1
|
Li X, Mendez Q, Chapados C, Acca F, Driscoll H, Oliveira J, Liu J, Jones K, Ferguson M, Wallace RL, Bibikov S, Lionberger T, Harvey KJ, Weiner MP, Mirando G. Site-directed antibodies targeting driver mutations of the KRAS protein. N Biotechnol 2025; 87:112-120. [PMID: 40252917 DOI: 10.1016/j.nbt.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most mutated oncogene in human cancers, found in approximately 30 % of tumors. These mutations primarily consist of single-base missense alterations in codon G12. While extensive efforts have focused on developing allele-specific inhibitors for KRAS mutations, mutation-specific antibodies (Abs) remain largely unexplored, with only a few research-use-only catalog Abs available. In this study, we employed the proprietary Epivolve technology to develop site-directed monoclonal Abs (mAbs) that target KRAS oncogenic driver mutation KRAS G12D. These site-directed mAbs demonstrate high binding affinity, with equilibrium dissociation constants (KD) in the nanomolar range, showing over 1,000-fold greater affinity for KRAS G12D compared to wild-type KRAS. Western blot analyses using both purified KRAS protein variants and tumor cell lines harboring G12D mutations confirmed the high specificity of these mAbs. Furthermore, immunocytochemistry analysis revealed co-localization of the site-directed mAbs with endogenously expressed KRAS in cancer cells bearing G12D mutations. The validated high affinity and specificity of these site-directed mAbs highlight their potential for diagnostic applications and therapeutic development targeting KRAS driver mutations.
Collapse
Affiliation(s)
- Xiaofeng Li
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA.
| | - Qiana Mendez
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | | | - Felicity Acca
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Holly Driscoll
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Jason Oliveira
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Jun Liu
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Kezzia Jones
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Mary Ferguson
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Ryan L Wallace
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Sergei Bibikov
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Troy Lionberger
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Kevin J Harvey
- Aviva Systems Biology Corporation, 6370 Nancy Ridge Dr., Suite 104, San Diego, CA 92121, USA
| | - Michael P Weiner
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| | - Greg Mirando
- Abbratech, 25 Business Park Drive, Suite C, Branford, CT 06405, USA
| |
Collapse
|
2
|
Kale R, Samant C, Nandakumar K, Ranganath Pai KS, Bhonde M. Drugging the Undruggable and beyond: Emerging precision oncology approaches to target acquired resistance to KRAS G12C and KRAS G12D inhibitors. Biochem Biophys Res Commun 2025; 760:151688. [PMID: 40174369 DOI: 10.1016/j.bbrc.2025.151688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Development of mutant specific KRAS inhibitors validated KRAS as a 'druggable' target. However, excellent initial efficacy was eventually overshadowed by failure to exhibit sustained clinical response, primarily due to acquired resistance. Some targeted therapies like SOS1, SHP2, and MEK inhibitors, in combination with mutant KRAS G12C inhibitors (G12Ci), are currently under clinical investigation with evidences of improving efficacy. However, a deep understanding of the underlying molecular pathways behind the acquired resistance is still at a nascent stage. Recent preclinical studies have uncovered a role of novel proteins and pathways responsible for resistance and their inhibition demonstrated a robust anticancer efficacy in combination. Plethora of combination therapy approaches are now being proposed with emergence of AXL, ULK1, Tissue factor, farnesyltransferase, etc. as targets to counter G12Ci resistance. This review summarizes in a comprehensive manner, some of the novel combination modalities to overcome G12Ci resistance, based on current understanding and with great potential to hit clinical success. Along with G12C, KRAS G12D (G12D) was also considered a formidable foe, until the discovery of selective inhibitors. However, eventual clinical resistance can eclipse the early success and requires an in-depth understanding of resistance mechanisms. Evidences of G12Ci resistance can be exploited as probable combination strategies to tackle ensuing resistance to G12D inhibitors (G12Di), and can translate in superior clinical efficacy. Early preclinical studies of G12Di in combination with ERBB, SOS1, AKT and immune-checkpoints inhibitors indicate encouraging response. This review further describes some of the early affirmations on combination strategies with G12Di. We postulate to go beyond 'Drugging the Undruggable' with advanced combination approaches mitigating G12C and G12D inhibitor resistance.
Collapse
Affiliation(s)
- Ramesh Kale
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Charudatt Samant
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
3
|
Ji X, Li H, Wu G, Zhang Q, He X, Wu Y, Zong B, Xu X, Liang C, Wang B, Zhang Y, Hu Q, Deng C, Shen L, Chen Z, Bai B, Wang L, Ai J, Zhang L, Zhou H, Sun S, Wang Y, Wang Y, Fan Q, Chen D, Zhou T, Kong X, Lu J. Discovery and Characterization of RP03707: A Highly Potent and Selective KRAS G12D PROTAC. J Med Chem 2025; 68:10238-10254. [PMID: 40338735 DOI: 10.1021/acs.jmedchem.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
KRASG12D, the most prevalent oncogenic mutation in KRAS-associated tumors, represents a highly sought-after drug target for cancer treatment. In this study, we explored a KRASG12D protein degradation approach using the PROTAC technology for the treatment of KRASG12D mutant tumors. Through the rational design of the KRASG12D binder and proper selection of the linker and the E3 ligase ligand, we constructed PROTACs and identified RP03707 as a CRBN-involving, highly potent, and selective KRASG12D degrader. RP03707 effectively inhibits tumor cell growth in multiple KRASG12D cell lines. It also exhibits prolonged PK/PD effects and excellent efficacy in mouse CDX models bearing KRASG12D tumors, highlighting its potential for the treatment of KRASG12D-driven tumors in clinical settings.
