1
|
Xu L, Chen Y, Xiong L, Shen Y, Zhou Z, Wang S, Xu X. A review of immune checkpoint inhibitor-associated myocarditis: Epidemiology, pathogenesis, and biomarkers. Hum Vaccin Immunother 2025; 21:2512645. [PMID: 40505635 PMCID: PMC12164393 DOI: 10.1080/21645515.2025.2512645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/15/2025] [Accepted: 05/25/2025] [Indexed: 06/16/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) have demonstrated efficacy in treating various cancers by modulating the immune system, but this can lead to immune-related adverse events (irAEs), including myocarditis. ICI-associated myocarditis is a rare but highly lethal irAE with a short mean time to onset, and difficult to diagnose early due to nonspecific symptoms and lack of biomarkers. This review highlights the need for improved recognition and management of ICI-associated myocarditis, summarizing recent advances in immunology, pathology, and biomarker research. We discuss the epidemiology, clinical features, immunological mechanisms, and roles of biomarkers in diagnosis and risk stratification. Traditional biomarkers like cTnI and hs-cTnT are sensitive but lack specificity, while emerging biomarkers like miR-155 show tissue specificity. Inflammatory markers such as NLR and CRP aid prognosis but have limited diagnostic value.
Collapse
Affiliation(s)
- Le Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukai Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Pathology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuolin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Boardman DA, Mangat S, Gillies JK, Leon L, Fung VCW, Haque M, Mojibian M, Halvorson T, Huang Q, Tuomela K, Wardell CM, Brown A, Lam AJ, Levings MK. Armored human CAR T reg cells with PD1 promoter-driven IL-10 have enhanced suppressive function. SCIENCE ADVANCES 2025; 11:eadx7845. [PMID: 40512855 PMCID: PMC12164974 DOI: 10.1126/sciadv.adx7845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 06/16/2025]
Abstract
Regulatory T cell (Treg cell) therapy has been transformed through the use of chimeric antigen receptors (CARs). We previously found that human Treg cells minimally produce IL-10 and have a limited capacity to control innate immunity compared to type 1 regulatory T cells (Tr1 cells). To create "hybrid" CAR Treg cells with Tr1 cell-like properties, we examined whether the PDCD1 locus could be exploited to endow Treg cells with CAR-regulated IL-10 expression. CRISPR-mediated PD1 deletion increased CAR Treg cell activation, and knock-in of IL10 under control of the PD1 promoter resulted in CAR-induced IL-10 secretion. IL10 knock-in improved CAR Treg cell function, as determined by increased suppression of dendritic cells and alloantigen- and islet autoantigen-specific T cells. In vivo, IL10 knock-in CAR Treg cells were stable, safe, and suppressed dendritic cells and xenogeneic graft-versus-host disease. CRISPR-mediated engineering to simultaneously remove an inhibitory signal and enhance a suppressive mechanism is a previously unexplored approach to improve CAR Treg cell potency.
Collapse
Affiliation(s)
- Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sonya Mangat
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Jana K. Gillies
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Lorna Leon
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Vivian C. W. Fung
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Manjurul Haque
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Majid Mojibian
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Torin Halvorson
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karoliina Tuomela
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christine M. Wardell
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Andrew Brown
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Avery J. Lam
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Lim JX, McTaggart T, Jung SK, Smith KJ, Hulme G, Laba S, Ng YQ, Williams A, Hussain R, Coxhead J, Cosgarea I, Arden C, Nsengimana J, Lovat P, Anderson G, Sun HW, Laurence A, Amarnath S. PD-1 receptor deficiency enhances CD30 + T reg cell function in melanoma. Nat Immunol 2025:10.1038/s41590-025-02172-0. [PMID: 40457060 DOI: 10.1038/s41590-025-02172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/25/2025] [Indexed: 06/11/2025]
Abstract
Regulatory T (Treg) cells are vital for immune suppression. The role of the coreceptor programmed cell death 1 receptor (PD-1) in Treg cell function is controversial. Here, we demonstrate that PD-1 deficiency enhances the function of Treg cells through expression of a compensatory network of coinhibitory receptors. CD30 has a central role within this network, driving the Treg cell suppressive function within the tumor microenvironment. Mechanistically, PD-1 deficiency enhances STAT5 signaling in Treg cells, which induces CD30 expression. These data indicate a role for PD-1 as a checkpoint that negatively controls CD30 expression in Treg cells to limit their suppressive function. Understanding the functional changes that PD-1 has on Treg cells might enable combination therapies with better treatment outcomes in cancer.
Collapse
Affiliation(s)
- Jing Xuan Lim
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Tegan McTaggart
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Seol Kyoung Jung
- National Institute of Arthritis, Musculoskeletal and Skin, NIH, Bethesda, MD, USA
| | - Katie J Smith
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gillian Hulme
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Stephanie Laba
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Yun Qi Ng
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Amelia Williams
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Ioana Cosgarea
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK
| | - Jérémie Nsengimana
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Penny Lovat
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Graham Anderson
- Department of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Hong-Wei Sun
- National Institute of Arthritis, Musculoskeletal and Skin, NIH, Bethesda, MD, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Nuffield School of Medicine, Oxford University, Oxford, UK
| | - Shoba Amarnath
- Biosciences Institute, Newcastle University, Newcastle University, Newcastle upon Tyne, UK.
- NIHR, Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK.
- Centre for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Wang J, Ji X, Yang C, Xu J. Susceptibility from the immunological perspective of COVID-19-associated pulmonary aspergillosis: A literature review. Medicine (Baltimore) 2025; 104:e42363. [PMID: 40355215 PMCID: PMC12073940 DOI: 10.1097/md.0000000000042363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
The incidence rate of COVID-19-associated pulmonary aspergillosis (CAPA) is rising. However, the pathogenesis of CAPA remains unclear. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection disrupts pathways related to type I interferon and Toll-like receptors, key components in innate immunity, thereby elevating the incidence of CAPA. Additionally, SARS-CoV-2 infection results in T and B cell functional deficiencies or exhaustion within adaptive immunity, weakening the defense against invasive Aspergillus. Furthermore, SARS-CoV-2 infection enhances the replication of cytomegalovirus and alters the gut microbiota, factors that may aid in diagnosing CAPA. Immunosuppressive therapy in COVID-19 patients is also believed to heighten the risk of invasive aspergillosis. Therefore, this review, examines the immune response to SARS-CoV-2 infection combined with invasive aspergillosis, and explores the pathogenesis and susceptibility factors of CAPA. We propose that variations in an individual's immune response significantly determine susceptibility to CAPA. The aim of this paper is to deepen clinical understanding of CAPA's pathogenesis, thereby aiding in mitigating susceptibility risk and advancing novel treatment approaches.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xufeng Ji
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Chun Yang
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory, The First Hospital of Jilin University, Changchun, China
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Hsieh HC, Young MJ, Chen KY, Su WC, Lin CC, Yen YT, Hung JJ, Wang YC. Deubiquitinase USP24 activated by IL-6/STAT3 enhances PD-1 protein stability and suppresses T cell antitumor response. SCIENCE ADVANCES 2025; 11:eadt4258. [PMID: 40238877 PMCID: PMC12002121 DOI: 10.1126/sciadv.adt4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Persisting programmed cell death-1 (PD-1) signaling impairs T cell effector function, which is highly associated with T cell exhaustion and immunotherapy failure. However, the mechanism responsible for PD-1 deubiquitination and T cell dysfunction remains unclear. Here, we show that ubiquitin-specific peptidase 24 (USP24) promotes PD-1 protein stability by removing K48-linked polyubiquitin. Increased interleukin-6 level transcriptionally activates the USP24 expression, which leads to PD-1 stabilization. Furthermore, USP24 deficiency reduces PD-1 levels in CD8+ T cells and attenuates EgfrL858R-driven lung tumorigenesis in Usp24C1695A catalytic deficient mice. Targeting PD-1 stability with the USP24-specific inhibitor USP24-i-101 boosts cytotoxic T cell activity, restrains lung tumor growth, and achieves superior therapeutic effects when combined with anti-CTLA4 immunotherapy. Clinically, patients with lung cancer exhibiting high USP24 expression in tumor-infiltrating CD8+ T cells display exhausted features and show unfavorable responses to immunotherapy. Our findings dissect the mechanism for regulating enhanced PD-1 stability in tumor-infiltrating CD8+ T cells and reveal USP24 as a potential target of antitumor immunotherapy.
