutation. The present study included 32 of these patients after excluding seven patients with an exon 20 insertion mutation. The overall objective response rate was 53.1% [95% confidence interval (CI): 36.4-69.1], and the disease control rate was 78.1% (95% CI: 61.0-89.3). The median progression-free survival was 9.4 months (95% CI: 5.0-20.0), and the median overall survival (OS) was 21.8 (95% CI: 14.4-NA) months. Notably, patients with an exon21 L861Q mutation had a significantly longer OS than those with an exon18 G719X mutation, the respective values being 37.8 and 9.7 months (hazard ratio: 0.29; 95% CI: 0.10-0.85; P = 0.02). The rate of grade 3 or worse adverse events was 10.3%. Seven out of 32 (21.9%) patients showed progression involving only the central nervous system. CONCLUSIONS Osimertinib demonstrated efficacy and tolerability in the clinical setting in patients with uncommon EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Kageaki Watanabe
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kazuhiro Usui
- Department of Respiratory Medicine, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-ku, Tokyo 141-0022, Japan
| | - Kazuma Kishi
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Ohmorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Go Naka
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, 1-6, Kandasurugadai, Chiyoda-ku, Tokyo 101-8309, Japan
| | - Shu Tamano
- Biostatistics and Bioinformatics Course, Graduate School of Interdisciplinary Information Studies, The University of Tokyo, 7-3-1, Hongou, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kohei Uemura
- Department of Biostatistics and Bioinformatics, The Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1, Hongou, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideo Kunitoh
- Department of Chemotherapy, Japan Red Cross Medical Center, 4-1-22, Hiroo, Shibuya-ku, Tokyo 150-8935, Japan
| |
Collapse
|
7
|
Zhao A, Tu D, He Y, Liu L, Wu B, Ren Y. Identification and validation the predictive biomarkers based on risk-adjusted control chart in gemcitabine with or without erlotinib for pancreatic cancer therapy. Front Genet 2024; 15:1497254. [PMID: 39741907 PMCID: PMC11685217 DOI: 10.3389/fgene.2024.1497254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background In a randomized clinical controlled trial (PA.3) conducted by the Canadian Cancer Trials Group, the effects of gemcitabine combined with the targeted drug erlotinib (GEM-E) versus gemcitabine alone (GEM) on patients with unresectable, locally advanced, or metastatic pancreatic cancer were studied. This trial statistically demonstrated that the GEM-E combination therapy moderately improves overall survival (OS) of patients. However, real-world analysis suggested that GEM-E for pancreatic cancer was not more effective than GEM. The heterogeneity in outcomes or treatment effect exist. Thus, we tried to find predictive biomarkers to identifying the heterogeneous patients. Methods Of the 569 eligible patients, 480 patients had plasma samples. Univariate and multivariate Cox proportional hazards model were used to identify baseline characteristics related to OS, and a risk adjusted Exponentially Weighted Moving Average (EWMA) control chart based on a weighted score test from the Cox model was constructed to monitor patients' survival risk. Maximally selected rank statistics were constructed to identifying the predictive biomarkers, in addition, a risk adjusted control chart based on a weighted score test from the Cox model was constructed to validating the predictive biomarkers, discover the patients who sensitive to the GEM-E or GEM. Results Three baseline characteristics (ECOG performance status, extent of disease, and pain intensity) were identified related to prognosis. A risk-adjusted EWMA control chart was constructed and showed that GEM-E did improve OS in a few patients. Three biomarkers (BMP2, CXCL6, and HER2) were identified as predictive biomarkers based on maximum selected rank test, and using the risk-adjusted EWMA control chart to validate the reality and discover some patients who are sensitive to the GEM-E therapy. Conclusion In reality, GEM-E has not shown a significant advantage over GEM in the treatment of pancreatic cancer. However, we discovered some patients who are sensitive to the GEM-E therapy based on the predictive biomarkers, which suggest that the predictive biomarkers provide ideas for personalized medicine in pancreatic cancer.
Collapse
Affiliation(s)
- Aijun Zhao
- School of Mathematical Science and Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, China
| | - Dongsheng Tu
- Department of Public Health Sciences, Canadian Cancer Trials Group, Queen’s University, Kingston, ON, Canada
| | - Ye He
- Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu, China
| | - Liu Liu
- School of Mathematical Science and Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, China
| | - Bin Wu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Yixing Ren
- Department of General Surgery, Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Ćeriman Krstić V, Soldatović I, Samardžić N, Gajić M, Kontić M, Reljić A, Savić M, Roksandić Milenković M, Jovanović D. Long-Term Outcomes in Patients with EGFR Positive Lung Adenocarcinoma and Subgroup Analysis Based on Presence of Liver Metastases. Curr Issues Mol Biol 2024; 46:13431-13442. [PMID: 39727929 PMCID: PMC11727537 DOI: 10.3390/cimb46120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Lung cancer represents the most common cause of cancer related death. Patients with non-small cell lung cancer (NSCLC) and liver metastases (LM) have worse prognosis with an overall survival (OS) of three to six months. The aim of this study was to investigate long-term outcomes in patients with EGFR mutated (EGFRmut) lung adenocarcinoma as well as the presence of LM. (A total of 105 patients were included in the analysis). They were divided into two groups based on the presence of LM. OS was 13 months for the whole group and also 13 months for patients with and without LM. The 9-year survival rate for patients with and without LM was 12.5% and 3.4%, respectively. Further, the 9-year survival rate for the whole group of patients was 4.8%. There are few data about survival rates beyond 5 years for patients with locally advanced and metastatic EGFRmut NSCLC, mainly because patients with lung cancer rarely live for such a long time. Regarding patients with liver metastases, the results of our study showed similar outcomes compared to patients without LM. As these patients represent a significant number of patients, we need a wider range of therapeutic options. It might be that combination therapies represent a better therapeutic option.
Collapse
Affiliation(s)
- Vesna Ćeriman Krstić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Ivan Soldatović
- Institute of Medical Statistics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natalija Samardžić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milija Gajić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milica Kontić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Aleksandar Reljić
- Clinic for Ortopedics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milan Savić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Thoracic Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | | | | |
Collapse
|
9
|
Jiang C, Zhang Y, Deng P, Lin H, Fu F, Deng C, Chen H. The Overlooked Cornerstone in Precise Medicine: Personalized Postoperative Surveillance Plan for NSCLC. JTO Clin Res Rep 2024; 5:100701. [PMID: 39188582 PMCID: PMC11345377 DOI: 10.1016/j.jtocrr.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
Non-small cell lung cancer recurrence after curative-intent surgery remains a challenge despite advancements in treatment. We review postoperative surveillance strategies and their impact on overall survival, highlighting recommendations from clinical guidelines and controversies. Studies suggest no clear benefit from more intensive imaging, whereas computed tomography scans reveal promise in detecting recurrence. For early-stage disease, including ground-glass opacities and adenocarcinoma in situ or minimally invasive adenocarcinoma, less frequent surveillance may suffice owing to favorable prognosis. Liquid biopsy, especially circulating tumor deoxyribonucleic acid, holds potential for detecting minimal residual disease. Clinicopathologic factors and genomic profiles can also provide information about site-specific metastases. Machine learning may enable personalized surveillance plans on the basis of multi-omics data. Although precision medicine transforms non-small cell lung cancer treatment, optimizing surveillance strategies remains essential. Tailored surveillance strategies and emerging technologies may enhance early detection and improve patients' survival, necessitating further research for evidence-based protocols.
Collapse
Affiliation(s)
- Chenyu Jiang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Penghao Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Han Lin
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Institute of Thoracic Oncology, Fudan University, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Fukuda A, Okuma Y. From Rarity to Reality: Osimertinib's Promising Horizon in Treating Uncommon EGFR Mutations in Non-Small Cell Lung Cancer. Clin Cancer Res 2024; 30:3128-3136. [PMID: 38767589 DOI: 10.1158/1078-0432.ccr-23-4035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
In the realm of advanced non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) therapy with tyrosine kinase inhibitors (TKI), addressing optimal treatment for uncommon EGFR mutations like G719X in exon 18, S768I in exon 20, and L861Q in exon 21 remains a pivotal yet challenging frontier. Contrary to the well-established efficacy of EGFR-TKIs in common EGFR mutations, these uncommon alterations pose unmet medical needs due to a lack of comprehensive evidence. While afatinib, a second-generation EGFR-TKI, has received FDA approval for patients with these uncommon EGFR mutations, the approval was based on a post-hoc analysis of randomized clinical trials. Recent developments include multiple clinical trials investigating the efficacy of both second- and third-generation EGFR-TKIs in patients with uncommon EGFR mutations. A noteworthy example is a prospective phase II trial of osimertinib including the landmark UNICORN study, which has shown promising results in treating uncommon EGFR mutations. Despite various reports on the efficacy of afatinib and osimertinib in treating uncommon EGFR mutations, the appropriate use of these TKIs remains unclear. This review aims to consolidate the findings from the latest clinical trials focused on uncommon EGFR mutations, outlining variations in the therapeutic efficacy of these TKIs based on the specific genetic mutation. By synthesizing these findings, we aim to guide oncologists toward more informed decisions in employing TKIs for NSCLC with uncommon EGFR mutations other than exon 20 insertion. Additionally, we explore potential treatment strategies tailored to these patient populations to address the challenges posed by these mutations.
Collapse
Affiliation(s)
- Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Boukansa S, Mouhrach I, El Agy F, El Bardai S, Bouguenouch L, Serraj M, Amara B, Ouadnouni Y, Smahi M, Alami B, Mellas N, Benbrahim Z, El Fatemi H. Clinicopathological and prognostic implications of EGFR mutations subtypes in Moroccan non-small cell lung cancer patients: A first report. PLoS One 2024; 19:e0298721. [PMID: 38837980 PMCID: PMC11152259 DOI: 10.1371/journal.pone.0298721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health concern, with EGFR mutations playing a pivotal role in guiding treatment decisions. This prospective study investigated the prevalence and clinical implications of EGFR mutations in Moroccan NSCLC patients. METHODS A cohort of 302 NSCLC patients was analyzed for EGFR mutations using multiple techniques. Demographic, clinical, and pathological characteristics were assessed, and overall survival (OS) outcomes were compared among different EGFR mutation subtypes. RESULTS EGFR mutations were present in 23.5% of patients, with common mutations (81.69%) dominating. Common mutations showed strong associations with female gender and non-smoking status, while rare mutations were associated with a positive smoking history. Patients with EGFR mutations receiving tyrosine kinase inhibitors (TKIs) had significantly improved OS compared to wild-type EGFR patients. Notably, patients with common EGFR mutations had the highest OS, while those with rare mutations had a shorter survival period, albeit not statistically significant. CONCLUSION This study highlights the relevance of EGFR mutation status in NSCLC patients, particularly in therapeutic decision-making. The association between smoking history and rare mutations suggests the need for tailored approaches. The survival advantage for patients with common EGFR mutations underscores the significance of personalized treatment strategies.
