1
|
Onofre TS, Zhou Q, Li Z. The microtubule-severing enzyme spastin regulates spindle dynamics to promote chromosome segregation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631140. [PMID: 39803587 PMCID: PMC11722300 DOI: 10.1101/2025.01.03.631140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite Trypanosoma brucei, microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of T. brucei. We demonstrate that spastin catalyzes microtubule severing in vitro and ectopic overexpression of spastin disrupts spindle microtubules in vivo in trypanosome cells, leading to defective chromosome segregation. Knockdown of spastin impairs spindle integrity and disrupts chromosome alignment in metaphase and chromosome segregation in anaphase. We further show that the function of spastin requires the catalytic AAA-ATPase domain, the microtubule-binding domain, and the microtubule interacting and trafficking domain, and that the association of spastin with spindle depends on the microtubule-binding domain. Together, these results uncover an essential role for spastin in chromosome segregation by regulating spindle dynamics in this unicellular eukaryote.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
2
|
Choi SH, Yoo HY. Mdc1 modulates the interaction between TopBP1 and the MRN complex during DNA damage checkpoint responses. Biochem Biophys Res Commun 2016; 479:5-11. [PMID: 27590578 DOI: 10.1016/j.bbrc.2016.08.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
TopBP1 has been identified as a direct activator of ATR and interacts with the Nbs1 subunit of the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. In this study, we show that Mdc1 associates with both TopBP1 and Nbs1 in egg extracts and human cells. We cloned a cDNA encoding the full-length version of Xenopus Mdc1. The association between Mdc1 and TopBP1 involves the first pair of BRCT repeats in TopBP1. The N-terminal region (161-230) of Mdc1 is required for this binding. The interaction between Mdc1 and Nbs1 involves the two tandem BRCT repeats of Nbs1. Functional studies with mutated forms of Mdc1, TopBP1, and Nbs1 indicate that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. TopBP1 cannot interact with Nbs1 in Mdc1-depleted egg extracts, suggesting that Mdc1 connects TopBP1 and Nbs1 together. These findings suggest that Mdc1 is a crucial mediator of the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 135-710, Republic of Korea.
| |
Collapse
|
3
|
Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae. Genetics 2013; 194:389-401. [PMID: 23564203 PMCID: PMC3664849 DOI: 10.1534/genetics.113.149740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022] Open
Abstract
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
- Michigan State University, Genetics Program, East Lansing, Michigan 48824
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Carrie Gabrielse
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Christine Hänni
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Philip Zegerman
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
4
|
Cho EA, Juhnn YS. The cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells. Biochem Biophys Res Commun 2012; 422:256-62. [PMID: 22575451 DOI: 10.1016/j.bbrc.2012.04.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 02/01/2023]
Abstract
Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2'-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells.
Collapse
Affiliation(s)
- Eun-Ah Cho
- Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | |
Collapse
|
5
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
6
|
Romanova LG, Zacharias J, Cannon ML, Philpott NJ. Effect of poly(ADP-ribose) polymerase 1 on integration of the adeno-associated viral vector genome. J Gene Med 2011; 13:342-52. [PMID: 21674737 DOI: 10.1002/jgm.1577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Adeno-associated virus type 2 (AAV) has the ability to target integration of its DNA into a specific locus of the human genome. Site-specific AAV integration is mediated by viral Rep proteins, although the role of cellular factors involved in this process is largely unknown. Recent studies provide evidence showing that cellular DNA repair proteins are involved in targeted integration of AAV, although their specific roles are not well defined. METHODS In the present study, we investigated the interaction between Rep and proteins of the back-up nonhomologous end-joining pathway (B-NHEJ). We then analyzed the effect of one of these proteins, poly(ADP-ribose) polymerase 1 (PARP1) on AAV integration. RESULTS We show that AAV Rep interacts with B-NHEJ members DNA ligase III and PARP1 but does not associate with the scaffolding factor XRCC1. Moreover, PARP1 and Rep bind directly and not via DNA-protein interactions. We also found that Rep increases the enzymatic activity of PARP1 potentially through the endonuclease activity of Rep. Finally, we demonstrate that both chemical inhibition of PARP1 and PARP1 depletion using small hairpin RNA enhance integration of the AAV genome in HeLa cells. CONCLUSIONS The findings of the present study indicate that manipulation of PARP1 activity could be used as a tool for developing new, effective AAV-based therapies for the treatment of genetic diseases and cancer.