Collapse
Affiliation(s)
- Hung-Chia Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Yu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Department of Surgery, National Cheng Kung University Hospital, College of Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
6
|
Bell MG, Braga Neto MB, Kane SV. De Novo Crohn's Disease 3 Years Following Immune Checkpoint Inhibitor Therapy. ACG Case Rep J 2025; 12:e00944. [PMID: 40182190 PMCID: PMC11968015 DOI: 10.14309/crj.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/28/2022] [Indexed: 04/05/2025] Open
Abstract
Presented is a 76-year-old man with metastatic melanoma that was successfully treated with pembrolizumab, an immune checkpoint inhibitor (ICI). He underwent 20 months of ICI treatment without dose limiting side effects. Nearly 18 months after ICI discontinuation, the patient developed intermittent epigastric pain and diarrhea. Owing to mild symptoms, he was not immediately evaluated. Three years after ICI cessation, he was diagnosed with stricturing, jejunal Crohn's disease. He was treated with vedolizumab and displayed clinical and radiographic response to treatment. This case serves as an example of potential gastrointestinal-related, long-term autoimmune implications of ICI therapy, even in patients without acute side effects.
Collapse
Affiliation(s)
- Matthew G. Bell
- Department of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ
| | | | - Sunanda V. Kane
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
McTaggart T, Lim JX, Smith KJ, Heaney B, McDonald D, Hulme G, Hussain R, Coxhead J, Mann DA, Sayer AA, Granic A, Amarnath S. Deciphering Novel Communication Patterns in T Regulatory Cells From Very Old Adults. Aging Cell 2025:e70044. [PMID: 40100045 DOI: 10.1111/acel.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
Regulatory T cells (Tregs) are important in maintaining tolerance and are key players in immunity. In aging, increased Treg function along with low-grade inflammation has been reported. This dichotomy of enhanced Treg function along with inflammation highlights the importance of understanding Treg biology and communication patterns in the very old. In this proof-of-concept study, we demonstrate that aged Tregs (85 years) do not significantly communicate with CD4+ and CD8+ T effectors when compared with healthy < 66-year-olds. Of note was the enhanced communication of aged Tregs with CD3+CD8+CD56+CD161- NK-like T-cell populations, which are important in antitumor and chronic viral diseases in older individuals. We found that in turn this population of killer-like T cells showed diminished cytotoxic characteristics, and killer receptor expression. Taken together, our proof-of-concept study delineates the biology of Tregs and identifies previously undefined communication patterns in the very old.
Collapse
Affiliation(s)
- Tegan McTaggart
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jing Xuan Lim
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Katie J Smith
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Bronagh Heaney
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - David McDonald
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Gillian Hulme
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Derek A Mann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Avan A Sayer
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Antoneta Granic
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Shoba Amarnath
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
- Centre for Cancer Research, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
8
|
Liu X, To KK, Zeng Q, Fu L. Effect of Extracellular Vesicles Derived From Tumor Cells on Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417357. [PMID: 39899680 PMCID: PMC11948033 DOI: 10.1002/advs.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/05/2025]
Abstract
The crosstalk between immunity and cancer in the regulation of tumor growth is considered a hallmark of cancer. Antitumor immunity refers to the innate and adaptive immune responses that regulate cancer development and proliferation. Tumor immune evasion represents a major hindrance to effective anticancer treatment. Extracellular vesicles (EVs) are nano-sized and lipid-bilayer-enclosed particles that are secreted to the extracellular space by all cell types. They are critically involved in numerous biological functions including intercellular communication. Tumor-derived extracellular vesicles (TEVs) can transport a variety of cargo to modulate immune cells in the tumor microenvironment (TME). This review provides the latest update about how tumor cells evade immune surveillance by exploiting TEVs. First, the biogenesis of EVs and the cargo-sorting machinery are discussed. Second, how tumor cells modulate immune cell differentiation, activation, and function via TEVs to evade immune surveillance is illustrated. Last but not least, the novel antitumor strategies that can reverse immune escape are summarized.
Collapse
Affiliation(s)
- Xuanfan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Kenneth K.W. To
- School of PharmacyThe Chinese University of Hong KongHong Kong999077P. R. China
| | - Qinsong Zeng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanning530025P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
9
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2025; 116:329-337. [PMID: 39601129 PMCID: PMC11786313 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wenjie Ma
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Zijian Zou
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Jingqin Zhong
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Xinyi Lin
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wanlin Liu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wei Sun
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
10
|
Zhang H, Zheng H, Wang Y, Chen C, Tong Y, Xie S, Ma X, Guo L, Lu R. PD-1 suppresses human CD38 + circulating Tfr cells and regulates humoral immunity. J Immunother Cancer 2025; 13:e010026. [PMID: 39800377 PMCID: PMC11748770 DOI: 10.1136/jitc-2024-010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Anti-programmed cell death protein 1 (anti-PD-1) antibodies have achieved revolutionary success in cancer therapy. However, the impact of anti-PD-1 therapy on host humoral immunity in humans during cancer immunotherapy requires further investigation. METHODS We evaluated immunoglobulin titers by ELISA and screened the immune landscape of immune cells from 25 healthy donors and 50 cases including 25 new-onset hepatocellular carcinoma (HCC) patients prior to systemic treatment and 25 HCC patients undergoing anti-PD-1 therapy by multicolor flow cytometry. Flow or beads sorted cells were cultured ex vivo for proliferation and functional analysis. RESULTS Anti-PD-1 therapy significantly increased the levels of IgG and IgA in the periphery of HCC patients. Anti-PD-1 treatment led to an increase in plasmablasts and a notable rise in circulating T follicular regulatory (cTfr) cells, while changes in circulating B cells, T follicular helper cells, or regulatory T cells were not significant. Anti-PD-1 therapy also influenced the proliferation and function of cTfr cells, promoting the differentiation of CD38+ cTfr cells. We observed that the CD38+ Tfr cell subset in the peripheral blood can promote plasmablast differentiation, associated with altered antibody production. CONCLUSIONS Together, these data demonstrate the immunomodulatory role of PD-1 in restricting the differentiation and function of human cTfr cells and in regulating humoral immunity.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical School,Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical School,Fudan University, Shanghai, China
