1
|
Engelbrecht-Roberts M, Miles X, Vandevoorde C, de Kock M. An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities. Molecules 2025; 30:1038. [PMID: 40076263 PMCID: PMC11902069 DOI: 10.3390/molecules30051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease's burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study, spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines, including malignant breast cells (MCF-7), non-malignant cells (CHO-K1 and MCF-10A), and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage, cell viability, and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase, suggesting a block of cell cycle progression. For cell proliferation, significant effects were only observed at the concentration of 50 μg/mL of AuNPs, while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement.
Collapse
Affiliation(s)
- Monique Engelbrecht-Roberts
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Charlot Vandevoorde
- Space Radiation Biology, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Maryna de Kock
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
2
|
Moustakis C, Blanck O, Grohmann M, Albers D, Bartels D, Bathen B, Borzì GR, Broggi S, Bruschi A, Casale M, Delana A, Doolan P, Ebrahimi Tazehmahalleh F, Fabiani S, Falco MD, Fehr R, Friedlein M, Gutser S, Hamada AM, Hancock T, Köhn J, Kornhuber C, Krieger T, Lambrecht U, Lappi S, Moretti E, Mirus A, Muedder T, Plaude S, Polvika B, Ravaglia V, Righetto R, Rinaldin G, Schachner H, Scaggion A, Schilling P, Szeverinski P, Villaggi E, Walke M, Wilke L, Winkler P, Nicolay NH, Eich HT, Gkika E, Brunner TB, Schmitt D. Planning Benchmark Study for Stereotactic Body Radiation Therapy of Pancreas Carcinomas With Simultaneously Integrated Boost and Protection: Results of the DEGRO/DGMP Working Group on Stereotactic Radiation Therapy and Radiosurgery. Int J Radiat Oncol Biol Phys 2025; 121:547-557. [PMID: 39222825 DOI: 10.1016/j.ijrobp.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The proximity or overlap of planning target volume (PTV) and organs-at-risk (OARs) poses a major challenge in stereotactic body radiation therapy (SBRT) of pancreatic cancer (PACA). This international treatment planning benchmark study investigates whether simultaneous integrated boost (SIB) and simultaneous integrated protection (SIP) concepts in PACA SBRT can lead to improved and harmonized plan quality. METHODS AND MATERIALS A multiparametric specification of desired target doses (gross target volume [GTV]D50%, GTVD99%, PTVD95%, and PTV0.5cc) with 2 prescription doses of GTVD50% = 5 × 9.2Gy (46 Gy) and GTVD50% = 8 × 8.25 Gy (66 Gy) and OAR limits were distributed with planning computed tomography and contours from 3 PACA patients. In phase 1, plans were ranked using a scoring system for comparison of trade-offs between GTV/PTV and OAR. In phase 2, replanning was performed for the most challenging case and prescription with dedicated SIB and SIP contours provided for optimization after group discussion. RESULTS For all 3 cases and both phases combined, 292 plans were generated from 42 institutions in 5 countries using commonly available treatment planning systems. The GTVD50% prescription was performed by only 76% and 74% of planners within 2% for 5 and 8 fractions, respectively. The GTVD99% goal was mostly reached, while the balance between OAR and target dose showed initial SIB/SIP-like optimization strategies in about 50% of plans. For plan ranking, 149 and 217 score penalties were given for 5 and 8 fractions, pointing to improvement possibilities. For phase 2, the GTVD50% prescription was performed by 95% of planners within 2%, and GTVD99% as well as OAR doses were better harmonized with notable less score penalties. Fourteen of 19 planners improved their plan rank, 9 of them by at least 2 ranks. CONCLUSIONS Dedicated SIB/SIP concepts in combination with multiparametric prescriptions and constraints can lead to overall harmonized and high treatment plan quality for PACA SBRT. Standardized SIB/SIP treatment planning in multicenter clinical trials appears feasible after group consensus and training.
Collapse
Affiliation(s)
- Christos Moustakis
- University Hospital Leipzig, Department of Radiation Oncology, Leipzig, Germany; University Hospital Muenster, Department of Radiation Oncology, Muenster, Germany.
| | - Oliver Blanck
- University Medical Center Schleswig Holstein, Kiel, Department of Radiation Oncology, Kiel, Germany; Saphir Radiosurgery Center, Frankfurt and Kiel, Germany
| | - Maximilian Grohmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Albers
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Bartels
- Department of Radiation Oncology Harburg, Hamburg, Germany
| | - Bastian Bathen
- Department of Radiation Oncology, University Hospital, Goethe University, Frankfurt, Germany; Saphir Radiosurgery Center, Frankfurt, Germany
| | | | | | | | | | - Anna Delana
- Medical Physics Unit, "S. Chiara" Hospital, Trento, Italy
| | | | - Fatemeh Ebrahimi Tazehmahalleh
- Helios Hospital Schwerin, Department of Radiation Oncology, Schwerin, Germany; University Hospital Cologne, Department of Radiation Oncology, Cologne, Germany
| | | | - Maria Daniela Falco
- Department of Radiation Oncology, "G.D'Annunzio" University, "SS.Annunziata" Hospital, Chieti, Italy
| | - Roman Fehr
- University Medicine Rostock, Department of Radiation Oncology, Rostock, Germany
| | - Melissa Friedlein
- Department of Radiation Oncology, University Hospital Jena, Jena, Germany
| | - Susanne Gutser
- Department of Radiation Oncology, University Hospital Augsburg, Augsburg, Germany
| | - Abdul Malek Hamada
- University Medicine Rostock, Department of Radiation Oncology, Rostock, Germany
| | | | - Janett Köhn
- Department of Radiation Oncology, University Hospital, Goethe University, Frankfurt, Germany; Saphir Radiosurgery Center, Frankfurt, Germany
| | - Christine Kornhuber
- University Hospital Halle, Department of Radiation Oncology, Halle (Saale), Germany
| | - Thomas Krieger
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Ulrike Lambrecht
- Department of Radiation Oncology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Thomas Muedder
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Sandija Plaude
- West German Proton Therapy Center Essen (WPE), Essen, Germany
| | | | | | - Roberto Righetto
- Proton Therapy Unit, S. Chiara Hospital - Azienda Provinciale per I Servizi Sanitari (APSS), Trento, Italy
| | | | - Henrik Schachner
- Department of Radiation Oncology at Weilheim Hospital, Weilheim, Germany
| | | | - Philipp Schilling
- Municipal Hospital Dresden-Friedrichstadt - MVZ Radiotherapy, Dresden, Germany
| | - Philipp Szeverinski
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | | | - Mathias Walke
- University Hospital Magdeburg, Department of Radiation Oncology, Magdeburg, Germany
| | - Lotte Wilke
- University Hospital Zürich, Department of Radiation Oncology, Zürich, Switzerland
| | - Peter Winkler
- University Medical Center Graz, Department of Radiation Oncology, Graz, Austria
| | - Nils H Nicolay
- University Hospital Leipzig, Department of Radiation Oncology, Leipzig, Germany; University Hospital of Freiburg, Department of Radiation Oncology, Freiburg, Germany
| | - Hans Theodor Eich
- University Hospital Muenster, Department of Radiation Oncology, Muenster, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany; University Hospital of Freiburg, Department of Radiation Oncology, Freiburg, Germany
| | - Thomas B Brunner
- University Hospital Magdeburg, Department of Radiation Oncology, Magdeburg, Germany; University Medical Center Graz, Department of Radiation Oncology, Graz, Austria
| | - Daniela Schmitt
- University Medical Center Göttingen, Department of Radiation Oncology, Göttingen, Germany
| |
Collapse
|
3
|
Cai X, Wei Z, Shen Y, Qian L, Cai J, Yang Y, Chi R, Wang W, Yu S, Li K, Fei Y, Li C, Han Y, Liu M, Zhang J, Wang D, Jiang M, Li YG. Pulmonary artery denervation by noninvasive stereotactic radiotherapy: a pilot study in swine models of pulmonary hypertension. Nat Commun 2025; 16:558. [PMID: 39788963 PMCID: PMC11718002 DOI: 10.1038/s41467-025-55933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Catheter-based pulmonary artery denervation (PADN) has achieved promising outcomes to treat pulmonary hypertension (PH). We herein present stereotactic body radiotherapy (SBRT) as a novel noninvasive approach for PADN. A single fraction of 15 Gy, 20 Gy or 25 Gy was delivered for PADN in a thromboxane A2 (TxA2) - induced acute PH swine model. We demonstrated that PADN by 20-Gy SBRT reduced mean pulmonary artery (PA) pressure during the TxA2 challenge. All SBRT dosages led to a deeper denervation area compared with radiofrequency ablation (RFA) and reduced sympathetic neural norepinephrine synthesis in the ablation zone. Probable radiation related side effects were mostly found in animals treated with 25-Gy. In subsequent monocrotaline-induced chronic PH animals, PADN by 20-Gy SBRT resulted in more significant improvement in pulmonary hemodynamics and PA remodeling in comparison to RFA. In summary, our findings suggest that appropriate SBRT scheme could balance the efficacy and safety for PADN, potentiating to be a novel strategy to treat PH.
Collapse
Affiliation(s)
- Xingxing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhixing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichen Shen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Cai
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuli Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Runmin Chi
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunxuan Yu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keke Li
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yudong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaqin Han
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Trojani V, Grehn M, Botti A, Balgobind B, Savini A, Boda-Heggemann J, Miszczyk M, Elicin O, Krug D, Andratschke N, Schmidhalter D, van Elmpt W, Bogowicz M, de Areba Iglesias J, Dolla L, Ehrbar S, Fernandez-Velilla E, Fleckenstein J, Granero D, Henzen D, Hurkmans C, Kluge A, Knybel L, Loopeker S, Mirandola A, Richetto V, Sicignano G, Vallet V, van Asselen B, Worm E, Pruvot E, Verhoeff J, Fast M, Iori M, Blanck O. Refining Treatment Planning in STereotactic Arrhythmia Radioablation: Benchmark Results and Consensus Statement From the STOPSTORM.eu Consortium. Int J Radiat Oncol Biol Phys 2025; 121:218-229. [PMID: 39122095 DOI: 10.1016/j.ijrobp.2024.07.2331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE STereotactic Arrhythmia Radioablation (STAR) showed promising results in patients with refractory ventricular tachycardia. However, clinical data are scarce and heterogeneous. The STOPSTORM.eu consortium was established to investigate and harmonize STAR in Europe. The primary goal of this benchmark study was to investigate current treatment planning practice within the STOPSTORM project as a baseline for future harmonization. METHODS AND MATERIALS Planning target volumes (PTVs) overlapping extracardiac organs-at-risk and/or cardiac substructures were generated for 3 STAR cases. Participating centers were asked to create single-fraction treatment plans with 25 Gy dose prescriptions based on in-house clinical practice. All treatment plans were reviewed by an expert panel and quantitative crowd knowledge-based analysis was performed with independent software using descriptive statistics for International Commission on Radiation Units and Measurements report 91 relevant parameters and crowd dose-volume histograms. Thereafter, treatment planning consensus statements were established using a dual-stage voting process. RESULTS Twenty centers submitted 67 treatment plans for this study. In most plans (75%) intensity modulated arc therapy with 6 MV flattening filter free beams was used. Dose prescription was mainly based on PTV D95% (49%) or D96%-100% (19%). Many participants preferred to spare close extracardiac organs-at-risk (75%) and cardiac substructures (50%) by PTV coverage reduction. PTV D0.035cm3 ranged from 25.5 to 34.6 Gy, demonstrating a large variety of dose inhomogeneity. Estimated treatment times without motion compensation or setup ranged from 2 to 80 minutes. For the consensus statements, a strong agreement was reached for beam technique planning, dose calculation, prescription methods, and trade-offs between target and extracardiac critical structures. No agreement was reached on cardiac substructure dose limitations and on desired dose inhomogeneity in the target. CONCLUSIONS This STOPSTORM multicenter treatment planning benchmark study not only showed strong agreement on several aspects of STAR treatment planning, but also revealed disagreement on others. To standardize and harmonize STAR in the future, consensus statements were established; however, clinical data are urgently needed for actionable guidelines for treatment planning.