Collapse
Affiliation(s)
- Xiang Ji
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Huanping Li
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Gang Wu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qiguo Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xiaolin He
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yanpeng Wu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Bin Zong
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xiaojin Xu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Chao Liang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Beibei Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yuwei Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qingyao Hu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Chao Deng
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Liqiang Shen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Zijun Chen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Bing Bai
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Lin Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Jinchao Ai
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Leduo Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Honggui Zhou
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Shihao Sun
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yijie Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Youhong Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qiming Fan
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Dawei Chen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Tianlun Zhou
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xianqi Kong
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Jiasheng Lu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
- School of Life Sciences, Fudan University, Shanghai 200437, China
| |
Collapse
|
4
|
Streit JO, Chan SHS, Daya S, Christodoulou J. Rational design of 19F NMR labelling sites to probe protein structure and interactions. Nat Commun 2025; 16:4300. [PMID: 40341366 PMCID: PMC12062419 DOI: 10.1038/s41467-025-59105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Proteins are investigated in increasingly more complex biological systems, where 19F NMR is proving highly advantageous due to its high gyromagnetic ratio and background-free spectra. Its application has, however, been hindered by limited chemical shift dispersions and an incomprehensive relationship between chemical shifts and protein structure. Here, we exploit the sensitivity of 19F chemical shifts to ring currents by designing labels with direct contact to a native or engineered aromatic ring. Fifty protein variants predicted by AlphaFold and molecular dynamics simulations show 80-90% success rates and direct correlations of their experimental chemical shifts with the magnitude of the engineered ring current. Our method consequently improves the chemical shift dispersion and through simple 1D experiments enables structural analyses of alternative conformational states, including ribosome-bound folding intermediates, and in-cell measurements of protein-protein interactions and thermodynamics. Our strategy thus provides a simple and sensitive tool to extract residue contact restraints from chemical shifts for previously intractable systems.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Saifu Daya
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
5
|
Mehmood A, Hakami MA, Ogaly HA, Subramaniyan V, Khalid A, Wadood A. Evolution of computational techniques against various KRAS mutants in search for therapeutic drugs: a review article. Cancer Chemother Pharmacol 2025; 95:52. [PMID: 40195161 DOI: 10.1007/s00280-025-04767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/23/2025] [Indexed: 04/09/2025]
Abstract
KRAS was (Kirsten rat sarcoma viral oncogene homolog) revealed as an important target in current therapeutic cancer research because alteration of RAS (rat sarcoma viral oncogene homolog) protein has a critical role in malignant modification, tumor angiogenesis, and metastasis. For cancer treatment, designing competitive inhibitors for this attractive target was difficult. Nevertheless, computational investigations of the protein's dynamic behavior displayed the existence of temporary pockets that could be used to design allosteric inhibitors. The last decade witnessed intensive efforts to discover KRAS inhibitors. In 2021, the first KRAS G12C covalent inhibitor, AMG 510, received FDA (Food and drug administration) approval as an anticancer medication that paved the path for future treatment strategies against this target. Computer-aided drug designing discovery has long been used in drug development research targeting different KRAS mutants. In this review, the major breakthroughs in computational methods adapted to discover novel compounds for different mutations have been discussed. Undoubtedly, virtual screening and molecular dynamic (MD) simulation and molecular docking are the most considered approach, producing hits that can be employed in subsequent refinements. After comprehensive analysis, Afatinib and Quercetin were computationally identified as hits in different publications. Several authors conducted covalent docking studies with acryl amide warheads groups containing inhibitors. Future studies are needed to demonstrate their true potential. In-depth studies focusing on various allosteric pockets demonstrate that the switch I/II pocket is a suitable site for drug designing. In addition, machine learning and deep learning based approaches provide new insights for developing anti-KRAS drugs. We believe that this review provides extensive information to researchers globally and encourages further development in this particular area of research.
Collapse
Affiliation(s)
- Ayesha Mehmood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah, Riyadh, Saudi Arabia
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University No. 5, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Asaad Khalid
- Health Research Center, Jazan University, 114, Jazan, 45142, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
6
|
Petri L, Gabizon R, Ferenczy GG, Péczka N, Egyed A, Ábrányi-Balogh P, Takács T, Keserű GM. Size-Dependent Target Engagement of Covalent Probes. J Med Chem 2025; 68:6616-6632. [PMID: 40099438 PMCID: PMC11956015 DOI: 10.1021/acs.jmedchem.5c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Labeling proteins with covalent ligands is finding increasing use in proteomics applications, including identifying nucleophilic residues amenable for labeling and in the development of targeted covalent inhibitors (TCIs). Labeling efficiency is measured by the covalent occupancy of the target or by biochemical activity. Here, we investigate how these observed quantities relate to the intrinsic parameters of complex formation, namely, noncovalent affinity and covalent reactivity, and to experimental conditions, including incubation time and ligand concentration. It is shown that target engagement is beneficially driven by noncovalent recognition for lead-like compounds, which are appropriate starting points for targeted covalent inhibitors owing to their easily detectable occupancy and fixed binding mode, facilitating optimization. In contrast, labeling by fragment-sized compounds is inevitably reactivity-driven as their small size limits noncovalent affinity. They are well-suited for exploring ligandable nucleophilic residues, while small fragments are less appropriate starting points for TCI development.
Collapse
Affiliation(s)
- László Petri
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Ronen Gabizon
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Helen and Milton A. Kimmelman bldg, Rehovot 76100, Israel
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Nikolett Péczka
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| | - Attila Egyed
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Tamás Takács
- HUN-REN
Research Centre for Natural Sciences, Signal
Transduction and Functional Genomics Research Group, 2 Magyar tudósok krt, Budapest 1117, Hungary
- Doctoral
School of Biology, Institute of Biology,
ELTE Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| |
Collapse
|
7
|
Landgraf AD, Brenner R, Ghozayel MK, Bum-Erdene K, Gonzalez-Gutierrez G, Meroueh SO. Small-Molecule KRAS Inhibitors by Tyrosine Covalent Bond Formation. ChemMedChem 2025:e2400624. [PMID: 40099978 DOI: 10.1002/cmdc.202400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
The development of the KRAS G12C inhibitor sotorasib is a major advance toward drugging KRAS. However, the G12C mutation is only found in about 10% of KRAS-driven tumors. KRAS possesses several tyrosine amino acids that could provide alternative sites for covalent drug development. Here, a library of aryl sulfonyl fluorides identified 1 (SOF-436) as an inhibitor of KRAS nucleotide exchange by guanine exchange factor SOS1 and KRAS binding to effector protein rapidly accelerated fibrosarcoma kinase (RAF). Tyr-64 is the major reaction site of 1 (SOF-436), although minor reaction at Tyr-71 is also observed. The fragment binds to the Switch II pocket of KRAS based on whole protein mass spectrometry, nucleotide exchange, effector protein binding, and nuclear magnetic resonance studies. Cocrystal structures of smaller fragments covalently bound to KRAS at Tyr-71 provide a strategy for the development of Switch I/II KRAS covalent inhibitors. A bioluminescent resonance energy transfer (NanoBRET) assay reveals that the compounds inhibit KRAS binding to RAF in mammalian cells. Although not yet suitable as chemical probes, these fragments provide starting points to develop small molecules to investigate tyrosine as a nucleophile for covalent inhibition of KRAS in tumors.