Collapse
Affiliation(s)
- Sara Boukansa
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ismail Mouhrach
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fatima El Agy
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sanae El Bardai
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Unit of Medical Genetics and Oncogenetics, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mounia Serraj
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Bouchra Amara
- Department of Pneumology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yassine Ouadnouni
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Smahi
- Department of Thoracic Surgery, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Badreeddine Alami
- Department of Radiology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nawfel Mellas
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Zineb Benbrahim
- Department of Oncology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hinde El Fatemi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Laboratory of Anatomic Pathology and Molecular Pathology, University Hospital Hassan II, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
12
|
Zhou S, Cai G, Meng X, Li M, Fu Y, Wang X, Wang K, Han X. Primary versus acquired epidermal growth factor receptor Thr790Met mutant non-small cell lung cancer: clinical features and prognoses. Clin Transl Oncol 2024; 26:1395-1406. [PMID: 38190033 DOI: 10.1007/s12094-023-03365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE This study aimed to identify the impact of epidermal growth factor receptor (EGFR) T790M mutations on clinical characteristics and prognosis. METHODS Retrospective analyses were conducted on the differences on clinicopathological features and prognosis between primary and acquired T790M mutations. Subgroup analyses were performed for primary T790M coexisting with other mutations. RESULTS Patients with primary T790M mutations showed a 60.53% (23/38) incidence of concurrent L858R mutations, 18.42% (7/38) for 19del mutations and a 21.05% (8/38) occurrence of brain metastases. Conversely, those with acquired T790M mutations demonstrated respective frequencies of 36.53% (61/167), 58.68% (98/167) and 44.31% (74/167), with all comparisons yielding p < 0.05. The median overall survival differed significantly between the two groups, with a duration of 33 months for patients with primary T790M mutations as compared to 48 months for those with acquired mutations (p = 0.030). Notably, among patients with L858R co-mutations, when treated with third-generation EGFR-TKIs, those with acquired T790M mutations experienced a significantly prolonged median time to treatment failure compared to those with primary mutations (17 months vs. 9 months, p = 0.009). CONCLUSION Patients with primary T790M have unique molecular features and had worse prognosis compared with acquired T790M. Resistance to third-generation EGFR-TKIs seems to be associated with the presence of EGFR co-mutations.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Oncology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Guoxin Cai
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
- Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Mengying Li
- Department of Oncology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Fu
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohan Wang
- Department of Oncology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
| | - Kaiyue Wang
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Xiao Han
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117, Shandong, China.
| |
Collapse
|
13
|
Weng L, Xu Y, Chen Y, Chen C, Qian Q, Pan J, Su H. Using Vision Transformer for high robustness and generalization in predicting EGFR mutation status in lung adenocarcinoma. Clin Transl Oncol 2024; 26:1438-1445. [PMID: 38194018 DOI: 10.1007/s12094-023-03366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Lung adenocarcinoma is a common cause of cancer-related deaths worldwide, and accurate EGFR genotyping is crucial for optimal treatment outcomes. Conventional methods for identifying the EGFR genotype have several limitations. Therefore, we proposed a deep learning model using non-invasive CT images to predict EGFR mutation status with robustness and generalizability. METHODS A total of 525 patients were enrolled at the local hospital to serve as the internal data set for model training and validation. In addition, a cohort of 30 patients from the publicly available Cancer Imaging Archive Data Set was selected for external testing. All patients underwent plain chest CT, and their EGFR mutation status labels were categorized as either mutant or wild type. The CT images were analyzed using a self-attention-based ViT-B/16 model to predict the EGFR mutation status, and the model's performance was evaluated. To produce an attention map indicating the suspicious locations of EGFR mutations, Grad-CAM was utilized. RESULTS The ViT deep learning model achieved impressive results, with an accuracy of 0.848, an AUC of 0.868, a sensitivity of 0.924, and a specificity of 0.718 on the validation cohort. Furthermore, in the external test cohort, the model achieved comparable performances, with an accuracy of 0.833, an AUC of 0.885, a sensitivity of 0.900, and a specificity of 0.800. CONCLUSIONS The ViT model demonstrates a high level of accuracy in predicting the EGFR mutation status of lung adenocarcinoma patients. Moreover, with the aid of attention maps, the model can assist clinicians in making informed clinical decisions.
Collapse
Affiliation(s)
- Luoqi Weng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qinqing Qian
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China
| | - Huang Su
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Department of Gastroenterology, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
Latham BD, Geffert RM, Jackson KD. Kinase Inhibitors FDA Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab Dispos 2024; 52:479-492. [PMID: 38286637 PMCID: PMC11114602 DOI: 10.1124/dmd.123.001430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Xu J, Yang Y, Gao Z, Song T, Ma Y, Yu X, Shi C. Distinguishing EGFR mutation molecular subtypes based on MRI radiomics features of lung adenocarcinoma brain metastases. Clin Neurol Neurosurg 2024; 240:108258. [PMID: 38552362 DOI: 10.1016/j.clineuro.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To explore the feasibility of identifying epidermal growth factor receptor (EGFR) mutation molecular subtypes in primary lesions based on the radiomics features of lung adenocarcinoma brain metastases using magnetic resonance imaging (MRI). METHODS We retrospectively analyzed clinical, imaging, and genetic testing data of patients with lung adenocarcinoma with EGFR gene mutations who had brain metastases. Three-dimensional radiomics features were extracted from contrast-enhanced T1-weighted images. The volume of interest was delineated and normalized using Z-score, dimensionality reduction was performed using principal component analysis, feature selection using Relief, and radiomics model construction using adaptive boosting as a classifier. Data were randomly divided into training and testing datasets at an 8:2 ratio. Five-fold cross-validation was conducted in the training set to select the optimal radiomics features and establish a predictive model for distinguishing between exon 19 deletion (19Del) and exon 21 L858R point mutation (21L858R), the two most common EGFR gene mutations. The testing set was used for external validation of the models. Model performance was evaluated using receiver operating characteristic curve and decision curve analyses. RESULTS Overall, 86 patients with 228 brain metastases were included. Patient age was identified as an independent predictor for distinguishing between 19Del and 21L858R. The area under the curve (AUC) values of the radiomics model in the training and testing datasets were 0.895 (95% confidence interval [CI]: 0.850-0.939) and 0.759 (95% CI: 0.0.614-0.903), respectively. The AUC for diagnosis of all cases using a combined model of age and radiomics was 0.888 (95% CI: 0.846-0.930), slightly higher than that of the radiomics model alone (0.866, 95% CI: 0.820-0.913), but without statistical significance (p=0.1626). In the decision curve analysis, both models demonstrated clinical net benefits. CONCLUSIONS The radiomics model based on MRI of lung adenocarcinoma brain metastases could distinguish between EGFR 19Del and 21L858R mutations in the primary lesion.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China; Department of Medical Imaging Diagnosis, School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China.
| | - Yuqiong Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China; School of Graduate, Bengbu Medical University, Bengbu, Anhui 233030,China
| | - Zhizhen Gao
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Tao Song
- Vascular Surgery Department, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Yichuan Ma
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Xiaojun Yu
- Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Changzheng Shi
- Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
16
|
Balasundaram A, C Doss GP. Deciphering the Impact of Rare Missense Variants in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer through Whole Exome Sequencing: A Computational Approach. ACS OMEGA 2024; 9:16288-16302. [PMID: 38617633 PMCID: PMC11007825 DOI: 10.1021/acsomega.3c10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Targeted therapy revolutionizes the treatment of non-small-cell lung cancer (NSCLC), harboring molecular change. Epidermal growth factor receptor(EGFR) mutations play a crucial role in the development of NSCLC, serving as a pivotal factor in its pathogenesis. We elucidated the mechanisms of resistance and potential therapeutic strategies in NSCLC resistant to the EGFR-tyrosine kinase inhibitor (EGFR-TKI). This is achieved by identifying rare missense variants through whole exome sequencing (WES). The goal is to enhance our understanding, identify biomarkers, and lay the groundwork for targeted interventions, thereby offering hope for an improved NSCLC treatment landscape. We conducted WES analysis on 16 NSCLC samples with EGFR-TKI-resistant NSCLC obtained from SRA-NCBI (PRJEB50602) to reveal genomic profiles within the EGFR-TKI. Our findings showed that 48% of the variants were missense, and after filtering with the Ensembl variant effect predictor, 53 rare missense variants in 23 genes were identified as highly deleterious. Further examination using pathogenic tools like PredictSNP revealed 12 deleterious rare missense variants in 7 genes: ZNF717, PSPH, ESRRA, SEMA3G, PTPN7, CAVIN4, and MYBBP1A. Molecular dynamics simulation (MDS) suggested that the L385P variant alters the structural flexibility of ESRRA, potentially leading to unfolding of ERRα proteins. This could impact their function and alter ERRα expression. These insights from MDS enhance our understanding of the structural and dynamic consequences of the L385P ESRRA variant and provide valuable implications for subsequent therapeutic considerations and targeted interventions.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative
Genomics, Department of Integrative Biology, School of BioSciences
and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative
Genomics, Department of Integrative Biology, School of BioSciences
and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
17
|
Liang S, Wang H, Zhang Y, Tian H, Li C, Hua D. Prognostic implications of combining EGFR-TKIs and radiotherapy in Stage IV lung adenocarcinoma with 19-Del or 21-L858R mutations: A real-world study. Cancer Med 2024; 13:e7208. [PMID: 38659399 PMCID: PMC11043673 DOI: 10.1002/cam4.7208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE To elucidate the potential benefits of combining radiotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) for individuals with Stage IV lung adenocarcinoma (LUAD) harboring either exon 19 deletion (19-Del) or exon 21 L858R mutation (21-L858R). METHODS In this real-world retrospective study, 177 individuals with Stage IV LUAD who underwent EGFR-TKIs and radiotherapy at Shandong Cancer Hospital from June 2012 to August 2017 were included. The main focus of this real-world study was overall survival (OS). RESULTS The clinical characteristics of patients with Stage IV LUAD harboring 19-Del were similar to those harboring 21-L858R (p > 0.05). Overall, the patients had a median OS (mOS) of 32.0 months (95% confidence interval [CI]: 28.6-35.5). Subsequently, multivariate analysis indicated that both EGFR mutations and thoracic radiotherapy were independent predictors of OS (p = 0.001 and 0.013). Furthermore, subgroup analysis highlighted a longer OS for the 19-Del group compared to the 21-L858R group, especially when EGFR-TKIs were combined with bone metastasis or thoracic radiotherapy (mOS: 34.7 vs. 25.1 months and 51.0 vs. 29.6 months; p = 0.0056 and 0.0013, respectively). However, no significant differences were found in OS when considering patients who underwent brain metastasis radiotherapy (mOS: 34.7 vs. 25.1 months; p = 0.088). CONCLUSIONS Patients with Stage IV LUAD harboring 19-Del experience a notably prolonged OS following combined therapy with EGFR-TKIs and radiotherapy, while this OS benefit is observed despite the absence of substantial differences in the clinical characteristics between the 19-Del and 21-L858R groups.
