1
|
Ng WK, Thanusha G, Chong PP, Chuah C. The Power of Antibodies: Advancing Biomarker-Based Disease Detection and Surveillance. Immunol Invest 2025:1-25. [PMID: 40256875 DOI: 10.1080/08820139.2025.2492246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND Antibodies have long served as fundamental tools in disease diagnosis and surveillance. Their utility as biomarkers has expanded beyond infectious diseases to encompass a wide range of health conditions. OBJECTIVES This review aims to explore recent advancements in antibody biomarker discovery and their applications in diagnosing and monitoring diverse health conditions. It also examines the role of antibody surveillance in public health and epidemiological studies. METHODS A comprehensive analysis of recent literature was conducted, focusing on studies that identify and characterize disease-specific antibodies. Particular attention was given to their relevance in autoimmune diseases, infections, cancers, and neurological disorders. CONTENT The review highlights disease-specific antibody biomarkers and their clinical significance. It also discusses the utility and challenges of antibody-based surveillance in assessing disease prevalence, tracking immunity trends, and supporting One Health strategies. CONCLUSIONS Recent advancements in antibody biomarker discovery demonstrate significant potential in improving early diagnosis, personalized treatment, and population-level health management. Antibody surveillance continues to play a pivotal role in guiding public health responses and understanding disease dynamics.
Collapse
Affiliation(s)
- Woei Kean Ng
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Gunasegran Thanusha
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Candy Chuah
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
2
|
Rambaldelli G, Bacci L, Pollutri D, Filipek K, Penzo M. Master of disguise: ribosomal protein L5 beyond translation. Biochimie 2025:S0300-9084(25)00063-X. [PMID: 40185360 DOI: 10.1016/j.biochi.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Ribosomal proteins (RPs), key components of ribosomes, are traditionally associated with protein synthesis. However, emerging evidence suggests their involvement in diverse cellular functions beyond ribosomal biogenesis and translation, including transcriptional regulation. This study aimed at investigating the potential of RPs as transcriptional regulators by analyzing their interacting protein network. A subset of RP interactors exhibiting transcriptional regulatory functions was subjected to Gene Ontology analysis to identify enriched functional pathways. The results indicated that these interactions may play a role in different cellular pathways relevant to a number of biological processes, including cancer. To further explore this hypothesis, a virtual knockdown of RPL5 was performed in ovarian and breast cancer public data. As proof of concept the same experiments were conducted in vitro to validate the computational findings, confirming the potential of RPL5 in transcriptional regulation in cancer. This seminal study provides a foundation for future investigations into the multifaceted roles of RPs in the regulation of gene expression in physiological and pathological contexts.
Collapse
Affiliation(s)
- Guglielmo Rambaldelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Lorenza Bacci
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Daniela Pollutri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Kamil Filipek
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Marianna Penzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
3
|
Li Q, Liu H. Investigating the Prognostic Role of Telomerase-Related Cellular Senescence Gene Signatures in Breast Cancer Using Machine Learning. Biomedicines 2025; 13:826. [PMID: 40299459 PMCID: PMC12024799 DOI: 10.3390/biomedicines13040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Telomeres and cellular senescence are critical biological processes implicated in cancer development and progression, including breast cancer, through their influence on genomic stability and modulation of the tumor microenvironment. Methods: This study integrated bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to establish a gene signature associated with telomere maintenance and cellular senescence for prognostic prediction in breast cancer. Telomere-related genes (TEGs) and senescence-associated genes were curated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A comprehensive machine learning framework incorporating 101 algorithmic combinations across 10 survival modeling approaches, including random survival forests and ridge regression, was employed to develop a robust prognostic model. Results: A set of 19 key telomere- and senescence-related genes was identified as the optimal prognostic signature. The model demonstrated strong predictive accuracy and was successfully validated in multiple independent cohorts. Functional enrichment analyses indicated significant associations with immune responses and aging-related pathways. Single-cell transcriptomic analysis revealed marked cellular heterogeneity, identifying distinct subpopulations (fibroblasts and immune cells) with divergent risk scores and biological pathway activity. Additionally, pseudo-time trajectory analysis and intercellular communication mapping provided insights into the dynamic evolution of the tumor microenvironment. Immunohistochemical (IHC) validation using data from the Human Protein Atlas confirmed differential protein expression between normal and tumor tissues for several of the selected genes, reinforcing their biological relevance and clinical utility. Conclusions: This study presents a novel 19-gene telomere- and senescence-associated signature with strong prognostic value in breast cancer. These findings enhance our understanding of tumor heterogeneity and may inform precision oncology approaches and future therapeutic strategies.