Collapse
Affiliation(s)
- Valeria Trojani
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Andrea Botti
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Brian Balgobind
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | | | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcin Miszczyk
- IIIrd Radiotherapy and Chemotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Collegium Medicum - Faculty of Medicine, WSB University, Dąbrowa Górnicza, Poland
| | - Olgun Elicin
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Krug
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Schmidhalter
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Lukasz Dolla
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Jens Fleckenstein
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Domingo Granero
- Department of Radiation Oncology, Hospital General Valencia, Valencia, Spain
| | - Dominik Henzen
- Department of Radiation Oncology and Division of Medical Radiation Physics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Electrical Engineering and Department of Applied Physics, Technical University Eindhoven, The Netherlands
| | - Anne Kluge
- Department for Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Knybel
- Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
| | - Sandy Loopeker
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gianluisa Sicignano
- Department of Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Veronique Vallet
- Department of Radiophysics, Lausanne University Hospital, Lausanne, Switzerland
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esben Worm
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joost Verhoeff
- Department of Radiation Oncology, Amsterdam UMC, Radiation Oncology, Amsterdam, The Netherlands; Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Iori
- Department of Medical Physics, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center of Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
5
|
Van Asselt N, Christensen N. Initial treatment experience obtained with the real-time predictive motion tracking radiotherapy platform Synchrony: A pilot study. Vet Radiol Ultrasound 2024; 65:745-749. [PMID: 39160652 DOI: 10.1111/vru.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
This pilot study presents initial experience obtained with a real-time predictive motion tracking platform called Synchrony mounted on the Radixact radiotherapy device. Synchrony radiotherapy treatments were offered as an alternative to surgical excision for primary pulmonary carcinomas as well as in dogs in a suspected oligometastatic disease state. All dogs were treated with three fractions of 8 Gy. Six dogs with pulmonary targets were successfully treated, while we were unable to treat abdominal targets with implanted fiducials. Cranial targets showed minimal movement, while targets located adjacent to the diaphragm showed a large amplitude of movement. No acute or late clinically apparent side effects were noted in any of the dogs that received radiation therapy. A strong partial response with minimal pneumonitis was seen in follow-up imaging of the one dog where imaging was available. Synchrony motion tracking will continue to be investigated for efficacy.
Collapse
Affiliation(s)
- Nathaniel Van Asselt
- Department of Surgical Sciences, University of Wisconsin Veterinary Care, Madison, Wisconsin, USA
| | - Neil Christensen
- Department of Surgical Sciences, University of Wisconsin Veterinary Care, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Zwart K, Braat M, van der Baan F, May A, Roodhart J, Al-Toma D, Otten J, Los M, Oostergo T, Fijneman R, van Dodewaard-de Jong J, Punt C, Meijer G, Lagendijk J, Koopman M, Intven M, Bol G. Feasibility and safety of single-fraction sub-ablative radiotherapy with systemic therapy in colorectal cancer patients with ≤ 10 metastases: A multicenter pilot study (NCT05375708). Clin Transl Radiat Oncol 2024; 49:100874. [PMID: 39885896 PMCID: PMC11780375 DOI: 10.1016/j.ctro.2024.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 10/05/2024] [Indexed: 02/01/2025] Open
Abstract
Colorectal cancer patients with ≤10 unresectable metastases were treated with single-fraction sub-ablative radiotherapy in addition to standard of care systemic therapy in a single-arm, open-label, multicenter, pilot study (SIRIUS) to assess feasibility and safety. Results indicate that radiotherapy combined with systemic therapy is feasible and safe in this population.
Collapse
Affiliation(s)
- K. Zwart
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M.N.G.J.A. Braat
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F.H. van der Baan
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A.M. May
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J.M.L. Roodhart
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - D. Al-Toma
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J.M.M.B. Otten
- Department of Oncology, Meander Medical Centre, Amersfoort, the Netherlands
| | - M. Los
- Department of Oncology, St. Antonius, Nieuwegein, the Netherlands
| | - T. Oostergo
- Department of Oncology, Diakonessenhuis, Utrecht, the Netherlands
| | - R.J.A. Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - C.J.A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - G. Meijer
- Department of Radiotherapy, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J.J.W. Lagendijk
- Department of Radiotherapy, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M. Koopman
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M. Intven
- Department of Radiotherapy, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - G.M. Bol
- Department of Medical Oncology, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Radiotherapy, Imaging & Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Fenwick JD, Mayhew C, Jolly S, Amos RA, Hawkins MA. Navigating the straits: realizing the potential of proton FLASH through physics advances and further pre-clinical characterization. Front Oncol 2024; 14:1420337. [PMID: 39022584 PMCID: PMC11252699 DOI: 10.3389/fonc.2024.1420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.
Collapse
Affiliation(s)
- John D. Fenwick
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christopher Mayhew
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Richard A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Clinical Oncology, Radiotherapy Department, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Olovsson N, Wikström K, Flejmer A, Ahnesjö A, Dasu A. Impact of setup and geometric uncertainties on the robustness of free-breathing photon radiotherapy of small lung tumors. Phys Med 2024; 123:103396. [PMID: 38943799 DOI: 10.1016/j.ejmp.2024.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
PURPOSE Respiratory motion and patient setup error both contribute to the dosimetric uncertainty in radiotherapy of lung tumors. Managing these uncertainties for free-breathing treatments is usually done by margin-based approaches or robust optimization. However, breathing motion can be irregular and concerns have been raised for the robustness of the treatment plans. We have previously reported the dosimetric effects of the respiratory motion, without setup uncertainties, in lung tumor photon radiotherapy using free-breathing images. In this study, we include setup uncertainty. METHODS Tumor positions from cine-CT images acquired in free-breathing were combined with per-fraction patient shifts to simulate treatment scenarios. A total of 14 patients with 300 tumor positions were used to evaluate treatment plans based on 4DCT. Four planning methods aiming at delivering 54 Gy as median tumor dose in three fractions were compared. The planning methods were denoted robust 4D (RB4), isodose to the PTV with a central higher dose (ISD), the ISD method normalized to the intended median tumor dose (IRN) and homogeneous fluence to the PTV (FLU). RESULTS For all planning methods 95% of the intended dose was achieved with at least 90% probability with RB4 and FLU having equal CTV D50% values at this probability. FLU gave the most consistent results in terms of CTV D50% spread and dose homogeneity. CONCLUSIONS Despite the simulated patient shifts and tumor motions being larger than observed in the 4DCTs the dosimetric impact was suggested to be small. RB4 or FLU are recommended for the planning of free-breathing treatments.
Collapse
Affiliation(s)
- Nils Olovsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Kenneth Wikström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Flejmer
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden; Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexandru Dasu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| |
Collapse
|
9
|
Faletti C, Van Asselt N. Stereotactic radiotherapy for advanced canine anal sac adenocarcinoma: an exploratory study. Vet Radiol Ultrasound 2024; 65:31-35. [PMID: 38111230 DOI: 10.1111/vru.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/20/2023] Open
Abstract
For dogs with anal sac adenocarcinoma (ASAC), metastasis to intra-abdominal and pelvic lymph nodes occurs early in the disease course. Death is usually related to locoregional progression. Surgical excision is the treatment of choice, but may not be possible in advanced cases. Dogs treated with RT in the gross disease setting showed a 38%-75% overall response rate, but side effects to organs at risk in this area (especially the colon, bladder, and spinal cord) were reported. Stereotactic radiation therapy (SRT) utilizes highly conformal treatment planning with rapid dose fall-off and hypofractionation. SRT may help to reduce the risk of late side effects of radiation while also creating a larger biological effect on ASACs. A primary aim of this prospective, descriptive, exploratory study was to describe the safety and feasibility of an SRT protocol in a small sample of dogs with ASAC, using objective and subjective measures to monitor acute and late side effects. A secondary aim was to describe the anti-tumor response of the SRT protocol using CT at 3- and 6 months posttreatment. Five dogs completed the radiation protocol. Four had follow-up CT characteristics of complete response (1), partial response (2), and stable disease (1). Minimal acute side effects were observed. Despite some large tumor volumes, constraints for OAR were achieved in all but the spinal cord for one patient. Findings indicated that SRT is a safe and feasible treatment for dogs with ACAC. Future studies are warranted to compare patient outcomes for SRT versus other treatments.
Collapse
Affiliation(s)
- Claire Faletti
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathaniel Van Asselt
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Thiele M, Galonske K, Ernst I. Comparison of two optimization algorithms (VOLO TM , SEQU) for CyberKnife® treatment of acoustic neuromas, lung metastases, and liver metastases. J Appl Clin Med Phys 2023; 24:e14144. [PMID: 37672349 PMCID: PMC10691623 DOI: 10.1002/acm2.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
INTRODUCTION Two optimization algorithms VOLO™ and sequential optimization algorithm (SEQU) are compared in the Precision® treatment planning system from Accuray® for stereotactic radiosurgery and stereotactic body radiotherapy (SBRT) treatment plans. The aim is to compare the two algorithms to assess if VOLO™ is better of SEQU in certain treatment site. MATERIALS AND METHODS Sixty clinical treatment cases were compared. Entities include Acoustic neuroma (AN), lung metastases, and liver metastases. In each entity, 10 SEQU and 10 VOLO™ treatment plans were optimized. The Ray-Tracing calculation algorithm was used for all treatment plans and the treatments were planned exclusively with fixed cones (5-50 mm). The number of nodes, beams, total MU, and treatment time were compared. Conformity index (CI), new conformity index (nCI), homogeneity index (HI), gradient index (GI), and target coverage were examined for agreement. Dmin , Dmean , Dmax , D100%, D98%, and D2% dose in the target volume as well as exposure to organs at risk was checked. To determine peripheral doses, the isodose volumes from V10% to V98% were evaluated. RESULTS AN treatment plans showed significant differences for the number of nodes, beams, total MU, treatment time, D98%, D100% for the target volume, and the doses for all organs at risk. VOLO™ achieved better results on average. Total MU, treatment time, coverage, and D98% are significantly better for VOLO™ for lung metastases. For liver metastases, a significant reduction in number of nodes, total MU, and treatment time was observed for VOLO™ plans. The mean target coverage increased slightly with VOLO™, while the mean CI deteriorated slightly. The averages of Dmin , Dmean , D98%, D100%, and V80% resulted in a significant increase for VOLO™. CONCLUSION The results of the present study indicate that VOLO™ should be used in place of SEQU as a standard for AN cases moving forward. Despite the lack of significance in the lung and liver cases, VOLO™ optimization is recommended because OAR sparing was similar, but coverage, Dmin , and Dmean were increased, and thus better tumor control can be expected.
Collapse
Affiliation(s)
| | | | - Iris Ernst
- German Center for Stereotaxy and Precision IrradiationSoestGermany
| |
Collapse
|
11
|
Sallabanda M, Vera JA, Pérez JM, Matute R, Montero M, de Pablo A, Cerrón F, Valero M, Castro J, Mazal A, Miralbell R. Five-Fraction Proton Therapy for the Treatment of Skull Base Chordomas and Chondrosarcomas: Early Results of a Prospective Series and Description of a Clinical Trial. Cancers (Basel) 2023; 15:5579. [PMID: 38067283 PMCID: PMC10705113 DOI: 10.3390/cancers15235579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2024] Open
Abstract
(1) Background: Our purpose is to describe the design of a phase II clinical trial on 5-fraction proton therapy for chordomas and chondrosarcomas of the skull base and to present early results in terms of local control and clinical tolerance of the first prospective series. (2) Methods: A dose of 37.5 GyRBE in five fractions was proposed for chordomas and 35 GyRBE in five fractions for chondrosarcomas. The established inclusion criteria are age ≥ 18 years, Karnofsky Performance Status ≥ 70%, clinical target volume up to 50 cc, and compliance with dose restrictions to the critical organs. Pencil beam scanning was used for treatment planning, employing four to six beams. (3) Results: A total of 11 patients (6 chordomas and 5 chondrosarcomas) were included. The median follow-up was 12 months (9-15 months) with 100% local control. Acute grade I-II headache (64%), grade I asthenia and alopecia (45%), grade I nausea (27%), and grade I dysphagia (18%) were described. Late toxicity was present in two patients with grade 3 temporal lobe necrosis. (4) Conclusions: Hypofractionated proton therapy is showing encouraging preliminary results. However, to fully assess the efficacy of this therapeutic approach, future trials with adequate sample sizes and extended follow-ups are necessary.