Collapse
Affiliation(s)
- Shuai Liang
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Hanyu Wang
- The Affiliated Children's Hospital of Jiangnan University, Wuxi School of MedicineWuxiChina
| | - Yingyun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Department of oncologyShengli Oilfield Central HospitalDongyingChina
| | - Haixia Tian
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
| | - Chengming Li
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dong Hua
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical CenterWuxiChina
- The Affiliated Children's Hospital of Jiangnan University, Wuxi School of MedicineWuxiChina
| |
Collapse
|
18
|
Akkhasutthikun P, Kaewsapsak P, Nimsamer P, Klomkliew P, Visedthorn S, Chanchaem P, Teerapakpinyo C, Payungporn S, Luangdilok S. Tissue and Plasma-Based Highly Sensitive Blocker Displacement Amplicon Nanopore Sequencing for EGFR Mutations in Lung Cancer. Cancer Res Treat 2024; 56:455-463. [PMID: 37986562 PMCID: PMC11016658 DOI: 10.4143/crt.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) mutation is a widely prevalent oncogene driver in non-small cell lung cancer (NSCLC) in East Asia. The detection of EGFR mutations is a standard biomarker test performed routinely in patients with NSCLC for the selection of targeted therapy. Here, our objective was to develop a portable new technique for detecting EGFR (19Del, T790M, and L858R) mutations based on Nanopore sequencing. MATERIALS AND METHODS The assay employed a blocker displacement amplification (BDA)-based polymerase chain reaction (PCR) technique combined with Nanopore sequencing to detect EGFR mutations. Mutant and wild-type EGFR clones were generated from DNA from H1650 (19Del heterozygous) and H1975 (T790M and L858R heterozygous) lung cancer cell lines. Then, they were mixed to assess the performance of this technique for detecting low variant allele frequencies (VAFs). Subsequently, formalin-fixed, paraffin-embedded (FFPE) tissue and cell-free DNA (cfDNA) from patients with NSCLC were used for clinical validation. RESULTS The assay can detect low VAF at 0.5% mutant mixed in wild-type EGFR. Using FFPE DNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and Cobas real-time PCR were 98.46%, 100%, and 100%, respectively. For cfDNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and droplet digital PCR were 94.74%, 100%, and 100%, respectively. CONCLUSION The BDA amplicon Nanopore sequencing is a highly accurate and sensitive method for the detection of EGFR mutations in clinical specimens.
Collapse
Affiliation(s)
- Patinya Akkhasutthikun
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Kaewsapsak
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthida Visedthorn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pragwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sutima Luangdilok
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Enea M, Nuekaew A, Franco R, Pereira E. Gold Nanoprobes for Detection of a Crucial EGFR Deletion for Early Diagnosis of Non-Small-Cell Lung Cancer. BIOSENSORS 2024; 14:162. [PMID: 38667155 PMCID: PMC11048279 DOI: 10.3390/bios14040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.
Collapse
Affiliation(s)
- Maria Enea
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| | - Anupong Nuekaew
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| | - Ricardo Franco
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal; (A.N.); (E.P.)
| |
Collapse
|
20
|
Chen T, Wen J, Li Y, Deng J, Zhong Y, Hou L, She Y, Xie D, Chen C. Prognostic outcomes and recurrence patterns in resected stage I lung adenocarcinoma harbouring atypical epidermal growth factor receptor mutations. Eur J Cardiothorac Surg 2024; 65:ezad388. [PMID: 38001033 DOI: 10.1093/ejcts/ezad388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVES Limited data exist on the characteristics of atypical epidermal growth factor receptor (EGFR) mutations in early-stage lung cancer. Our goal was to elucidate the associations with outcomes and recurrence patterns in resected stage I lung adenocarcinoma harbouring atypical EGFR mutations. METHODS Eligible patients between 2014 and 2019 were retrospectively identified and grouped into exon20 insertion mutations and major atypical mutations, which included G719X, L861Q and S768I. Disease-free survival (DFS) was evaluated in the entire cohort and stratified by radiologic characteristics. Recurrence patterns were investigated and compared between groups. A competing risk model was used to estimate the cumulative incidence of recurrence. RESULTS A total of 710 patients were finally included. Among them, 289 (40.7%) patients had exon 20 insertion mutations and 421 (59.3%) patients had major atypical mutations. There was no significant difference regarding DFS (P = 0.142) between groups in the entire cohort. The interaction between mutation subtype and the presence of ground-glass opacities was significant (hazard ratio 2.00, 95% confidence interval 1.59-2.51, P < 0.001), indicating DFS between exon 20 insertion mutations and major atypical mutations may be different among subsolid and solid tumours. Survival analysis consistently revealed no significant difference in subsolid tumours (P = 0.680), but favourable DFS of exon 20 insertion mutations in solid tumours (P = 0.037). Furthermore, patients with exon 20 insertion mutations had a lower risk of developing bone metastases did those with radiologic solid tumours (Gray's test, P = 0.012). CONCLUSIONS Exon 20 insertion mutations were correlated with favourable DFS and lower incidence of bone metastases in radiologic solid lung adenocarcinomas harbouring atypical EGFR mutations.
Collapse
Affiliation(s)
- Tao Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialiang Wen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiajun Deng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Zhong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Cheng Y, Wang H, Yuan W, Wang H, Zhu Y, Chen H, Jiang W. Combined radiomics of primary tumour and bone metastasis improve the prediction of EGFR mutation status and response to EGFR-TKI therapy for NSCLC. Phys Med 2023; 116:103177. [PMID: 38000098 DOI: 10.1016/j.ejmp.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To develop radiomics models of primary tumour and spinal metastases to predict epidermal growth factor receptor (EGFR) mutations and therapeutic response to EGFR-tyrosine kinase inhibitor (TKI) in patients with metastatic non-small-cell lung cancer (NSCLC). METHODS We enrolled 203 patients with spinal metastases between December 2017 and September 2021, classified as patients with the EGFR mutation or EGFR wild-type. All patients underwent thoracic CT and spinal MRI scans before any treatment. Radiomics analysis was performed to extract features from primary tumour and metastases images and identify predictive features with the least absolute shrinkage and selection operator. Radiomics signatures (RS) were constructed based on primary tumour (RS-Pri), metastases (RS-Met), and in combination (RS-Com) to predict EGFR mutation status and response to EGFR-TKI. Receiver operating characteristic (ROC) curve analysis with 10-fold cross-validation was applied to assess the performance of the models. RESULTS To predict the EGFR mutation status, the RS based on the combination of primary tumour and metastases improved the prediction AUCs compared to those based on the primary tumour or metastasis alone in the training (RS-Com-EGFR: 0.927) and validation (RS-Com-EGFR: 0.812) cohorts. To predict response to EGFR-TKI, the developed RS based on combined primary tumour and metastasis generated the highest AUCs in the training (RS-Com-TKI: 0.880) and validation (RS-Com-TKI: 0.798) cohort. CONCLUSIONS Primary NSCLC and spinal metastases can provide complementary information to predict the EGFR mutation status and response to EGFR-TKI. The developed models that integrate primary lesions and metastases may be potential imaging markers to guide individual treatment decisions.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Wendi Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Haotian Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yuheng Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 110004 Shenyang, PR China.
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China.
| |
Collapse
|
22
|
Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol 2023; 93:97-113. [PMID: 37211292 DOI: 10.1016/j.semcancer.2023.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Susan J Copley
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
| | - Haonan Lu
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK.
| |
Collapse
|
23
|
Li WM, Ren XD, Jiang YZ, Su N, Li BW, Sun XG, Li RX, Lu WP, Deng SL, Li J, Li MX, Huang Q. Rapid detection of EGFR mutation in CTCs based on a double spiral microfluidic chip and the real-time RPA method. Anal Bioanal Chem 2023:10.1007/s00216-023-04743-2. [PMID: 37254002 DOI: 10.1007/s00216-023-04743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Circulating tumor cells (CTCs) are cells shed from primary or metastatic tumors and spread into the peripheral bloodstream. Mutation detection in CTCs can reveal vital genetic information about the tumors and can be used for "liquid biopsy" to indicate cancer treatment and targeted medication. However, current methods to measure the mutations in CTCs are based on PCR or DNA sequencing which are cumbersome and time-consuming and require sophisticated equipment. These largely limited their applications especially in areas with poor healthcare infrastructure. Here we report a simple, convenient, and rapid method for mutation detection in CTCs, including an example of a deletion at exon 19 (Del19) of the epidermal growth factor receptor (EGFR). CTCs in the peripheral blood of NSCLC patients were first sorted by a double spiral microfluidic chip with high sorting efficiency and purity. The sorted cells were then lysed by proteinase K, and the E19del mutation was detected via real-time recombinase polymerase amplification (RPA). Combining the advantages of microfluidic sorting and real-time RPA, an accurate mutation determination was realized within 2 h without professional operation or complex data interpretation. The method detected as few as 3 cells and 1% target variants under a strongly interfering background, thus, indicating its great potential in the non-invasive diagnosis of E19del mutation for NSCLC patients. The method can be further extended by redesigning the primers and probes to detect other deletion mutations, insertion mutations, and fusion genes. It is expected to be a universal molecular diagnostic tool for real-time assessment of relevant mutations and precise adjustments in the care of oncology patients.
Collapse
Affiliation(s)
- Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu-Zhu Jiang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Meng-Xia Li
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China.
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
24
|
Sompallae RR, Dundar B, Guseva NV, Bossler AD, Ma D. EGFR and ERBB2 exon 20 insertion/duplication in advanced non-small cell lung cancer: genomic profiling and clinicopathologic features. Front Oncol 2023; 13:1163485. [PMID: 37284196 PMCID: PMC10239961 DOI: 10.3389/fonc.2023.1163485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background Exon 20 (ex20) in-frame insertions or duplications (ins/dup) in epidermal growth factor receptor (EGFR) and its analog erb-b2 receptor tyrosine kinase 2 (ERBB2) are each detected in 1.5% of non-small cell lung cancer (NSCLC). Unlike EGFR p.L858R or ex19 deletions, ex20 ins/dup is associated with de novo resistance to classic EGFR inhibitors, lack of response to immune checkpoint inhibitors, and poor prognosis. US Food and Drug Administration has approved mobocertinib and amivantamab for targeting tumors with this aberration, but the number of comprehensive studies on ex20 ins/dup NSCLC is limited. We identified 18 cases of NSCLCs with EGFR/ERBB2 ex20 ins/dup and correlated the findings with clinical and morphologic information including programed death-ligand 1 (PD-L1) expression. Methods A total of 536 NSCLC cases tested at our institution between 2014 and 2023 were reviewed. A custom-designed 214-gene next-generation sequencing panel was used for detecting DNA variants, and the FusionPlex CTL panel (ArcherDx) was used for the detection of fusion transcripts from formalin-fixed, paraffin-embedded tissue. Immunohistochemistry (IHC)for PD-L1 was performed using 22C3 or E1L3N clones. Results Nine EGFR and nine ERBB2 ex20 ins/dup variants were identified from an equal number of men and women, 14 were non- or light smokers, and 15 had stage IV disease. All 18 cases were adenocarcinomas. Seven of the 11 cases with available primary tumors had acinar predominant pattern, two had lepidic predominant pattern, and the remainder had papillary (one case) and mucinous (one case) patterns. Ex20 ins/dup variants were heterogenous in-frame one to four amino acids spanning A767-V774 in EGFR and Y772-P780 in ERBB2 and were clustered in the loop following the C-helix and α C-helix. Twelve cases (67%) had co-existing TP53 variants. Copy number variation in CDK4 amplification was identified in one case. No fusion or microsatellite instability was identified in any case. PD-L1 was positive in two cases, low positive in four cases, and negative in 11 cases. Conclusions NSCLCs harboring EGFR/ERBB2 ex20 ins/dup are rare and tend to be acinar predominant, negative for PD-L1, more frequent in non- or light smokers, and mutually exclusive with other driver mutations in NSCLC. The correlation of different EGFR/ERBB2 ex20 ins/dup variants and co-existing mutations with response to targeted therapy and the possibility of developing resistant mutations after mobocertinib treatment warrants further investigation.