Collapse
Affiliation(s)
- Alexander D Landgraf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert Brenner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
| |
Collapse
|
8
|
Wei W, Valerio M, Ma N, Kang H, Nguyen LXT, Marcucci G, Vaidehi N. Disordered C-Terminus Plays a Critical Role in the Activity of the Small GTPase Ran. Biochemistry 2025; 64:1393-1404. [PMID: 39999282 DOI: 10.1021/acs.biochem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ran is a small GTPase of the Ras superfamily that governs nucleocytoplasmic transport, including that of miR-126, a microRNA that supports the homeostasis and expansion of leukemia stem cells (LSCs). Ran binds to Exportin 5 to facilitate the transport of precursor (pre)-miR-126 across the nuclear membrane for its maturation. Our goal is to inhibit Ran to prevent transport of pre-miR-126 to the cytoplasm. Like other Ras family proteins, targeting Ran with small molecules is challenging due to its relatively flat surface and lack of binding cavities. Ran's activity is regulated by a long and disordered C-terminus that provides opportunities for identifying cryptic binding pockets to target. We used a combination of molecular dynamics simulations and experiments and uncovered the critical role of the ensemble of the C-terminal conformations that enable the transition of Ran from the GTP-bound "on state" to its GDP-bound "off-state". We also showed that the Ran C-terminus allosterically modulates the conformations of residues in the nucleotide binding site and in the functionally relevant Switch 1 and 2 regions. Through computational deep mutational scans and experiments, we identified four residue hotspots L182, Y197, D200, and L201 at the core-C-terminus interface and four residue mutations V27A, E70D, N122A, and N122Y that mediate the allosteric communication between the core and switch regions. This information paves the way for our next step in the design of novel allosteric modulators for Ran.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| | - Melissa Valerio
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | - Hyunjun Kang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Le Xuan Truong Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
9
|
Takeda M, Yoshida S, Inoue T, Sekido Y, Hata T, Hamabe A, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Doki Y, Eguchi H. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers (Basel) 2025; 17:428. [PMID: 39941797 PMCID: PMC11816235 DOI: 10.3390/cancers17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer mortality globally, with KRAS mutations occurring in 30-40% of cases, contributing to poor prognosis and resistance to anti-EGFR therapy. This review explores the biological significance, clinical implications, and therapeutic targeting of KRAS mutations in CRC. Methods: A comprehensive analysis of the existing literature and clinical trials was performed, highlighting the role of KRAS mutations in CRC pathogenesis, their impact on prognosis, and recent advancements in targeted therapies. Specific attention was given to emerging therapeutic strategies and resistance mechanisms. Results: KRAS mutations drive tumor progression through persistent activation of MAPK/ERK and PI3K/AKT signaling pathways. These mutations influence the tumor microenvironment, cancer stem cell formation, macropinocytosis, and cell competition. KRAS-mutant CRC exhibits poor responsiveness to anti-EGFR monoclonal antibodies and demonstrates primary and acquired resistance to KRAS inhibitors. Recent breakthroughs include the development of KRAS G12C inhibitors (sotorasib and adagrasib) and promising agents targeting G12D mutations. However, response rates in CRC remain suboptimal compared to other cancers, necessitating combination therapies and novel approaches, such as vaccines, nucleic acid-based therapeutics, and macropinocytosis inhibitors. Conclusions: KRAS mutations are central to CRC pathogenesis and present a significant therapeutic challenge. Advances in KRAS-targeted therapies offer hope for improved outcomes, but resistance mechanisms and organ-specific differences limit efficacy. Continued efforts in personalized treatment strategies and translational research are critical for overcoming these challenges and improving patient survival.
Collapse
Affiliation(s)
- Mitsunobu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hu Y, Gao C, McKenna W, Xia B, Ariss M, Mohr SE, Perrimon N. Cross-Species Epitope Sequence Analysis for Discovery of Existing Antibodies Useful for Phospho-Specific Protein Detection in Model Species. Int J Mol Sci 2025; 26:558. [PMID: 39859274 PMCID: PMC11765086 DOI: 10.3390/ijms26020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Signaling pathways play key roles in many important biological processes, such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. The use of phospho-specific antibodies facilitates the analysis of signaling pathway regulation and activity. Given the usefulness of phospho-specific antibodies, a number of collections of these antibodies have been generated, typically for the detection of phosphorylated mammalian proteins. Anecdotal evidence shows that some of these are also useful for the detection of phosphorylated forms of orthologous proteins in model organisms. We propose that anti-phospho-mammalian protein antibody collections comprise an untapped resource for research in other species. To systematically analyze the potential utility of anti-phospho-mammalian protein antibodies in other species, we developed the Cross-species Epitope Sequence Analysis software tool (CESA). CESA identifies and aligns orthologous proteins in model species and then analyzes the conservation of antibody target sites. We used CESA to predict what phospho-specific antibodies in a collection from Cell Signaling Technology (CST) might be useful for studies in Drosophila melanogaster and other species. CESA predicts that more than 232 sites on 116 Drosophila proteins can potentially be targeted by the antibodies initially developed at CST to detect human, mouse, or rat phosphoproteins.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
| | - William McKenna
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
| | - Majd Ariss
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, USA;
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA (S.E.M.)
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
11
|
Bagheri-Yarmand R, Grubbs EG, Hofmann MC. Thyroid C-Cell Biology and Oncogenic Transformation. Recent Results Cancer Res 2025; 223:51-91. [PMID: 40102254 DOI: 10.1007/978-3-031-80396-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of RB1 regulatory pathway as potential mediators of C-cell transformation. More recently, the integration of multiple biological layers of omics studies has uncovered new pathways of oncogenesis. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular targeted therapies.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
13
|
Hu Y, Gao C, Mckenna W, Xia B, Ariss M, Mohr S, Perrimon N. CESA: Cross-species Epitope Sequence Analysis for discovery of existing antibodies useful for phospho-specific protein detection in model species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629730. [PMID: 39763875 PMCID: PMC11702626 DOI: 10.1101/2024.12.20.629730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Signaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity. Given the usefulness of phospho-specific antibodies, a number of collections of these antibodies have been generated, typically for detection of phosphorylated mammalian proteins. Anecdotal evidence shows that some of these are also useful for detection of phosphorylated forms of orthologous proteins in model organisms. We propose that anti-phospho-mammalian protein antibody collections comprise an untapped resource for research in other species. To systematically analyze the potential utility of anti-phospho-mammalian protein antibodies in other species, we developed the Cross-species Epitope Sequence Analysis software tool (CESA). CESA identifies and aligns orthologous proteins in model species, then analyzes conservation of antibody target sites. We used CESA to predict what phospho-specific antibodies in a collection from Cell Signaling Technology (CST) might be useful for studies in Drosophila melanogaster and other species. CESA predicts that more than 232 sites on 116 Drosophila proteins can potentially be targeted by the antibodies initially developed at CST to detect human, mouse, or rat phosphoproteins.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - William Mckenna