| |
Collapse
|
11
|
Liu F, Li X, Li Q, Gu J, Shi Q, Song J, Jiao N, Mao J. Deciphering Intercellular Communication of the Immune Landscape within Autosomal Dominant Polycystic Kidney Disease Microenvironment at Single-Cell Resolution. KIDNEY DISEASES (BASEL, SWITZERLAND) 2025; 11:302-318. [PMID: 40421435 PMCID: PMC12105836 DOI: 10.1159/000545663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/12/2025] [Indexed: 05/28/2025]
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder that often leads to end-stage renal disease, with disease progression deeply influenced by the renal microenvironment. This study aims to unravel the critical cellular types and their intricate interactions within the ADPKD microenvironment. Methods Leveraging single-cell transcriptome data from seven ADPKD and three healthy human kidney samples, we systematically dissected the cellular landscape of the ADPKD microenvironment. Our approach included CellChat for cell-cell communication analysis, VISION for pathway enrichment analysis, pySCENIC for regulon activity calculation, and Monocle V3 for pseudotime trajectory construction. Results We identified nine major cell lineages, with a notable increase of mononuclear phagocytes (MNPs), T cells, and fibroblasts in the ADPKD microenvironment. These cells collectively orchestrated a distinctive microenvironment, marked by complex intercellular networks. Notably, a specific subset of macrophages exhibited an "M2-like" phenotype, which was driven by IL-10 signaling from M1-like macrophages and contributed to cyst cell proliferation. Immunosuppression was predominantly mediated by CD4+ T cells, activated by macrophages through immune checkpoint pathways, such as PDL1 signaling. The fibrotic expansion was a cumulative effect of fibroblast activation and proliferation, modulated by macrophages and cyst-lining epithelial cells. Conclusion This comprehensive investigation provides valuable insights into the diverse landscapes of the ADPKD microenvironment at single-cell resolution, emphasizing MNPs, T cells, and fibroblasts. The study unveils complex interactions among these cell types, shedding light on an understanding of the immunological aspect of ADPKD and proposing potential therapeutic targets.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, PR China
| | - Xiaoyi Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, PR China
| | - Qiuyu Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, PR China
| | - Jinglan Gu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, PR China
| | - Qi Shi
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Jiayi Song
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Na Jiao
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, PR China
| |
Collapse
|
12
|
McTaggart T, Lim JX, Smith KJ, Heaney B, McDonald D, Hulme G, Hussain R, Coxhead J, Degnan AE, Isaacs J, Pratt A, Amarnath S. Deep phenotyping of T regulatory cells in psoriatic arthritis highlights targetable mechanisms of disease. J Biol Chem 2025; 301:108059. [PMID: 39662827 PMCID: PMC11750473 DOI: 10.1016/j.jbc.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Regulatory T cells (Tregs) are immune regulatory T cells that are vital for controlling inflammation. The role of Tregs in inflammatory diseases namely psoriatic arthritis (PsA) is still poorly understood. The underlying reason being a lack of robust unbiased analysis to test the immune regulatory phenotype of human Tregs. Here, we propose that checkpoint receptors can identify functional Tregs in PsA. Using unbiased BD Rhapsody single-cell analysis, we have analyzed the expression pattern of checkpoint receptors in Tregs and found that PsA Tregs are enriched in the expression of CTLA4, TIGIT, PD-1, and GITR while TIM3 was downregulated. Furthermore, PD-1+ Tregs in PsA had an increased type 1 phenotype and expressed the protease asparaginyl endopeptidase. By harnessing the PD-1 signaling pathway and inhibiting asparaginyl endopeptidase, PsA Treg function was significantly enhanced in in vitro suppressor assays. Next, we interrogated the cell interaction pathways of Tregs in PsA and found a diminished crosstalk with circulating osteoclast precursors through the CD244-CD48 coreceptor pathways. Therapeutically, PsA Treg function could be enhanced by modulating PD-1 and osteoclast interactions. Our study suggests that unconventional immune cell crosstalk with Tregs is severely diminished in PsA.
Collapse
Affiliation(s)
- Tegan McTaggart
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Jing Xuan Lim
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Katie J Smith
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Bronagh Heaney
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - David McDonald
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Gillian Hulme
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Abbie Ea Degnan
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John Isaacs
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Arthur Pratt
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Shoba Amarnath
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK.
| |
Collapse
|
13
|
Saurav S, Karfa S, Vu T, Liu Z, Datta A, Manne U, Samuel T, Datta PK. Overcoming Irinotecan Resistance by Targeting Its Downstream Signaling Pathways in Colon Cancer. Cancers (Basel) 2024; 16:3491. [PMID: 39456585 PMCID: PMC11505920 DOI: 10.3390/cancers16203491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Among the most popular chemotherapeutic agents, irinotecan, regarded as a prodrug belonging to the camptothecin family that inhibits topoisomerase I, is widely used to treat metastatic colorectal cancer (CRC). Although immunotherapy is promising for several cancer types, only microsatellite-instable (~7%) and not microsatellite-stable CRCs are responsive to it. Therefore, it is important to investigate the mechanism of irinotecan function to identify cellular proteins and/or pathways that could be targeted for combination therapy. Here, we have determined the effect of irinotecan treatment on the expression/activation of tumor suppressor genes (including p15Ink4b, p21Cip1, p27Kip1, and p53) and oncogenes (including OPN, IL8, PD-L1, NF-κB, ISG15, Cyclin D1, and c-Myc) using qRT-PCR, Western blotting, immunofluorescence (IF), and RNA sequencing of tumor specimens. We employed stable knockdown, neutralizing antibodies (Abs), and inhibitors of OPN, p53, and NF-κB to establish downstream signaling and sensitivity/resistance to the cytotoxic activities of irinotecan. Suppression of secretory OPN and NF-κB sensitized colon cancer cells to irinotecan. p53 inhibition or knockdown was not sufficient to block or potentiate SN38-regulated signaling, suggesting p53-independent effects. Irinotecan treatment inhibited tumor growth in syngeneic mice. Analyses of allograft tumors from irinotecan-treated mice validated the cell culture results. RNA-seq data suggested that irinotecan-mediated activation of NF-κB signaling modulated immune and inflammatory genes in mice, which may compromise drug efficacy and promote resistance. In sum, these results suggest that, for CRCs, targeting OPN, NF-κB, PD-L1, and/or ISG15 signaling may provide a potential strategy to overcome resistance to irinotecan-based chemotherapy.