Collapse
Affiliation(s)
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
4
|
Mullick Chowdhury S, Hong F, Rolfo C, Li Z, He K, Wesolowski R, Mortazavi A, Meng L. CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications. BIOLOGY 2025; 14:214. [PMID: 40001982 PMCID: PMC11851889 DOI: 10.3390/biology14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Canopy FGF signaling regulator 2 (CNPY2) has emerged as a crucial player in cancer development by promoting cell proliferation, tissue repair, and angiogenesis. This review synthesizes the current understanding of CNPY2's role in solid tumors, particularly renal cell carcinoma, prostate cancer, hepatocellular carcinoma, and non-small-cell lung cancer. CNPY2 modulates key pathways such as p53, MYLIP, NF-κB, and AKT/GSK3β, thereby driving tumor growth and progression. In renal cell carcinoma, CNPY2 paradoxically promotes tumor growth through p53 upregulation, while in hepatocellular carcinoma, CNPY2 drives cell cycle progression via p53 destabilization. In prostate cancer, it enhances tumor progression by stabilizing androgen receptors through MYLIP interaction, and in non-small-cell lung cancer, it contributes to chemoresistance and metastasis through NF-κB and AKT/GSK3β signaling. Additionally, CNPY2 influences the tumor microenvironment, impacting immune function and metastatic potential. As a potential biomarker, CNPY2 shows promise for cancer detection and prognosis, particularly when used in combination with other markers. Early therapeutic strategies, including siRNA and miRNA approaches, are under exploration, though challenges remain due to CNPY2's expression in normal tissues and potential off-target effects. This review underscores the need for further research to fully elucidate CNPY2's oncogenic mechanisms and develop targeted therapies. Improved understanding of CNPY2's diverse roles may lead to novel diagnostic and therapeutic approaches in solid tumors.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Feng Hong
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Christian Rolfo
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| |
Collapse
|
5
|
Fink JL, Jaradi B, Stone N, Sanker B, Zhang F, Dobrovic A, Kirschner S, Hadfield J, Kondrashova O, Waring PM. Validation and Performance of Quantitative BRCA1 and RAD51C Promoter Hypermethylation Testing in Breast and Ovarian Cancers. J Mol Diagn 2025; 27:139-153. [PMID: 39675559 DOI: 10.1016/j.jmoldx.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors represent a significant advancement in the treatment of epithelial ovarian cancer, triple-negative breast cancer, pancreatic cancer, and castrate-resistant prostate cancer, and they are poised to improve treatment in an increasing number of other cancer types. PARP inhibitor efficacy as monotherapy has been primarily observed in tumors with deleterious genetic variants in genes involved in the homologous recombination repair pathway. Tumors without these variants have also been shown to respond; notably, those with hypermethylation at all alleles of the BRCA1 or RAD51C promoter can respond to PARP inhibitors. These epigenetic biomarkers therefore represent a patient population that may also benefit from this targeted therapy. However, no robust test has been conducted to identify these biomarkers in routine clinical specimens that is amenable to implementation for decentralized testing. This study describes the analytical and clinical validation of a BRCA1 and RAD51C promoter methylation test that can be run with a single-day library preparation workflow for sequencing on any next-generation sequencing platform. The results show that this test can accurately quantitate the level of promoter methylation at the BRCA1 and RAD51C genes using formalin-fixed, paraffin-embedded samples, even when the extracted DNA is extremely degraded or the input amount is limited. This test increases the precision of diagnostic tests aimed at identifying patients who are likely and unlikely to respond to PARP inhibitor therapy.
Collapse
Affiliation(s)
- J Lynn Fink
- XING Genomic Services, Sinnamon Park, Queensland, Australia.