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Majd Ariss
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, USA
| | - Stephanie Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
14
|
Song X, Zhou Z, Elmezayen A, Wu R, Yu C, Gao B, Minna JD, Westover KD, Zeh HJ, Kroemer G, Heasley LE, Kang R, Tang D. SRC kinase drives multidrug resistance induced by KRAS-G12C inhibition. SCIENCE ADVANCES 2024; 10:eadq4274. [PMID: 39661665 PMCID: PMC11633746 DOI: 10.1126/sciadv.adq4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Direct targeting of the KRAS-G12C-mutant protein using covalent inhibitors (G12Ci) acts on human non-small cell lung cancer (NSCLC). However, drug resistance is an emerging concern in this approach. Here, we show that MRTX849, a covalent inhibitor targeting the KRAS-G12C mutation, leads to the reactivation of the mitogen-activated protein kinase signaling pathway in MRTX849-resistant NSCLC and pancreatic ductal adenocarcinoma. A genome-wide CRISPR screen revealed that the adenosine triphosphate binding cassette transporter ABCC1 mediates MRTX849 resistance. Functional studies demonstrated that the transcription factor JUN drives ABCC1 expression, resulting in multidrug resistance. An unbiased drug screen identified the tyrosine kinase inhibitor dasatinib that potentiates MRTX849 efficacy by inhibiting SRC-dependent JUN activation, avoiding multidrug resistance and tumor suppression in vitro as well as in suitable preclinical mouse models and patient-derived organoids. SRC inhibitors (DGY-06-116, dasatinib, and bosutinib) also exhibit synergistic effects with MRTX849 in eliminating various tumor cell lines carrying KRAS-G12C mutations. Thus, SRC inhibitors amplify the therapeutic utility of G12Ci.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar Elmezayen
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
16
|
Shree S, McLean MA, Stephen AG, Sligar SG. KRas4b-Calmodulin Interaction with Membrane Surfaces: Role of Headgroup, Acyl Chain, and Electrostatics. Biochemistry 2024; 63:2740-2749. [PMID: 39382513 PMCID: PMC11760336 DOI: 10.1021/acs.biochem.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
KRas4b is a small plasma membrane-bound G-protein that regulates signal transduction pathways. The interaction of KRas4b with the plasma membrane is governed by both its basic C-terminus, which is farnesylated and methylated, and the lipid composition of the membrane itself. The signaling activity of KRas4b is intricately related to its interaction with various binding partners at the plasma membrane, underlining the critical role played by the lipid environment. The calcium-binding protein calmodulin binds farnesylated KRas4b and plays an important role in the dynamic spatial cycle of KRas4b trafficking in the cell. We utilize Biolayer Interferometry to assay the role of lipid headgroup, chain length, and electrostatics in the dissociation kinetics of fully post-translationally modified KRas4b from Nanodisc bilayers with defined lipid compositions. Our results suggest that calmodulin promotes the dissociation of KRas4b from an anionic membrane, with a comparatively slower displacement of KRas4b from PIP2 relative to PS containing bilayers. In addition to this headgroup dependence, KRas4b dissociation appears to be slower from Nanodiscs wherein the lipid composition contains mismatched, unsaturated acyl chains as compared to lipids with a matched acyl chain length. These findings contribute to understanding the role of the lipid composition in the binding of KRas4b and release from lipid bilayers, showing that the overall charge of the bilayer, the identity of the headgroups present, and the length and saturation of the acyl chains play key roles in KRas4b release from the membrane, potentially providing insights in targeting Ras-membrane interactions for therapeutic interventions.
Collapse
Affiliation(s)
- Shweta Shree
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Mark A McLean
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701, United States
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Wang B, Yang R, Wan C, Tian Y, Wu J, Roy S, Li S, Shen J, Yin Q. Structural basis of pseudoGTPase-mediated protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620932. [PMID: 39554064 PMCID: PMC11565788 DOI: 10.1101/2024.10.30.620932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
GTPases regulate various cellular processes through conformational changes triggered by GTP or GDP binding. Recently, pseudoGTPases, the catalytically inactive counterparts of GTPases, have been identified across species from bacteria to human, although their functions and mechanisms remain unexplored. In this study, we demonstrate that the N-terminal region of the assembly chaperone AAGAB is a type i pseudoGTPase using biochemistry and X-ray crystallography. Furthermore, we discovered that the AAGAB pseudoGTPase domain (psGD) interacts with the σ subunits of AP1 and AP2 adaptor complexes, heterotetrameric complexes involved in clathrin-mediated membrane trafficking. AAGAB psGD engages the σ subunits via a unique interface distinct from the conventional GTPase interacting regions. Further biochemical and cell-based assays confirmed the crucial role of the newly identified interface in binding and membrane trafficking. Collectively, our results establish AAGAB pseudoGTPase domain as a critical protein-protein interaction module. These findings offer new insight into the structural basis and molecular mechanisms of pseudoGTPases.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
- These authors contributed equally to the work
| | - Rui Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- These authors contributed equally to the work
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Sayantan Roy
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Lead contact
| |
Collapse
|
18
|
Liu Y, Li Y, Li G, Wang A, Chu H. Insight of the molecular mechanism of inhibitors located at different allosteric sites regulating the activity of wild type and mutant KRAS (G12). Arch Biochem Biophys 2024; 760:110137. [PMID: 39216733 DOI: 10.1016/j.abb.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
As the important hub of many cellular signaling networks, KRAS (Kirsten rat sarcoma viral oncogene homologue) has been identified as a tumor biomarker. It is the frequently mutated oncogene in human cancers, and KRAS protein activation caused by mutations, such as G12D, has been found in many human tumors tissues. Although, there are two specific allosteric sites (AS1 and AS2) on the KRAS protein that can be used as the targets for inhibitor development, the difference of regulatory mechanisms between two individual allosteric sites still not be reported. Here, using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we found that both of the inhibitors, located at AS1 and AS2, were able to reduce the binding free energy between wild type, mutant KRAS (G12/D/V/S/C) and GTP remarkably, however the effect of inhibitors on the binding free energy between wild type, mutant KRAS and GDP was limited. In addition, the degree of decrease of binding free energy between KRAS and GTP caused by inhibitors at AS2 was significantly greater than that caused by inhibitors at AS1. Further analysis revealed that both inhibitors at AS1 and AS2 were able to regulate the fluctuation of Switch Ⅰ and Switch Ⅱ to expand the pocket of the orthosteric site (GTP binding site), thereby reducing the binding of KRAS to GTP. Noteworthy there was significant differences in the regulatory preferences on Switch Ⅰ and Switch Ⅱ between two type inhibitor. The inhibitor at AS2 mainly regulated Switch Ⅱ to affect the pocket of the orthosteric site, while the inhibitor at AS1 mainly expand the pocket of the orthosteric site by regulating the fluctuation of Switch Ⅰ. Our study compared the differences between two type inhibitors in regulating the KRAS protein activity and revealed the advantages of the AS2 as the small molecule drug target, aiming to provide theoretical guidance for the research of novel KRAS protein inhibitors.