Collapse
Affiliation(s)
- Morena Sallabanda
- Centro de Protonterapia Quironsalud, Pozuelo de Alarcón, 28223 Madrid, Spain; (J.A.V.); (J.M.P.); (A.M.); (R.M.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baty M, Pasquier D, Gnep K, Castelli J, Delaby N, Lacornerie T, de Crevoisier R. Achievable Dosimetric Constraints in Stereotactic Reirradiation for Recurrent Prostate Cancer. Pract Radiat Oncol 2023; 13:e515-e529. [PMID: 37295723 DOI: 10.1016/j.prro.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Stereotactic body radiation therapy has been proposed as a salvage treatment for recurrent prostate cancer after irradiation. One crucial issue is choosing appropriate dose-volume constraints (DVCs) during planning. The objectives of this study were to (1) quantify the proportion of patients respecting the DVCs according to the Urogenital Tumor Study Group GETUG-31 trial, testing 36 Gy in six fractions, (2) explain geometrically why the DVCs could not be respected, and (3) propose the most suitable DVCs. METHODS AND MATERIALS This retrospective dosimetric analysis included 141 patients treated for recurrent prostate cancer with Cyberknife (Accuray), according to GETUG-31 DVCs: V95% ≥ 95% for the planning target volume (PTV), V12Gy < 20% and V27Gy < 2 cc for the rectum, and V12Gy < 15% and V27Gy < 5 cc for the bladder. The percentage of patients not respecting the DVCs was quantified. Correlations between the DVCs and anatomic structures were examined. New DVCs were proposed. RESULTS Only 19% of patients respected all DVCs, with a mean PTV of 18.5 cc (range, 3-48 cc), although the mean PTV was 40.5 cc (range, 3-174 cc) in the whole series. A total of 98% of the patients with a clinical target volume (CTV)/prostate ratio >0.5 could not respect the DVCs in the organs at risk. The target coverage and organ-at-risk sparing decreased significantly with increase in the values of PTV, CTV, CTV/prostate ratio, the overlapping volume between the PTV and bladder wall and between the PTV and rectal wall. Threshold values of PTV, >20 cc and 40 cc, allowed for the PTV and bladder DVCs, respectively. To improve DVC respect in case of large target volume, we proposed the following new DVCs: V12Gy < 25% and 25% and V27Gy < 2 cc and 5 cc for the rectum and bladder, respectively. CONCLUSIONS GETUG-31 DVCs are achievable only for small target volumes (CTV more than half of the prostate). For a larger target volume, new DVCs have been proposed.
Collapse
Affiliation(s)
- Manon Baty
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France.
| | - David Pasquier
- Department of Radiation Oncology, Center Oscar Lambret, Lille University, France
| | - Khemara Gnep
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France
| | - Joel Castelli
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France; Laboratoire Traitement du Signal et de l'Image, Rennes, France
| | - Nolwenn Delaby
- Department of Medical Physics, Center Eugène Marquis, Rennes, France
| | - Thomas Lacornerie
- Department of Radiation Oncology, Center Oscar Lambret, Lille, France
| | - Renaud de Crevoisier
- Department of Radiotherapy, Center Eugène Marquis, Rennes, France; Laboratoire Traitement du Signal et de l'Image, Rennes, France; Laboratoire Traitement du Signal et de l'Image, University of Rennes, Rennes, France
| |
Collapse
|
13
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 PMCID: PMC11410007 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
14
|
Shah SN, Shah SS, Hosford-Skapof M, Shah SA. Salvage Radiosurgery for Recurrent Cardiac Sarcoma: A Case Report. Cureus 2023; 15:e44990. [PMID: 37822426 PMCID: PMC10564393 DOI: 10.7759/cureus.44990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Primary cardiac sarcoma is a rare malignant tumor that arises from the cardiac myocardium. Surgical resection is the standard of care, and median survival ranges from 6 to 12 months. The role of salvage chemotherapy and radiation is not well defined. A 53-year-old female presented with acute congestive heart failure and underwent complete surgical resection of an undifferentiated pleomorphic sarcoma of the left atrium, followed by six cycles of adjuvant doxorubicin/hydroxydaunorubicin and ifosfamide. An MRI scan demonstrated an asymptomatic, 24 mm, recurrent atrial mass. The patient was treated with frameless robotic radiation therapy over three weeks. The tumor was treated with a dose of 72 Gy in 15 fractions to the 84% isodose line. A repeat cardiac MRI at four weeks showed in-field local progression with greater protrusion into the left atrium and invasion of the left ventricle. The patient therefore elected to proceed with salvage single-fraction frameless robotic radiosurgery. 25 Gy in one fraction was prescribed to the 76% isodose line. She tolerated treatment well without any acute toxicity and was subsequently treated with a variety of chemotherapy regimens, including tyrosine kinase inhibitors (TKIs) and immunotherapy. Unfortunately, the patient relapsed with metastases in the spine and pelvis. She underwent palliative radiation therapy at multiple bony sites with a partial response. She resumed chemotherapy treatment with TKIs but passed away due to septic shock without evidence of local failure. Fractionated SBRT was ineffective at controlling our patient's cardiac sarcoma. Our patient demonstrated local control of disease at 12 months after salvage of 25 Gy in one fraction of radiosurgery without any evidence of cardiac toxicity. High-dose single-fraction radiosurgery is a reasonable palliative option for long-term local control of unresectable cardiac sarcomas.
Collapse
Affiliation(s)
- Sophia N Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | - Sohan S Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| | | | - Sunjay A Shah
- Radiation Oncology, Christiana Care Health System, Newark, USA
| |
Collapse
|
15
|
Ng JPZ, Lam WYH, Pow EHN, Botelho MG. A qualitative analysis of patient's lived experience on their treatment journey with nasopharyngeal carcinoma. J Dent 2023; 134:104518. [PMID: 37088259 DOI: 10.1016/j.jdent.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVE To explore and analyse the perspective of patients undergoing and recovering from nasopharyngeal carcinoma (NPC) therapy. METHODS Thirty-three NPC patients at different stages of treatment were enrolled. Seven were actively undergoing treatment, 13 were immediately post-treatment, and 13 were long-term. Patients were interviewed using a structured questionnaire based on a review of the literature that covered different phases of their treatment journey. The interview was recorded and transcribed for qualitative data analysis using a thematic inductive-deductive approach. RESULTS Three main domains embracing aspects of NPC patients' experiences were identified; side effects, psychosocial well-being, and the role and support of healthcare workers. Side effects were experienced orally, locally, and systemically. Oral side effects (oral mucositis, xerostomia, altered taste, dysphagia) were the most significant challenge experienced by NPC patients. Locally, skin injury (desquamation, fibrosis, darkening of the skin, erythema, pruritus, and swelling around the neck region) and hair loss, resolved after cessation of therapy. Systemic side effects from the treatment were related to general weakness, weight loss and nausea. The psychosocial well-being of NPC patients was influenced by a range of issues including support (healthcare workers and family), pain management, functional limitations, nutritional needs, perceived level of information, emotion, and finances. CONCLUSION NPC patients were significantly impacted based on the diagnosis, treatment and recovery phase affecting them locally, systemically, and psychologically. The role of family and healthcare staff was also influential in the overall treatment experience, and they have key roles to play in facilitating patients along their treatment journey. CLINICAL SIGNIFICANCE Oral and general side effects from NPC treatment have significant impact on patients physical and emotional well-being. It is important for healthcare providers to have insights of these so as to understand and support patients during their treatment journey and recovery and be able to empathetically facilitate their clinical management.
Collapse
Affiliation(s)
- Joanne Pui Zhee Ng
- Graduate Student in Prosthodontic, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Walter Yu Hang Lam
- Clinical Assistant Professor in Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Edmond Ho Nang Pow
- Clinical Associate Professor in Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Michael G Botelho
- Clinical Professor in Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Camps-Malea A, Pointreau Y, Chapet S, Calais G, Barillot I. Stereotactic body radiotherapy for mediastinal lymph node with CyberKnife®: Efficacy and toxicity. Cancer Radiother 2023; 27:225-232. [PMID: 37080855 DOI: 10.1016/j.canrad.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/22/2023]
Abstract
PUPRPOSE Stereotactic body radiotherapy is more and more used for treatment of oligometastatic mediastinal lymph nodes. The objective of this single-centre study was to evaluate its efficacy in patients with either a locoregional recurrence of a pulmonary or oesophageal cancer or with distant metastases of extrathoracic tumours. PATIENTS AND METHODS Patients with oligometastatic mediastinal lymph nodes treated with CyberKnife from June 2010 to September 2020 were screened. The primary endpoint was to assess local progression free survival and induced toxicity. Secondary endpoints were overall survival and progression free survival. The delay before introduction of systemic treatment in the subgroup of patients who did not receive systemic therapy for previous progression was also evaluated. RESULTS Fifty patients were included: 15 with a locoregional progression of a thoracic primary tumour (87% pulmonary) and 35 with mediastinal metastasis of especially renal tumour (29%). Median follow-up was 27 months (6-110 months). Local progression free survival at 6, 12 and 18 months was respectively 94, 88 and 72%. The rate of local progression was significantly lower in patients who received 36Gy in six fractions (66% of the cohort) versus other treatment schemes. Two grade 1 acute oesophagitis and one late grade 2 pulmonary fibrosis were described. Overall survival at 12, 18 and 24 months was respectively 94, 85 and 82%. Median progression free survival was 13 months. Twenty-one patients were treated by stereotactic body irradiation alone without previous history of systemic treatment. Among this subgroup, 11 patients (52%) received a systemic treatment following stereotactic body radiotherapy with a median introduction time of 17 months (5-52 months) and 24% did not progress. CONCLUSION Stereotactic body irradiation as treatment of oligometastatic mediastinal lymph nodes is a well-tolerated targeted irradiation that leads to a high control rate and delay the introduction of systemic therapy in selected patients.
Collapse
Affiliation(s)
- A Camps-Malea
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France.
| | - Y Pointreau
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France; Institut Inter-régional de cancérologie, centre Jean-Bernard, clinique Victor-Hugo, Le Mans, France
| | - S Chapet
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - G Calais
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - I Barillot
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| |
Collapse
|
17
|
A dosimetric comparison for SBRT plans of localized prostate cancer between Cyberknife and Varian Truebeam STX device. Appl Radiat Isot 2023; 192:110617. [PMID: 36538872 DOI: 10.1016/j.apradiso.2022.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
As the Stereotactic Body Radiotherapy (SBRT) approach began to increase in treating patients with localized prostate cancer, it became necessary to investigate which methods used in practice were better. The aim of this study is to perform a dosimetric comparison of the advantages and disadvantages of SBRT treatments for localized prostate cancer delivered by CyberKnife (CK) and Varian Truebeam STX (FF and FFF). Seventeen intermediate and high-risk patients with localized prostate cancer were included in the study. SBRT plans for the CK system and Varian Truebeam STX systems with and without Flattening Filters (Tru-FF and Tru-FFF) were prepared for each patient. Plans prepared for each patient were planned at a fraction dose of 6.7 Gy at 6 MV energy and a target dose of 33.5 Gy in 5 fractions. For all plans, cumulative dose-volume histograms (DVHs) were generated for target volumes and organs at risk (OAR). The maximum doses of PTV (41 Gy) in CK plans are higher than the maximum doses (35 Gy) in VMAT plans prepared with Tru-FF or Tru-FFF beams. The mean dose of the rectal wall (10.06 ± 2.40Gy for CK) is still relatively low compared to other plans (13.46 ± 2.16 Gy for Tru-FF and 13.61 ± 2.32 Gy for Tru-FFF). The bladder wall (14 Gy for CK, 26 Gy for Tru-FF and Tru-FFF) and femoral head (6.8 Gy for CK, 9 Gy for Tru-FF and 9.4 Gy Tru-FFF) doses were also lower for CK plans. The CK plans provide better tumour control due to low doses in critical organs and high target doses than the Tru-FF or Tru-FFF plans. It was observed that CK and VMAT plans for SBRT with 6 MV photon beams provided acceptable results in term of treatment planning criteria such as Conformity Index and Homogeneity Index. It is recommended to use a target tracking system to provide an accurate and reliable SBRT treatment with VMAT and CK techniques.
Collapse
|
18
|
Olofsson N, Wikström K, Flejmer A, Ahnesjö A, Dasu A. Dosimetric robustness of lung tumor photon radiotherapy evaluated from multiple event CT imaging. Phys Med 2022; 103:1-10. [PMID: 36182764 DOI: 10.1016/j.ejmp.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Intrafractional respiratory motion is a concern for lung tumor radiotherapy but full evaluation of its impact is hampered by the lack of images representing the true motion. This study presents a novel evaluation using free-breathing images acquired over realistic treatment times to study the dosimetric impact of respiratory motion in photon radiotherapy. METHODS Cine-CT images of 14 patients with lung cancer acquired during eight minutes of free-breathing at three occasions were used to simulate dose tracking of four different planning methods. These methods aimed to deliver 54 Gy in three fractions to D50% of the target and were denoted as robust 4D (RB4), homogeneous fluence to the ITV (FLU) and an isodose prescription to the ITV with a high central dose (ISD), concurrently renormalized (IRN). Differences in dose coverage probability and homogeneity between the methods were quantified. Correlations between underdosage and attributes regarding the tumor and its motion were investigated. RESULTS Despite tumor motion amplitudes being larger than in the 4DCT all but FLU achieved the intended CTV D50% for the cohort average. For all methods but IRN at least 93% of the patients would have received 95% of the intended dose. No differences in D50% were found between RB4 and ISD nor IRN. However, RB4 led to better homogeneity. CONCLUSIONS Tumor motion in free-breathing not covered by the 4DCT had a small impact on dose. The RB4 is recommended for planning of free-breathing treatments. No factor was found that consistently correlated dose degradation with patient or motion attributes.