| | - Binny Jaradi
- XING Genomic Services, Sinnamon Park, Queensland, Australia
| | - Nathan Stone
- XING Genomic Services, Sinnamon Park, Queensland, Australia
| | | | - Fan Zhang
- Beacon Biomarkers Laboratory, University of Melbourne Department of Surgery at Austin Health, Heidelberg, Victoria, Australia
| | - Alexander Dobrovic
- Beacon Biomarkers Laboratory, University of Melbourne Department of Surgery at Austin Health, Heidelberg, Victoria, Australia
| | | | - James Hadfield
- Translational Medicine, AstraZeneca, Cambridge, United Kingdom
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Herston, Queensland, Australia
| | - Paul M Waring
- XING Genomic Services, Sinnamon Park, Queensland, Australia; Translational Medicine, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
6
|
Chakraborty R, Dutta A, Mukhopadhyay R. TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds. Clin Transl Oncol 2025:10.1007/s12094-024-03841-6. [PMID: 39797946 DOI: 10.1007/s12094-024-03841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression. Missense mutations, null mutations, transversions, transitions, and point mutations occurring in the TP53 gene can cause an increase in metastatic activity. This review discusses mutations occurring in exon regions of TP53, polymorphisms in MDM2 and their interaction with large ribosomal subunit protein (RPL) leading to cancer development. We also highlight the potential of small molecules e.g. p53 activators like XI-011, Tenovin-1, and Nutlin-3a for the treatment of breast and ovarian cancers. The therapeutic efficacy of natural compounds in amelioration of these two types of cancers is also discussed.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Dutta
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
7
|
Xiong B, Zhang X, Sangji D, Ni L, Fan M, Fan B. Mechanisms of breast cancer treatment using Gentiana robusta: evidence from comprehensive bioinformatics investigation. Sci Rep 2024; 14:31567. [PMID: 39738201 PMCID: PMC11686125 DOI: 10.1038/s41598-024-76063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025] Open
Abstract
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation. Building upon prior research on QJ's chemical constituents, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the DAVID database. Network interactions and core genes were identified using Cytoscape 3.9.1. Key target genes, including Interleukin-6 (IL-6), tumour suppressor gene P53 (TP53), and epidermal growth factor receptor (EGFR), were selected for molecular docking with QJ's active components, 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D, employing Schrodinger Maestro 13.5. Molecular dynamics (MD) simulations were performed using the Desmond program. A total of 270 intersection targets of active ingredients and diseases were identified, with three core targets determined through network topology screening. Enrichment analysis highlighted the involvement of QJ in breast cancer treatment, primarily through the hsa05200 cancer signaling pathway and the hsa04066 HIF-1 signaling pathway. Molecular docking and dynamics simulations demonstrated the close interaction of 2'-O-β-D-glucopyranosyl-gentiopicroside (QJ17) and macrophylloside D (QJ25) with IL6, TP53, and EGFR, and other target genes, showcasing a stabilizing effect. In conclusion, this study unveils the effective components and potential mechanisms of 2'-O-β-D-glucopyranosyl-gentiopicroside and macrophylloside D in breast cancer prevention and treatment. The identified components act on target genes such as IL6, TP53, and EGFR, regulating crucial pathways including the cancer signaling and Hypoxia-inducible factor 1 (HIF-1) signaling pathways. These findings provide valuable insights into the therapeutic potential of QJ in breast cancer management. However, further experimental research are needed to validate the computational findings of QJ.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongzhi Sangji
- Tibetan Medical Hospital of Xizang Autonomous Region, Lhasa, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingjie Fan
- Department of Pharmacy, Shanghai Fourth Rehabilitation Hospital, Shanghai, China.
| | - Beibei Fan
- Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Huang J, Tang Y, Li Y, Wei W, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. BBOX1 mediates metabolic reprogramming driven by hypoxia and participates in the malignant progress of high-grade serous ovarian cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119830. [PMID: 39181218 DOI: 10.1016/j.bbamcr.2024.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most aggressive type of ovarian cancer that causes great threats to women's health. Therefore, we performed RNA-sequencing technology in clinical samples to explore the molecular mechanisms underlying the progression of HGSOC. We then noticed BBOX1, a kind of 2-oxoglutarate-dependent enzyme that is highly expressed in HGSOC tumor tissues. Functional studies showed that BBOX1 promotes cell survival and growth of HGSOC cells in vitro and in vivo. Overexpression of the wild-type BBOX1 promoted cell proliferation, but the Asn191 and Asn292 mutation (key amino acid for the enzymatic activity of BBOX1) counteracted this effect (P < 0.05), which indicated that the promotion effect of BBOX1 on HGSOC cell proliferation was related to its catalytic activity. Downregulation of BBOX1 reduced the activity of the mTORC1 pathway, and decreased protein expression of IP3R3 and phosphorylation level of S6KThr389. Metabolomics analysis revealed that BBOX1 is implicated in the glucose metabolism, amino acid metabolism, and nucleotide metabolism of HGSOC cells. In addition, inhibition of BBOX1 suppressed HGSOC cell glycolysis and decreased glucose consumption, lactate production, and the expression of key factors in glycolysis. Finally, we found hypoxia induced the expression of BBOX1 in HGSOC cells and confirmed that BBOX1 could be transcriptionally activated by hypoxia-inducible factor-1α, which could directly bind to the BBOX1 promoter. In summary, BBOX1 mediated the metabolic reprogramming driven by hypoxia, and affected cell metabolism through the mTORC1 pathway, thus acting as an oncogene during HGSOC development.