Collapse
Affiliation(s)
- Ye Liu
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Li
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guohui Li
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Anhui Wang
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Huiying Chu
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
19
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Péczka N, Ranđelović I, Orgován Z, Csorba N, Egyed A, Petri L, Ábrányi-Balogh P, Gadanecz M, Perczel A, Tóvári J, Schlosser G, Takács T, Mihalovits LM, Ferenczy G, Buday L, Keserű GM. Contribution of Noncovalent Recognition and Reactivity to the Optimization of Covalent Inhibitors: A Case Study on KRas G12C. ACS Chem Biol 2024; 19:1743-1756. [PMID: 38991015 PMCID: PMC11334105 DOI: 10.1021/acschembio.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Covalent drugs might bear electrophiles to chemically modify their targets and have the potential to target previously undruggable proteins with high potency. Covalent binding of drug-size molecules includes a noncovalent recognition provided by secondary interactions and a chemical reaction leading to covalent complex formation. Optimization of their covalent mechanism of action should involve both types of interactions. Noncovalent and covalent binding steps can be characterized by an equilibrium dissociation constant (KI) and a reaction rate constant (kinact), respectively, and they are affected by both the warhead and the scaffold of the ligand. The relative contribution of these two steps was investigated on a prototypic drug target KRASG12C, an oncogenic mutant of KRAS. We used a synthetically more accessible nonchiral core derived from ARS-1620 that was equipped with four different warheads and a previously described KRAS-specific basic side chain. Combining these structural changes, we have synthesized novel covalent KRASG12C inhibitors and tested their binding and biological effect on KRASG12C by various biophysical and biochemical assays. These data allowed us to dissect the effect of scaffold and warhead on the noncovalent and covalent binding event. Our results revealed that the atropisomeric core of ARS-1620 is not indispensable for KRASG12C inhibition, the basic side chain has little effect on either binding step, and warheads affect the covalent reactivity but not the noncovalent binding. This type of analysis helps identify structural determinants of efficient covalent inhibition and may find use in the design of covalent agents.
Collapse
Affiliation(s)
- Nikolett Péczka
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budapest 1111, Hungary
| | - Ivan Ranđelović
- Department
of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Zoltán Orgován
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - Noémi Csorba
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budapest 1111, Hungary
| | - Attila Egyed
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - László Petri
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - Márton Gadanecz
- Protein
Modeling Research Group, Laboratory of Structural Chemistry and Biology, ELTE Institute of Chemistry, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány. 1/A, Budapest 1117, Hungary
| | - András Perczel
- Protein
Modeling Research Group, Laboratory of Structural Chemistry and Biology, ELTE Institute of Chemistry, Budapest 1117, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Gitta Schlosser
- MTA-ELTE
“Lendület”, Ion Mobility
Mass Spectrometry Research Group, Budapest 1117, Hungary
| | - Tamás Takács
- HUN-REN
Research Centre for Natural Sciences, Signal
Transduction and Functional Genomics Research Group, Budapest 1117, Hungary
- Doctoral
School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Levente M. Mihalovits
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - György
G. Ferenczy
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
| | - László Buday
- HUN-REN
Research Centre for Natural Sciences, Signal
Transduction and Functional Genomics Research Group, Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
21
|
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, Schertler GFX, Müller CE, König GM, Hilger D, Glaubitz C. Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy. Chem Sci 2024; 15:12939-12956. [PMID: 39148790 PMCID: PMC11323312 DOI: 10.1039/d4sc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
Collapse
Affiliation(s)
- Christian Bonifer
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Jessica Nagel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gebhard F X Schertler
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg 35037 Marburg Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
22
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
23
|
Morea V, Angelucci F, Bellelli A. Is allostery a fuzzy concept? FEBS Open Bio 2024; 14:1040-1056. [PMID: 38783588 PMCID: PMC11216940 DOI: 10.1002/2211-5463.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
Allostery is an important property of biological macromolecules which regulates diverse biological functions such as catalysis, signal transduction, transport, and molecular recognition. However, the concept was expressed using two different definitions by J. Monod and, over time, more have been added by different authors, making it fuzzy. Here, we reviewed the different meanings of allostery in the current literature and found that it has been used to indicate that the function of a protein is regulated by heterotropic ligands, and/or that the binding of ligands and substrates presents homotropic positive or negative cooperativity, whatever the hypothesized or demonstrated reaction mechanism might be. Thus, proteins defined to be allosteric include not only those that obey the two-state concerted model, but also those that obey different reaction mechanisms such as ligand-induced fit, possibly coupled to sequential structure changes, and ligand-linked dissociation-association. Since each reaction mechanism requires its own mathematical description and is defined by it, there are many possible 'allosteries'. This lack of clarity is made even fuzzier by the fact that the reaction mechanism is often assigned imprecisely and/or implicitly in the absence of the necessary experimental evidence. In this review, we examine a list of proteins that have been defined to be allosteric and attempt to assign a reaction mechanism to as many as possible.
Collapse
Affiliation(s)
- Veronica Morea
- Institute of Molecular Biology and Pathology, CNRRomeItaly
| | - Francesco Angelucci
- Department of Life, Health, and Environmental SciencesUniversity of L'AquilaItaly
| | - Andrea Bellelli
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeItaly
| |
Collapse
|
24
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without deterministic bistability. SCIENCE ADVANCES 2024; 10:eadi0707. [PMID: 38905351 PMCID: PMC11192083 DOI: 10.1126/sciadv.adi0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of deterministic bistability but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts deterministic bistability and may be more resistant to pharmacological inhibition.
Collapse
Affiliation(s)
- Albert A. Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Neil H. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - He Ren
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Zhou Y, Zeng Z, Li Z, Ruan L, Xie H, Ye F, Huang L, Liu H, Kang L. The relationship of KRAS expression with KRAS status, prognosis, and tumor-infiltrated T lymphocytes in colorectal cancer. Therap Adv Gastroenterol 2024; 17:17562848241249387. [PMID: 38757097 PMCID: PMC11097731 DOI: 10.1177/17562848241249387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
Background The significance of Kirsten rat sarcoma viral oncogene (KRAS) mutation in colorectal cancer (CRC) is well established; yet, its association with KRAS expression and prognosis warrants further investigation. While high KRAS expression is commonly linked with poorer prognosis in other cancers, its role in CRC remains relatively understudied. Objective To explore the correlation between KRAS expression, KRAS status, prognosis, and tumor-infiltrating T lymphocyte density in CRC. Design Single-center retrospective study. Methods Conducted between 2010 and 2020, this study utilized tumor samples to assess KRAS expression and quantify CD3+/CD8+ T lymphocytes. The Cox proportional hazards model and linear regression analysis were employed to examine the relationship between KRAS expression, prognosis, and tumor-infiltrating T lymphocytes. Results This study included 265 CRC patients who underwent radical surgery. No significant association was observed between KRAS expression and KRAS status (p > 0.05). High KRAS expression was associated with poorer overall survival and disease-free survival (p < 0.05). Subgroup analysis revealed that high KRAS expression remained indicative of a worse prognosis in the group with mismatch repair-deficient (dMMR) and KRAS mutant type (p < 0.05). Multivariate analysis confirmed KRAS expression as an unfavorable prognostic factor (p < 0.05). However, the significance of KRAS expression was lost in the dMMR and KRAS mutant-type group regarding overall survival (p > 0.05). Notably, KRAS expression showed a negative correlation with the density of CD8+ T lymphocytes in tumor tissue (p < 0.05), a finding also observed in the dMMR group (p < 0.05). Conclusion No association was found between KRAS expression and KRAS mutation status in CRC. Higher KRAS expression was indicative of poorer prognosis for CRC patients, except for those with proficient mismatch repair and KRAS wild type. In addition, in patients with dMMR, KRAS expression was associated with a lower density of CD8+ T lymphocytes in tumor tissue.