Collapse
Affiliation(s)
- Shashank Saurav
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sourajeet Karfa
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Zhipeng Liu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Temesgen Samuel
- Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Pran K. Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
14
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
15
|
Guo AJ, Deng QY, Dong P, Zhou L, Shi L. Biomarkers associated with immune-related adverse events induced by immune checkpoint inhibitors. World J Clin Oncol 2024; 15:1002-1020. [PMID: 39193157 PMCID: PMC11346067 DOI: 10.5306/wjco.v15.i8.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) constitute a pivotal class of immunotherapeutic drugs in cancer treatment. However, their widespread clinical application has led to a notable surge in immune-related adverse events (irAEs), significantly affecting the efficacy and survival rates of patients undergoing ICI therapy. While conventional hematological and imaging tests are adept at detecting organ-specific toxicities, distinguishing adverse reactions from those induced by viruses, bacteria, or immune diseases remains a formidable challenge. Consequently, there exists an urgent imperative for reliable biomarkers capable of accurately predicting or diagnosing irAEs. Thus, a thorough review of existing studies on irAEs biomarkers is indispensable. Our review commences by providing a succinct overview of major irAEs, followed by a comprehensive summary of irAEs biomarkers across various dimensions. Furthermore, we delve into innovative methodologies such as machine learning, single-cell RNA sequencing, multiomics analysis, and gut microbiota profiling to identify novel, robust biomarkers that can facilitate precise irAEs diagnosis or prediction. Lastly, this review furnishes a concise exposition of irAEs mechanisms to augment understanding of irAEs prediction, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- An-Jie Guo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qing-Yuan Deng
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Lian Zhou
- Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400000, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Cai S, Yang G, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial cell interplay networks of regulatory T cells predict recurrence in patients with operable non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:189. [PMID: 39093404 PMCID: PMC11297009 DOI: 10.1007/s00262-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The interplay between regulatory T cells (Tregs) and neighboring cells, which is pivotal for anti-tumor immunity and closely linked to patient prognosis, remains to be fully elucidated. METHODS Tissue microarrays of 261 operable NSCLC patients were stained by multiplex immunofluorescence (mIF) assay, and the interaction between Tregs and neighboring cells in the tumor microenvironment (TME) was evaluated. Employing various machine learning algorithms, we developed a spatial immune signature to predict the prognosis of NSCLC patients. Additionally, we explored the interplay between programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interactions and their relationship with Tregs. RESULTS Survival analysis indicated that the interplay between Tregs and neighboring cells in the invasive margin (IM) and tumor center was associated with recurrence in NSCLC patients. We integrated the intersection of the three algorithms to identify four crucial spatial immune features [P(CD8+Treg to CK) in IM, P(CD8+Treg to CD4) in IM, N(CD4+Treg to CK) in IM, N(CD4+Tcon to CK) in IM] and employed these characteristics to establish SIS, an independent prognosticator of recurrence in NSCLC patients [HR = 2.34, 95% CI (1.53, 3.58), P < 0.001]. Furthermore, analysis of cell interactions demonstrated that a higher number of Tregs contributed to higher PD-L1+ cells surrounded by PD-1+ cells (P < 0.001) with shorter distances (P = 0.004). CONCLUSION We dissected the cell interplay network within the TME, uncovering the spatial architecture and intricate interactions between Tregs and neighboring cells, along with their impact on the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
17
|
Dash P, Nayak S, Koppisetty BK. Maternal Soluble Programmed Death Ligand-1 (sPD-L1) and T-regulatory Cells (Tregs) Alteration in Preeclampsia: A Cross-Sectional Study From Eastern India. Cureus 2024; 16:e67877. [PMID: 39328700 PMCID: PMC11426926 DOI: 10.7759/cureus.67877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Studies have shown that aberrant reactions of the immune system play an important role in the pathogenesis of preeclampsia. The immune checkpoint molecules programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) system and the T-regulatory cells (Tregs) system are decisive in the regulation of immune responses and can be the target molecules in preeclampsia. In this study, an attempt has been made to evaluate the soluble PD-L1 (sPD-L1) in the serum of preeclampsia cases and correlate it with Tregs and inflammatory markers to have an insight into the link between these immunomodulatory molecules in the pathogenesis of preeclampsia. Materials and methods Ten normal fertile women, 20 trimester-matched normal pregnancy cases, and 20 preeclampsia cases were enrolled in the study. Serum sPD-L1, transforming growth factor beta 1 (TGF-β1), and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). High-sensitive C-reactive protein (hsCRP) was estimated using a clinical biochemistry autoanalyzer. Tregs were evaluated using flow cytometry. Results and discussion The immune checkpoint molecule PD-L1 inversely correlated with Tregs in preeclampsia cases. Associated inflammation was seen by raised IL-6 and hsCRP. The breakdown of immunological tolerance is mainly caused by the dysregulating the Tregs/Th17 balance, which leads to conditions of autoimmunity and chronic inflammatory disorders. PD-L1 can be the link between this immunological misbalance. Conclusion Our study, showing an increase in sPD-L1 and TGF and a decrease in Tregs with an increase in inflammatory markers like IL-6 and hsCRP levels in preeclampsia, has potential implications for early diagnosis and management of the condition. PD-L1 and Tregs can be target molecules for early management of preeclampsia.
Collapse
Affiliation(s)
- Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | | |
Collapse
|
18
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
19
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
20
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
21
|
Cutolo EA, Campitiello R, Caferri R, Pagliuca VF, Li J, Agathos SN, Cutolo M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Mar Drugs 2024; 22:304. [PMID: 39057413 PMCID: PMC11278107 DOI: 10.3390/md22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Vittorio Flavio Pagliuca
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Jian Li
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
| | - Spiros Nicolas Agathos
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
- Bioengineering Laboratory, Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
22
|
Jin Y, Jiang J, Mao W, Bai M, Chen Q, Zhu J. Treatment strategies and molecular mechanism of radiotherapy combined with immunotherapy in colorectal cancer. Cancer Lett 2024; 591:216858. [PMID: 38621460 DOI: 10.1016/j.canlet.2024.216858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.
Collapse
Affiliation(s)
- Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, 31400, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China; Wenzhou Medical University, Wenzhou, 325000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
| |
Collapse
|
23
|
Wang Y, Zhang C, Yan M, Ma X, Song L, Wang B, Li P, Liu P. PD-L1 regulates tumor proliferation and T-cell function in NF2-associated meningiomas. CNS Neurosci Ther 2024; 30:e14784. [PMID: 38828669 PMCID: PMC11145367 DOI: 10.1111/cns.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Minjun Yan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Pinan Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
24
|
Tominaga K, Toda E, Takeuchi K, Takakuma S, Sakamoto E, Kuno H, Kajimoto Y, Terasaki Y, Kunugi S, Mii A, Sakai Y, Terasaki M, Shimizu A. Predominant CD8 + cell infiltration and low accumulation of regulatory T cells in immune checkpoint inhibitor-induced tubulointerstitial nephritis. Pathol Int 2024; 74:317-326. [PMID: 38634742 PMCID: PMC11551812 DOI: 10.1111/pin.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Immune checkpoint inhibitors (ICIs) can provide survival benefits to cancer patients; however, they sometimes result in the development of renal immune-related adverse events (irAEs). Tubulointerstitial nephritis (TIN) is the most representative pathological feature of renal irAEs. However, the clinicopathological entity and underlying pathogenesis of ICI-induced TIN are unclear. Therefore, we compared the clinical and histological features of this condition with those of non-ICI drug-induced TIN. Age and C-reactive protein levels were significantly higher in ICI-induced TIN, but there were no significant differences in renal function. Immunophenotyping of ICI-induced TIN showed massive T cell and macrophage infiltration with fewer B cells, plasma cells, neutrophils, and eosinophils. Compared with those in non-ICI drug-induced TIN, CD4+ cell numbers were significantly lower in ICI-induced TIN but CD8+ cell numbers were not significantly different. However, CD8/CD3 and CD8/CD4 ratios were higher in ICI-induced TIN. Moreover, CD25+ and FOXP3+ cells, namely regulatory T cells, were less abundant in ICI-induced TIN. In conclusion, T cell, B cell, plasma cell, neutrophil, and eosinophil numbers proved useful for differentiating ICI-induced and non-ICI drug-induced TIN. Furthermore, the predominant distribution of CD8+ cells and low accumulation of regulatory T cells might be associated with ICI-induced TIN development.