Collapse
Affiliation(s)
- Nils Olofsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kenneth Wikström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Anna Flejmer
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexandru Dasu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| |
Collapse
|
19
|
Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An "All-in-One" Multicenter-Multidisciplinary Practical Summary. Curr Oncol 2022; 29:7021-7050. [PMID: 36290829 PMCID: PMC9600677 DOI: 10.3390/curroncol29100552] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The safe use of radiotherapy (RT) requires compliance with dose/volume constraints (DVCs) for organs at risk (OaRs). However, the available recommendations are sometimes conflicting and scattered across a number of different documents. Therefore, the aim of this work is to provide, in a single document, practical indications on DVCs for OaRs in external beam RT available in the literature. MATERIAL AND METHODS A multidisciplinary team collected bibliographic information on the anatomical definition of OaRs, on the imaging methods needed for their definition, and on DVCs in general and in specific settings (curative RT of Hodgkin's lymphomas, postoperative RT of breast tumors, curative RT of pediatric cancers, stereotactic ablative RT of ventricular arrythmia). The information provided in terms of DVCs was graded based on levels of evidence. RESULTS Over 650 papers/documents/websites were examined. The search results, together with the levels of evidence, are presented in tabular form. CONCLUSIONS A working tool, based on collected guidelines on DVCs in different settings, is provided to help in daily clinical practice of RT departments. This could be a first step for further optimizations.
Collapse
|
20
|
Active breathing control guided stereotactic body ablative radiotherapy for management of liver metastases from colorectal cancer. Acta Gastroenterol Belg 2022; 85:469-475. [DOI: 10.51821/85.3.10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Liver metastases may occur during the course of several cancer types and may be associated with significant morbidity and mortality. There is paucity of data regarding the utility of Active Breathing Control (ABC) guided Stereotactic Ablative Body Radiotherapy (SABR) for management of Liver Metastases from Colorectal Cancer (LMCC). Our aim is to investigate the role of ABC guided SABR for management of liver metastases
Patients and methods: 42 liver metastases of 29 patients treated with ABC guided SABR between February 2015 and October 2018 were retrospectively assessed for local control (LC), overall survival (OS), and toxicity outcomes. Primary endpoint was LC. Secondary endpoints were OS and treatment toxicity.
Results: At a median follow up duration of 16 months (range: 9-74 months), median OS was 20 months and 3 patients were still alive at last follow up. 1-year OS was 83% and 2-year OS was 28%. LC rates were 92% and 61% at 1 and 2 years, respectively. Comparative analysis of Biological Effective Dose (BED) values revealed that higher BED10 values were associated with higher LC rates (p=0.007). While LC rates for BED10 ≥ 100 Gray (Gy) were 94% and 86% at 1 and 2 years, corresponding LC rates for BED10 < 100 Gy were 89% and 36%, respectively with statistical significance (p=0.007). Assessment of acute and late toxicity outcomes revealed that most common toxicity was fatigue, however, no patients had ≥ grade 3 toxicity.
Conclusion: ABC guided SABR is an effective and safe treatment modality for LMCC management.
Collapse
|
21
|
Rogers S, Baumert B, Blanck O, Böhmer D, Boström J, Engenhart-Cabillic R, Ermis E, Exner S, Guckenberger M, Habermehl D, Hemmatazad H, Henke G, Lohaus F, Lux S, Mai S, Minasch D, Rezazadeh A, Steffal C, Temming S, Wittig A, Zweifel C, Riesterer O, Combs S. Stereotactic radiosurgery and radiotherapy for resected brain metastases: current pattern of care in the Radiosurgery and Stereotactic Radiotherapy Working Group of the German Association for Radiation Oncology (DEGRO). Strahlenther Onkol 2022; 198:919-925. [PMID: 36006436 DOI: 10.1007/s00066-022-01991-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Preoperative stereotactic radiosurgery (SRS) of brain metastases may achieve similar local control and better leptomeningeal control rates than postoperative fractionated stereotactic radiotherapy (FSRT) in patients treated with elective metastasectomy. To plan a multicentre trial of preoperative SRS compared with postoperative FSRT, a survey of experts was conducted to determine current practice. METHODS A survey with 15 questions was distributed to the DEGRO Radiosurgery and Stereotactic Radiotherapy Working Group. Participants were asked under what circumstances they offered SRS, FSRT, partial and/or whole brain radiotherapy before or after resection of a brain metastasis, as well as the feasibility of preoperative stereotactic radiosurgery and neurosurgical resection within 6 days. RESULTS Of 25 participants from 24 centres, 22 completed 100% of the questions. 24 respondents were radiation oncologists and 1 was a neurosurgeon. All 24 centres have one or more dedicated radiosurgery platform and all offer postoperative FSRT. Preoperative SRS is offered by 4/24 (16.7%) centres, and 9/24 (37.5%) sometimes recommend single-fraction postoperative SRS. Partial brain irradiation is offered by 8/24 (33.3%) centres and 12/24 (50%) occasionally recommend whole-brain irradiation. Two centres are participating in clinical trials of preoperative SRS. SRS techniques and fractionation varied between centres. CONCLUSION All responding centres currently offer postoperative FSRT after brain metastasectomy. Approximately one third offer single-fraction postoperative SRS and four already perform preoperative SRS. With regard to potential co-investigators, 18 were identified for the PREOP‑2 multicentre trial, which will randomise between preoperative SRS and postoperative FSRT.
Collapse
Affiliation(s)
- S Rogers
- Radio-Onkologie-Zentrum KSA-KSB, Kantonsspital Aarau, 5001, Aarau, Switzerland.
| | - B Baumert
- Kantonsspital Graubünden, 7000, Chur, Switzerland
| | - O Blanck
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - D Böhmer
- Charite University Medicine, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - J Boström
- Gamma Knife Zentrum, 44892, Bochum, Germany
| | | | - E Ermis
- Bern University Hospital (Inselspital), 3010, Bern, Switzerland
| | - S Exner
- Strahlenzentrum Hamburg, 22419, Hamburg, Germany
| | | | | | - H Hemmatazad
- Bern University Hospital (Inselspital), 3010, Bern, Switzerland
| | - G Henke
- Kantonsspital St. Gallen, 9000, St Gallen, Switzerland
| | - F Lohaus
- University Hospital Dresden, 01307, Dresden, Germany
| | - S Lux
- Radprax Strahlentherapie, 42697, Solingen, Germany
| | - S Mai
- Universitätsmedizin Mannheim, 68167, Mannheim, Germany
| | - D Minasch
- University Hospital Innsbruck, 6020, Innsbruck, Austria
| | - A Rezazadeh
- University Hospital of Cologne, 50937, Cologne, Germany
| | - C Steffal
- KFJ/SMZ-Süd Vienna; Klinik Favoriten, 1100, Vienna, Austria
| | - S Temming
- Robert Janker Klinik, 53129, Bonn, Germany
| | - A Wittig
- University Hospital Jena, 07743, Jena, Germany
| | - C Zweifel
- Kantonsspital Graubünden, 7000, Chur, Switzerland
| | - O Riesterer
- Radio-Onkologie-Zentrum KSA-KSB, Kantonsspital Aarau, 5001, Aarau, Switzerland
| | - S Combs
- Kinik an der Isaar, Technisches Universität München, Munich, Germany
| |
Collapse
|
22
|
Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F. Treatment Planning for Cardiac Radioablation: Multicenter Multiplatform Benchmarking for the XXX Trial. Int J Radiat Oncol Biol Phys 2022; 114:360-372. [PMID: 35716847 DOI: 10.1016/j.ijrobp.2022.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for patients with refractory ventricular tachycardia (VT) unsuitable for catheter ablation. The quality of treatment planning depends on dose specifications, platform capabilities, and experience of the treating staff. To harmonize the treatment planning, benchmarking of this process is necessary for multicenter clinical studies such as the XXX trial. METHODS AND MATERIALS Planning computed tomography data and consensus structures from three patients were sent to five academic centers for independent plan development using a variety of platforms and techniques with the XXX study protocol serving as guideline. Three-dimensional dose distributions and treatment plan details were collected and analyzed. In addition, an objective relative plan quality ranking system for VT treatments was established. RESULTS For each case, three coplanar volumetric modulated arc (VMAT) plans for C-arm linear accelerators (LINAC) and three non-coplanar treatment plans for robotic arm LINAC were generated. All plans were suitable for clinical applications with minor deviations from study guidelines in most centers. Eleven of 18 treatment plans showed maximal one minor deviation each for target and cardiac substructures. However, dose-volume histograms showed substantial differences: in one case, the PTV≥30Gy ranged from 0.0% to 79.9% and the RIVA V14Gy ranged from 4.0% to 45.4%. Overall, the VMAT plans had steeper dose gradients in the high dose region, while the plans for the robotic arm LINAC had smaller low dose regions. Thereby, VMAT plans required only about half as many monitor units, resulting in shorter delivery times, possibly an important factor in treatment outcome. CONCLUSIONS Cardiac radioablation is feasible with robotic arm and C-arm LINAC systems with comparable plan quality. Although cross-center training and best practice guidelines have been provided, further recommendations, especially for cardiac substructures, and ranking of dose guidelines will be helpful to optimize cardiac radioablation outcomes.
Collapse
Affiliation(s)
- Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Nicolaus Andratschke
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Michael C Mayinger
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boldizsar Kovacs
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Boris Rudic
- Medizinische Klinik, Universitätsmedizin Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Paula Bergengruen
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annina Stauber
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Franzetti J, Volpe S, Catto V, Conte E, Piccolo C, Pepa M, Piperno G, Camarda AM, Cattani F, Andreini D, Tondo C, Jereczek-Fossa BA, Carbucicchio C. Stereotactic Radiotherapy Ablation and Atrial Fibrillation: Technical Issues and Clinical Expectations Derived From a Systematic Review. Front Cardiovasc Med 2022; 9:849201. [PMID: 35592393 PMCID: PMC9110686 DOI: 10.3389/fcvm.2022.849201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aim The purpose of this study is to collect available evidence on the feasibility and efficacy of stereotactic arrhythmia radio ablation (STAR), including both photon radiotherapy (XRT) and particle beam therapy (PBT), in the treatment of atrial fibrillation (AF), and to provide cardiologists and radiation oncologists with a practical overview on this topic. Methods Three hundred and thirty-five articles were identified up to November 2021 according to preferred reporting items for systematic reviews and meta-analyses criteria; preclinical and clinical studies were included without data restrictions or language limitations. Selected works were analyzed for comparing target selection, treatment plan details, and the accelerator employed, addressing workup modalities, acute and long-term side-effects, and efficacy, defined either by the presence of scar or by the absence of AF recurrence. Results Twenty-one works published between 2010 and 2021 were included. Seventeen studies concerned XRT, three PBT, and one involved both. Nine studies (1 in silico and 8 in vivo; doses ranging from 15 to 40 Gy) comprised a total of 59 animals, 12 (8 in silico, 4 in vivo; doses ranging from 16 to 50 Gy) focused on humans, with 9 patients undergoing STAR: average follow-up duration was 5 and 6 months, respectively. Data analysis supported efficacy of the treatment in the preclinical setting, whereas in the context of clinical studies the main favorable finding consisted in the detection of electrical scar in 4/4 patients undergoing specific evaluation; the minimum dose for efficacy was 25 Gy in both humans and animals. No acute complication was recorded; severe side-effects related to the long-term were observed only for very high STAR doses in 2 animals. Significant variability was evidenced among studies in the definition of target volume and doses, and in the management of respiratory and cardiac target motion. Conclusion STAR is an innovative non-invasive procedure already applied for experimental treatment of ventricular arrhythmias. Particular attention must be paid to safety, rather than efficacy of STAR, given the benign nature of AF. Uncertainties persist, mainly regarding the definition of the treatment plan and the role of the target motion. In this setting, more information about the toxicity profile of this new approach is compulsory before applying STAR to AF in clinical practice.