Collapse
Affiliation(s)
- Ramakrishna R Sompallae
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Bilge Dundar
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Natalya V Guseva
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Aaron D Bossler
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Deqin Ma
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| |
Collapse
|
25
|
Bai Y, Liu X, Zheng L, Wang S, Zhang J, Xiong S, Zhang P, Jiao Z, Zhao G, Zhou C, Pang J, Xu Y, Ou Q, Mao Y, Zhang L. Comprehensive profiling of EGFR mutation subtypes reveals genomic-clinical associations in non-small-cell lung cancer patients on first-generation EGFR inhibitors. Neoplasia 2023; 38:100888. [PMID: 36804751 PMCID: PMC9975296 DOI: 10.1016/j.neo.2023.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Common sensitizing mutations in epidermal growth factor receptor (cEGFR), including exon 19 deletions (19-Del) and exon 21 L858R substitution, are associated with high sensitivity to EGFR-TKIs in NSCLC patients. The treatment for NSCLC patients with uncommon EGFR (uEGFR) mutations remains a subject of debate due to heterogeneity in treatment responses. In this manuscript, the targeted next-generation sequencing (NGS) data of a large cohort of EGFR-mutated NSCLC patients was assessed to elucidate genomic profiles of tumors carrying cEGFR or uEGFR mutations. The results showed that NSCLC patients with uEGFR mutations were more likely to harbor co-occurring genetic alterations in the Hippo pathway and a higher TMB compared with cEGFR-positive patients. Smoking-related mutations were found to significantly enriched in uEGFR-positive patients. Subgroup analyses were performed to identify potential prognostic biomarkers in patients harboring various EGFR subtype mutations. L858R-positive patients with co-existing ARID2 mutations had shorter progression-free survival (PFS) than those who were L858R- or 19-Del-positive but ARID2-negative (median: 2.3 vs. 12.0 vs. 8.0 months, P = 0.038). Furthermore, mutational profiles, such as top frequently mutated genes and mutational signatures of patients with various EGFR subtype mutations were significantly different. Our study analyzed the mutational landscape of NSCLC patients harboring cEGFR and uEGFR mutations, revealing specific genomic characteristics associated with uEGFR mutations that might explain the poor prognosis of first-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Yongkang Bai
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiang Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, Nanjing, Jiangsu, China
| | - Limin Zheng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Song Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Junli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Shi Xiong
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Gefei Zhao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chu Zhou
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oncology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Sun H, Ren P, Chen Y, Lan L, Yan Z, Yang Y, Wang B, Wang C, Li Y, Li L, Zhang Y, Li Y, Wang Z, Pan Z, Jiang Z. Optimal therapy for concomitant EGFR and TP53 mutated non-small cell lung cancer: a real-world study. BMC Cancer 2023; 23:198. [PMID: 36864384 PMCID: PMC9979422 DOI: 10.1186/s12885-023-10637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Non-small cell cancer (NSCLC) patients with concomitant epidermal growth factor receptor (EGFR) and TP53 mutations have a poor prognosis with the treatment of tyrosine kinase inhibitors (TKIs), and may benefit from a combination regimen preferentially. The present study aims to compare the benefits of EGFR-TKIs and its combination with antiangiogenic drugs or chemotherapy in patients with NSCLC harboring EGFR and TP53 co-mutation in a real-life setting. METHODS This retrospective analysis included 124 patients with advanced NSCLC having concomitant EGFR and TP53 mutations, who underwent next-generation sequencing prior to treatment. Patients were classified into the EGFR-TKI group and combination therapy group. The primary end point of this study was progression-free survival (PFS). The Kaplan-Meier (KM) curve was drawn to analyze PFS, and the differences between the groups were compared using the logarithmic rank test. Univariate and multivariate cox regression analysis was performed on the risk factors associated with survival. RESULTS The combination group included 72 patients who received the regimen of EGFR-TKIs combined with antiangiogenic drugs or chemotherapy, while the EGFR-TKI monotherapy group included 52 patients treated with TKI only. The median PFS was significantly longer in the combination group than in the EGFR-TKI group (18.0 months; 95% confidence interval [CI]: 12.1-23.9 vs. 7.0 months; 95% CI: 6.1-7.9; p < 0.001) with greater PFS benefit in TP53 exon 4 or 7 mutations subgroup. Subgroup analysis showed a similar trend. The median duration of response was significantly longer in the combination group than in the EGFR-TKI group. Patients with 19 deletions or L858R mutations both achieved a significant PFS benefit with combination therapy versus EGFR-TKI alone. CONCLUSION Combination therapy had a higher efficacy than EGFR-TKI alone for patients with NSCLC having concomitant EGFR and TP53 mutations. Future prospective clinical trials are needed to determine the role of combination therapy for this patient population.
Collapse
Affiliation(s)
- Haiyan Sun
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Peng Ren
- grid.411918.40000 0004 1798 6427Department of Esophageal Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Yongzi Chen
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Lan Lan
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Zhuchen Yan
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Yinli Yang
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Bin Wang
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Cong Wang
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Yanwei Li
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Ling Li
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Yu Zhang
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Yanyang Li
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Zuolin Wang
- grid.411918.40000 0004 1798 6427Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, 300060 Tianjin, Tianjin, China
| | - Zhanyu Pan
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, Tianjin, China.
| | - Zhansheng Jiang
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, Tianjin, China.
| |
Collapse
|
27
|
Ochi N, Takeyama M, Miyake N, Fuchigami M, Yamane H, Fukazawa T, Nagasaki Y, Kawahara T, Nakanishi H, Takigawa N. The complexity of EGFR exon 19 deletion and L858R mutant cells as assessed by proteomics, transcriptomics, and metabolomics. Exp Cell Res 2023; 424:113503. [PMID: 36731710 DOI: 10.1016/j.yexcr.2023.113503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Most lung adenocarcinoma-associated EGFR tyrosine kinase mutations are either an exon 19 deletion (19Del) or L858R point mutation in exon 21. Although patients whose tumors contain either of these mutations exhibit increased sensitivity to tyrosine kinase inhibitors, progression-free and overall survival appear to be longer in patients with 19Del than in those with L858R. In mutant-transfected Ba/F3 cells, 19Del and L858R were compared by multi-omics analyses including proteomics, transcriptomics, and metabolomics. Proteome analysis identified increased plastin-2, TKT, PDIA5, and ENO1 expression in L858R cells, and increased EEF1G expression in 19Del cells. RNA sequencing showed significant differences between 19Del and L858R cells in 112 genes. Metabolome analysis showed that amino acids, adenylate, guanylate, NADPH, lactic acid, pyruvic acid glucose 6-phosphate, and ribose 5-phosphate were significantly different between the two mutant cells. Because GSH was increased with L858R, we combined osimertinib with the GSH inhibitor buthionine sulfoximine in L858R cells and observed synergistic effects. The complexity of EGFR 19Del and L858R mutant cells was demonstrated by proteomics, transcriptomics, and metabolomics analyses. Therapeutic strategies for lung cancer with different EGFR mutations could be considered because of their different metabolic phenotypes.
Collapse
Affiliation(s)
- Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Masami Takeyama
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan; General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Noriko Miyake
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Maki Fuchigami
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan; General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Hiromichi Yamane
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan; Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yasunari Nagasaki
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Tatsuyuki Kawahara
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Hidekazu Nakanishi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan; General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
28
|
Liao R, Yi G, Shen L, Zhang X, Xu Z, Peng Y, Yang Z. Genomic features and its potential implication in bone oligometastatic NSCLC. BMC Pulm Med 2023; 23:59. [PMID: 36755257 PMCID: PMC9906959 DOI: 10.1186/s12890-023-02354-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES Emerging evidence have demonstrated that oligometastatic non-small cell lung cancer (NSCLC) can achieve clinical benefit from local consolidative therapy. Bone oligometastasis is common in advanced lung cancer, but little is known about its molecular features. The purpose of our study aimed to investigate the genomic landscape bone oligometastatic NSCLC. METHODS We collected paired blood and tissue samples from 31 bone oligometastatic NSCLC patients to make a comprehensive analysis of mutations by performing next-generation sequencing. RESULTS A total of 186 genomic mutations were detected from 105 distinct cancer-relevant genes, with a median number of 6 alterations per tumor. The most frequently mutated genes were EGFR (58%) and TP53 (55%), followed by KRAS (16%), CDKN2A (13%) and MET (13%). The signatures related to smoking, aging, homologous recombination deficiency and APOBEC were identified as the most important mutational processes in bone oligometastasis. The median tumor mutation burden was 4.4 mutations/Mb. Altogether, genetic alterations of bone oligometastasis are highly targetable that 74.19% of patients had at least one actionable alteration that was recommended for targeted therapy based on the OncoKB evidence. Of these patients, 16.13% had two actionable alterations that could potentially benefit from a different combination of targeted drugs to achieve better outcomes. CONCLUSION Our research comprehensively elucidates the genomic features of bone oligometastatic NSCLC patients, which may optimize individualized cancer treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Rongxin Liao
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Guangming Yi
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Lu Shen
- Geneplus-Beijing, Beijing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zaicheng Xu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Peng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Zhenzhou Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China.