Collapse
Affiliation(s)
- Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ying Tang
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
9
|
Xie G, Zhang Y, Ma J, Guo X, Xu J, Chen L, Zhang J, Li Y, Zhang B, Zhou X. Exosomal AHSG in ovarian cancer ascites inhibits malignant progression of ovarian cancer by p53/FAK/Src signaling. Transl Cancer Res 2024; 13:5365-5380. [PMID: 39525039 PMCID: PMC11543047 DOI: 10.21037/tcr-24-789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Background The primary cause of mortality in patients with ovarian cancer (OC) is tumor metastasis. A comprehensive understanding of the mechanisms underlying metastasis in OC is essential for accurate prognosis prediction and the development of targeted therapeutic agents. Our findings indicate that alpha-2 Heremans Schmid glycoprotein (AHSG) is downregulated in OC exosomes. Consequently, the objective of this study was to identify novel prognostic markers and potential therapeutic targets for OC. Methods Exosomes derived from OC cells and patient ascites were purified and applied to OC cells to assess their migratory ability using wound-healing and transwell assays. AHSG expression was enhanced by overexpressing lentivirus, and the resulting exosomes were isolated and co-cultured with OC cells to verify their effect on the migration ability of OC. Results Exosomes in ovarian malignant ascites have been demonstrated to promote OC metastasis. However, our findings indicate that AHSG is down-regulated in OC tissues and ascites exosomes. Furthermore, overexpression of AHSG in OC cells has been shown to markedly decrease their migratory ability, as well as reduce the migratory ability of cancer cells after co-culture of its exosomes with cancer cells. Conclusions The low expression of AHSG in exosomes derived from OC tissues and ascites is associated with metastatic progression in OC patients. Additionally, cancer-derived AHSG can be transported to OC cells via exosomes, where it inhibits OC migration in vitro and in vivo by regulating the p53/FAK/Src signaling pathway. The present study demonstrated that AHSG, derived from cancer cells, exerts a negative regulatory effect on OC cell motility, migration, and metastasis. These findings suggest that AHSG is a potential candidate for OC treatment.
Collapse
Affiliation(s)
- Guangyan Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yongli Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Obstetrics and Gynecology, the Second People’s Hospital of Lianyungang, Lianyungang, China
| | - Jiachen Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoli Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Linna Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jingbo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother 2024; 179:117351. [PMID: 39216450 DOI: 10.1016/j.biopha.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Triple Negative Breast cancer is an aggressive breast cancer subtype. It has a more aggressive clinical course, an earlier age of onset, a larger propensity for metastasis, and worse clinical outcomes as evidenced by a higher risk of recurrence and a shorter survival rate. Currently, the primary options for TNBC treatment are surgery, radiation, and chemotherapy. These treatments however remain ineffective due to recurrence. However, given that p53 mutations have been identified in more than 60-88 % of TNBC, translating p53 into the clinical situation is particularly important in TNBC. In this study, we screened and evaluated the therapeutic potential of cryptolepine (CRP) in TNBC in-vitro models being an anti-malarial drug it could be repurposed as an anti-cancer therapeutic targeting TNBC. Moreover, the cytotoxicity activity of cryptolepine to TNBC cells and a detailed anti-tumor mechanism in mutant P53 has not been reported before. METHODS MTT assays were used to examine the cytotoxicity and cell viability activity of Cryptolepine in TNBC, non-TNBC T47D and MCF-7 and non-malignant MCF10A cells. Scratch wound and clonogenic assay was used to evaluate the cryptolepine's effect on migration and colony forming ability of TNBC cells. Flow cytometry, MMP and DAPI was used to assess cell cycle arrest and cell apoptosis mechanism. The expression of proteins was detected by western blots. The differential expression of RNAs was evaluated by RT-PCR and the interaction between P53 and drug was evaluated computationally using in-silico approach and in-vitro using ChIP assay. RESULTS In this study, we found that cryptolepine has more preferential cytotoxicity in TNBC than non-TNBC cells. Notably, our studies revealed the mechanism by which cryptolepine induces intrinsic apoptosis and inhibit migration, colony formation ability, induce cell cycle arrest by inducing conformational change in the mutant P53 thereby increasing its DNA binding ability, hence activating its tumor suppressing potential significantly. CONCLUSION Our study revealed that CRP significantly reduced the proliferation, migration and colony forming ability of TNBC cells lines. Moreover, it was revealed that CRP induces cell cycle arrest and apoptosis by activating mutant P53 and enhancing its DNA binding ability to induce its tumor suppressing ability.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