Collapse
Affiliation(s)
- Kenta Tominaga
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Etsuko Toda
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Kazuhiro Takeuchi
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Shoichiro Takakuma
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Emi Sakamoto
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Hideaki Kuno
- Division of Nephrology and HypertensionThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Yusuke Kajimoto
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Yasuhiro Terasaki
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
- Division of PathologyNippon Medical School HospitalBunkyo‐kuTokyoJapan
| | - Shinobu Kunugi
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Akiko Mii
- Department of NephrologyNippon Medical School Musashi Kosugi HospitalKawasaki‐shiKanagawaJapan
| | - Yukinao Sakai
- Department of Endocrinology, Metabolism and NephrologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Mika Terasaki
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Akira Shimizu
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| |
Collapse
|
25
|
Ma S, Sandhoff R, Luo X, Shang F, Shi Q, Li Z, Wu J, Ming Y, Schwarz F, Madi A, Weisshaar N, Mieg A, Hering M, Zettl F, Yan X, Mohr K, Ten Bosch N, Li Z, Poschet G, Rodewald HR, Papavasiliou N, Wang X, Gao P, Cui G. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Sci Immunol 2024; 9:eadg8817. [PMID: 38640251 DOI: 10.1126/sciimmunol.adg8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (A411), 69120 Heidelberg, Germany
| | - Xiu Luo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwei Shang
- Cellular Immunology (D110), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Qiaozhen Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhaolong Li
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Frank Schwarz
- Core Facility Antibodies (W170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alaa Madi
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nina Weisshaar
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alessa Mieg
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marvin Hering
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ferdinand Zettl
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Xin Yan
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Zhe Li
- Division of Pathogenesis of Virus Associated Tumors (F100), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Cellular Immunology (D110), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nina Papavasiliou
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Kuang G, Zhang Q, Li W, Zhao Y. Biomimetic Tertiary Lymphoid Structures with Microporous Annealed Particle Scaffolds for Cancer Postoperative Therapy. ACS NANO 2024; 18:9176-9186. [PMID: 38497601 DOI: 10.1021/acsnano.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Immunotherapy plays a vital role in cancer postoperative treatment. Strategies to increase the variety of immune cells and their sustainable supply are essential to improve the therapeutic effect of immune cell-based immunotherapy. Here, inspired by tertiary lymphoid structures (TLSs), we present a microfluidic-assisted microporous annealed particle (MAP) scaffold for the persistent recruitment of diverse immune cells for cancer postoperative therapy. Based on the thermochemical responsivity of gelatin methacryloyl (GelMA), the MAP scaffold was fabricated by physical cross-linking and sequential photo-cross-linking of GelMA droplets, which were prepared by microfluidic electrospraying. Due to the encapsulation of liquid nitrogen-inactivated tumor cells and immunostimulant, the generated MAP scaffold could recruit a large number of immune cells, involving T cells, macrophages, dendritic cells, B cells, and natural killer cells, thereby forming the biomimetic TLSs in vivo. In addition, by combination of immune checkpoint inhibitors, a synergistic anticancer immune response was provoked to inhibit tumor recurrence and metastasis. These properties make the proposed MAP scaffold-based artificial TLSs of great value for efficient cancer postoperative therapy.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
27
|
Shah V, Panchal V, Shah A, Vyas B, Agrawal S, Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). MEDICINE INTERNATIONAL 2024; 4:13. [PMID: 38410760 PMCID: PMC10895472 DOI: 10.3892/mi.2024.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin-2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligand, PDL-1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence-free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti-PD1 with anti-CTLA-4, have further enhanced the overall survival and response rates by targeting various phases of T-cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum-based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune-related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
Collapse
Affiliation(s)
- Vedant Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Viraj Panchal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Abhi Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Bhavya Vyas
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Siddharth Agrawal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Sanket Bharadwaj
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| |
Collapse
|
28
|
Gürler F, Aktürk Esen S, Kurt İnci B, Sütçüoğlu O, Uçar G, Akdoğan O, Uncu D, Turhan N, Akyürek N, Özdemir N, Özet A, Yazıcı O. Retrospective Analyses of PD-L1, LAG-3, TIM-3, OX40L Expressions and MSI Status in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancer Invest 2024; 42:141-154. [PMID: 38486421 DOI: 10.1080/07357907.2024.2330102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
We investigated expressions of PD-L1, LAG-3, TIM-3, and OX40L as immune checkpoint proteins, and MSI (repetitive short-DNA-sequences due to defective DNA-repair system) status were analyzed with immunohistochemistry from tissue blocks. Of 83 patients, PD-L1 expression was observed in 18.1% (n = 15) of the patients. None of the patients exhibited LAG-3 expression. TIM-3 expression was 4.9% (n = 4), OX40L was 22.9% (n = 19), and 8.4% (n = 7) of the patients had MSI tumor. A low-to-intermediate positive correlation was observed between PD-L1 and TIM-3 expressions (rho: 0.333, p < 0.01). Although PD-L1 expression was higher in grade 3 NET/NEC, MSI status was prominent in grade 1/2 NET.
Collapse
Affiliation(s)
- Fatih Gürler
- Department of Medical Oncology, University of Health Sciences, Dr Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | - Selin Aktürk Esen
- Department of Medical Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Bediz Kurt İnci
- Department of Medical Oncology, Aksaray Training & Research Hospital, Aksaray, Turkey
| | - Osman Sütçüoğlu
- Department of Medical Oncology, Gazi University School of Medicine, Ankara, Turkey
| | - Gökhan Uçar
- Department of Medical Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Orhun Akdoğan
- Department of Internal Medicine, Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Doğan Uncu
- Department of Medical Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nesrin Turhan
- Department of Pathology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nalan Akyürek
- Department of Pathology, Gazi University School of Medicine, Ankara, Turkey
| | - Nuriye Özdemir
- Department of Medical Oncology, Gazi University School of Medicine, Ankara, Turkey
| | - Ahmet Özet
- Department of Medical Oncology, Gazi University School of Medicine, Ankara, Turkey
| | - Ozan Yazıcı
- Department of Medical Oncology, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
29
|
Cecchi D, Jackson N, Beckham W, Chithrani DB. Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment. Pharmaceutics 2024; 16:175. [PMID: 38399237 PMCID: PMC10891984 DOI: 10.3390/pharmaceutics16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is defined as the uncontrolled proliferation of heterogeneous cell cultures in the body that develop abnormalities and mutations, leading to their resistance to many forms of treatment. Left untreated, these abnormal cell growths can lead to detrimental and even fatal complications for patients. Radiation therapy is involved in around 50% of cancer treatment workflows; however, it presents significant recurrence rates and normal tissue toxicity, given the inevitable deposition of the dose to the surrounding healthy tissue. Chemotherapy is another treatment modality with excessive normal tissue toxicity that significantly affects patients' quality of life. To improve the therapeutic efficacy of radiotherapy and chemotherapy, multiple conjunctive modalities have been proposed, which include the targeting of components of the tumour microenvironment inhibiting tumour spread and anti-therapeutic pathways, increasing the oxygen content within the tumour to revert the hypoxic nature of the malignancy, improving the local dose deposition with metal nanoparticles, and the restriction of the cell cycle within radiosensitive phases. The tumour microenvironment is largely responsible for inhibiting nanoparticle capture within the tumour itself and improving resistance to various forms of cancer therapy. In this review, we discuss the current literature surrounding the administration of molecular and nanoparticle therapeutics, their pharmacokinetics, and contrasting mechanisms of action. The review aims to demonstrate the advancements in the field of conjugated nanomaterials and radiotherapeutics targeting, inhibiting, or bypassing the tumour microenvironment to promote further research that can improve treatment outcomes and toxicity rates.
Collapse
Affiliation(s)
- Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (D.C.)