| |
Collapse
|
29
|
Noguchi R, Yoshimura A, Uchino J, Takeda T, Chihara Y, Ota T, Hiranuma O, Gyotoku H, Takayama K, Kondo T. Comprehensive Kinase Activity Profiling Revealed the Kinase Activity Patterns Associated with the Effects of EGFR Tyrosine Kinase Inhibitor Therapy in Advanced Non-Small-Cell Lung Cancer Patients with Sensitizing EGFR Mutations. Proteomes 2023; 11:proteomes11010006. [PMID: 36810562 PMCID: PMC9944465 DOI: 10.3390/proteomes11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
EGFR mutations are strong predictive markers for EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy in patients with non-small-cell lung cancer (NSCLC). Although NSCLC patients with sensitizing EGFR mutations have better prognoses, some patients exhibit worse prognoses. We hypothesized that various activities of kinases could be potential predictive biomarkers for EGFR-TKI treatment among NSCLC patients with sensitizing EGFR mutations. In 18 patients with stage IV NSCLC, EGFR mutations were detected and comprehensive kinase activity profiling was performed using the peptide array PamStation12 for 100 tyrosine kinases. Prognoses were observed prospectively after the administration of EGFR-TKIs. Finally, the kinase profiles were analyzed in combination with the prognoses of the patients. Comprehensive kinase activity analysis identified specific kinase features, consisting of 102 peptides and 35 kinases, in NSCLC patients with sensitizing EGFR mutations. Network analysis revealed seven highly phosphorylated kinases: CTNNB1, CRK, EGFR, ERBB2, PIK3R1, PLCG1, and PTPN11. Pathway analysis and Reactome analysis revealed that the PI3K-AKT and RAF/ MAPK pathways were significantly enriched in the poor prognosis group, being consistent with the outcome of the network analysis. Patients with poor prognoses exhibited high activation of EGFR, PIK3R1, and ERBB2. Comprehensive kinase activity profiles may provide predictive biomarker candidates for screening patients with advanced NSCLC harboring sensitizing EGFR mutations.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Bannan Central Hospital, Shizuoka 438-0814, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto 611-0041, Japan
| | - Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Osaka 594-0073, Japan
| | - Osamu Hiranuma
- Department of Respiratory Medicine, Otsu City Hospital, Shiga 520-0804, Japan
| | - Hiroshi Gyotoku
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-3-3542-2511 (ext. 3419)
| |
Collapse
|
30
|
Bar J, Peled N, Schokrpur S, Wolner M, Rotem O, Girard N, Aboubakar Nana F, Derijcke S, Kian W, Patel S, Gantz-Sorotsky H, Zer A, Moskovitz M, Metro G, Rottenberg Y, Calles A, Hochmair M, Cuppens K, Decoster L, Reck M, Limon D, Rodriguez E, Astaras C, Bettini A, Häfliger S, Addeo A. UNcommon EGFR Mutations: International Case Series on Efficacy of Osimertinib in Real-Life Practice in First-LiNe Setting (UNICORN). J Thorac Oncol 2023; 18:169-180. [PMID: 36307041 DOI: 10.1016/j.jtho.2022.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Approximately 10% of EGFR mutations (EGFRmuts) are uncommon (ucEGFRmuts). We aimed to collect real-world data about osimertinib for patients with ucEGFRmuts. METHODS This is a multicenter, retrospective study of ucEGFRmut (exon 20 insertions excluded) metastatic NSCLC treated with osimertinib as first EGFR inhibitor. The Response Evaluation Criteria in Solid Tumors and response assessment in neuro-oncology brain metastases brain objective response rate (ORR) were evaluated by the investigators. Median progression-free survival (mPFS), median overall survival, and median duration of response (mDOR) were calculated from osimertinib initiation. Mutations found at resistance were collected. RESULTS A total of 60 patients were included (22 centers, nine countries), with median age of 64 years, 75% females, and 83% Caucasian. The largest subgroups were G719X (30%), L861Q (20%), and de novo Thr790Met (T790M) (15%). The ORR was 61%, mPFS 9.5 months, mDOR 17.4 months, and median overall survival 24.5 months. Regarding patients with no concurrent common mutations or T790M (group A, n = 44), ORR was 60%, mPFS 8.6 months, and mDOR 11 months. For G719X, ORR was 47%, mPFS 8.8 months, and mDOR 9.1 months. For L861Q, ORR was 80%, mPFS 16 months, and mDOR 16 months. For de novo T790M, ORR was 44%, mPFS 12.7 months, and mDOR 46.2 months. Compound EGFRmut including common mutations had better outcome compared with only ucEGFRmut. For 13 patients with a response assessment in neuro-oncology brain metastases-evaluable brain metastases, brain ORR was 46%. For 14 patients, rebiopsy results were analyzed: four patients with additional EGFR mutation (C797S, D585Y, E709K), three with new TP53 mutation, one with c-Met amplification, one with PIK3CA mutation, and one with neuroendocrine transformation. CONCLUSIONS Osimertinib was found to have an activity in ucEGFRmut with a high rate of disease control systemically and intracranially. Several resistance mechanisms were identified. This report comprises, to the best of our knowledge, the largest data set of its kind.
Collapse
Affiliation(s)
- Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nir Peled
- Cancer Center, Soroka University Medical Center, Beer Sheva, Israel; Current Address: Shaare Zedek Medical Center, Jerusalem, Israel
| | - Shiruyeh Schokrpur
- Department of Hematology and Medical Oncology, University of California San Diego School of Medicine, San Diego, California
| | - Mirjana Wolner
- Institute of Oncology, Rambam Medical Center, Haifa, Israel
| | - Ofer Rotem
- Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel
| | | | - Frank Aboubakar Nana
- Department of Oncologie thoracique, UCLouvain Brussels Woluwe, Brussels, Belgium
| | - Sofie Derijcke
- Thoracic Oncology, AZ Groeninge Hospital, Kortrijk, Belgium
| | - Waleed Kian
- Cancer Center, Soroka University Medical Center, Beer Sheva, Israel; Current Address: Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sandip Patel
- Department of Hematology and Medical Oncology, University of California San Diego School of Medicine, San Diego, California
| | - Hadas Gantz-Sorotsky
- Institute of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Zer
- Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel; Current Address: Institute of Oncology, Rambam Medical Center, Haifa, Israel
| | - Mor Moskovitz
- Institute of Oncology, Rambam Medical Center, Haifa, Israel; Current Address: Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel
| | - Giulio Metro
- Medical Oncology, Ospedale S. Maria della Misericordia, Aziendsa Ospedaliera di Perugia, Perugia, Italy
| | - Yakir Rottenberg
- Oncology Department, Hadassah University Hospital - Ein Kerem, Jerusalem, Israel
| | - Antonio Calles
- Medical Oncology Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Maximilian Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology, Jessa Ziekenhuis, Hasselt, Belgium
| | - Lynn Decoster
- Pulmonology Department, AZ Turnhout - Campus St. Elisabeth, Turnhout, Belgium
| | - Martin Reck
- Thoracic Oncology Dept., Krankenhaus Grosshansdorf, Grosshansdorf, Germany
| | - Dror Limon
- Current Address: Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel; Oncology, Tel Aviv Sourasky Medical Center-(Ichilov), Tel Aviv, Israel
| | - Estelamari Rodriguez
- Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, Florida
| | - Christoforos Astaras
- Department of Medical Oncology, Fribourg Cantonal Hospital (HFR), Fribourg, Switzerland; Current Address: Oncology Department, HUG - Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Adrienne Bettini
- Department of Medical Oncology, Fribourg Cantonal Hospital (HFR), Fribourg, Switzerland
| | - Simon Häfliger
- Medical Oncology Department, Inselspital - Universitatsklinik fur Medizinische Onkologie, Bern, Switzerland
| | - Alfredo Addeo
- Oncology Department, HUG - Hopitaux Universitaires de Geneve, Geneva, Switzerland
| |
Collapse
|
31
|
Machado-Rugolo J, Baldavira C, Prieto T, Olivieri E, Fabro A, Rainho C, Castelli E, Ribolla P, Ab'Saber A, Takagaki T, Nagai M, Capelozzi V. Clinical outcome of Brazilian patients with non-small cell lung cancer in early stage harboring rare mutations in epidermal growth factor receptor. Braz J Med Biol Res 2023; 55:e12409. [PMID: 36629526 PMCID: PMC9828871 DOI: 10.1590/1414-431x2022e12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The common epidermal growth factor receptor (EGFR) mutations, such as the L858R point mutation in exon 21 and the in-frame deletional mutation in exon 19, have been definitively associated with response to EGFR-tyrosine kinase inhibitors (EGFR-TKI). However, the clinical outcome and response to treatment for many other rarer mutations are still unclear. In this study, we report the results of Brazilian patients in stage IB-IIIA non-small cell lung cancer (NSCLC) following complete resection with minimal residual disease and EGFR mutations treated with adjuvant chemotherapy and/or EGFR-TKIs. The frequency of EGFR mutations was investigated in 70 cases of early stage NSCLC. Mutations in exons 18 and 20, uncommon mutations in exons 19 and 21, as well as in exons 3, 7, 14, 16, 22, 27, and 28, and/or the presence of different mutations in a single tumor (complex mutations) are considered rare. EGFR mutations were detected in 23 tumors (32.9%). Fourteen cases carried rare mutations and were treated with platinum-based chemotherapy and two cases were treated with erlotinib. The clinical outcome is described case by case with references to the literature. Notably, we found two rare EGFR mutations and one of them with an unknown response to chemotherapy and/or EGFR-TKIs. We have provided complementary information concerning the clinical outcome and treatment of patients with early stage NSCLC for several rare EGFR mutations not previously or only rarely reported. Description of cases harboring rare mutations can support the decision-making process in this subset of patients.
Collapse
Affiliation(s)
- J. Machado-Rugolo
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Centro de Avaliação de Tecnologias em Saúde, Hospital das Clínicas de Botucatu, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C.M. Baldavira
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T.G. Prieto
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.H.R. Olivieri
- Centro Internacional de Pesquisa/CIPE, AC Camargo Cancer Center, São Paulo, SP, Brasil
| | - A.T. Fabro
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Departamento de Patologia e Medicina Legal, Laboratório de Medicina Respiratória, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C.A. Rainho
- Instituto de Biociências, Departamento de Ciências Químicas e Biológicas, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - E.C. Castelli
- Laboratório de Genética Molecular e Bioinformática, Unidade de Pesquisa Experimental, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil,Departamento de Patologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P.E.M. Ribolla
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, SP, Brasil,Instituto de Biociências, Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A.M. Ab'Saber
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T. Takagaki
- Divisão de Pneumologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.A. Nagai
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Laboratório de Genética Molecular, Centro de Pesquisa Translacional em Oncologia, Instituto do Câncer de São Paulo, São Paulo, SP, Brasil
| | - V.L. Capelozzi
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
32
|
Miyagi M, Katagiri H, Murata H, Wasa J, Takahashi T, Murakami H, Harada H, Mori K, Takahashi M. Osteosclerotic change as a therapeutic response to gefitinib in symptomatic non-small cell lung cancer bone metastasis. BMC Pulm Med 2022; 22:491. [PMID: 36581856 PMCID: PMC9801654 DOI: 10.1186/s12890-022-02226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite improvement in the overall survival of patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutation, the effects of EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment on bone metastasis remain unclear. This study investigated radiological responses to gefitinib regarding bone metastasis in patients. METHODS We treated 260 patients with NSCLC and symptomatic bone metastasis. Thirty-seven patients harboring EGFR mutation were treated with gefitinib for more than 30 days and followed up for more than 3 months (GEF group). We performed a retrospective observational study by selecting 36 cases without EGFR-TKI treatment, at least 3 months of follow-up, and at least two radiological evaluations as the control group. We assessed the best overall radiological response, interval from treatment initiation to appearance of a radiological response, and the local response maintenance rate. RESULTS The best effect in the GEF group was 98% partial response or better, which was significantly higher than the 57% observed in the control group (p < 0.001). The GEF and control groups maintained 83% and 42% local response maintenance rates at one year, respectively (p < 0.001). In the GEF with radiotherapy group, the local response maintenance rate was maintained at 92% at 1 year, while in the GEF without RT group, there was a decrease in the local response maintenance rate from 270 days. CONCLUSION Gefitinib treatment for bone metastases in patients harboring EGFR mutation resulted in a beneficial osteosclerotic change in most patients. Combined gefitinib and radiotherapy provide long-lasting local control of bone metastases.