Collapse
Affiliation(s)
- Jessica Franzetti
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Volpe
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Stefania Volpe, , orcid.org/0000-0003-0498-2964
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Edoardo Conte
- Cardiovascular Computed Tomography and Radiology Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Consiglia Piccolo
- Unit of Medical Physics, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Matteo Pepa
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Gaia Piperno
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Anna Maria Camarda
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Daniele Andreini
- Cardiovascular Computed Tomography and Radiology Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Milan, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
24
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
25
|
Mohamad I, Barry A, Dawson L, Hosni A. Stereotactic body radiation therapy for colorectal liver metastases. Int J Hyperthermia 2022; 39:611-619. [DOI: 10.1080/02656736.2021.1923836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Aisling Barry
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Laura Dawson
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Ali Hosni
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Nicosia L, Rossato E, Avesani R, Marchioretto F, Armani G, Zamperini M, Foti G, Jafari F, De Simone A, Ruggieri R, Alongi F, Ferrari F. A novel treatment for malignant spasticity: the therapeutic use of stereotactic radiosurgery (SRS). Radiother Oncol 2022; 169:86-89. [PMID: 35218788 DOI: 10.1016/j.radonc.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Spasticity is a clinical condition secondary to central nervous system damage, which impairs patients' mobility and quality of life. Stereotactic radiosurgery (SRS) to the spinal roots responsible of the spasms might represent a non-invasive therapy. The present are the preliminary results of the first clinical use of this novel technique.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy.
| | - Elena Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| | - Renato Avesani
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| | - Fabio Marchioretto
- Neurological Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Giuseppe Armani
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| | - Massimo Zamperini
- Department of Anesthesia, Intensive Care and Pain Therapy, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | - Giovanni Foti
- Department of Radiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar, Italy
| | - Fatemeh Jafari
- Radiation Oncology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Antonio De Simone
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy; University of Brescia, Brescia, Italy
| | - Federico Ferrari
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, 37024, Negrar, Verona, Italy
| |
Collapse
|
27
|
Planning benchmark study for SBRT of liver metastases: Results of the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Int J Radiat Oncol Biol Phys 2022; 113:214-227. [PMID: 35074434 DOI: 10.1016/j.ijrobp.2022.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To investigate, if liver SBRT treatment planning can be harmonized across different treatment planning systems, delivery techniques and institutions by using a specific prescription method and to minimize the knowledge gap concerning inter-system and inter-user differences. To provide best practice guidelines for all used techniques. METHODS A multiparametric specification of target dose (GTVD50%, GTVD0.1cc, GTVV90%, PTVV70%) with a prescription dose of GTVD50% = 3 × 20 Gy and OAR limits were distributed with CTs and structure sets from three liver metastases patients. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses in order to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful with standard deviations for Dmax, PTVD98%, GTVD98% and PTVDmean of 1.6 Gy, 3.3 Gy, 1.9 Gy and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, while in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2% and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, while GTVD50% and PTVD98% prescription showed the least differences between the systems. CONCLUSIONS This study showed the feasibility of harmonizing liver SBRT treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.
Collapse
|
28
|
Overview of the current role of stereotactic body radiotherapy in the treatment of unfavorable intermediate- and high-risk prostate cancer. JOURNAL OF RADIOSURGERY AND SBRT 2022; 8:95-103. [PMID: 36275129 PMCID: PMC9489076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Stereotactic body radiotherapy (SBRT) is well accepted for low- and intermediate-favorable risk prostate cancer. Available evidence about the application of SBRT in unfavorable- and high-risk prostate cancer is less solid. During last year's multiple variations in treatment, techniques have been reported making comparisons more complicated. This review's objective is to review current evidence in application of SBRT in intermediate unfavourable and high-risk prostate cancer and to outline variations in SBRT treatment techniques and relevant results.
Collapse
|
29
|
Hohmann S, Hillmann HAK, Müller-Leisse J, Eiringhaus J, Zormpas C, Merten R, Veltmann C, Duncker D. Stereotactic radioablation for ventricular tachycardia. Herzschrittmacherther Elektrophysiol 2021; 33:49-54. [PMID: 34825951 DOI: 10.1007/s00399-021-00830-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive stereotactic radioablation of ventricular tachycardia (VT) substrate has been proposed as a novel treatment modality for patients not eligible for catheter-based ablation or in whom this approach has failed. Initial clinical results are promising with good short-term efficacy in VT suppression and tolerable side effects. This article reviews the current clinical evidence for cardiac radioablation and gives an overview of important preclinical and translational results. Practical guidance is provided, and a cardiac radioablation planning and treatment workflow based on expert consensus and the authors' institutional experience is set out.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henrike A K Hillmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Müller-Leisse
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jörg Eiringhaus
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christos Zormpas
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S, Bal C. First-In-Human Results on the Biodistribution, Pharmacokinetics, and Dosimetry of [ 177Lu]Lu-DOTA.SA.FAPi and [ 177Lu]Lu-DOTAGA.(SA.FAPi) 2. Pharmaceuticals (Basel) 2021; 14:1212. [PMID: 34959613 PMCID: PMC8707268 DOI: 10.3390/ph14121212] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, great interest has been gained regarding fibroblast activation protein (FAP) as an excellent target for theranostics. Several FAP inhibitor molecules such as [68Ga]Ga-labelled FAPI-02, 04, 46, and DOTA.SA.FAPi have been introduced and are highly promising molecular targets from the imaging point of view. FAP inhibitors introduced via bifunctional DOTA and DOTAGA chelators offer the possibility to complex Lutetium-177 due to an additional coordination site, and are suitable for theranostic applications owing to the increased tumor accumulation and prolonged tumor retention time. However, for therapeutic applications, very little has been accomplished, mainly due to residence times of the compounds. In an attempt to develop a promising therapeutic radiopharmaceutical, the present study aimed to evaluate and compare the biodistribution, pharmacokinetics, and dosimetry of [177Lu]Lu-DOTA.SA.FAPi, and [177Lu]Lu-DOTAGA.(SA.FAPi)2 in patients with various cancers. The FAPi agents, [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2, were administered in two different groups of patients. Three patients (mean age-50 years) were treated with a median cumulative activity of 2.96 GBq (IQR: 2.2-3 GBq) [177Lu]Lu-DOTA.SA.FAPi and seven (mean age-51 years) were treated with 1.48 GBq (IQR: 0.6-1.5) of [177Lu]Lu-DOTAGA.(SA.FAPi)2. Patients in both the groups underwent serial imaging whole-body planar and SPECT/CT scans that were acquired between 1 h and 168 h post-injection (p.i.). The residence time and absorbed dose estimate in the source organs and tumor were calculated using OLINDA/EXM 2.2 software. Time versus activity graphs were plotted to determine the effective half-life (Te) in the whole body and lesions for both the radiotracers. Physiological uptake of [177Lu]Lu-DOTA.SA.FAPi was observed in the kidneys, colon, pancreas, liver, gall bladder, oral mucosa, lacrimal glands, and urinary bladder contents. Physiological biodistribution of [177Lu]Lu-DOTAGA.(SA.FAPi)2 involved liver, gall bladder, colon, pancreas, kidneys, and urinary bladder contents, lacrimal glands, oral mucosa, and salivary glands. In the [177Lu]Lu-DOTA.SA.FAPi group, the highest absorbed doses were noted in the kidneys (0.618 ± 0.015 Gy/GBq), followed by the colon (right colon: 0.472 Gy/GBq and left colon: 0.430 Gy/GBq). In the [177Lu]Lu-DOTAGA.(SA.FAPi)2 group, the colon received the highest absorbed dose (right colon: 1.160 Gy/GBq and left colon: 2.870 Gy/GBq), and demonstrated a significantly higher mean absorbed dose than [177Lu]Lu-DOTA.SA.FAPi (p < 0.011). [177Lu]Lu-DOTAGA.(SA.FAPi)2 had significantly longer median whole-body Te compared to that of [177Lu]Lu-DOTA.SA.FAPi [46.2 h (IQR: 38.5-70.1) vs. 23.1 h (IQR: 17.8-31.5); p-0.0167]. The Te of tumor lesions was significantly higher for [177Lu]Lu-DOTAGA.(SA.FAPi)2 compared to [177Lu]Lu-DOTA.SA.FAPi [86.6 h (IQR: 34.3-94.6) vs. 14 h (IQR: 12.8-15.5); p-0.0004]. The median absorbed doses to the lesions were 0.603 (IQR: 0.230-1.810) Gy/GBq and 6.70 (IQR: 3.40-49) Gy/GBq dose per cycle in the [177Lu]Lu-DOTA.SA.FAPi, and [177Lu]Lu-DOTAGA.(SA.FAPi)2 groups, respectively. The first clinical dosimetry study demonstrated significantly higher tumor absorbed doses with [177Lu]Lu-DOTAGA.(SA.FAPi)2 compared to [177Lu]Lu-DOTA.SA.FAPi. [177Lu]Lu-DOTAGA.(SA.FAPi)2 is safe and unveiled new frontiers to treat various end-stage cancer patients with a theranostic approach.
Collapse
Affiliation(s)
- Sanjana Ballal
- Department of Nuclear Medicine, AIIMS, Ansari Nagar, New Delhi 110029, India; (S.B.); (M.P.Y.); (S.K.)
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, AIIMS, Ansari Nagar, New Delhi 110029, India; (S.B.); (M.P.Y.); (S.K.)
| | - Euy Sung Moon
- Department of Chemistry, Johannes Gutenberg University, 55131 Mainz, Germany; (E.S.M.); (F.R.)
| | | | - Frank Roesch
- Department of Chemistry, Johannes Gutenberg University, 55131 Mainz, Germany; (E.S.M.); (F.R.)
| | - Samta Kumari
- Department of Nuclear Medicine, AIIMS, Ansari Nagar, New Delhi 110029, India; (S.B.); (M.P.Y.); (S.K.)
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, AIIMS, Ansari Nagar, New Delhi 110029, India; (S.B.); (M.P.Y.); (S.K.)
| |
Collapse
|
31
|
Maddalo M, D'Angelo E, Fiorica F, Argenone A, Scricciolo M, Cozzi S, Nardangeli A, Dionisi F, Costantino G, Vagge S, Pontoriero A, Donato V, Massaccesi M. Thoracic re-irradiation with 3D-conformal or more advanced techniques: A systematic review of treatment safety by the Re-irradiation Study Group of the Italian Association of Radiation and Oncology AIRO. Crit Rev Oncol Hematol 2021; 167:103500. [PMID: 34688894 DOI: 10.1016/j.critrevonc.2021.103500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/20/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
Re-irradiation (re-RT) is a treatment modality that has been actively investigated in recurrent lung cancer or in lung metastases appeared in previously irradiated areas. A literature search, according PRISMA recommendations and a meta-analysis technique were performed with the aims to identify possible factors related to the toxicity incidence and severity of ≥ G3 acute toxicity. 1243 patients and 36 studies, met inclusion criteria. Our results, showed that there was no difference in ≥ G3 acute (10,5%) toxicity rate with respect to different radiation techniques, cumulative dose and re-irradiation total dose and fractionation. Factors eventually related to severe toxicity were described. The frequent lack of a sufficient description of the treatment's intent, the heterogeneity in technique and radiotherapy regimen, makes balancing risk and benefit of re-RT based on published data even more difficult.
Collapse
Affiliation(s)
- Marta Maddalo
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | - Elisa D'Angelo
- Department of Radiotherapy, University Hospital of Modena, L. del Pozzo 71, 41121, Modena, Italy.
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, State Hospital Mater Salutis AULSS 9, 37045, Legnago (VR), Italy.
| | - Angela Argenone
- Radiotherapy Unit, AORN San PIO, Via dell'Angelo, 82100, Benevento, Italy.
| | - Melissa Scricciolo
- Radiation Therapy Unit, Ospedale dell'Angelo, Via Paccagnella 11, 30174, Venezia, Italy.
| | - Salvatore Cozzi
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy.
| | - Alessia Nardangeli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, L. Gemelli 1, 00168, Roma, Italy.
| | - Francesco Dionisi
- Department of Research and Advanced Technology, Radiation Oncology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Roma, Italy.
| | - Gianluca Costantino
- Department of Radiation Oncology, ASST Spedali Civili of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Stefano Vagge
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria San Martino di Genova-IST, Istituto Nazionale Ricerca sul Cancro, Genoa, Italy.
| | - Antonio Pontoriero
- Dept. of Radiation Oncology, University of Messina, 98125, Messina, Italy.
| | - Vittorio Donato
- Radiation Oncology Division, Oncology and Speciality Medicine Department, San Camillo-Forlanini Hospital, 00152, Roma, Italy.
| | - Mariangela Massaccesi
- Radiation Oncology Department, Gemelli-ART, Università Cattolica S. Cuore, L. Gemelli 1, 00168, Roma, Italy.
| | | |
Collapse
|
32
|
Cantaloube M, Castan F, Creoff M, Prunaretty J, Bordeau K, Michalet M, Assenat E, Guiu B, Pageaux GP, Ychou M, Aillères N, Fenoglietto P, Azria D, Riou O. Image-Guided Liver Stereotactic Body Radiotherapy Using VMAT and Real-Time Adaptive Tumor Gating: Evaluation of the Efficacy and Toxicity for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13194853. [PMID: 34638336 PMCID: PMC8507769 DOI: 10.3390/cancers13194853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Although the use of stereotactic body radiation therapy (SBRT) in the management of hepatocellular carcinoma (HCC) remains unclear, it is a therapeutic option often considered in patients not eligible to or recurring after other local therapies. Liver SBRT can be delivered using a wide range of techniques and linear accelerators. We report the first evaluation for HCC of SBRT using volumetric modulated arc therapy (VMAT) and real-time adaptive tumor gating, which is a mainly completely non-invasive procedure (no fiducial markers for 65.2% of the patients). Our study showed that this SBRT technique has very favorable outcomes with optimal local control and a low toxicity rate. Abstract Liver SBRT is a therapeutic option for the treatment of HCC in patients not eligible for other local therapies. We retrospectively report the outcomes of a cohort of consecutive patients treated with SBRT for HCC at the Montpellier Cancer Institute. Between March 2013 and December 2018, 66 patients were treated with image-guided liver SBRT using VMAT and real-time adaptive tumor gating in our institute. The main endpoints considered in this study were local control, disease-free survival, overall survival, and toxicity. The median follow-up was 16.8 months. About 66.7% had prior liver treatment. Most patients received 50 Gy in five fractions of 10 Gy. No patient had local recurrence. Overall survival and disease-free survival were, respectively, 83.9% and 46.7% at one year. In multivariate analysis, the diameter of the lesions was a significant prognostic factor associated with disease-free survival (HR = 2.57 (1.19–5.53) p = 0.02). Regarding overall survival, the volume of PTV was associated with lower overall survival (HR = 2.84 (1.14–7.08) p = 0.025). No grade 3 toxicity was observed. One patient developed a grade 4 gastric ulcer, despite the dose constraints being respected. Image-guided liver SBRT with VMAT is an effective and safe treatment in patients with inoperable HCC, even in heavily pre-treated patients. Further prospective evaluation will help to clarify the role of SBRT in the management of HCC patients.