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
30
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Iglesias P. Aggressive and Metastatic Pituitary Neuroendocrine Tumors: Therapeutic Management and Off-Label Drug Use. J Clin Med 2023; 13:116. [PMID: 38202123 PMCID: PMC10779494 DOI: 10.3390/jcm13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common pituitary tumors and the second most common brain tumors. Although the vast majority (>90%) are benign, a small percentage (<2%) are aggressive. These aggressive PitNETs (AgPitNETs) are defined by the presence of radiological invasion, a high rate of cell proliferation, resistance to conventional treatments, and/or a high propensity for recurrence. Lastly, there are the rare pituitary carcinomas, also known as metastatic PitNETs (MetPitNETs), which account for only 0.2% of cases and are defined by the presence of craniospinal or distant metastases. At present, there are no definitive factors that allow us to predict with certainty the aggressive behavior of PitNETs, making the therapeutic management of AgPitNETs a real challenge. Surgery is considered the first-line treatment for AgPitNETs and MetPitNETs. Radiation therapy can be effective in controlling tumor growth and regulating hormone hypersecretion. Currently, there are no approved non-endocrine medical therapies for the management of AgPitNETs/MetPitNETs, mainly due to the lack of randomized controlled clinical trials. As a result, many of the medical therapies used are off-label drugs, and several are under investigation. Temozolomide (TMZ) is now recognized as the primary medical treatment following the failure of standard therapy (medical treatment, surgery, and radiotherapy) in AgPitNETs/MetPitNETs due to its ability to improve overall and progression-free survival rates in responding patients over 5 years. Other therapeutic options include pituitary-targeted therapies (dopamine agonists and somatostatin analogs), hormonal antisecretory drugs, non-hormonal targeted therapies, radionuclide treatments, and immunotherapy. However, the number of patients who have undergone these treatments is limited, and the results obtained to date have been inconsistent. As a result, it is imperative to expand the cohort of patients undergoing treatment to better determine the therapeutic efficacy and safety of these drugs for individuals with AgPitNETs/MetPitNETs.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), 28222 Madrid, Spain
| |
Collapse
|
32
|
Tiwari S, Han Z. Immunotherapy: Advancing glioblastoma treatment-A narrative review of scientific studies. Cancer Rep (Hoboken) 2023; 7:e1947. [PMID: 38069593 PMCID: PMC10849935 DOI: 10.1002/cnr2.1947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GB) is an aggressive and deadly brain tumor with a poor prognosis despite the current standard of care, including surgery, radiation, and chemotherapy. RECENT FINDINGS In recent years, there has been increasing interest in the potential of immunotherapies, seen to be effective in treating other cancers, in the treatment of GB. This comprehensive review presents an in-depth analysis of the remarkable progress of immunotherapy in GB treatment, focusing on human clinical studies. It also analyzes the current findings, challenges, and limitations that underscore the transformative potential of immunotherapy in managing GB. Of particular significance, it delves into the intriguing interaction of the human microbiome with immunotherapy as a novel avenue for enhancing treatment outcomes of GB. CONCLUSION This study sheds light on the complex GB therapy landscape and the cutting-edge strategies that show promise for enhancing patient prognosis.
Collapse
Affiliation(s)
- Sagun Tiwari
- Net Fresh HospitalChitwanNepal
- Shenzhen Key Laboratory of Immunomodulation for Neurological DiseasesShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenxiang Han
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
| |
Collapse
|
33
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
34
|
Veenstra J, Ozog D, Loveless I, Adrianto I, Dimitrion P, Subedi K, Friedman BJ, Zhou L, Mi QS. Distinguishing Keratoacanthoma from Well-Differentiated Cutaneous Squamous Cell Carcinoma Using Single-Cell Spatial Pathology. J Invest Dermatol 2023; 143:2397-2407.e8. [PMID: 37419445 PMCID: PMC10840781 DOI: 10.1016/j.jid.2023.06.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Keratoacanthoma (KA) is a common keratinocyte neoplasm that is regularly classified as a type of cutaneous squamous cell carcinoma (cSCC) despite demonstrating benign behavior. Differentiating KA from well-differentiated cSCC is difficult in many cases due to the substantial overlap of clinical and histological features. Currently, no reliable discriminating markers have been defined, and consequently, KAs are often treated similarly to cSCC, creating unnecessary surgical morbidity and healthcare costs. In this study, we used RNA sequencing to identify key differences in transcriptomes between KA and cSCC, which suggested divergent keratinocyte populations between each tumor. Imaging mass cytometry was then used to identify single-cell tissue characteristics, including cellular phenotype, frequency, topography, functional status, and interactions between KA and well-differentiated cSCC. We found that cSCC had significantly increased proportions of Ki67+ keratinocytes among tumor keratinocytes, which were dispersed significantly throughout non-basal keratinocyte communities. In cSCC, regulatory T-cells were more prevalent and held greater suppressive capacity. Furthermore, cSCC regulatory T-cells, tumor-associated macrophages, and fibroblasts had significant associations with Ki67+ keratinocytes as opposed to avoidances with KA, indicating a more immunosuppressive environment. Our data suggest that multicellular spatial features can serve as a foundation to enhance the histological discrimination of ambiguous KA and cSCC lesions.
Collapse
Affiliation(s)
- Jesse Veenstra
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - David Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ian Loveless
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA; Department of Computational Mathematics, Science, and Engineering; Medical Imaging and Data Integration Lab; Michigan State University, East Lansing, Michigan, USA
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - Kalpana Subedi
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - Ben J Friedman
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA; Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, USA.
| |
Collapse
|
35
|
Papic MV, Ljujic B, Zivanovic S, Papic M, Vuletic M, Petrovic I, Gazdic Jankovic M, Virijevic K, Popovic M, Miletic Kovacevic M. Difference in immune responses to Candida albicans in two inbred strains of male rats. Arch Oral Biol 2023; 156:105808. [PMID: 37778290 DOI: 10.1016/j.archoralbio.2023.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the influence of strain differences in immune response on the pathogenesis of oral candidiasis in Dark Agouti (DA) and Albino Oxford (AO) inbred strains of rats. DESIGN Seventy male 8-weeks old DA and AO rats were inoculated with Candida albicans to induce three different experimental models of oral candidiasis, one immunocompetent and two immunocompromised models. The animals were sacrificed after 16 days from the beginning of the experiment followed by collecting the samples of the tongue dorsum and blood for histopathological (PAS and H&E staining), immunohistochemical, qRT-PCR, and oxidative stress analyses. RESULTS Histopathological and immunohistochemical analyses revealed lower levels of epithelial colonization, epithelial damage, and inflammatory infiltration in DA compared to AO strain of rats. DA rats had fewer CD45, CD68, and CD3 positive cells but more HIS 48 positive cells than AO rats. The expressions of IL-1β, TNFα, IFN-γ, IL-10 and TGF-β1 were consistently higher in DA strain across all experimental models. However, the expressions of IL-4 and IL-17 differed inconsistently between DA and AO strain in various experimental models. Strain differences were observed in levels of prooxidative hydrogen peroxide and lipid peroxidation, with higher levels presented in AO rats compared to DA rats, while antioxidative parameters presented little yet inconsistent difference between strains. CONCLUSION DA strain of rats consistently presented lower susceptibility to oral infection with C. albicans compared to AO strain with robust Th1/Th17 immune response indicating the importance of the genetic background on the development of oral candidiasis.
Collapse
Affiliation(s)
- Mirjana V Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, Serbia.
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miona Vuletic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Petrovic
- Department of Clinical Microbiology, University of Kragujevac Clinical Centre, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, Serbia
| | - Katarina Virijevic
- Department of Natural Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Serbia
| | - Milica Popovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, Serbia; Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
36
|
Negura I, Pavel-Tanasa M, Danciu M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat Rev 2023; 120:102629. [PMID: 37769435 DOI: 10.1016/j.ctrv.2023.102629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Gastric cancer (GC) is a highly aggressive malignancy that remains a significant contributor to cancer-related mortality worldwide, despite a decline in incidence in recent years. Early-stage GC poses a diagnostic challenge due to its asymptomatic nature, leading to poor prognoses for most patients. Conventional treatment approaches, including chemotherapy and surgery, have shown limited efficacy in improving outcomes for GC patients. The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy, yielding durable responses across various malignancies. However, the clinical benefits of ICIs in GC have been modest, underscoring the need for a comprehensive understanding of immune cell functions within the GC tumor microenvironment (TME). Regulatory T cells (Tregs), a subset of T lymphocytes, play a pivotal role in GC development and progression and serve as prognostic biomarkers for GC patients. This review aims to elucidate the multifaceted roles of Tregs in the pathogenesis, progression, and prognosis of gastric cancer, and establish their actual and future potential as therapeutic targets. By providing insights into the intricate interplay between Tregs and the TME, this review strives to stimulate further investigation and facilitate the development of targeted Treg-based therapeutic strategies for GC.