Collapse
Affiliation(s)
- Yebohao Zhou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ze Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Ruan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fujin Ye
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Ye H, Zhu Y, Kong Y, Wen H, Lu W, Wang D, Tang S, Zhan M, Lu G, Shao C, Wang N, Hao H. Carbene Footprinting Directs Design of Genetically Encoded Proximity-Reactive Protein Binders. Anal Chem 2024; 96:7566-7576. [PMID: 38684118 DOI: 10.1021/acs.analchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.
Collapse
Affiliation(s)
- Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Yinxue Zhu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ying Kong
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hongtao Wen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Dexiang Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Mengru Zhan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
27
|
Shankar S, Chew TW, Chichili VPR, Low BC, Sivaraman J. Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci 2024; 81:216. [PMID: 38740643 PMCID: PMC11090974 DOI: 10.1007/s00018-024-05238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the β5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial β5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | | | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- NUS College, National University of Singapore, Singapore, 138593, Singapore.
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
28
|
Sun JW, Zou J, Zheng Y, Yuan H, Xie YZY, Wang XN, Ou TM. Design, synthesis, and evaluation of novel quindoline derivatives with fork-shaped side chains as RNA G-quadruplex stabilizers for repressing oncogene NRAS translation. Eur J Med Chem 2024; 271:116406. [PMID: 38688064 DOI: 10.1016/j.ejmech.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
NRAS mutation is the second most common oncogenic factor in cutaneous melanoma. Inhibiting NRAS translation by stabilizing the G-quadruplex (G4) structure with small molecules seems to be a potential strategy for cancer therapy due to the NRAS protein's lack of a druggable pocket. To enhance the effects of previously reported G4 stabilizers quindoline derivatives, we designed and synthesized a novel series of quindoline derivatives with fork-shaped side chains by introducing (alkylamino)alkoxy side chains. Panels of experimental results showed that introducing a fork-shaped (alkylamino)alkoxy side chain could enhance the stabilizing abilities of the ligands against NRAS RNA G-quadruplexes and their anti-melanoma activities. One of them, 10b, exhibited good antitumor activity in the NRAS-mutant melanoma xenograft mouse model, showing the therapeutic potential of this kind of compounds.
Collapse
Affiliation(s)
- Jia-Wei Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zou
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Yuan
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan-Ze-Yu Xie
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Na Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
30
|
Zamanian MY, Golmohammadi M, Abdullaev B, García MO, Alazbjee AAA, Kumar A, Mohaamed SS, Hussien BM, Khalaj F, Hodaei SM, Shirsalimi N, Moriasi G. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem Funct 2024; 42:e4011. [PMID: 38583080 DOI: 10.1002/cbf.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- School of Medicine, Central Asian University, Tashkent, Uzbekistan
- Department of Medical Oncology and Radiology, Samarkand State Medical University
| | - María Olalla García
- Universidad Estatal de Bolívar, Facultad de Ciencias de la Salud y del Ser Humano, Carrera de Enfermería, CP, Guaranda, Ecuador
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Sameer S Mohaamed
- Department of Pharmacy, Al Rafidain University College, Bagdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
31
|
Cao L, Dong M, Jiang K, Zhu Q, Li F, Xiao Z, Tang H, Tao R. Triblock polymer PDMAEMA-co-PNIPAM-co-PMPC to deliver siKRAS for gene therapy in pancreatic cancer. CHEMICAL ENGINEERING JOURNAL 2024; 485:149884. [DOI: 10.1016/j.cej.2024.149884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
32
|
Shen C, Yin J, Wang M, Yu Z, Xu X, Zhou Z, Hu Y, Xia C, Hu G. Mutations influence the conformational dynamics of the GDP/KRAS complex. J Biomol Struct Dyn 2024:1-14. [PMID: 38529923 DOI: 10.1080/07391102.2024.2331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Mutations near allosteric sites can have a significant impact on the function of KRAS. Three specific mutations, K104Q, G12D/K104Q, and G12D/G75A, which are located near allosteric positions, were selected to investigate the molecular mechanisms behind mutation-induced influences on the activity of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations followed by the principal component analysis (PCA) were performed to improve the sampling of conformational states. The results revealed that these mutations significantly alter the structural flexibility, correlated motions, and dynamic behavior of the switch regions that are essential for KRAS binding to effectors or regulators. Furthermore, the mutations have a significant impact on the hydrogen bonding interactions between GDP and the switch regions, as well as on the electrostatic interactions of magnesium ions (Mg2+) with these regions. Our results verified that these mutations strongly influence the binding of KRAS to its effectors or regulators and allosterically regulate the activity. We believe that this work can provide valuable theoretical insights into a deeper understanding of KRAS function.
Collapse
Affiliation(s)
- Congcong Shen
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Jie Yin
- Qingyun People's Hospital, Dezhou, China
| | - Min Wang
- Qingyun People's Hospital, Dezhou, China
| | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Xin Xu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Zhongshun Zhou
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yingshi Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
33
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
34
|
Liu X, Shi Y, Liu R, Song K, Chen L. Structure of human phagocyte NADPH oxidase in the activated state. Nature 2024; 627:189-195. [PMID: 38355798 DOI: 10.1038/s41586-024-07056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Kangcheng Song
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
35
|
Tagad A, Patwari GN. Unraveling the Significance of Mg 2+ Dependency and Nucleotide Binding Specificity of H-RAS. J Phys Chem B 2024; 128:1618-1626. [PMID: 38351706 DOI: 10.1021/acs.jpcb.3c06998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
RAS is a small GTPase and acts as a binary molecular switch; the transition from its active to inactive state plays a crucial role in various cell signaling processes. Molecular dynamics simulations at the atomistic level suggest that the absence of cofactor Mg2+ ion generally leads to pronounced structural changes in the Switch-I than Switch-II regions and assists GTP binding. The presence of the Mg2+ ion also restricts the rotation of ϒ phosphate and enhances the hydrolysis rate of GTP. Further, the simulations reveal that the stability of the protein is almost uncompromised when Mg2+ is replaced with Zn2+ and not the Ca2+ ion. The specificity of H-RAS to GTP was evaluated by substituting with ATP and CTP, which indicates that the binding pocket tolerates purine bases over pyrimidine bases. However, the D119 residue specifically interacts with the guanine base and serves as one of the primary interactions that leads to the selectivity of GTP over ATP. The ring displacement of 32Y serves as gate dynamics in H-RAS which are important for its interaction with GAP for the nucleotide exchange and is restricted in the presence of ATP. Finally, the point mutations 61, 16, and 32 influence the structural changes, specifically in the Switch-II region, which are expected to impact the GTP hydrolysis and thus are termed oncogenic mutations.