11
|
Li R, Ke H, Liu P, Yang Q, Li Y, Ke L, Wang X, Wu C, Zhang Y. Mechanisms of Yiai Fuzheng formula in the treatment of triple-negative breast cancer based on UPLC-Q-Orbitrap-HRMS, network pharmacology, and experimental validation. Heliyon 2024; 10:e36579. [PMID: 39319146 PMCID: PMC11419912 DOI: 10.1016/j.heliyon.2024.e36579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Ethnopharmacological relevance Yiai Fuzheng formula (YAFZF), as a Traditional Chinese Medicine (TCM) prescription, has been used widely at Zhongnan Hospital of Wuhan University for its therapeutic effects and high safety on triple-negative breast cancer (TNBC). Objective In this study, we employed ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS), network pharmacology, and experimental validation to elucidate the underlying action mechanism of YAFZF in the treatment of TNBC. Methods The key active ingredients in YAFZF were analyzed using UPLC-Q-Orbitrap-HRMS, and then the potential components, target genes and signalling pathways of YAFZF were predicted using the network pharmacological method. We then used molecular docking to visualize the combination characteristics between major active components and macromolecules in the crucial pathway. In vitro experiments were conducted to investigate the inhibitory effects of YAFZF treatment on the cell viability, invasion, and migration of 4T1 and MDA-MB-231 cells. The xenograft TNBC models were constructed using female Balb/c mice, and their body weights, tumour volumes, and weights were monitored during YAFZF treatment. Quantitative real-time PCR (qRT-PCR), Hematoxylin-eosin (HE), immunohistochemistry (IHC) staining, Western blot (WB), and terminal deoxynucleotidyl transferase (TdT)-dUTP nick-end labeling (TUNEL) staining were used for further experimental validation. Results Based on UPLC-Q-Orbitrap-HRMS and network pharmacology analysis, 6 major bioactive components and 153 intersecting genes were obtained for YAFZF against TNBC. Functional enrichment analysis identified that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway might be the mechanism of action of YAFZF in the treatment of TNBC. Molecular docking results suggested that the main active compounds in YAFZF had strong binding energies with the proteins in the PI3K/Akt pathway. In vitro experiments showed that YAFZF inhibited the cell viability, invasion, and migration abilities of TNBC cells. Animal experiments confirmed that YAFZF treatment suppressed tumour cell proliferation and increased apoptotic cells. PCR, HE, WB, and IHC results indicated that YAFZF could suppress xenograft tumour metastases by inhibiting the PI3K/AKT/mTOR pathway regulating the epithelial-mesenchymal transition (EMT) process. Conclusion YAFZF therapy showed its potential for reducing proliferation, invasion, and migration abilities, increasing apoptosis of TNBC cells. Furthermore, YAFZF treated TNBC by inhibiting xenograft tumour distant metastases via the regulation of EMT by the PI3K/Akt/mTOR pathway, suggesting that it may be useful as an adjuvant treatment.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Haoliang Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yuxin Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Longzhu Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
12
|
Tao W, Xufeng Y, Xianmei C, Mengrou Q, Jieqiong W, Mingqi Q. Exploring the Mechanism of Myrrh in the Treatment of Breast Cancer Based on Network Pharmacology and Cell Experiments. Chem Biol Drug Des 2024; 104:e14604. [PMID: 39147995 DOI: 10.1111/cbdd.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to investigate the mechanism of action of myrrh in breast cancer (BC) treatment and identify its effective constituents. Data on the compounds and targets of myrrh were collected from the TCMSP, PubChem, and Swiss Target Prediction databases. BC-related targets were obtained from the Genecard database. A protein-protein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted on the intersecting targets of the disease and drug. The key targets of myrrh in BC treatment were identified based on the PPI network. The active constituents of myrrh were determined through reverse-screening using the top 20 KEGG pathways. Macromolecular docking studies, molecular dynamic (MD) simulations, and cell assays were utilized to validate the active constituents and critical targets. Network pharmacology indicated that VEGFA, TP53, ESR1, EGFR, and AKT1 are key targets of myrrh. Pelargonidin chloride, Quercetin, and Naringenin were identified as the active constituents of myrrh. Macromolecular docking showed that Quercetin and Naringenin have strong docking capabilities with ESR1. The results of MD simulation experiments align with those of molecular docking experiments. Cell and western blot assays demonstrated that Quercetin and Naringenin could inhibit MCF-7 cells and significantly reduce the expression of ESR1 protein. The findings reveal the active constituents, key targets, and molecular mechanisms of myrrh in BC treatment, providing scientific evidence that supports the role of myrrh in BC therapy. Furthermore, the results suggest that network pharmacology predictions require experimental validation for reliability.