Collapse
Affiliation(s)
- Ion Negura
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
| | - Mihai Danciu
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
37
|
Laudisi F, Stolfi C, Monteleone I, Monteleone G. TGF-β1 signaling and Smad7 control T-cell responses in health and immune-mediated disorders. Eur J Immunol 2023; 53:e2350460. [PMID: 37611637 DOI: 10.1002/eji.202350460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Transforming growth factor (TGF)-β1, a member of the TGF-β superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-β1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-β1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-β1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
38
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
39
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
40
|
Del Bello A, Treiner E. Immune Checkpoints in Solid Organ Transplantation. BIOLOGY 2023; 12:1358. [PMID: 37887068 PMCID: PMC10604300 DOI: 10.3390/biology12101358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Allogenic graft acceptance is only achieved by life-long immunosuppression, which comes at the cost of significant toxicity. Clinicians face the challenge of adapting the patients' treatments over long periods to lower the risks associated with these toxicities, permanently leveraging the risk of excessive versus insufficient immunosuppression. A major goal and challenge in the field of solid organ transplantation (SOT) is to attain a state of stable immune tolerance specifically towards the grafted organ. The immune system is equipped with a set of inhibitory co-receptors known as immune checkpoints (ICs), which physiologically regulate numerous effector functions. Insufficient regulation through these ICs can lead to autoimmunity and/or immune-mediated toxicity, while excessive expression of ICs induces stable hypo-responsiveness, especially in T cells, a state sometimes referred to as exhaustion. IC blockade has emerged in the last decade as a powerful therapeutic tool against cancer. The opposite action, i.e., subverting IC for the benefit of establishing a state of specific hypo-responsiveness against auto- or allo-antigens, is still in its infancy. In this review, we will summarize the available literature on the role of ICs in SOT and the relevance of ICs with graft acceptance. We will also discuss the possible influence of current immunosuppressive medications on IC functions.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology, University Hospital of Toulouse, 31400 Toulouse, France
- Metabolic and Cardiovascular Research Institute (I2MC), Inserm UMR1297, CEDEX 4, 31432 Toulouse, France
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, 31024 Toulouse, France
| |
Collapse
|
41
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
42
|
An EK, Zhang W, Park HB, Kim SJ, Eom HY, Hwang J, Kwak M, Lee JY, Lee PCW, Jin JO. Immunosuppressive nanoparticles containing recombinant PD-L1 and methotrexate alleviate multi-organ inflammation. Biomaterials 2023; 301:122233. [PMID: 37393694 DOI: 10.1016/j.biomaterials.2023.122233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Multi-organ inflammatory diseases are one of the most serious autoimmune diseases worldwide. The regulation of immune responses by immune checkpoint proteins influences the development and treatment of cancer and autoimmune diseases. In this study, recombinant murine PD-L1 (rmPD-L1) was used for controlling T cell immunity to treat multi-organ inflammation. To enhance the immunosuppressive effect, we incorporated methotrexate, an anti-inflammatory drug, into hybrid nanoparticles (HNPs) and decorated the surface of HNPs with rmPD-L1 to produce immunosuppressive HNPs (IsHNPs). IsHNP treatment effectively targeted PD-1-expressing CD4 and CD8 T cells in the splenocytes; additionally, it promoted the production of Foxp3-expressing regulatory T cells, which suppressed the differentiation of helper T cells. IsHNP treatment also inhibited anti-CD3 antibody-mediated activation of CD4 and CD8 T cells in mice in vivo. This treatment protected mice from multi-organ inflammation induced by the adoptive transfer of naïve T cells to recombination-activating gene 1 knockout mice. The results of this study imply the therapeutic potential of IsHNPs in the treatment of multi-organ inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Hae-Bin Park
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Yun Eom
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Ji Yeon Lee
- Department of Medicine, Division of Rheumatology, Seoul St. Mary's Hospital, Catholic University, Seoul, 06591, South Korea
| | - Peter Chang-Whan Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
43
|
Linnerbauer M, Beyer T, Nirschl L, Farrenkopf D, Lößlein L, Vandrey O, Peter A, Tsaktanis T, Kebir H, Laplaud D, Oellinger R, Engleitner T, Alvarez JI, Rad R, Korn T, Hemmer B, Quintana FJ, Rothhammer V. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat Commun 2023; 14:5555. [PMID: 37689786 PMCID: PMC10492803 DOI: 10.1038/s41467-023-40982-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/11/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS). Current therapies mainly target inflammatory processes during acute stages, but effective treatments for progressive MS are limited. In this context, astrocytes have gained increasing attention as they have the capacity to drive, but also suppress tissue-degeneration. Here we show that astrocytes upregulate the immunomodulatory checkpoint molecule PD-L1 during acute autoimmune CNS inflammation in response to aryl hydrocarbon receptor and interferon signaling. Using CRISPR-Cas9 genetic perturbation in combination with small-molecule and antibody-mediated inhibition of PD-L1 and PD-1 both in vivo and in vitro, we demonstrate that astrocytic PD-L1 and its interaction with microglial PD-1 is required for the attenuation of autoimmune CNS inflammation in acute and progressive stages in a mouse model of MS. Our findings suggest the glial PD-L1/PD-1 axis as a potential therapeutic target for both acute and progressive MS stages.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Laplaud
- Nantes Université, INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064, Nantes, France
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge Ivan Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
44
|
Chitsazan M, Amin A, Ladel L, Baig A, Chitsazan M. Cardiovascular Toxicity Associated With Immune Checkpoint Inhibitor Therapy: A Comprehensive Review. Crit Pathw Cardiol 2023; 22:69-82. [PMID: 37363862 DOI: 10.1097/hpc.0000000000000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Immune checkpoint inhibitors (ICIs), a significant breakthrough treatment of cancer, exert their function through enhancing the immune system's ability to recognize and attack cancer cells. However, these revolutionary cancer treatments have been associated with a range of immune-related adverse effects, including cardiovascular toxicity. The most commonly reported cardiovascular toxicities associated with ICIs are myocarditis, pericarditis, arrhythmias, and vasculitis. These cardiovascular manifestations are often severe and can lead to life-threatening complications. Therefore, prompt identification and management of these toxicities is critical, and a multidisciplinary teamwork by cardiologists and oncologists are required to ensure optimal patient outcomes. In this review, we summarize the current knowledge on the mechanisms underlying ICI-associated cardiovascular toxicity, clinical presentations of these toxicities, potential risk factors, diagnosis, management, and surveillance strategies during ICI therapy. While ICIs have already transformed cancer treatment, further research is needed to better understand and manage their immune-related cardiovascular effects, and possibly, to identify biomarkers which can predict the occurrence of these cardiovascular complications.
Collapse
Affiliation(s)
| | - Ahmad Amin
- Medstar Union Memorial Hospital, Baltimore, MD
| | - Luisa Ladel
- From the Department of Medicine, Norwalk Hospital, Norwalk, CT
| | - Alyza Baig
- From the Department of Medicine, Norwalk Hospital, Norwalk, CT
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Yakobson A, Rouvinov K, Cohen AY, Goldstein I, Abu Saleh O, Solomon A, Dudnik Y, Shalata W. Carpal Tunnel Syndrome Associated with Immune Checkpoint Inhibitors. J Pers Med 2023; 13:1340. [PMID: 37763109 PMCID: PMC10532569 DOI: 10.3390/jpm13091340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the therapeutic approach to diverse malignancies, leading to substantial enhancements in patient prognosis. However, along with their benefits, ICIs also increase the incidence of immune-related adverse events (irAEs). In the present paper, we highlight four cases of carpal tunnel syndrome (CTS) as an uncommon manifestation of toxicity induced by ICIs. Although diagnosed with different malignancies, the patients were undergoing ICI therapy when they developed CTS-consistent side effects accompanied by severe neuropathy. Prompt treatment with corticosteroids, intravenous immunoglobulins, or methotrexate resulted in complete symptomatic relief for all patients. This article therefore emphasizes the importance of recognizing and managing rare adverse events associated with ICI use to ensure optimal patient care.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Keren Rouvinov
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aharon Y. Cohen
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Iris Goldstein
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Omar Abu Saleh
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Adam Solomon
- Medical School for International Health and Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yulia Dudnik
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
46
|
Serratì S, Margheri F. Current Landscape and Future Direction of PD-1/PD-L1 Checkpoint Inhibitors in Cancer Treatment. Biomolecules 2023; 13:1209. [PMID: 37627274 PMCID: PMC10452670 DOI: 10.3390/biom13081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoints are involved in controlling the activation or inhibition of the immune response and are associated with receptors on the immune cell surface [...].