Collapse
Affiliation(s)
- Amol Tagad
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
36
|
Li ML, Dai LT, Gao ZY, Yan JT, Xu SM, Tan JH, Huang ZS, Chen SB, Chen XC. Discovery of Novel Coumarin-quinolinium Derivatives as Pan-KRAS Translation Inhibitors by Targeting 5'-UTR RNA G-Quadruplexes. J Med Chem 2024; 67:1961-1981. [PMID: 38272464 DOI: 10.1021/acs.jmedchem.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hyperactivated KRAS mutations fuel tumorigenesis and represent attractive targets for cancer treatment. While covalent inhibitors have shown clinical benefits against the KRASG12C mutant, advancements for non-G12C mutants remain limited, highlighting the urgent demand for pan-KRAS inhibitors. RNA G-quadruplexes (rG4s) in the 5'-untranslated region of KRAS mRNA can regulate KRAS translation, making them promising targets for pan-KRAS inhibitor development. Herein, we designed and synthesized 50 novel coumarin-quinolinium derivatives, leveraging our previously developed rG4-specific ligand, QUMA-1. Notably, several compounds exhibited potent antiproliferative activity against cancer cells as pan-KRAS translation inhibitors. Among them, 15a displayed exceptional capability in stabilizing KRAS rG4s, suppressing KRAS translation, and consequently modulating MAPK and PI3K-AKT pathways. 15a induced cell cycle arrest, prompted apoptosis in KRAS-driven cancer cells, and effectively inhibited tumor growth in a KRAS mutant xenograft model. These findings underscore the potential of 15a as a pan-KRAS translation inhibitor, offering a novel and promising approach to target various KRAS-driven cancers.
Collapse
Affiliation(s)
- Mao-Lin Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Le-Tian Dai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhuo-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jia-Tong Yan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiu-Cai Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
37
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
38
|
Zhou C, Fan Z, Gu Y, Ge Z, Tao Z, Cui R, Li Y, Zhou G, Huo R, Gao M, Wang D, He W, Zheng M, Zhang S, Xu T. Design, Synthesis, and Biological Evaluation of Potent and Selective PROTAC Degraders of Oncogenic KRAS G12D. J Med Chem 2024; 67:1147-1167. [PMID: 38197882 DOI: 10.1021/acs.jmedchem.3c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
KRASG12D, the most frequent KRAS oncogenic mutation, is a promising target for cancer therapy. Herein, we report the design, synthesis, and biological evaluation of a series of KRASG12D PROTACs by connecting the analogues of MRTX1133 and the VHL ligand. Structural modifications of the linker moiety and KRAS inhibitor part suggested a critical role of membrane permeability in the degradation activity of the KRASG12D PROTACs. Mechanism studies with the representative compound 8o demonstrated that the potent, rapid, and selective degradation of KRASG12D induced by 8o was via a VHL- and proteasome-dependent manner. This compound selectively and potently suppressed the growth of multiple KRASG12D mutant cancer cells, displayed favorable pharmacokinetic and pharmacodynamic properties in mice, and showed significant antitumor efficacy in the AsPC-1 xenograft mouse model. Further optimization of 8o appears to be promising for the development of a new chemotherapy for KRASG12D-driven cancers as the complementary therapeutic strategy to KRAS inhibition.
Collapse
Affiliation(s)
- Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zisheng Fan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuejiao Gu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiming Ge
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhaofan Tao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yupeng Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Border Biomedical Research Center, The University of Texas at EI Paso, EI Paso, Texas 79902, United States
| | - Guizhen Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ruifeng Huo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingshan Gao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Nanchang University, Nanchang 330031, China
| | - Mingyue Zheng
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tianfeng Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
39
|
Lee C, Yi J, Park J, Ahn B, Won YW, Jeon J, Lee BJ, Cho WJ, Park JW. Hedgehog signalling is involved in acquired resistance to KRAS G12C inhibitors in lung cancer cells. Cell Death Dis 2024; 15:56. [PMID: 38225225 PMCID: PMC10789740 DOI: 10.1038/s41419-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, Texas, USA
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - JiHeung Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
40
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
41
|
Yun S, Scott E, Laganowsky A. Biophysical Characterization of RAS-SOS Complexes by Native Mass Spectrometry. Methods Mol Biol 2024; 2797:177-193. [PMID: 38570460 DOI: 10.1007/978-1-0716-3822-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity. In this chapter, we describe the application of native mass spectrometry (MS) to monitor the assembly of the catalytic domain of SOS (SOScat) with RAS and cancer-associated mutants. Results from this approach have led to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRAS. It was also found that KRASG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its SOScat activity. KRASG13D-GTP can allosterically increase the nucleotide exchange rate of KRAS at the active site by more than twofold compared to the wild-type protein. Furthermore, small-molecule RAS•SOS disruptors fail to dissociate KRASG13D•SOScat complexes, underscoring the need for more potent disruptors targeting oncogenic RAS mutants. Taken together, native MS will be instrumental in better understanding the interaction between oncogenic RAS mutants and SOS, which is of crucial importance for development of improved therapeutics.
Collapse
Affiliation(s)
- Sangho Yun
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
42
|
Kazi A, Ranjan A, Kumar M.V. V, Agianian B, Garcia Chavez M, Vudatha V, Wang R, Vangipurapu R, Chen L, Kennedy P, Subramanian K, Quirke JC, Beato F, Underwood PW, Fleming JB, Trevino J, Hergenrother PJ, Gavathiotis E, Sebti SM. Discovery of KRB-456, a KRAS G12D Switch-I/II Allosteric Pocket Binder That Inhibits the Growth of Pancreatic Cancer Patient-derived Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2623-2639. [PMID: 38051103 PMCID: PMC10754035 DOI: 10.1158/2767-9764.crc-23-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Alok Ranjan
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vasantha Kumar M.V.
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Bogos Agianian
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Martin Garcia Chavez
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Rui Wang
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - Liwei Chen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Perry Kennedy
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Karthikeyan Subramanian
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan C.K. Quirke
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Francisca Beato
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Jason B. Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Paul J. Hergenrother
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Said M. Sebti
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
43
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
44
|
Sugimoto A, Iwata K, Kurogoushi R, Tanaka M, Nakashima Y, Yamakawa Y, Oishi A, Yoshizaki K, Fukumoto S, Yamamoto A, Ishimaru N, Iwamoto T. C-terminus of PIEZO1 governs Ca 2+ influx and intracellular ERK1/2 signaling pathway in mechanotransduction. Biochem Biophys Res Commun 2023; 682:39-45. [PMID: 37801988 DOI: 10.1016/j.bbrc.2023.09.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.