Collapse
Affiliation(s)
- Wu Tao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Research and Innovation Team of Emotional Diseases and Syndrome Research, Shandong University of Traditional Chinese Medicine, Jinan, China
- Emotional Disease Syndrome Innovative Chinese Medicine Research Young Scientific Research and Innovation Team, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Xufeng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Research and Innovation Team of Emotional Diseases and Syndrome Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Xianmei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Research and Innovation Team of Emotional Diseases and Syndrome Research, Shandong University of Traditional Chinese Medicine, Jinan, China
- Emotional Disease Syndrome Innovative Chinese Medicine Research Young Scientific Research and Innovation Team, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qu Mengrou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Research and Innovation Team of Emotional Diseases and Syndrome Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wang Jieqiong
- Emotional Disease Syndrome Innovative Chinese Medicine Research Young Scientific Research and Innovation Team, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiao Mingqi
- College of Traditional Chinese Medicine, Research and Innovation Team of Emotional Diseases and Syndrome Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
14
|
Balan D, Kampan NC, Plebanski M, Abd Aziz NH. Unlocking ovarian cancer heterogeneity: advancing immunotherapy through single-cell transcriptomics. Front Oncol 2024; 14:1388663. [PMID: 38873253 PMCID: PMC11169633 DOI: 10.3389/fonc.2024.1388663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Ovarian cancer, a highly fatal gynecological cancer, warrants the need for understanding its heterogeneity. The disease's prevalence and impact are underscored with statistics on mortality rates. Ovarian cancer is categorized into distinct morphological groups, each with its characteristics and prognosis. Despite standard treatments, survival rates remain low due to relapses and chemoresistance. Immune system involvement is evident in ovarian cancer's progression, although the tumor employs immune evasion mechanisms. Immunotherapy, particularly immune checkpoint blockade therapy, is promising, but ovarian cancer's heterogeneity limits its efficacy. Single-cell sequencing technology could be explored as a solution to dissect the heterogeneity within tumor-associated immune cell populations and tumor microenvironments. This cutting-edge technology has the potential to enhance diagnosis, prognosis, and personalized immunotherapy in ovarian cancer, reflecting its broader application in cancer research. The present review focuses on recent advancements and the challenges in applying single-cell transcriptomics to ovarian cancer.