Collapse
Affiliation(s)
- Michihito Miyagi
- Devision of Orthopedic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirohisa Katagiri
- Devision of Orthopedic Oncology, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Hideki Murata
- Devision of Orthopedic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Junji Wasa
- Devision of Orthopedic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Haruyasu Murakami
- Devision of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keita Mori
- Department of Biostatistics, Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mitsuru Takahashi
- Devision of Orthopedic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
33
|
Amelia T, Setiawan AN, Kartasasmita RE, Ohwada T, Tjahjono DH. Computational Prediction of Resistance Induced Alanine-Mutation in ATP Site of Epidermal Growth Factor Receptor. Int J Mol Sci 2022; 23:ijms232415828. [PMID: 36555475 PMCID: PMC9784575 DOI: 10.3390/ijms232415828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) resistance to tyrosine kinase inhibitors can cause low survival rates in mutation-positive non-small cell lung cancer patients. It is necessary to predict new mutations in the development of more potent EGFR inhibitors since classical and rare mutations observed were known to affect the effectiveness of the therapy. Therefore, this research aimed to perform alanine mutagenesis scanning on ATP binding site residues without COSMIC data, followed by molecular dynamic simulations to determine their molecular interactions with ATP and erlotinib compared to wild-type complexes. Based on the result, eight mutations were found to cause changes in the binding energy of the ATP analogue to become more negative. These included G779A, Q791A, L792A, R841A, N842A, V843A, I853A, and D855A, which were predicted to enhance the affinity of ATP and reduce the binding ability of inhibitors with the same interaction site. Erlotinib showed more positive energy among G779A, Q791A, I853A, and D855A, due to their weaker binding energy than ATP. These four mutations could be anticipated in the development of the next inhibitor to overcome the incidence of resistance in lung cancer patients.
Collapse
Affiliation(s)
- Tasia Amelia
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Aderian Novito Setiawan
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
| | | | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daryono Hadi Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
- Correspondence: ; Tel.: +62-22-250-4852
| |
Collapse
|
34
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
35
|
Jeong HO, Lee H, Kim H, Jang J, Kim S, Hwang T, Choi DWY, Kim HS, Lee N, Lee YM, Park S, Jung HA, Sun JM, Ahn JS, Ahn MJ, Park K, Lee S, Lee SH. Cellular plasticity and immune microenvironment of malignant pleural effusion are associated with EGFR-TKI resistance in non–small-cell lung carcinoma. iScience 2022; 25:105358. [PMID: 36339256 PMCID: PMC9626676 DOI: 10.1016/j.isci.2022.105358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Malignant pleural effusion (MPE) is a complication of lung cancer that can be used as an alternative method for tissue sampling because it is generally simple and minimally invasive. Our study evaluated the diagnostic potential of non–small-cell lung carcinoma (NSCLC)-associated MPE in terms of understanding tumor heterogeneity and identifying response factors for EGFR tyrosine kinase inhibitor (TKI) therapy. We performed a single-cell RNA sequencing analysis of 31,743 cells isolated from the MPEs of 9 patients with NSCLC (5 resistant and 4 sensitive to EGFR TKI) with EGFR mutations. Interestingly, lung epithelial precursor-like cells with upregulated GNB2L1 and CAV1 expression were enriched in the EGFR TKI-resistant group. Moreover, GZMK upregulated transitional effector T cells, and plasmacytoid dendritic cells were significantly enriched in the EGFR TKI-resistant patients. Our results suggest that cellular plasticity and immunosuppressive microenvironment in MPEs are potentially associated with the TKI response of patients with EGFR-mutated NSCLC.
ScRNA-seq reveals associations between cellular plasticity and EGFR-TKI response Lung epithelial progenitor-like cells are abundant in the TKI-resistant group HLA-II gene expression are upregulated in the epithelial cells of TKI-sensitive group Immunosuppressive TME was associated with the TKI resistance in NSCLC
Collapse
Affiliation(s)
- Hyoung-oh Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hayoon Lee
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyemin Kim
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinho Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - David Whee-Young Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Naeun Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoo Mi Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
- Corresponding author
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Corresponding author
| |
Collapse
|
36
|
Integrated Tissue and Blood miRNA Expression Profiles Identify Novel Biomarkers for Accurate Non-Invasive Diagnosis of Breast Cancer: Preliminary Results and Future Clinical Implications. Genes (Basel) 2022; 13:genes13111931. [DOI: 10.3390/genes13111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify miRNAs that were closely related to breast cancer (BRCA). By integrating several methods including significance analysis of microarrays, fold change, Pearson’s correlation analysis, t test, and receiver operating characteristic analysis, we developed a decision-tree-based scoring algorithm, called Optimized Scoring Mechanism for Primary Synergy MicroRNAs (O-PSM). Five synergy miRNAs (hsa-miR-139-5p, hsa-miR-331-3p, hsa-miR-342-5p, hsa-miR-486-5p, and hsa-miR-654-3p) were identified using O-PSM, which were used to distinguish normal samples from pathological ones, and showed good results in blood data and in multiple sets of tissue data. These five miRNAs showed accurate categorization efficiency in BRCA typing and staging and had better categorization efficiency than experimentally verified miRNAs. In the Protein-Protein Interaction (PPI) network, the target genes of hsa-miR-342-5p have the most regulatory relationships, which regulate carcinogenesis proliferation and metastasis by regulating Glycosaminoglycan biosynthesis and the Rap1 signaling pathway. Moreover, hsa-miR-342-5p showed potential clinical application in survival analysis. We also used O-PSM to generate an R package uploaded on github (SuFei-lab/OPSM accessed on 22 October 2021). We believe that miRNAs included in O-PSM could have clinical implications for diagnosis, prognostic stratification and treatment of BRCA, proposing potential significant biomarkers that could be utilized to design personalized treatment plans in BRCA patients in the future.
Collapse
|
37
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
38
|
Alexeyenko A, Brustugun OT, Eide IJZ, Gencheva R, Kosibaty Z, Lai Y, de Petris L, Tsakonas G, Grundberg O, Franzen B, Viktorsson K, Lewensohn R, Hydbring P, Ekman S. Plasma RNA profiling unveils transcriptional signatures associated with resistance to osimertinib in EGFR T790M positive non-small cell lung cancer patients. Transl Lung Cancer Res 2022; 11:2064-2078. [PMID: 36386450 PMCID: PMC9641044 DOI: 10.21037/tlcr-22-236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/22/2022] [Indexed: 09/10/2023]
Abstract
BACKGROUND Targeted therapy with tyrosine kinases inhibitors (TKIs) against epidermal growth factor receptor (EGFR) is part of routine clinical practice for EGFR mutant advanced non-small cell lung cancer (NSCLC) patients. These patients eventually develop resistance, frequently accompanied by a gatekeeper mutation, T790M. Osimertinib is a third-generation EGFR TKI displaying potency to the T790M resistance mutation. Here we aimed to analyze if exosomal RNAs, isolated from longitudinally sampled plasma of osimertinib-treated EGFR T790M NSCLC patients, could provide biomarkers of acquired resistance to osimertinib. METHODS Plasma was collected at baseline and progression of disease from 20 patients treated with osimertinib in the multicenter phase II study TKI in Relapsed EGFR-mutated non-small cell lung cancer patients (TREM). Plasma was centrifuged at 16,000 g followed by exosomal RNA extraction using Qiagen exoRNeasy kit. RNA was subjected to transcriptomics analysis with Clariom D. RESULTS Transcriptome profiling revealed differential expression [log2(fold-change) >0.25, false discovery rate (FDR) P<0.15, and P(interaction) >0.05] of 128 transcripts. We applied network enrichment analysis (NEA) at the pathway level in a large collection of functional gene sets. This overall enrichment analysis revealed alterations in pathways related to EGFR and PI3K as well as to syndecan and glypican pathways (NEA FDR <3×10-10). When applied to the 40 individual, sample-specific gene sets, the NEA detected 16 immune-related gene sets (FDR <0.25, P(interaction) >0.05 and NEA z-score exceeding 3 in at least one sample). CONCLUSIONS Our study demonstrates a potential usability of plasma-derived exosomal RNAs to characterize molecular phenotypes of emerging osimertinib resistance. Furthermore, it highlights the involvement of multiple RNA species in shaping the transcriptome landscape of osimertinib-refractory NSCLC patients.
Collapse
Affiliation(s)
- Andrey Alexeyenko
- Science for Life Laboratory, Box 1031, Solna, Sweden
- Evi-networks consulting, Huddinge, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Inger Johanne Zwicky Eide
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Radosveta Gencheva
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zeinab Kosibaty
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lai
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Luigi de Petris
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios Tsakonas
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Oscar Grundberg
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Bo Franzen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Huo JW, Luo TY, Diao L, Lv FJ, Chen WD, Yu RZ, Li Q. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Front Oncol 2022; 12:846589. [PMID: 36059655 PMCID: PMC9434115 DOI: 10.3389/fonc.2022.846589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the value of computed tomography (CT)-based radiomics signatures in combination with clinical and CT morphological features to identify epidermal growth factor receptor (EGFR)-mutation subtypes in lung adenocarcinoma (LADC). Methods From February 2012 to October 2019, 608 patients were confirmed with LADC and underwent chest CT scans. Among them, 307 (50.5%) patients had a positive EGFR-mutation and 301 (49.5%) had a negative EGFR-mutation. Of the EGFR-mutant patients, 114 (37.1%) had a 19del -mutation, 155 (50.5%) had a L858R-mutation, and 38 (12.4%) had other rare mutations. Three combined models were generated by incorporating radiomics signatures, clinical, and CT morphological features to predict EGFR-mutation status. Patients were randomly split into training and testing cohorts, 80% and 20%, respectively. Model 1 was used to predict positive and negative EGFR-mutation, model 2 was used to predict 19del and non-19del mutations, and model 3 was used to predict L858R and non-L858R mutations. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate their performance. Results For the three models, model 1 had AUC values of 0.969 and 0.886 in the training and validation cohorts, respectively. Model 2 had AUC values of 0.999 and 0.847 in the training and validation cohorts, respectively. Model 3 had AUC values of 0.984 and 0.806 in the training and validation cohorts, respectively. Conclusion Combined models that incorporate radiomics signature, clinical, and CT morphological features may serve as an auxiliary tool to predict EGFR-mutation subtypes and contribute to individualized treatment for patients with LADC.
Collapse
Affiliation(s)
- Ji-wen Huo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-you Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Diao
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Fa-jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-dao Chen
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Rui-ze Yu
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Qi Li,
| |
Collapse
|
40
|
Miyauchi E, Morita S, Nakamura A, Hosomi Y, Watanabe K, Ikeda S, Seike M, Fujita Y, Minato K, Ko R, Harada T, Hagiwara K, Kobayashi K, Nukiwa T, Inoue A. Updated Analysis of NEJ009: Gefitinib-Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer With Mutated EGFR. J Clin Oncol 2022; 40:3587-3592. [PMID: 35960896 PMCID: PMC9622660 DOI: 10.1200/jco.21.02911] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned coprimary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported. In a randomized, open-label, phase III NEJ009 study, gefitinib plus chemotherapy significantly improved progression-free survival (PFS) and overall survival (OS) compared with gefitinib-alone in patients with untreated non–small-cell lung cancer harboring mutations in epidermal growth factor receptor. Herein, we report the updated survival outcome and long-term tolerability. Patients were randomly assigned to gefitinib (gefitinib 250 mg orally, once daily) and gefitinib combined with carboplatin plus pemetrexed (GCP in a 3-week cycle for six cycles followed by concurrent gefitinib and pemetrexed maintenance) groups. At the data cutoff (May 22, 2020), GCP demonstrated significantly better PFS2 (hazard ratio, 0.77; 95% CI, 0.62 to 0.97; P = .027) than gefitinib. However, the updated median OS was 38.5 months (95% CI, 31.1 to 47.1) and 49.0 months (95% CI, 41.8 to 56.7) in the gefitinib and GCP groups, respectively (hazard ratio, 0.82; 95% CI, 0.64 to 1.06; P = .127). The OS in both groups was similar for the overall patient population. No severe adverse events occurred since the first report. This updated analysis revealed that the GCP regimen improved PFS and PFS2 with an acceptable safety profile compared with gefitinib-alone. GCP is more efficient than gefitinib monotherapy as a first-line treatment for non–small-cell lung cancer with epidermal growth factor receptor mutations.