Collapse
Affiliation(s)
- Asuna Sugimoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Manami Tanaka
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yumiko Nakashima
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yoshihito Yamakawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Atsushi Oishi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| |
Collapse
|
45
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
46
|
Yun SD, Scott E, Moghadamchargari Z, Laganowsky A. 2'-Deoxy Guanosine Nucleotides Alter the Biochemical Properties of Ras. Biochemistry 2023; 62:2450-2460. [PMID: 37487239 PMCID: PMC11131413 DOI: 10.1021/acs.biochem.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Ras proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer. However, the biochemical properties of Ras bound to dGNP are not well understood. Herein, we use native mass spectrometry to monitor the intrinsic GTPase activity of H-Ras and N-Ras oncogenic mutants, revealing that the rate of 2'-deoxy guanosine triphosphate (dGTP) hydrolysis differs compared to the hydroxylated form, in some cases by seven-fold. Moreover, K-Ras expressed from HEK293 cells exhibited a higher than anticipated abundance of dGNP, despite the low abundance of dGNP in cells. Additionally, the GTPase and dGTPase activity of K-RasG12C was found to be accelerated by 10.2- and 3.8-fold in the presence of small molecule covalent inhibitors, which may open opportunities for the development of Pan-Ras inhibitors. The molecular assemblies formed between H-Ras and N-Ras, including mutant forms, with the catalytic domain of SOS (SOScat) were also investigated. The results show that the different mutants of H-Ras and N-Ras not only engage SOScat differently, but these assemblies are also dependent on the form of guanosine triphosphate bound to Ras. These findings bring to the forefront a new perspective on the nucleotide-dependent biochemical properties of Ras that may have implications for the activation of the MAPK signaling pathway and Ras-driven cancers.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| |
Collapse
|
47
|
Lee AA, Kim NH, Alvarez S, Ren H, DeGrandchamp JB, Lew LJN, Groves JT. Bimodality in Ras signaling originates from processivity of the Ras activator SOS without classic kinetic bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549263. [PMID: 37503094 PMCID: PMC10370109 DOI: 10.1101/2023.07.17.549263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal, or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of classic kinetic bistability, but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts classic kinetic bistability and is distinctly more resistant to pharmacological inhibition.
Collapse
|
48
|
Chiou LW, Chan CH, Jhuang YL, Yang CY, Jeng YM. DNA replication stress and mitotic catastrophe mediate sotorasib addiction in KRAS G12C-mutant cancer. J Biomed Sci 2023; 30:50. [PMID: 37386628 DOI: 10.1186/s12929-023-00940-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Sotorasib is the first KRASG12C inhibitor approved by the US Food and Drug Administration for treating KRASG12C-mutant non-small-cell lung cancer (NSCLC). Clinical trials on the therapeutic use of sotorasib for cancer have reported promising results. However, KRASG12C-mutant cancers can acquire resistance to sotorasib after treatment. We incidentally discovered that sotorasib-resistant (SR) cancer cells are addicted to this inhibitor. In this study, we investigated the mechanisms underlying sotorasib addiction. METHODS Sotorasib-resistant cells were established using KRASG12C-mutant pancreatic cancer and NSCLC cell lines. Cell viability in the presence or absence of sotorasib and in combination with multiple inhibitors was assessed through proliferation assay and annexin V/propidium iodide (PI) flow cytometry assays. The mechanisms underlying drug addiction were elucidated through 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, immunofluorescence staining, time-lapse microscopy, and comet assay. Furthermore, a subcutaneous xenograft model was used to demonstrate sotorasib addiction in vivo. RESULTS In the absence of sotorasib, the sotorasib-resistant cells underwent p21Waf1/Cip1-mediated cell cycle arrest and caspase-dependent apoptosis. Sotorasib withdrawal resulted in robust activation of mitogen-activated protein kinase (MAPK) pathway, inducing severe DNA damage and replication stress, which activated the DNA damage response (DDR) pathway. Persistent MAPK pathway hyperactivation with DDR exhaustion led to premature mitotic entry and aberrant mitosis, followed by micronucleus and nucleoplasmic bridge formation. Pharmacologic activation of the MAPK pathway with a type I BRAF inhibitor could further enhance the effects of sotorasib withdrawal on sotorasib-resistant cancer cells both in vitro and in vivo. CONCLUSIONS We elucidated the mechanisms underlying the sotorasib addiction of cancer cells. Sotorasib addiction appears to be mediated through MAPK pathway hyperactivity, DNA damage, replication stress, and mitotic catastrophe. Moreover, we devised a therapeutic strategy involving a type I BRAF inhibitor to strengthen the effects of sotorasib addiction; this strategy may provide clinical benefit for patients with cancer.
Collapse
Affiliation(s)
- Li-Wen Chiou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Chan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Jhuang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
49
|
Ikari M, Yagi H, Kasai T, Inomata K, Ito M, Higuchi K, Matsuda N, Ito Y, Kigawa T. Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy. JACS AU 2023; 3:1658-1669. [PMID: 37388687 PMCID: PMC10302746 DOI: 10.1021/jacsau.3c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific 19F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF3Phe) at three different sites of H-Ras, i.e., Tyr32 in switch I, Tyr96 interacting with switch II, and Tyr157 on helix α5, allowed the characterization of their conformational states depending on the nucleotide-bound states and an oncogenic mutational state. Exogenously delivered 19F-labeled H-Ras protein containing a C-terminal hypervariable region was assimilated via endogenous membrane-trafficking, enabling proper association with the cell membrane compartments. Despite poor sensitivity of the in-cell NMR spectra of membrane-associated H-Ras, the Bayesian spectral deconvolution identified distinct signal components on three 19F-labeled sites, thus offering the conformational multiplicity of H-Ras on the PM. Our study may be helpful in elucidating the atomic-scale picture of membrane-associated proteins in living cells.
Collapse
Affiliation(s)
- Masaomi Ikari
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Hiromasa Yagi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Takuma Kasai
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Kohsuke Inomata
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Ito
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kae Higuchi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Natsuko Matsuda
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- SI Innovation
Center, Taiyo Nippon Sanso Corporation, Tokyo 206-0001, Japan
| | - Yutaka Ito
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takanori Kigawa
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| |
Collapse
|
50
|
Balaratnam S, Torrey ZR, Calabrese DR, Banco MT, Yazdani K, Liang X, Fullenkamp CR, Seshadri S, Holewinski RJ, Andresson T, Ferré-D'Amaré AR, Incarnato D, Schneekloth JS. Investigating the NRAS 5' UTR as a target for small molecules. Cell Chem Biol 2023; 30:643-657.e8. [PMID: 37257453 PMCID: PMC11623308 DOI: 10.1016/j.chembiol.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5' untranslated region (UTR) (5' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zachary R Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Xiao Liang
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ronald J Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|