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
47
|
Huang Y, Wu X, Tang S, Wu H, Nasri U, Qin Q, Song Q, Wang B, Tao H, Chong AS, Riggs AD, Zeng D. Donor programmed cell death 1 ligand 1 is required for organ transplant tolerance in major histocompatibility complex-mismatched mixed chimeras although programmed cell death 1 ligand 1 and major histocompatibility complex class II are not required for inducing chimerism. Am J Transplant 2023; 23:1116-1129. [PMID: 37105316 DOI: 10.1016/j.ajt.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Collapse
Affiliation(s)
- Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Shanshan Tang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Huiqing Wu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Qin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiao Song
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hansen Tao
- Arthur Riggs Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, California, USA
| | - Anita S Chong
- The section of Transplantation, Department of Surgery, the University of Chicago, Chicago, Illinois, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Defu Zeng
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
48
|
Menotti S, Giampietro A, Raia S, Veleno M, Angelini F, Tartaglione T, Gaudino S, Doglietto F, De Marinis L, Pontecorvi A, Bianchi A, Chiloiro S. Unveiling the Etiopathogenic Spectrum of Hypophysitis: A Narrative Review. J Pers Med 2023; 13:1210. [PMID: 37623461 PMCID: PMC10455260 DOI: 10.3390/jpm13081210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Hypophysitis, a rare inflammatory disorder of the pituitary gland, has seen an uptick in reported cases in recent years. Our objective is to summarize the most recent research on the etiopathogenesis, molecular mechanisms, and genetics of both primary and secondary hypophysitis. Primary autoimmune hypophysitis (PAH): During the acute phase of the disease, the pituitary gland in enlarged due to the infiltration of T and B lymphocytes. The chronic phase is characterized by progressive and irreversible pituitary atrophy. APA may play a role in the management, diagnosis, and prognosis of PAH. Specific autoantibodies such as anti-GH, anti-PIT-1, and anti-T-PIT have been found in patients with hypophysitis and hypopituitarism. A recent study suggested that a mechanism of escaping clonal deletion and mounting an immune response against self antigens can explain the unusual nature of the immune response observed in PAH patients. A cytokine array shows the presence of gamma-interferon and interleukin-17. Patients carrying mutations in the PIT1 or PROP1 genes may present PAH. Individuals carrying the HLA DQ8 haplotype are four times more likely to develop PAH. Immune checkpoint inhibitors induce hypophysitis (IIHs): IIHs is an increasingly frequent toxicity of in patients on treatment with inhibitors targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death-1 (PD-1). ICIs inhibit the CTLA-4 pathway, leading to overactivation of T lymphocytes. The binding of PD-1/PD-L1 suppresses the activity of T cells, promotes the conversion of T-helpers into T-regulatory cells, and activates pro-survival signaling pathways in cancer cells. Cytokines play a crucial role in IIHs. B-cell infiltration has been observed in IIHs, suggesting that antibody-mediated pituitary injury may contribute. Genetic polymorphisms of CTLA-4 and PD-1 genes can increase the risk of IIHs. HLA alleles may also be involved in the onset of IIHs; this HLA association presents a possible alternative mechanistic hypothesis. IIHs may also be linked to a paraneoplastic syndrome triggered by ectopic expression of pituitary specific antigens. SARS-CoV-2-related hypophysitis: Recently, the literature has reported occurrences of hypophysitis associated with the SARS-CoV-2 virus; long COVID-19 may also present as infundibulo-neuro-hypophysitis. The virus enters the central nervous system because of its distinct interaction with angiotensin-converting enzyme receptors via spike proteins binding the capillary endothelium, and it directly damages the pituitary cells. The effect of SARS-CoV-2 can occur indirectly through inflammation and the release of cytokines. The exact mechanism remains ambiguous. The available data on endocrine complications associated with the SARS-CoV-2 vaccine are scant. Nonetheless, isolated cases of hypophysitis have been documented. Treatment of hypophysitis: Glucocorticoids are the cornerstone in managing primary hypophysitis, given their targeted action on inflammation. A better understanding of the etiopathogenesis and molecular mechanism of hypophysitis can lead to more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Sara Menotti
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Antonella Giampietro
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Salvatore Raia
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Miriam Veleno
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Flavia Angelini
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Tommaso Tartaglione
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
- Department of Radiodiagnostic, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
- Department of Radiodiagnostic, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Doglietto
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Laura De Marinis
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Alfredo Pontecorvi
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Antonio Bianchi
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| | - Sabrina Chiloiro
- Pituitary Unit, Department of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (S.M.); (A.G.); (S.R.); (M.V.); (F.A.); (L.D.M.); (A.P.); (S.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (T.T.); (S.G.); (F.D.)
| |
Collapse
|
49
|
Han Z, Wu X, Qin H, Yuan YC, Schmolze D, Su C, Zain J, Moyal L, Hodak E, Sanchez JF, Lee PP, Feng M, Rosen ST, Querfeld C. Reprogramming of PD-1+ M2-like tumor-associated macrophages with anti-PD-L1 and lenalidomide in cutaneous T cell lymphoma. JCI Insight 2023; 8:e163518. [PMID: 37427589 PMCID: PMC10371344 DOI: 10.1172/jci.insight.163518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti-programmed cell death ligand 1 (anti-PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti-PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti-PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti-PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology
- Beckman Research Institute
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine
- Integrative Genomics Core
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine
- Center for informatics
| | | | - Chingyu Su
- Division of Dermatology
- Beckman Research Institute
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lilach Moyal
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Beilinson Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James F Sanchez
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Peter P Lee
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Division of Dermatology
- Beckman Research Institute
- Department of Pathology, and
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| |
Collapse
|
50
|
Valentini N, Requejo Cier CJ, Lamarche C. Regulatory T-cell dysfunction and its implication for cell therapy. Clin Exp Immunol 2023; 213:40-49. [PMID: 37158407 PMCID: PMC10324551 DOI: 10.1093/cei/uxad051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Regulatory T cells (Tregs) are a subtype of CD4+ T cells that can mediate immune tolerance by a multitude of immunomodulatory mechanisms. Treg-based adoptive immunotherapy is currently being tested in multiple phases I and II clinical trials in transplantation and autoimmune diseases. We have learned from the work done on conventional T cells that distinct mechanistic states can define their dysfunctions, such as exhaustion, senescence, and anergy. All three can negatively impact the therapeutic effectiveness of T-cell-based therapies. However, whether Tregs are susceptible to such dysfunctional states is not well studied, and results are sometimes found to be controversial. In addition, Treg instability and loss of FOXP3 expression is another Treg-specific dysfunction that can decreasein their suppressive potential. A better understanding of Treg biology and pathological states will be needed to compare and interpret the results of the different clinical and preclinical trials. We will review herein Tregs' mechanisms of action, describe different T-cell dysfunction subtypes and how and if they apply to Tregs (exhaustion, senescence, anergy, and instability), and finally how this knowledge should be taken into consideration when designing and interpreting Treg adoptive immunotherapy trials.
Collapse
Affiliation(s)
- Nicolas Valentini
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Université de Montréal, Montreal, QC, Canada
| | - Christopher J Requejo Cier
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Medicine Department, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|