Collapse
Affiliation(s)
- Liudmila G Romanova
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, Institute of Human Genetics, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
7
|
Liu T, Chen H, Kim H, Huen MSY, Chen J, Huang J. RAD18-BRCTx interaction is required for efficient repair of UV-induced DNA damage. DNA Repair (Amst) 2011; 11:131-8. [PMID: 22036607 DOI: 10.1016/j.dnarep.2011.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage signaling pathways. The BRCT domain-containing protein BRCTx has been shown to interact physically with RAD18, an E3 ligase involved in postreplication repair and homologous recombination repair. However, the physiological relevance of the interaction between RAD18 and BRCTx is largely unknown. In this study, we showed that RAD18 interacts with BRCTx in a phosphorylation-dependent manner and that this interaction, mediated via highly conserved serine residues on the RAD18 C terminus, is required for BRCTx accumulation at DNA damage sites. Furthermore, we uncovered critical roles of the RAD18-BRCTx module in UV-induced DNA damage repair but not PCNA mono-ubiquitination or homologous recombination. Thus, our results suggest that RAD18 has an additional function in the surveillance of the UV-induced DNA damage response signal.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
8
|
Thanassoulas A, Nomikos M, Theodoridou M, Stavros P, Mastellos D, Nounesis G. Thermal and chemical denaturation of the BRCT functional module of human 53BP1. Int J Biol Macromol 2011; 49:297-304. [DOI: 10.1016/j.ijbiomac.2011.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
|
9
|
Davis JD, Lin SY. DNA damage and breast cancer. World J Clin Oncol 2011; 2:329-38. [PMID: 21909479 PMCID: PMC3168783 DOI: 10.5306/wjco.v2.i9.329] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 02/06/2023] Open
Abstract
Cancer is intimately related to the accumulation of DNA damage, and repair failures (including mutation prone repair and hyperactive repair systems). This article relates current clinical categories for breast cancer and their common DNA damage repair defects. Information is included on the potential for accumulation of DNA damage in the breast tissue of a woman during her lifetime and the role of DNA damage in breast cancer development. We then cover endogenous and exogenous sources of DNA damage, types of DNA damage repair and basic signal transduction pathways for three gene products involved in the DNA damage response system; namely BRCA1, BRIT1 and PARP-1. These genes are often considered tumor suppressors because of their roles in DNA damage response and some are under clinical investigation as likely sources for effective new drugs to treat breast cancers. Finally we discuss some of the problems of DNA damage repair systems in cancer and the conundrum of hyper-active repair systems which can introduce mutations and confer a survival advantage to certain types of cancer cells.