Collapse
Affiliation(s)
- Dharvind Balan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Sun X, He W, Lin B, Huang W, Ye D. Defining three ferroptosis-based molecular subtypes and developing a prognostic risk model for high-grade serous ovarian cancer. Aging (Albany NY) 2024; 16:9106-9126. [PMID: 38795391 PMCID: PMC11164503 DOI: 10.18632/aging.205857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/08/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND As a newly defined regulated cell death, ferroptosis is a potential biomarker in ovarian cancer (OV). However, its underlying mechanism in tumor microenvironment (TME) and clinical prediction significance in OV remained to be elucidated. METHODS The transcriptome data of high-grade serous OV from The Cancer Genome Atlas (TCGA) database were downloaded. Molecular subtypes were classified based on ferroptosis-correlated genes from the FerrDb database by performing consensus clustering analysis. The associations between the subtypes and clinicopathologic characteristics, mutation, regulatory pathways and immune landscape were assessed. A ferroptosis-related prognostic model was constructed and verified using International Cancer Genome Consortium (ICGC) cohort and GSE70769. RESULTS Three molecular subtypes of OV were defined. Patients in subtype C3 tended to have the most favorable prognosis, while subtype C1 showing more mesenchymal cells, increased immune infiltration of Macrophages_M2, lower tumor purity, and epithelial-to-mesenchymal transition (EMT) features had the poorest prognosis. A ferroptosis-related risk model was constructed using 8 genes (PDP1, FCGBP, EPHA4, GAS1, SLC7A11, BLOC1S1, SPOCK2, and CXCL9) and manifested a strong prediction performance. High-risk patients had enriched EMT pathways, more Macrophages_M2, less plasma cells and CD8 cell infiltration, greater tendency of immune escape and worse prognosis. The risk score has negatively correlated relation with LAG3, TIGIT, CTLA4, IDO1, CD27, ICOS, and IL2RB but positively correlated with PVR, CD276, and CD28. Moreover, low-risk patients were more sensitive to Cisplatin and Gefitinib, Gemcitabine. CONCLUSIONS Our results could improve the understanding of ferroptosis in OV, providing promising insights for the clinical targeted therapy for the cancer.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wenbin He
- Department of Otolaryngology, Lanzhou University Second Hospital, Gansu 730030, China
| | - Baohua Lin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Weiming Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Danping Ye
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| |
Collapse
|
16
|
Thi HV, Ngo AD, Chu DT. Epigenetic regulation in ovarian cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:77-98. [PMID: 39179349 DOI: 10.1016/bs.ircmb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Ovarian cancer is one of the diseases that have the highest mortality rate for women, especially women over 50 years old. In the future, incidence and mortality rates are predicted to extend in countries with low HDI. Instability in the structure and function of genetic factors has long been known as a cause of cancer, including ovarian cancer. Besides understanding gene mutations, epigenetic alterations have emerged as another aspect leading to the pathogenesis of ovarian neoplasm. The development and progression of this fatal disease have been found to be associated with abnormalities of epigenetic regulation. DNA methylation, histone modification, and non-coding RNAs-based gene silencing are processes of interest in developing ovarian carcinoma and are also new targets for cancer detection or treatment.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
17
|
Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, Ivshina AV, Kuznetsov VA. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol 2024; 14:1227151. [PMID: 38756663 PMCID: PMC11097164 DOI: 10.3389/fonc.2024.1227151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Yee Aau
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Csaba Papp
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Anna V. Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
18
|
Xu Y, Zhou Y, Yi X, Nie X. LRP8 promotes tumorigenesis in ovarian cancer through inhibiting p53 signaling. Cell Biol Int 2024; 48:626-637. [PMID: 38263609 DOI: 10.1002/cbin.12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a high mortality rate. Low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a cell membrane receptor belonging LDL receptor family and is involved in several tumor progressions. However, there is limited understanding of how LRP8 mediates OC development. LRP8 expression level was identified in human OC tissues and cells using immunohistochemical staining and quantitative polymerase chain reaction assays, respectively. Functions of LRP8 in OC progression were evaluated by Celigo cell counting, wound healing, transwell and flow cytometry assays, and the xenograft models. The human phospho-kinase array analysis was used for screening potential signaling involved in OC development. We observed that LRP8 was overexpressed in OC tissues, and high expression of LRP8 was associated with poor prognosis of OC patients. Functionally, LRP8 knockdown remarkably reduced proliferation and migration of OC cells, and induced apoptosis and S phase cycle arrest. LRP8 deficiency attenuated in vivo tumor growth of OC cells. Moreover, the addition of p53 inhibitor partially reversed the effects of LRP8 knockdown on OC cell proliferation and apoptosis, indicating the involvement of p53 signaling in LRP8-mediated OC progression. This study confirmed that LRP8/p53 axis contributed to OC progression, which might serve as a novel potential therapeutic target for OC patients.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiling Yi
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Xiaocui Nie
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| |
Collapse
|
19
|
Tang L, Bian C. Research progress in endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1381244. [PMID: 38725626 PMCID: PMC11079782 DOI: 10.3389/fonc.2024.1381244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Endometriosis-associated ovarian cancer (EAOC) is a unique subtype of ovarian malignant tumor originating from endometriosis (EMS) malignant transformation, which has gradually become one of the hot topics in clinical and basic research in recent years. According to clinicopathological and epidemiological findings, precancerous lesions of ovarian clear cell carcinoma (OCCC) and ovarian endometrioid carcinoma (OEC) are considered as EMS. Given the large number of patients with endometriosis and its long time window for malignant transformation, sufficient attention should be paid to EAOC. At present, the pathogenesis of EAOC has not been clarified, no reliable biomarkers have been found in the diagnosis, and there is still a lack of basis and targets for stratified management and precise treatment in the treatment. At the same time, due to the long medical history of patients, the fast growth rate of cancer cells, and the possibility of eliminating the earliest endometriosis-associated ovarian cancer, it is difficult to find the corresponding histological evidence. As a result, few patients are finally diagnosed with EAOC, which increases the difficulty of in-depth study of EAOC. This article reviews the epidemiology, pathogenesis, risk factors, clinical diagnosis, new treatment strategies and prognosis of endometriosis-associated ovarian cancer, and prospects the future direction of basic research and clinical transformation, in order to achieve stratified management and personalized treatment of ovarian cancer patients.