Collapse
Affiliation(s)
- Marie Cantaloube
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Florence Castan
- Biometrics Unit ICM, Montpellier Cancer Institute, University Montpellier, 34298 Montpellier, France;
| | - Morgane Creoff
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
- Oncodoc, 34500 Béziers, France
| | - Jessica Prunaretty
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Karl Bordeau
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Morgan Michalet
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Eric Assenat
- Service d’Oncologie Médicale, CHU St Eloi, 34000 Montpellier, France;
| | - Boris Guiu
- Imagerie Médicale St Eloi, 34000 Montpellier, France;
| | | | - Marc Ychou
- Medical Oncology Department, Montpellier Cancer Institute (ICM), Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France;
| | - Norbert Aillères
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Pascal Fenoglietto
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - David Azria
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
| | - Olivier Riou
- Montpellier Cancer Institute (ICM), University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier University, INSERM U1194 IRCM, 34298 Montpellier, France; (M.C.); (M.C.); (J.P.); (K.B.); (M.M.); (N.A.); (P.F.); (D.A.)
- Correspondence:
| |
Collapse
|
33
|
Dosimetry audit of the CyberKnife accelerator with the SHANE phantom. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: The aim of this study was to propose a dosimetric audit of the CyberKnife system. Dosimetry audit is an important part of the quality assurance process in radiotherapy. Most of the proposed dosimetric audits are dedicated to classical medical accelerators. Currently, there is no commonly implemented scheme for conducting a dosimetric audit of the CyberKnife accelerator.
Material and methods: To verify the dosimetric and geometric parameters of the entire radiotherapy process, as is required in E2E test procedure, the CIRS SHANE anthropomorphic phantom was used. A tomography with a resolution of 1.5 mm was prepared, five PTVs (Planning Target Volume) of different volumes were drawn; approximately: 88 cm3, 44 cm3, 15 cm3, 7 cm3, 1.5 cm3. Five treatment plans were made using the 6D Skull tracking method, FIXED collimators, RayTracing algorithm. Each treatment plan was verified in a slab Phantom, with a PinPoint chamber. The dose was measured by an ionization chamber type TM31010 Semiflex, placed in the center area of the target.
Results: The result of the QA verification in slab phantom was up to 5,0%. The percentage difference for the measurement in the SHANE phantom was: 4.29%, -1.42%, -0.70%, 1.37%, -1.88% respectively for the targets: 88 cm3, 44 cm3, 15 cm3, 7 cm3, 1.5 cm3.
Conclusions: By analyzing various approaches to small-field dosimetry audits in the literature, it can be assumed that the proposed CyberKnife dosimetric audit using the SHANE phantom is an appropriate method of verification of the radiotherapy process. Particular attention should be paid to the target volume, adjusting it to the system capabilities.
Collapse
|
34
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
35
|
Gerard IJ, Bernier M, Hijal T, Kopek N, Pater P, Stosky J, Stroian G, Toscani B, Alfieri J. Stereotactic Arrhythmia Radioablation for Ventricular Tachycardia: Single Center First Experiences. Adv Radiat Oncol 2021; 6:100702. [PMID: 34095614 PMCID: PMC8165547 DOI: 10.1016/j.adro.2021.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ian J Gerard
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Martin Bernier
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tarek Hijal
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Neil Kopek
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Piotr Pater
- Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jordan Stosky
- Division of Radiation Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Gabriela Stroian
- Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bruno Toscani
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Joanne Alfieri
- Division of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Alongi F, Nicosia L, Figlia V, De Sanctis V, Mazzola R, Giaj-Levra N, Reverberi C, Valeriani M, Osti MF. A multi-institutional analysis of fractionated versus single-fraction stereotactic body radiotherapy (SBRT) in the treatment of primary lung tumors: a comparison between two antipodal fractionations. Clin Transl Oncol 2021; 23:2133-2140. [PMID: 33840047 DOI: 10.1007/s12094-021-02619-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Stereotactic body radiotherapy (SBRT) is a consolidate treatment for inoperable early-stage lung tumors, usually delivered in single or multi-fraction regimens. We aimed to compare these two approaches in terms of local effectiveness, safety and survival. MATERIALS AND METHODS Patients affected by medically inoperable early-stage lung tumor were treated at two Institutions with two different schedules: 70 Gy in ten fractions (TF) (BED10: 119 Gy) or 30 Gy in single fraction (SF) (BED10: 120 Gy). RESULTS 73 patients were treated with SBRT delivered with two biological equivalent schedules: SF (44) and TF (29). The median follow-up was 34 months (range 3-81 months). Three-year Overall survival (OS) was 57.9%, 3-year cancer-specific survival (CSS) was 77.2%, with no difference between treatment groups. Three-year progression-free survival (LPFS) was 88.9% and did not differs between SF and TF. Overall, four cases (5.4%) of acute grade ≥ 3 pneumonitis occurred. No differences in acute and late toxicity between the two groups were detected. CONCLUSION SF and TF seems to be equally safe and effective in the treatment of primary inoperable lung tumors especially for smaller lesion. The SF may be preferentially offered to reduce patient access to hospital with no negative impact on tumor control and survival.
Collapse
Affiliation(s)
- F Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
- University of Brescia, Brescia, Italy
| | - L Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy.
| | - V Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - V De Sanctis
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - R Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - N Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - C Reverberi
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - M Valeriani
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - M F Osti
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
37
|
Ren XY, He PK, Gao XS, Zhao ZL, Zhao B, Bai Y, Liu SW, Li K, Qin SB, Ma MW, Zhou J, Rong Y. Dosimetric feasibility of stereotactic ablative radiotherapy in pulmonary vein isolation for atrial fibrillation using intensity-modulated proton therapy. J Appl Clin Med Phys 2021; 22:79-88. [PMID: 33817981 PMCID: PMC8130224 DOI: 10.1002/acm2.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate dosimetric properties of intensity‐modulated proton therapy (IMPT) for simulated treatment planning in patients with atrial fibrillation (AF) targeting left atrial‐pulmonary vein junction (LA‐PVJ), in comparison with volumetric‐modulated arc therapy (VMAT) and helical tomotherapy (TOMO). Methods Ten thoracic 4D‐CT scans with respiratory motion and one with cardiac motion were used for the study. Ten respiratory 4D‐CTs were planned with VMAT, TOMO, and IMPT for simulated AF. Targets at the LA‐PVJ were defined as wide‐area circumferential ablation line. A single fraction of 25 Gy was prescribed to all plans. The interplay effects from cardiac motion were evaluated based on the cardiac 4D‐CT scan. Dose‐volume histograms (DVHs) of the ITV and normal tissues were compared. Statistical analysis was evaluated via one‐way Repeated‐Measures ANOVA and Friedman’s test with Bonferroni’s multiple comparisons test. Results The median volume of ITV was 8.72cc. All plans had adequate target coverage (V23.75Gy ≥ 99%). Compared with VMAT and TOMO, IMPT resulted in significantly lower dose of most normal tissues. For VMAT, TOMO, and IMPT plans, Dmean of the whole heart was 5.52 ± 0.90 Gy, 5.89 ± 0.78 Gy, and 3.01 ± 0.57 Gy (P < 0.001), mean dose of pericardium was 4.74 ± 0.76 Gy, 4.98 ± 0.62 Gy, and 2.59 ± 0.44 Gy (P < 0.001), and D0.03cc of left circumflex artery (LCX) was 13.96 ± 5.45 Gy, 14.34 ± 5.91 Gy, and 8.43 ± 7.24 Gy (P < 0.001), respectively. However, no significant advantage for one technique over the others was observed when examining the D0.03cc of esophagus and main bronchi. Conclusions IMPT targeting LA‐PVJ for patients with AF has high potential to reduce dose to surrounding tissues compared to VMAT or TOMO. Motion mitigation techniques are critical for a particle‐therapy approach.
Collapse
Affiliation(s)
- Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Peng-Kang He
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhi-Lei Zhao
- Department of Radiation Oncology, Yizhou International Proton Therapy Medical Center, Hebei, China
| | - Bo Zhao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Si-Wei Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Kang Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jing Zhou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
38
|
Mahadevan A, Emami B, Grimm J, Kleinberg LR, Redmond KJ, Welsh JS, Rostock R, Kemmerer E, Forster KM, Stanford J, Shah S, Asbell SO, LaCouture TA, Scofield C, Butterwick I, Xue J, Muacevic A, Adler JR. Potential Clinical Significance of Overall Targeting Accuracy and Motion Management in the Treatment of Tumors That Move With Respiration: Lessons Learnt From a Quarter Century of Stereotactic Body Radiotherapy From Dose Response Models. Front Oncol 2021; 10:591430. [PMID: 33634020 PMCID: PMC7900559 DOI: 10.3389/fonc.2020.591430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To determine the long-term normal tissue complication probability with stereotactic body radiation therapy (SBRT) treatments for targets that move with respiration and its relation with the type of respiratory motion management (tracking vs. compression or gating). METHODS A PubMed search was performed for identifying literature regarding dose, volume, fractionation, and toxicity (grade 3 or higher) for SBRT treatments for tumors which move with respiration. From the identified papers logistic or probit dose-response models were fitted to the data using the maximum-likelihood technique and confidence intervals were based on the profile-likelihood method in the dose-volume histogram (DVH) Evaluator. RESULTS Pooled logistic and probit models for grade 3 or higher toxicity for aorta, chest wall, duodenum, and small bowel suggest a significant difference when live motion tracking was used for targeting tumors with move with respiration which was on the average 10 times lower, in the high dose range. CONCLUSION Live respiratory motion management appears to have a better toxicity outcome when treating targets which move with respiration with very steep peripheral dose gradients. This analysis is however limited by sparsity of rigorous data due to poor reporting in the literature.
Collapse
Affiliation(s)
- Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Bahman Emami
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, IL, United States
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James S. Welsh
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, IL, United States
| | - Robert Rostock
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Eric Kemmerer
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Kenneth M. Forster
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Jason Stanford
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Sunjay Shah
- Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE, United States
| | - Sucha O. Asbell
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tamara A. LaCouture
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Carla Scofield
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Ian Butterwick
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Jinyu Xue
- Department of Radiation Oncology, New York University, New York City, NY, United States
| | | | - John R. Adler
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
39
|
Huijskens SC, Kroon PS, Gaze MN, Gandola L, Bolle S, Supiot S, Abakay CD, Alexopoulou A, Bokun J, Chojnacka M, Escande A, Giralt J, Harrabi S, Maduro JH, Mandeville H, Mussano A, Napieralska A, Padovani L, Scarzello G, Timmermann B, Claude L, Seravalli E, Janssens GO. Radical radiotherapy for paediatric solid tumour metastases: An overview of current European protocols and outcomes of a SIOPE multicenter survey. Eur J Cancer 2021; 145:121-131. [PMID: 33461061 DOI: 10.1016/j.ejca.2020.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE/OBJECTIVE About 20% of children with solid tumours (ST) present with distant metastases (DM). Evidence regarding the use of radical radiotherapy of these DM is sparse and open for personal interpretation. The aim of this survey was to review European protocols and to map current practice regarding the irradiation of DM across SIOPE-affiliated countries. MATERIALS/METHODS Radiotherapy guidelines for metastatic sites (bone, brain, distant lymph nodes, lung and liver) in eight European protocols for rhabdomyosarcoma, non-rhabdomyosarcoma soft-tissue sarcoma, Ewing sarcoma, neuroblastoma and renal tumours were reviewed. SIOPE centres irradiating ≥50 children annually were invited to participate in an online survey. RESULTS Radiotherapy to at least one metastatic site was recommended in all protocols, except for high-risk neuroblastoma. Per protocol, dose prescription varied per site, and information on delineation and treatment planning/delivery was generally missing. Between July and September 2019, 20/27 centres completed the survey. Around 14% of patients were deemed to have DM from ST at diagnosis, of which half were treated with curative intent. A clear cut-off for a maximum number of DM was not used in half of the centres. Regardless of the tumour type and site, conventional radiotherapy regimens were most commonly used to treat DM. When stereotactic radiotherapy was used, a wide range of fractionation regimens were applied. CONCLUSION Current radiotherapy guidelines for DM do not allow a consistent approach in a multicentre setting. Prospective (randomised) trials are needed to define the role of radical irradiation of DM from paediatric ST.