Collapse
Affiliation(s)
- Jennifer D Davis
- Jennifer D Davis, Shiaw-Yih Lin, Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | |
Collapse
|
10
|
Ramírez-Lugo JS, Yoo HY, Yoon SJ, Dunphy WG. CtIP interacts with TopBP1 and Nbs1 in the response to double-stranded DNA breaks (DSBs) in Xenopus egg extracts. Cell Cycle 2011; 10:469-80. [PMID: 21263215 DOI: 10.4161/cc.10.3.14711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the presence of double-stranded DNA breaks (DSBs), the activation of ATR is achieved by the ability of ATM to phosphorylate TopBP1 on serine 1131, which leads to an enhancement of the interaction between ATR and TopBP1. In Xenopus egg extracts, the Mre11-Rad50-Nbs1 (MRN) complex is additionally required to bridge ATM and TopBP1 together. In this report, we show that CtIP, which is recruited to DSB-containing chromatin, interacts with both TopBP1 and Nbs1 in a damage-dependent manner. An N-terminal region containing the first two BRCT repeats of TopBP1 is essential for the interaction with CtIP. Furthermore, two distinct regions in the N-terminus of CtIP participate in establishing the association between CtIP and TopBP1. The first region includes two adjacent putative ATM/ATR phosphorylation sites on serines 273 and 275. Secondly, binding is diminished when an MRN-binding region spanning residues 25-48 is deleted, indicative of a role for the MRN complex in mediating this interaction. This was further evidenced by a decrease in the interaction between CtIP and TopBP1 in Nbs1-depleted extracts and a reciprocal decrease in the binding of Nbs1 to TopBP1 in the absence of CtIP, suggestive of the formation of a complex containing CtIP, TopBP1, and the MRN complex. When CtIP is immunodepleted from egg extracts, the activation of the response to DSBs is compromised and the levels of ATR, TopBP1, and Nbs1 on damaged chromatin are reduced. Thus, CtIP interacts with TopBP1 in a damage-stimulated, MRN-dependent manner during the activation of ATR in response to DSBs.
Collapse
|
11
|
Gu M, Li H, Shen C, Wu L, Liu W, Miao L, Zheng C. Cloning and characterization of a new BRCA1 variant: A role for BRCT domains in apoptosis. Cancer Lett 2010; 295:205-13. [PMID: 20356671 DOI: 10.1016/j.canlet.2010.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/28/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
BRCA1 is a tumor-suppressor gene responsible for hereditary breast and ovarian cancers. Characterization of alternately spliced forms of BRCA1 may identify the region of the gene responsible for its function. Here, we cloned and characterized a new BRCA1 splicing variant from the breast cancer cell line ZR-75-30. This transcript, named BRCA1-E1aA-Delta2-17, lacks most exons found in full-length BRCA1, but maintains the original reading frame. We detected expression of the BRCA1-E1aA-Delta2-17 transcript in several human cell lines and tumor tissues, and the fusion protein GFP-BRCA1-E1aA-Delta2-17 localized to the nucleus. Likewise, overexpression of the BRCA1-E1aA-Delta2-17 transcript resulted in cell death as measured by the MTT assay, and fluorescence activated cell sorting (FACS) assays confirmed that this was caused by cellular apoptosis. Our data imply that BRCT domains of the BRCA1 play a role in the cellular apoptosis we observed, and suggest that elucidating the specific function of each of the domains could aid in understanding the exact role of the BRCA1 tumor suppressor.
Collapse
|
12
|
Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 2010; 140:349-59. [PMID: 20116089 DOI: 10.1016/j.cell.2009.12.049] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/14/2009] [Accepted: 12/22/2009] [Indexed: 11/24/2022]
Abstract
TopBP1 has important roles in both DNA replication and checkpoint regulation in vertebrates. We have identified a protein called Treslin that associates with TopBP1 in Xenopus egg extracts. Depletion of Treslin from egg extracts strongly inhibits chromosomal DNA replication. Binding of Treslin to chromatin in egg extracts occurs independently of TopBP1. However, loading of the initiator protein Cdc45 onto chromatin cannot take place in the absence of Treslin. Prior to the initiation of DNA replication, Treslin associates with TopBP1 in a Cdk2-dependent manner. Ablation of Treslin from human cells also strongly inhibits DNA replication. Taken together, these results indicate that Treslin and TopBP1 collaborate in the Cdk2-mediated loading of Cdc45 onto replication origins. Thus, Treslin regulates a pivotal step in the initiation of DNA replication in vertebrates.