Collapse
Affiliation(s)
- Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Nakamura
- Department of Respiratory Medicine, Sendai Kosei Hospital, Sendai, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kana Watanabe
- Department of Respiratory Medicine, Miyagi Cancer Center, Natori, Japan
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | - Koichi Minato
- Department of Respiratory Medicine, Gunma Prefectural Cancer Center, Ota, Japan
| | - Ryo Ko
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Harada
- Department of Respiratory Medicine, Japan Community Health Care Organization Hokkaido Hospital, Sapporo, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kunihiko Kobayashi
- Department of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Japan
| | | | - Akira Inoue
- Department of Palliative Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|
41
|
Ko YK, Gim JA. New Drug Development and Clinical Trial Design by Applying Genomic Information Management. Pharmaceutics 2022; 14:1539. [PMID: 35893795 PMCID: PMC9330622 DOI: 10.3390/pharmaceutics14081539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Depending on the patients' genotype, the same drug may have different efficacies or side effects. With the cost of genomic analysis decreasing and reliability of analysis methods improving, vast amount of genomic information has been made available. Several studies in pharmacology have been based on genomic information to select the optimal drug, determine the dose, predict efficacy, and prevent side effects. This paper reviews the tissue specificity and genomic information of cancer. If the tissue specificity of cancer is low, cancer is induced in various organs based on a single gene mutation. Basket trials can be performed for carcinomas with low tissue specificity, confirming the efficacy of one drug for a single gene mutation in various carcinomas. Conversely, if the tissue specificity of cancer is high, cancer is induced in only one organ based on a single gene mutation. An umbrella trial can be performed for carcinomas with a high tissue specificity. Some drugs are effective for patients with a specific genotype. A companion diagnostic strategy that prescribes a specific drug for patients selected with a specific genotype is also reviewed. Genomic information is used in pharmacometrics to identify the relationship among pharmacokinetics, pharmacodynamics, and biomarkers of disease treatment effects. Utilizing genomic information, sophisticated clinical trials can be designed that will be better suited to the patients of specific genotypes. Genomic information also provides prospects for innovative drug development. Through proper genomic information management, factors relating to drug response and effects can be determined by selecting the appropriate data for analysis and by understanding the structure of the data. Selecting pre-processing and appropriate machine-learning libraries for use as machine-learning input features is also necessary. Professional curation of the output result is also required. Personalized medicine can be realized using a genome-based customized clinical trial design.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
42
|
Comparison of the efficacy and safety of first-line treatments based on clinicopathological characteristics for patients with advanced epidermal growth factor receptor mutated non-small-cell lung cancer: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2022; 177:103760. [PMID: 35870763 DOI: 10.1016/j.critrevonc.2022.103760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A growing number of regimens have been approved as first-line treatments for patients with advanced epidermal growth factor receptor (EGFR) mutated non-small cell lung cancer. However, the optimal regimen has not been determined, especially for patients with different clinicopathological characteristics. Therefore, we performed this meta-analysis to compare the efficacy and safety of first-line treatments for patients with EGFR-mutated NSCLC based on clinicopathological characteristics, thereby providing evidence for individual patient clinical decision-making. METHODS The PubMed, Embase, Cochrane Library databases, and abstracts of ASCO, ESMO, and WCLC were searched from inception to 3 June 2021 to identify eligible randomized controlled trials (RCTs). The outcomes of progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and grade 3 or higher adverse events (≥3AEs) were compared and ranked based on various clinicopathological characteristics among 14 regimens by network meta-analysis (NMA) and the surface under the cumulative ranking curve (SUCRA), respectively. RESULTS 25 RCTs were included, with a total of 6965 patients and 14 treatment regimens. The primary endpoint of all RCTs was PFS, and OS, ORR, and ≥3AEs were secondary endpoints. Regarding overall patients, the most distinct PFS benefit was observed in osimertinib (OSI), with the fewest ≥3AEs, whereas gefitinib plus pemetrexed-based chemotherapy (GEF+PB) provided the greatest benefit for OS. When considering EGFR mutation type, aumolertinib (AUM) and GEF+PB could be the optimal regimens in terms of PFS for patients with EGFR 19DEL and EGFR 21L858R, respectively. Notably, the efficacy of the 14 regimens for PFS varied across clinicopathological characteristics, with GEP+PB ranking first in Eastern Cooperative Oncology Group performance status (ECOG PS)= 1, Asian, age<65 and smoking subgroups, with AUM ranking first in ECOG PS= 0 and female subgroups, with ICO+PB ranking first in age ≥65 and no smoking subgroups, and with AFA+CET ranking first in the male subgroup. In terms of brain metastases, third-generation EGFR-TKI showed obvious superiority, with AUM and OSI optimally prolonging PFS in patients with and without brain metastases, respectively. In addition, GEF+PB is a superior alternative, ranking second in terms of PFS regardless of the presence of brain metastases. CONCLUSIONS OSI and GEF+PB were the most two effective first-line regimens for overall patients, ranking first in PFS and OS, respectively. GEF+PB ranked first in terms of PFS in subgroups of EGFR 21L858R, ECOG PS= 1, Asian, age <65, and smoking. Meanwhile, AUM in subgroups of EGFR 19DEL, ECOG PS= 0, female, brain metastasis, OSI in the subgroup of without brain metastasis, ICO+PB in no smoking subgroup, and AFA+CET in male subgroup were the best options as for their evident superiority in PFS.
Collapse
|
43
|
Kosibaty Z, Brustugun OT, Zwicky Eide IJ, Tsakonas G, Grundberg O, De Petris L, McGowan M, Hydbring P, Ekman S. Ras-Related Protein Rab-32 and Thrombospondin 1 Confer Resistance to the EGFR Tyrosine Kinase Inhibitor Osimertinib by Activating Focal Adhesion Kinase in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14143430. [PMID: 35884490 PMCID: PMC9317954 DOI: 10.3390/cancers14143430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Osimertinib is a third-generation EGFR tyrosine kinase inhibitor and the standard of care therapy for non-small cell lung cancer patients harboring EGFR-activating mutations. However, even for patients treated with osimertinib, resistance inevitably occurs leading to disease progression. Here, we utilized two osimertinib-resistant cell lines and investigated their RNA profiles. We found that Ras-related protein Rab-32 (RAB32) and thrombospondin 1 (THBS1) were upregulated and associated with resistance in osimertinib-resistant cells as well as in liquid biopsies from patients with disease progression following osimertinib treatment. Moreover, we found RAB32 and THBS1 to be mechanistically linked to activation of the focal adhesion pathway where combination of osimertinib with a FAK inhibitor resulted in a synergistic suppression of viability of osimertinib-resistant cells. Our findings propose a potential therapeutic strategy for overcoming acquired resistance to osimertinib in non-small cell lung cancer. Abstract Treatment with the tyrosine kinase inhibitor (TKI) osimertinib is the standard of care for non-small cell lung cancer (NSCLC) patients with activating mutations in the epidermal growth factor receptor (EGFR). Osimertinib is also used in T790M-positive NSCLC that may occur de novo or be acquired following first-line treatment with other EGFR TKIs (i.e., gefitinib, erlotinib, afatinib, or dacomitinib). However, patients treated with osimertinib have a high risk of developing resistance to the treatment. A substantial fraction of the mechanisms for resistance is unknown and may involve RNA and/or protein alterations. In this study, we investigated the full transcriptome of parental and osimertinib-resistant cell lines, revealing 131 differentially expressed genes. Knockdown screening of the genes upregulated in resistant cell lines uncovered eight genes to partly confer resistance to osimertinib. Among them, we detected the expression of Ras-related protein Rab-32 (RAB32) and thrombospondin 1 (THBS1) in plasmas sampled at baseline and at disease progression from EGFR-positive NSCLC patients treated with osimertinib. Both genes were upregulated in progression samples. Moreover, we found that knockdown of RAB32 and THBS1 reduced the expression of phosphorylated focal adhesion kinase (FAK). Combination of osimertinib with a FAK inhibitor resulted in synergistic toxicity in osimertinib-resistant cells, suggesting a potential therapeutic drug combination for overcoming resistance to osimertinib in NSCLC patients.
Collapse
Affiliation(s)
- Zeinab Kosibaty
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway; (O.T.B.); (I.J.Z.E.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Inger Johanne Zwicky Eide
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway; (O.T.B.); (I.J.Z.E.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Georgios Tsakonas
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Oscar Grundberg
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Luigi De Petris
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Marc McGowan
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
- Akademiska Straket 1, BioClinicum J6:20, 17164 Solna, Sweden
- Correspondence: ; Tel.: +46-725721111
| |
Collapse
|
44
|
Chen Z, Liu L, Zhu F, Cai X, Zhao Y, Liang P, Ou L, Zhong R, Yu Z, Li C, Li J, Xiong S, Feng Y, Cheng B, Liang H, Xie Z, Liang W, He J. Dynamic monitoring serum tumor markers to predict molecular features of EGFR-mutated lung cancer during targeted therapy. Cancer Med 2022; 11:3115-3125. [PMID: 35543090 PMCID: PMC9385589 DOI: 10.1002/cam4.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
To reveal the correlation of dynamic serum tumor markers (STMs) and molecular features of epidermal growth factor receptor‐mutated (EGFR‐mutated) lung cancer during targeted therapy, we retrospectively reviewed 303 lung cancer patients who underwent dynamic STM tests [neuron‐specific enolase (NSE), carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), carbohydrate antigen 153 (CA153), the soluble fragment of cytokeratin 19 (CYFRA21‐1), and squamous cell carcinoma antigen (SCC)] and circulating tumor DNA (ctDNA) testing with a panel covering 168 genes. At baseline, patients with EGFR mutation trended to have abnormal CEA, abnormal CA153, and normal SCC levels. Additionally, patients with Thr790Met (T790M) mutation were more likely to have abnormal CEA levels than patients without T790M mutation. Among patients with secondary resistance to EGFR tyrosine kinase inhibitors (TKI), the dynamic STMs showed a descending trend in the responsive stage and a rising trend in the resistant stage. However, the changing slopes differed between T790M subgroup and the non‐T790M subgroup in individual STMs. Our study demonstrated that the combination of baseline levels and variations of STMs (including the responsive stage and resistant stage) can be suggestive of secondary EGFR‐T790M mutation [area under the curve (AUC) = 0.897] and that changing trends of STMs (within 8 weeks after initiating the TKI therapy) can be potential predictors for the clearance of EGFR ctDNA [AUC = 0.871]. In conclusion, dynamic monitoring STMs can help to predict the molecular features of EGFR‐mutated lung cancer during targeted therapy.