Collapse
Affiliation(s)
- Sophie C Huijskens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra S Kroon
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals, London, UK
| | - Lorenza Gandola
- Paediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stephanie Bolle
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Stephane Supiot
- Oncologie Radiotherapie, Institut de Cancérologie de l'Ouest, Nantes, France
| | - Candan D Abakay
- Department of Radiation Oncology, Uludag University, Bursa, Turkey
| | | | - Jelena Bokun
- Institute of Oncology and Radiology of Serbia, Belgrado, Serbia
| | - Marzanna Chojnacka
- Department of Radiation Oncology, Maria Sklodowska-Curie Memorial Cancer Center-Institute, Warsaw, Poland
| | - Alexandre Escande
- Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Jordi Giralt
- Department of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Semi Harrabi
- Department of Radiation Oncology and Radiotherapy, Heidelberg University Hospital, Heidelberg, Germany
| | - John H Maduro
- Department of Radiation Oncology, University Medical Center Groningen/Groningen Proton Center, Groningen, The Netherlands; Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Anna Mussano
- Department of Radiation Oncology, Citta della Salute e della Scienza, Torino, Italy
| | - Aleksandra Napieralska
- Department of Radiation Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Laetitia Padovani
- Department of Radiation Oncology, Centre Hospitalier Universitaire, Marseille, France
| | - Giovanni Scarzello
- Department of Radiation Oncology, Veneto Institute of Oncology, Padua, Italy
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Line Claude
- Department of Radiation Oncology, Centre Leon Berard, Lyon, France
| | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
40
|
Serra M, Ametrano G, Borzillo V, Quarto M, Muto M, Di Franco R, Federica S, Loffredo F, Paolo M. Dosimetric comparison among cyberknife, helical tomotherapy and VMAT for hypofractionated treatment in localized prostate cancer. Medicine (Baltimore) 2020; 99:e23574. [PMID: 33327317 PMCID: PMC7738085 DOI: 10.1097/md.0000000000023574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypofractionation for localized prostate cancer treatment is rapidly spreading in the medical community and it is supported by radiobiological evidences (lower α/β ratio compared with surrounding tissues). Stereotactic body radiation therapy (SBRT) is a technique to administer high doses with great precision, which is commonly performed with CyberKnife (CK) in prostate cancer treatment. Since the CyberKnife (CK) is not available at all radiotherapy center, alternative SBRT techniques are available such as Volumetric Modulated Arc Therapy (VMAT) and Helical Tomotherapy (HT). The aim of the present study was to compare the dosimetric differences between the CK, VMAT, and HT plans for localized prostate cancer treatment.Seventeenpatients have been recruited and replanned using VMAT and HT to this purpose: they received the treatment using the CK with a prescription of 36.25 Gy in 5 fractions; bladder, rectum and penis bulb were considered as organs at risk (OAR). In order to compare the techniques, we considered DVHs, PTV coverage, Conformity Index and new Conformity Index, Homogeneity Index, beam-on time and OARs received dose.The 3 treatments methods showed a comparable coverage of the lesion (PTV 95%: 99.8 ± 0.4% CK; 98.5 ± 0.8% VMAT; 99.4 ± 0.5% HT. P < .05) and good sparing of OARs. Nevertheless, the beam-on time showed a significant difference (37 ± 9 m CK; 7.1 ± 0.3 m VMAT; 17 ± 2 m HT. P < .05).Our results showed that, although CK is the best SBRT technique for prostate cancer treatment, in case this technology is not available, it can be replaced by a similar treatment delivered by VMAT technique. VMAT can be administrated only if it has an appropriate Image Guided Radiation Therapy (IGRT) tracking system.
Collapse
Affiliation(s)
- Marcello Serra
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II – Napoli
| | - Gianluca Ametrano
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale - Naples
| | - Valentina Borzillo
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale - Naples
| | - Maria Quarto
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II – Napoli
| | - Matteo Muto
- Dipartimento Onco-Ematologico Radioterapia, Azienda ospedaliera San Giuseppe Moscati – Avellino, Italy
| | - Rossella Di Franco
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale - Naples
| | - Savino Federica
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II – Napoli
| | - Filomena Loffredo
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II – Napoli
| | - Muto Paolo
- Department of Radiation Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale - Naples
| |
Collapse
|
41
|
Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H. Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 2020; 109:1319-1332. [PMID: 32306083 PMCID: PMC7588361 DOI: 10.1007/s00392-020-01650-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Single-session high-dose stereotactic radiotherapy (radiosurgery) is a new treatment option for otherwise untreatable patients suffering from refractory ventricular tachycardia (VT). In the initial single-center case studies and feasibility trials, cardiac radiosurgery has led to significant reductions of VT burden with limited toxicities. However, the full safety profile remains largely unknown. METHODS/DESIGN In this multi-center, multi-platform clinical feasibility trial which we plan is to assess the initial safety profile of radiosurgery for ventricular tachycardia (RAVENTA). High-precision image-guided single-session radiosurgery with 25 Gy will be delivered to the VT substrate determined by high-definition endocardial electrophysiological mapping. The primary endpoint is safety in terms of successful dose delivery without severe treatment-related side effects in the first 30 days after radiosurgery. Secondary endpoints are the assessment of VT burden, reduction of implantable cardioverter defibrillator (ICD) interventions [shock, anti-tachycardia pacing (ATP)], mid-term side effects and quality-of-life (QoL) in the first year after radiosurgery. The planned sample size is 20 patients with the goal of demonstrating safety and feasibility of cardiac radiosurgery in ≥ 70% of the patients. Quality assurance is provided by initial contouring and planning benchmark studies, joint multi-center treatment decisions, sequential patient safety evaluations, interim analyses, independent monitoring, and a dedicated data and safety monitoring board. DISCUSSION RAVENTA will be the first study to provide the initial robust multi-center multi-platform prospective data on the therapeutic value of cardiac radiosurgery for ventricular tachycardia. TRIAL REGISTRATION NUMBER NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. The study was initiated on November 18th, 2019, and is currently recruiting patients.
Collapse
Affiliation(s)
- Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Daniel Buergy
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Maren Vens
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Boris Rudic
- Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Judit Boda-Heggemann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Frank A. Giordano
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Denise Olbrich
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany
| | - Inke R. König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
42
|
Green KM, Toy BC, Ashimatey BS, Mustafi D, Jennelle RL, Astrahan MA, Chu Z, Wang RK, Kim J, Berry JL, Kashani AH. Quantifying Subclinical and Longitudinal Microvascular Changes Following Episcleral Plaque Brachytherapy Using Spectral Domain-Optical Coherence Tomography Angiography. JOURNAL OF VITREORETINAL DISEASES 2020; 4:499-508. [PMID: 33409441 PMCID: PMC7785061 DOI: 10.1177/2474126420936199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To assess longitudinal microvascular changes in eyes treated with I-125 episcleral plaque brachytherapy (EPB). METHODS High resolution OCT angiograms of the central 3×3mm macula were obtained from I-125 episcleral plaque brachytherapy treated and untreated fellow eyes of 61 patients. Capillary density (vessel skeleton density, VSD) and caliber (vessel diameter index, VDI) were quantified using previously validated semi-automated algorithms. Nonperfusion was also quantified as flow impairment regions (FIR). Exams from treated and fellow eyes obtained pre-treatment and at 6-month, 1-year, and 2-year intervals were compared using generalized estimating equation linear models. Dosimetry maps were used to evaluate spatial correlation between radiation dose and microvascular metrics. RESULTS At 6 months, treated eyes had significantly lower VSD (0.145 ± 0.003 vs 0.155 ± 0.002; p = 0.009) and higher FIR (2.01 ± 0.199 vs 1.46 ± 0.104; p = 0.010) compared to fellow eyes. There was a significant decrease in VSD and a corresponding increase in FIR even for treated eyes without clinically identifiable retinopathy at 6 months. VDI was significantly higher in treated eyes than in fellow eyes at 2 years (2.92 ± 0.025 vs 2.84 ± 0.018; p < 0.001). When our cohort was categorized into low dose radiation (<15Gy) and high dose radiation (>45Gy) to the fovea, there were significant differences in VSD and FIR between groups. CONCLUSIONS OCTA can be used to quantify and monitor EPB induced retinopathy, and can detect vascular abnormalities even in the absence of clinically observable retinopathy. OCTA may therefore be useful in investigating treatment interventions that aim to delay EPB-induced radiation retinopathy.
Collapse
Affiliation(s)
- Kyle M. Green
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brian C. Toy
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bright S. Ashimatey
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Debarshi Mustafi
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Richard L. Jennelle
- Department of Radiation Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Melvin A. Astrahan
- Department of Radiation Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Zhongdi Chu
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jonathan Kim
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,The Vision Center, Children’s Hospital Los Angeles, Keck School of Medicine, Los Angeles, CA
| | - Jesse L. Berry
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,The Vision Center, Children’s Hospital Los Angeles, Keck School of Medicine, Los Angeles, CA
| | - Amir H. Kashani
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,USC Ginsberg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA
| |
Collapse
|
43
|
Dreher C, Linde P, Boda-Heggemann J, Baessler B. Radiomics for liver tumours. Strahlenther Onkol 2020; 196:888-899. [PMID: 32296901 PMCID: PMC7498486 DOI: 10.1007/s00066-020-01615-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Philipp Linde
- Department of Radiation Oncology, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
44
|
Winkel D, Werensteijn-Honingh AM, Eppinga WSC, Intven MPW, Hes J, Snoeren LMW, Visser SA, Bol GH, Raaymakers BW, Jürgenliemk-Schulz IM, Kroon PS. Dosimetric feasibility of hypofractionation for SBRT treatment of lymph node oligometastases on the 1.5T MR-linac. Radiother Oncol 2020; 154:243-248. [PMID: 32949691 DOI: 10.1016/j.radonc.2020.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE At our department, MR-guided stereotactic body radiation therapy (SBRT) using the 1.5T MR-linac system (Unity, Elekta AB, Stockholm, Sweden) has been initiated for patients with lymph node oligometastases. Superior soft tissue contrast and the possibility for online plan adaptation on the Unity may allow for hypofractionated treatment. The purpose of this study was to investigate the dosimetric feasibility and compare the plan quality of different hypofractionated schemes. METHODS AND MATERIALS Data was used from 12 patients with single lymph node oligometastases (10 pelvic, 2 para-aortic), which were all treated on the Unity with a prescribed dose of 5x7 Gy to 95% of the PTV. Hypofractionation was investigated for 3x10 Gy and 1x20 Gy schemes (all 60 Gy BED α/β = 10). The pre-treatment plans were evaluated based on dose criteria and plan quality. If all criteria were met, the number of online adapted plans which also met all dose criteria was investigated. For pre-treatment plans meeting the criteria for all three fractionation schemes, the plan quality after online adaptation was compared using the four parameters described in the NRG-BR001 phase 1 trial. RESULTS Pre-treatment plans met all clinical criteria for the three different fractionation schemes in 10, 9 and 6 cases. 50/50, 45/45 17/30 of the corresponding online adapted plans met all criteria, respectively. Violations were primarily caused by surrounding organs at risk overlapping or adjacent to the PTV. The 1x20 Gy treatment plans were, in general, of lesser quality than the 5x7 Gy and 3x10 Gy plans. CONCLUSION Hypofractionated radiotherapy for lymph node oligometastases on the 1.5T MR-linac is feasible based on dose criteria and plan quality metrics. The location of the target relative to critical structures should be considered in choosing the most suitable fractionation scheme. Especially for single fraction treatment, meeting all dose criteria in the pre-treatment situation does not guarantee that this also applies during online treatment.