Collapse
|
13
|
Kobayashi M, Ab E, Bonvin AMJJ, Siegal G. Structure of the DNA-bound BRCA1 C-terminal region from human replication factor C p140 and model of the protein-DNA complex. J Biol Chem 2010; 285:10087-10097. [PMID: 20081198 DOI: 10.1074/jbc.m109.054106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BRCA1 C-terminal domain (BRCT)-containing proteins are found widely throughout the animal and bacteria kingdoms where they are exclusively involved in cell cycle regulation and DNA metabolism. Whereas most BRCT domains are involved in protein-protein interactions, a small subset has bona fide DNA binding activity. Here, we present the solution structure of the BRCT region of the large subunit of replication factor C bound to DNA and a model of the structure-specific complex with 5'-phosphorylated double-stranded DNA. The replication factor C BRCT domain possesses a large basic patch on one face, which includes residues that are structurally conserved and ligate the phosphate in phosphopeptide binding BRCT domains. An extra alpha-helix at the N terminus, which is required for DNA binding, inserts into the major groove and makes extensive contacts to the DNA backbone. The model of the protein-DNA complex suggests 5'-phosphate recognition by the BRCT domains of bacterial NAD(+)-dependent ligases and a nonclamp loading role for the replication factor C complex in DNA transactions.
Collapse
Affiliation(s)
| | - Eiso Ab
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht 3584, Netherlands
| | - Alexander M J J Bonvin
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht 3584, Netherlands
| | - Gregg Siegal
- Leiden Institute of Chemistry, Leiden University, Leiden 2300RA.
| |
Collapse
|
14
|
Wu J, Prindle MJ, Dressler GR, Yu X. PTIP regulates 53BP1 and SMC1 at the DNA damage sites. J Biol Chem 2009; 284:18078-84. [PMID: 19414588 DOI: 10.1074/jbc.m109.002527] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.
Collapse
Affiliation(s)
- Jiaxue Wu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
15
|
Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM. Mol Biol Cell 2009; 20:2351-60. [PMID: 19279141 DOI: 10.1091/mbc.e08-12-1190] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs.
Collapse
Affiliation(s)
- Hae Yong Yoo
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
16
|
LIU Y, WEI W. Detection of Cytochrome c at Biocompatible Nanostructured Au-lipid Bilayer-modified Electrode. ANAL SCI 2008; 24:1431-6. [DOI: 10.2116/analsci.24.1431] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yaxiong LIU
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Wanzhi WEI
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
17
|
Morishima KI, Sakamoto S, Kobayashi J, Izumi H, Suda T, Matsumoto Y, Tauchi H, Ide H, Komatsu K, Matsuura S. TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem Biophys Res Commun 2007; 362:872-9. [PMID: 17765870 DOI: 10.1016/j.bbrc.2007.08.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/13/2007] [Indexed: 11/17/2022]
Abstract
TopBP1 is involved in DNA replication and DNA damage checkpoint. Recent studies have demonstrated that TopBP1 is a direct positive effecter of ATR. However, it is not known how TopBP1 recognizes damaged DNA. Here, we show that TopBP1 formed nuclear foci after exposure to ionizing radiation, but such TopBP1 foci were abolished in Nijmegen breakage syndrome cells. We also show that TopBP1 physically associated with NBS1 in vivo. These results suggested that NBS1 might regulate TopBP1 recruitment to the sites of DNA damage. TopBP1-depleted cells showed hypersensitivity to Mitomycin C and ionizing radiation, an increased frequency of sister-chromatid exchange level, and a reduced frequency of DNA double-strand break induced homologous recombination repair. Together, these results suggested that TopBP1 might be a mediator of DNA damage signaling from NBS1 to ATR and promote homologous recombination repair.