Collapse
Affiliation(s)
- Zhuxing Chen
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Liu
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Zhu
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yi Zhao
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Liang
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Limin Ou
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziwen Yu
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Cheng
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Disease, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
46
|
Hybrid Pharmacophore- and Structure-Based Virtual Screening Pipeline to Identify Novel EGFR Inhibitors That Suppress Non-Small Cell Lung Cancer Cell Growth. Int J Mol Sci 2022; 23:ijms23073487. [PMID: 35408854 PMCID: PMC8999148 DOI: 10.3390/ijms23073487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Dysregulated epidermal growth factor receptor (EGFR) expression is frequently observed in non-small cell lung cancer (NSCLC) growth and metastasis. Despite recent successes in the development of tyrosine kinase inhibitors (TKIs), inevitable resistance to TKIs has led to urgent calls for novel EGFR inhibitors. Herein, we report a rational workflow used to identify novel EGFR-TKIs by combining hybrid ligand- and structure-based pharmacophore models. Three types of models were developed in this workflow, including 3D QSAR-, common feature-, and structure-based EGFR-TK domain-containing pharmacophores. A National Cancer Institute (NCI) compound dataset was adopted for multiple-stage pharmacophore-based virtual screening (PBVS) of various pharmacophore models. The six top-scoring compounds were identified through the PBVS pipeline coupled with molecular docking. Among these compounds, NSC609077 exerted a significant inhibitory effect on EGFR activity in gefitinib-resistant H1975 cells, as determined by an enzyme-linked immunosorbent assay (ELISA). Further investigations showed that NSC609077 inhibited the anchorage-dependent growth and migration of lung cancer cells. Furthermore, NSC609077 exerted a suppressive effect on the EGFR/PI3K/AKT pathway in H1975 cells. In conclusion, these findings suggest that hybrid virtual screening may accelerate the development of targeted drugs for lung cancer treatment.
Collapse
|
47
|
N Chin C, Subhawong T, Grosso J, Wortman JR, McIntosh LJ, Tai R, Braschi-Amirfarzan M, Castillo P, Alessandrino F. Teaching cancer imaging in the era of precision medicine: Looking at the big picture. Eur J Radiol Open 2022; 9:100414. [PMID: 35309874 PMCID: PMC8927915 DOI: 10.1016/j.ejro.2022.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of imaging in cancer diagnosis and treatment has evolved at the same rapid pace as cancer management. Over the last twenty years, with the advancement of technology, oncology has become a multidisciplinary field that allows for researchers and clinicians not only to create individualized treatment options for cancer patients, but also to evaluate patients’ response to therapy with increasing precision. Familiarity with these concepts is a requisite for current and future radiologists, as cancer imaging studies represent a significant and growing component of any radiology practice, from tertiary cancer centers to community hospitals. In this review we provide the framework to teach cancer imaging in the era of genomic oncology. After reading this article, readers should be able to illustrate the basics cancer genomics, modern cancer genomics, to summarize the types of systemic oncologic therapies available, their patterns of response and their adverse events, to discuss the role of imaging in oncologic clinical trials and the role of tumor response criteria and to display the future directions of oncologic imaging.
Collapse
Affiliation(s)
- Christopher N Chin
- Department of Surgery, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Ty Subhawong
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - James Grosso
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jeremy R Wortman
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Lacey J McIntosh
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Ryan Tai
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Marta Braschi-Amirfarzan
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Patricia Castillo
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
48
|
Delgado Sillero I, Lopetegui Lia N, Sánchez Cousido LF, Rojas Piedra M, Távara Silva B, Garrido Onecha ML, Medina Valdivieso S, Alonso Horcajo N, Díez Tascón C, López González A, Castañón López C, Pedraza Lorenzo M, García Palomo A, Martín V, Diz Tain P. EGFR-mutated advanced lung cancer. Data from a single institution, the Hospital of Leon, in Spain. J Oncol Pharm Pract 2022:10781552221085253. [PMID: 35306915 DOI: 10.1177/10781552221085253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION 10-16% of non-small cell lung cancer (NSCLC) cases have the epidermal growth factor receptor (EGFR) amplified and/or mutated. Studies show that EGFR tyrosine kinase inhibitors (TKIs) significantly prolong progression-free survival (PFS) in patients with advanced NSCLC compared to those treated with platinum-based chemotherapy (CT) doublets. Our aim is to perform a real-world survival analysis of patients treated with TKI as first-line therapy at the Hospital of Leon (CAULE) in Spain. The impact on global survival rates and responses to clinical and histopathological factors were also analyzed. MATERIAL AND METHODS We retrospectively reviewed patients diagnosed with EGFR-mutated NSCLC who received treatment with EGFR-TKI in the Department of Oncology at the University of Leon Health Center complex between March 2011 and June 2018. Data was analyzed with Kaplan-Meier and Cox regression models to show overall survival (OS), progression-free survival (PFS), and the associated variables. RESULTS 53 patients were included in the study, 50% (n = 27) were treated with gefitinib, 32% (n = 18) with erlotinib and 10% (n = 6) with afatinib. The median OS and PFS were 27.7 months (95% CI: 21-33.8 months) and 18 months (95% CI 14.25-21.89 months), respectively. The variables associated with OS and with PFS were exon19 deletion as a protective factor and presence of extrathoracic metastasis as a risk factor. The most frequent adverse effects were rash, diarrhea, asthenia, and conjunctivitis. CONCLUSIONS Real-world analysis of this data confirms that treatment with TKI is beneficial for patients diagnosed with EGFR-mutated NSCLC. Our OS outcomes were similar to those reported in clinical trials.
Collapse
Affiliation(s)
- Irene Delgado Sillero
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | - Nerea Lopetegui Lia
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland OH, USA
| | | | - Mariam Rojas Piedra
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | - Blanca Távara Silva
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | | | | | - Nieves Alonso Horcajo
- Department of Anatomic Pathology, 21654University of Leon Health Center complex, Leon, Spain
| | - Cristina Díez Tascón
- Department of Anatomic Pathology, 21654University of Leon Health Center complex, Leon, Spain
| | - Ana López González
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | - Carmen Castañón López
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | | | - Andrés García Palomo
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| | | | - Pilar Diz Tain
- Department of Medical Oncology, University of Leon Health Center complex, Leon, Spain
| |
Collapse
|
49
|
Ma J, Bai Y, Liu M, Jiao T, Chen Y, Yuan B, Liu B, Zeng L, Ming Z, Li W, Sun R, Yang X, Yang S. Pretreatment HDL-C and ApoA1 are predictive biomarkers of progression-free survival in patients with EGFR mutated advanced non-small cell lung cancer treated with TKI. Thorac Cancer 2022; 13:1126-1135. [PMID: 35274478 PMCID: PMC9013640 DOI: 10.1111/1759-7714.14367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We aimed to explore the correlation between blood lipids (high density lipoprotein cholesterol [HDL-C] and apolipoprotein A1 [ApoA1]) and epidermal growth factor receptor (EGFR) T790M mutation, as well as its predictive role in clinical efficacy and progression-free survial (PFS) in advanced non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (EGFR-TKI). METHODS We retrospectively collected information of 153 patients with advanced NSCLC harboring exon EGFR mutation and receiving EGFR-TKI. RESULTS The best cutoff value for HDL-C and ApoA1 was determined to be 1.15 and 1.14 mmol/l. The overall response rate (ORR) was 67.7% in the high HDL-C group and 46.6% in the low HDL-C group, respectively. The ORR of the high ApoA1 group showed a significant increase than that of the low ApoA1 group (68.1% vs. 38.5%). The mean ApoA1 level of the EGFR T790M mutation-positive group was significantly higher than that of the EGFR T790M mutation-negative group (1.13 g/l vs. 1.01 g/l). Patients with high ApoA1 levels were related to the EGFR T790M mutation (r = 0.324). (3) The median progression-free survival (PFS) of the high HDL-C group and low HDL-C group were 13.00 months and 10.20 months. The median PFS of the high ApoA1 group and the low ApoA1 group were 12.10 and 10.00 months, respectively. Multivariate Cox stepwise regression model analysis demonstrated ECOG PS, pathological type and HDL-C were confirmed as critical and independent predictors of PFS. CONCLUSIONS Patients with EGFR T790M mutations often show higher ApoA1 levels. Peripheral serum HDL-C and ApoA1 before treatment can be used as potential significant factors for predicting clinical efficacy and PFS in advanced NSCLC patients treated with EGFR-TKI.
Collapse
Affiliation(s)
- Juan Ma
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ying Bai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Jiao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yuan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongjuan Ming
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
50
|
Sitthideatphaiboon P, Teerapakpinyo C, Korphaisarn K, Leelayuwatanakul N, Pornpatrananrak N, Poungvarin N, Chantranuwat P, Shuangshoti S, Aporntewan C, Chintanapakdee W, Sriuranpong V, Vinayanuwattikun C. Co-occurrence CDK4/6 amplification serves as biomarkers of de novo EGFR TKI resistance in sensitizing EGFR mutation non-small cell lung cancer. Sci Rep 2022; 12:2167. [PMID: 35140316 PMCID: PMC8828869 DOI: 10.1038/s41598-022-06239-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the development of predictive biomarkers to shape treatment paradigms and outcomes, de novo EGFR TKI resistance advanced non-small cell lung cancer (NSCLC) remains an issue of concern. We explored clinical factors in 332 advanced NSCLC who received EGFR TKI and molecular characteristics through 65 whole exome sequencing of various EGFR TKI responses including; de novo (progression within 3 months), intermediate response (IRs) and long-term response (LTRs) (durability > 2 years). Uncommon EGFR mutation subtypes were significantly variable enriched in de novo resistance. The remaining sensitizing EGFR mutation subtypes (exon 19 del and L858R) accounted for 75% of de novo resistance. Genomic landscape analysis was conducted, focusing in 10 frequent oncogenic signaling pathways with functional contributions; cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGF-β, p53 and β-catenin/Wnt signaling. Cell cycle pathway was the only significant alteration pathway among groups with the FDR p-value of 6 × 10-4. We found only significant q-values of < 0.05 in 7 gene alterations; CDK6, CCNE1, CDK4, CCND3, MET, FGFR4 and HRAS which enrich in de novo resistance [range 36-73%] compared to IRs/LTRs [range 4-22%]. Amplification of CDK4/6 was significant in de novo resistance, contrary to IRs and LTRs (91%, 27.9% and 0%, respectively). The presence of co-occurrence CDK4/6 amplification correlated with poor disease outcome with HR of progression-free survival of 3.63 [95% CI 1.80-7.31, p-value < 0.001]. The presence of CDK4/6 amplification in pretreatment specimen serves as a predictive biomarker for de novo resistance in sensitizing EGFR mutation.
Collapse
Affiliation(s)
- Piyada Sitthideatphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chinachote Teerapakpinyo
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Krittiya Korphaisarn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Siriraj, Bangkok Noi, Bangkok, 10700, Thailand
| | - Nophol Leelayuwatanakul
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nopporn Pornpatrananrak
- Department of Surgery, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Siriraj, Bangkok Noi, Bangkok, 10700, Thailand
| | - Poonchavist Chantranuwat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Shanop Shuangshoti
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.,Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chatchawit Aporntewan
- Department of Mathematics and Computer Science & Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wariya Chintanapakdee
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Virote Sriuranpong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|