Collapse
Affiliation(s)
- Dennis Winkel
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands.
| | | | - Wietse S C Eppinga
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Jochem Hes
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Louk M W Snoeren
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Sanne A Visser
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Gijsbert H Bol
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| | | | - Petra S Kroon
- Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
45
|
Suzuki A, Deisher AJ, Rettmann ME, Lehmann HI, Hohmann S, Wang S, Konishi H, Kruse JJ, Cusma JT, Newman LK, Parker KD, Monahan KH, Herman MG, Packer DL. Catheter-Free Arrhythmia Ablation Using Scanned Proton Beams: Electrophysiologic Outcomes, Biophysics, and Characterization of Lesion Formation in a Porcine Model. Circ Arrhythm Electrophysiol 2020; 13:e008838. [PMID: 32921132 DOI: 10.1161/circep.120.008838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proton beam therapy offers radiophysical properties that are appealing for noninvasive arrhythmia elimination. This study was conducted to use scanned proton beams for ablation of cardiac tissue, investigate electrophysiological outcomes, and characterize the process of lesion formation in a porcine model using particle therapy. METHODS Twenty-five animals received scanned proton beam irradiation. ECG-gated computed tomography scans were acquired at end-expiration breath hold. Structures (atrioventricular junction or left ventricular myocardium) and organs at risk were contoured. Doses of 30, 40, and 55 Gy were delivered during expiration to the atrioventricular junction (n=5) and left ventricular myocardium (n=20) of intact animals. RESULTS In this study, procedural success was tracked by pacemaker interrogation in the atrioventricular junction group, time-course magnetic resonance imaging in the left ventricular group, and correlation of lesion outcomes displayed in gross and microscopic pathology. Protein extraction (active caspase-3) was performed to investigate tissue apoptosis. Doses of 40 and 55 Gy caused slowing and interruption of cardiac impulse propagation at the atrioventricular junction. In 40 left ventricular irradiated targets, all lesions were identified on magnetic resonance after 12 weeks, being consistent with outcomes from gross pathology. In the majority of cases, lesion size plateaued between 12 and 16 weeks. Active caspase-3 was seen in lesions 12 and 16 weeks after irradiation but not after 20 weeks. CONCLUSIONS Scanned proton beams can be used as a tool for catheter-free ablation, and time-course of tissue apoptosis was consistent with lesion maturation.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Amanda J Deisher
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Maryam E Rettmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - H Immo Lehmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.).,Department of Cardiology, Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston (H.I.L.).,Harvard Medical School, Boston, MA (H.I.L.)
| | - Stephan Hohmann
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Songyun Wang
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Hiroki Konishi
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Jon J Kruse
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Jack T Cusma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Laura K Newman
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Kay D Parker
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Kristi H Monahan
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN (A.J.D., J.J.K., J.T.C., M.G.H.)
| | - Douglas L Packer
- Translational Interventional Electrophysiology Laboratory, Mayo Clinic/St. Marys Campus, Rochester, MN (A.S., M.E.R., H.I.L., S.H., S.W., H.K., L.K.N., K.D.P., K.H.M., D.L.P.)
| |
Collapse
|
46
|
Couñago F, Navarro-Martin A, Luna J, Rodríguez de Dios N, Rodríguez A, Casas F, García R, Gómez-Caamaño A, Contreras J, Serrano J. GOECP/SEOR clinical recommendations for lung cancer radiotherapy during the COVID-19 pandemic. World J Clin Oncol 2020; 11:510-527. [PMID: 32879841 PMCID: PMC7443829 DOI: 10.5306/wjco.v11.i8.510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 crisis has had a major and highly complex impact on the clinical practice of radiation oncology worldwide. Spain is one of the countries hardest hit by the virus, with devastating consequences. There is an urgent need to share experiences and offer guidance on decision-making with regard to the indications and standards for radiation therapy in the treatment of lung cancer. In the present article, the Oncological Group for the Study of Lung Cancer of the Spanish Society of Radiation Oncology reviews the literature and establishes a series of consensus-based recommendations for the treatment of patients with lung cancer in different clinical scenarios during the present pandemic.
Collapse
Affiliation(s)
- Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Clinical Department, Hospital La Luz, Madrid, Faculty of Biomedicine, Universidad Europea, Madrid 28223, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Institut Catalá d’Oncologia, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Javier Luna
- Department of Radiation Oncology, Hospital Fundación Jiménez Díaz, Madrid 28040, Spain
| | | | - Aurora Rodríguez
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Francesc Casas
- Department of Radiation Oncology, Thoracic Unit, Hospital Clínic, Barcelona 08036, Spain
| | - Rafael García
- Department of Radiaiton Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, A Coruña 15706, Spain
| | - Jorge Contreras
- Department of Radiation Oncology, Hospital Regional Universitario de Málaga, 29010, Spain
| | - Javier Serrano
- Department of Radiation Oncology, Clínica Universidad de Navarra, Madrid 28027, Spain
| |
Collapse
|
47
|
Sandhu N, Benson KRK, Kumar KA, Eyben RV, Chang DT, Gibbs IC, Hancock SL, Meola A, Chang SD, Li G, Hayden-Gephart M, Soltys SG, Pollom EL. Local control and toxicity outcomes of stereotactic radiosurgery for spinal metastases of gastrointestinal origin. J Neurosurg Spine 2020; 33:87-94. [PMID: 32114530 DOI: 10.3171/2020.1.spine191260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) and other gastrointestinal (GI) cancers are believed to have greater radioresistance than other histologies. The authors report local control and toxicity outcomes of stereotactic radiosurgery (SRS) to spinal metastases from GI primary cancers. METHODS A retrospective single-center review was conducted of patients with spinal metastases from GI primary cancers treated with SRS from 2004 to 2017. Patient demographics and lesion characteristics were summarized using medians, interquartile ranges (IQRs), and proportions. Local failure (LF) was estimated using the cumulative incidence function adjusted for the competing risk of death and compared using Gray's test for equality. Multivariable analyses were conducted using Cox proportional hazard models, adjusting for death as a competing risk, on a per-lesion basis. Patients were stratified in the Cox model to account for repeated measures for clustered outcomes. Median survival was calculated using the Kaplan-Meier method. RESULTS A total of 74 patients with 114 spine lesions were included in our analysis. The median age of the cohort was 62 years (IQR 53-70 years). Histologies included CRC (46%), hepatocellular carcinoma (19%), neuroendocrine carcinoma (13%), pancreatic carcinoma (12%), and other (10%). The 1- and 2-year cumulative incidence rates of LF were 24% (95% confidence interval [CI] 16%-33%) and 32% (95% CI 23%-42%), respectively. Univariable analysis revealed that older age (p = 0.015), right-sided primary CRCs (p = 0.038), and single fraction equivalent dose (SFED; α/β = 10) < 20 Gy (p = 0.004) were associated with higher rates of LF. The 1-year cumulative incidence rates of LF for SFED < 20 Gy10 versus SFED ≥ 20 Gy10 were 35% and 7%, respectively. After controlling for gross tumor volume and prior radiation therapy to the lesion, SFED < 20 Gy10 remained independently associated with worse LF (hazard ratio 2.92, 95% CI 1.24-6.89, p = 0.014). Toxicities were minimal, with pain flare observed in 6 patients (8%) and 15 vertebral compression fractures (13%). CONCLUSIONS Spinal metastases from GI primary cancers have high rates of LF with SRS at a lower dose. This study found that SRS dose is a significant predictor of failure and that prescribed SFED ≥ 20 Gy10 (biological equivalent dose ≥ 60 Gy10) is associated with superior local control.
Collapse
Affiliation(s)
| | | | - Kiran A Kumar
- Departments of1Radiation Oncology and
- 3UT Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - Antonio Meola
- 2Neurosurgery, Stanford University School of Medicine, Stanford, California; and
| | - Steven D Chang
- 2Neurosurgery, Stanford University School of Medicine, Stanford, California; and
| | - Gordon Li
- 2Neurosurgery, Stanford University School of Medicine, Stanford, California; and
| | | | | | | |
Collapse
|
48
|
Adamczyk M, Kruszyna-Mochalska M, Rucińska A, Piotrowski T. Software simulation of tumour motion dose effects during flattened and unflattened ITV-based VMAT lung SBRT. Rep Pract Oncol Radiother 2020; 25:684-691. [PMID: 32581656 DOI: 10.1016/j.rpor.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Restricted studies comparing different dose rate parameters are available while ITV-based VMAT lung SBRT planning leads to perform the analysis of the most suitable parameters of the external beams used. The special emphasis was placed on the impact of dose rate on dose distribution variations in target volumes due to interplay effects. Methods Four VMAT plans were calculated for 15 lung tumours using 6 MV photon beam quality (flattening filter FF vs. flattening filter free FFF beams) and maximum dose rate of 600 MU/min, 1000 MU/min and 1400 MU/min. Three kinds of motion simulations were performed finally giving 180 plans with perturbed dose distributions. Results 6FFF-1400 MUs/min plans were characterized by the shortest beam on time (1.8 ± 0.2 min). Analysing the performed motion simulation results, the mean dose (Dmean) is not a sensitive parameter to related interplay effects. Looking for local maximum and local minimum doses, some discrepancies were found, but their significance was presented for individual patients, not for the whole cohort. The same was observed for other verified dose metrics. Conclusions Generally, the evaluation of VMAT robustness between FF and FFF concepts against interplay effect showed a negligible effect of simulated motion influence on tumour coverage among different photon beam quality parameters. Due to the lack of FFF beams, smaller radiotherapy centres are able to perform ITV-based VMAT lung SBRT treatment in a safe way. Radiotherapy department having FFF beams could perform safe, fast and efficient ITV-based VMAT lung SBRT without a concern about significance of interplay effects.
Collapse
Affiliation(s)
- Marta Adamczyk
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Marta Kruszyna-Mochalska
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Rucińska
- 1st Radiotherapy Ward, Greater Poland Cancer Centre, Poznań, Poland
| | - Tomasz Piotrowski
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
49
|
Nicosia L, Cuccia F, Mazzola R, Ricchetti F, Figlia V, Giaj-Levra N, Rigo M, Tomasini D, Pasinetti N, Corradini S, Ruggieri R, Alongi F. Disease course of lung oligometastatic colorectal cancer treated with stereotactic body radiotherapy. Strahlenther Onkol 2020; 196:813-820. [PMID: 32399637 DOI: 10.1007/s00066-020-01627-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy (SABR) has been shown to increase survival rates in oligometastatic disease (OMD), but local control of colorectal metastases remains poor. We aimed to explore the natural course of oligometastatic colorectal cancer and to investigate how SBRT of lung metastases can delay the progression to polymetastatic disease (PMD). METHODS 107 lung oligometastases in 38 patients were treated with SBRT at a single institution. The median number of treated lesions was 2 (range 1-5). Time to PMD (ttPMD) was defined as the time from SBRT to the occurrence of >5 new metastases. Genetic biomarkers such as EGFR, KRAS, NRAS, BRAF, and microsatellite instability were investigated as predictive factors for response rates. RESULTS Median follow-up was 28 months. At median follow-up, 7 patients were free from disease and 31 had progression: 18 patients had sequential oligometastatic disease (SOMD) and 13 polymetastatic progression. All SOMD cases received a second SBRT course. Median progression-free survival (PFS) was 7 months (range 4-9 months); median ttPMD was 25.8 months (range 12-39 months) with 1‑ and 2‑year PFS rates of 62.5% and 53.4%, respectively. 1‑ and 2‑year local PFS (LPFS) rates were 91.5% and 80%, respectively. At univariate analysis, BRAF wildtype correlated with better LPFS (p = 0.003), SOMD after primary SBRT was associated with longer cancer-specific survival (p = 0.031). Median overall survival (OS) was 39.5 months (range 26-64 months) and 2‑year OS was 71.1%. CONCLUSION The present results support local ablative treatment of lung metastases using SBRT in oligometastatic colorectal cancer patients, as it can delay the transition to PMD. Patients who progressed as SOMD maintained a survival advantage compared to those who developed PMD.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy.
| | - Francesco Cuccia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Francesco Ricchetti
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Vanessa Figlia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Niccolò Giaj-Levra
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Michele Rigo
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Davide Tomasini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, Brescia University, Brescia, Italy
| | - Nadia Pasinetti
- Department of Radiation Oncology, Ospedale di Esine, ASL Valle Camonica-Sebino Esine, Esine, Italy
| | - Stefanie Corradini
- Radiation Oncology Department, University Hospital, LMU Munich, Munich, Germany
| | - Ruggero Ruggieri
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, via Don Sempreboni 5, 37034, Verona, Negrar, Italy.,University of Brescia, Brescia, Italy
| |
Collapse
|
50
|
Dunne EM, Liu M, Hofstetter C, Saigal R, Lo SS. Commentary: Local Control and Toxicity of Multilevel Spine Stereotactic Body Radiotherapy. Neurosurgery 2020; 86:E173-E174. [PMID: 31628748 DOI: 10.1093/neuros/nyz449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emma M Dunne
- Department of Clinical Oncology, Guy's and St Thomas' Hospital, London, UK
| | - Mitchell Liu
- Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Centre, Vancouver, Canada
| | - Christoph Hofstetter
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|