Collapse
Affiliation(s)
- Ken-ichi Morishima
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao A, Gray FC, MacNeill SA. ATP- and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii. Mol Microbiol 2006; 59:743-52. [PMID: 16420348 DOI: 10.1111/j.1365-2958.2005.04975.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA ligases join the ends of DNA molecules during replication, repair and recombination. ATP-dependent ligases are found predominantly in the eukarya and archaea whereas NAD+-dependent DNA ligases are found only in the eubacteria and in entomopoxviruses. Using the genetically tractable halophile Haloferax volcanii as a model system, we describe the first genetic analysis of archaeal DNA ligase function. We show that the Hfx. volcanii ATP-dependent DNA ligase family member, LigA, is non-essential for cell viability, raising the question of how DNA strands are joined in its absence. We show that Hfx. volcanii also encodes an NAD+-dependent DNA ligase family member, LigN, the first such enzyme to be identified in the archaea, and present phylogenetic analysis indicating that the gene encoding this protein has been acquired by lateral gene transfer (LGT) from eubacteria. As with LigA, we show that LigN is also non-essential for cell viability. Simultaneous inactivation of both proteins is lethal, however, indicating that they now share an essential function. Thus the LigN protein acquired by LGT appears to have been co-opted as a back-up for LigA function, perhaps to provide additional ligase activity under conditions of high genotoxic stress.
Collapse
Affiliation(s)
- An Zhao
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
19
|
Botuyan MVE, Nominé Y, Yu X, Juranic N, Macura S, Chen J, Mer G. Structural basis of BACH1 phosphopeptide recognition by BRCA1 tandem BRCT domains. Structure 2005; 12:1137-46. [PMID: 15242590 PMCID: PMC3652423 DOI: 10.1016/j.str.2004.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/05/2004] [Accepted: 06/08/2004] [Indexed: 01/15/2023]
Abstract
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.
Collapse
Affiliation(s)
- Maria Victoria E. Botuyan
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
| | - Yves Nominé
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
| | - Xiaochun Yu
- Department of Oncology and Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
| | - Nenad Juranic
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
| | - Junjie Chen
- Department of Oncology and Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
- *Correspondence: (J.C.), (G.M.)
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Mayo Clinic and Foundation, 200 First Street S.W., Rochester, Minnesota 55905
- *Correspondence: (J.C.), (G.M.)
| |
Collapse
|
20
|
Jurvansuu J, Raj K, Stasiak A, Beard P. Viral transport of DNA damage that mimics a stalled replication fork. J Virol 2005; 79:569-80. [PMID: 15596849 PMCID: PMC538728 DOI: 10.1128/jvi.79.1.569-580.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Collapse
Affiliation(s)
- Jaana Jurvansuu
- Swiss Institute for Experimental Cancer Research and National Center of Competence in Research Molecular Oncology, Epalinges, Lausanne, Switzerland
| | | | | | | |
Collapse
|
21
|
Myre MA, O'Day DH. Dictyostelium nucleomorphin is a member of the BRCT-domain family of cell cycle checkpoint proteins. Biochim Biophys Acta Gen Subj 2005; 1675:192-7. [PMID: 15535983 DOI: 10.1016/j.bbagen.2004.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
A search of the Dictyostelium genome project database (http://dictybase.org/db/cgi-bin/blast.pl) with nucleomorphin, a protein that regulates the nuclear number, predicted it to be encoded by a larger gene containing a putative breast cancer carboxy-terminus domain (BRCT). Using RT-PCR, Northern and Western blotting we have identified a differentially expressed, 2318 bp cDNA encoding a protein isoform of Dictyostelium NumA with an apparent molecular weight of 70 kDa that we have called NumB. It contains a single amino-terminal BRCT-domain spanning residues 125-201. Starvation of shaking cultures reduces NumA expression by approximately 88+/-5.6%, whereas NumB expression increases approximately 35+/-3.5% from vegetative levels. NumC, a third isoform that is also expressed during development but not growth, remains to be characterized. These findings suggest NumB may be a member of the BRCT-domain containing cell cycle checkpoint proteins.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Rm. 3030, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
22
|
Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 2004; 24:9305-16. [PMID: 15485900 PMCID: PMC522275 DOI: 10.1128/mcb.24.21.9305-9316.2004] [Citation(s) in RCA: 401] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.
Collapse
Affiliation(s)
- Jeremy M Stark
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
23
|
Kumagai A, Kim SM, Dunphy WG. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 2004; 279:49599-608. [PMID: 15371427 DOI: 10.1074/jbc.m408353200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claspin is necessary for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. ATR possesses a regulatory partner called ATRIP. We have studied the respective roles of ATR-ATRIP and Claspin in the activation of Chk1. ATR-ATRIP bound well to various DNA templates in Xenopus egg extracts. ATR-ATRIP bound to a single-stranded DNA template was weakly active. By contrast, the ATR-ATRIP complex on a DNA template containing both single- and double-stranded regions displayed a large increase in kinase activity. This observation suggests that ATR-ATRIP normally undergoes activation upon association with specific nucleic acid structures at DNA replication forks. Without Claspin, activated ATR-ATRIP phosphorylated Chk1 weakly in a cell-free reaction. The addition of Claspin to this reaction strongly stimulated the phosphorylation of Chk1 by ATR-ATRIP. Claspin also induced significant autophosphorylation of Chk1 in the absence of ATR-ATRIP. Taken together, these results indicate that the checkpoint-dependent phosphorylation of Chk1 is a multistep process involving activation of the ATR-ATRIP complex at replication forks and presentation of Chk1 to this complex by Claspin.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
24
|
Shiozaki EN, Gu L, Yan N, Shi Y. Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for signaling. Mol Cell 2004; 14:405-12. [PMID: 15125843 DOI: 10.1016/s1097-2765(04)00238-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 01/23/2023]
Abstract
The recognition of the phosphorylated BACH1 helicase by the BRCA1 C-terminal (BRCT) repeats is important to the tumor suppressor function of BRCA1. Here we report the crystal structure of the BRCT repeats of human BRCA1 bound to a phosphorylated BACH1 peptide at 2.3 A resolution. The phosphorylated serine 990 and phenylalanine 993 of BACH1 anchor the binding to BRCA1 through specific interactions with a surface cleft at the junction of the two BRCT repeats. This surface cleft is highly conserved in BRCA1 across species, suggesting an evolutionarily conserved function of phosphopeptide recognition. Importantly, conserved amino acids critical for BACH1 binding are frequently targeted for missense mutations in breast cancer. These mutations greatly diminish the ability of BRCA1 to interact with the phosphorylated BACH1 peptide. Additional structural analysis revealed significant implications for understanding the function of the BRCT family of proteins in DNA damage and repair signaling.
Collapse
Affiliation(s)
- Eric N Shiozaki
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
25
|
Reini K, Uitto L, Perera D, Moens PB, Freire R, Syväoja JE. TopBP1 localises to centrosomes in mitosis and to chromosome cores in meiosis. Chromosoma 2004; 112:323-30. [PMID: 15138768 DOI: 10.1007/s00412-004-0277-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 03/08/2004] [Indexed: 01/24/2023]
Abstract
Topoisomerase IIbeta binding protein 1 (TopBP1), previously shown to localise to sites of DNA damage and to stalled replication forks, has been implicated in DNA replication and in DNA damage response. In this work we showed that TopBP1 was localised in structures other than stalled replication forks. In late mitosis TopBP1 localises to centrosomes in a manner similar to other DNA damage response proteins such as BRCA1 and p53. Spindle checkpoint activation does not affect this centrosomal localisation. Moreover, in the testis, we detected high levels of TopBP1 associated with meiotic prophase chromosome cores and the X-Y pair. Together, these data suggest a direct role of TopBP1 during both mitosis and meiotic prophase I.
Collapse
Affiliation(s)
- Kaarina Reini
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, 90014, University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|