Collapse
Affiliation(s)
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
21
|
Gant KL, Patankar MS, Campagnola PJ. A Perspective Review: Analyzing Collagen Alterations in Ovarian Cancer by High-Resolution Optical Microscopy. Cancers (Basel) 2024; 16:1560. [PMID: 38672642 PMCID: PMC11048585 DOI: 10.3390/cancers16081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several microscopic imaging techniques used to analyze the structural modifications in the extracellular matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools available to visualize these alterations and the invaluable insights these data provide on HGSOC initiation. We also discuss the clinical implications of these findings and how these data may help novel tools for early diagnosis of HGSOC.
Collapse
Affiliation(s)
- Kristal L. Gant
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Shen X, Wu J, Li J, Shao X, Wang X. Case report: Emerging BRCA mutation confers benefit from olaparib after chemotherapy intolerance in advanced triple-negative breast cancer. Clin Case Rep 2024; 12:e8680. [PMID: 38571902 PMCID: PMC10988688 DOI: 10.1002/ccr3.8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 04/05/2024] Open
Abstract
Key Clinical Message In a patient with metastatic breast cancer, an acquired BRCA mutation in the BRCA gene was detected, resulting in benefits from olaparib treatment. This underscores the importance of ongoing genetic phenotype testing after paclitaxel chemotherapy. Abstract Triple-negative breast cancer (TNBC) is associated with a poor prognosis and elevated mortality risk. BRCA mutations are commonly regarded as prevalent mutations in TNBC patients, strongly associated with congenital familial heredity. Dynamic changes in mutation sites, however, are rarely reported. In this case report, we report a 59-year-old TNBC patient who developed pulmonary metastases post-chemoradiotherapy. No BRCA mutations were detected through NGS. After 7.6 months of nab-paclitaxel treatment, the patient experienced progression of lung metastases, and BRCA mutations were detected through NGS testing. Subsequent administration of olaparib resulted in a reduction in lung metastasis, demonstrating significant therapeutic efficacy. This case underscores the infrequent occurrence of treatment-induced BRCA mutations and emphasizes the significance of dynamic NGS genetic testing for real-time assessment of a patient's mutational status.
Collapse
Affiliation(s)
- Xia‐Bo Shen
- Department of Breast Medical OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Jia‐Yi Wu
- Department of Breast Medical OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | | | - Xi‐Ying Shao
- Department of Breast Medical OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Xiao‐Jia Wang
- Department of Breast Medical OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| |
Collapse
|
23
|
Han Y, Fu L, Kong Y, Jiang C, Huang L, Zhang H. STEAP3 Affects Ovarian Cancer Progression by Regulating Ferroptosis through the p53/SLC7A11 Pathway. Mediators Inflamm 2024; 2024:4048527. [PMID: 38440354 PMCID: PMC10911874 DOI: 10.1155/2024/4048527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024] Open
Abstract
Ovarian cancer (OC) is a common malignant cancer in women with a low overall survival rate, and ferroptosis may be a potential new strategy for treatment. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a gene closely related to ferroptosis, yet the role of STEAP3 in OC has not yet been thoroughly investigated. Using biological information analysis, we first found that STEAP3 was highly expressed in OC, which was significantly associated with poor prognosis of patients and was an independent prognostic factor. Through cloning, scratch, and transwell experiments, we subsequently found that knockdown of STEAP3 significantly reduced the proliferation and migration ability of OC cells. Furthermore, we found that knockdown of STEAP3 induced ferroptosis in OC cells by detecting ferroptosis indicators. Mechanistically, we also found that knockdown of STEAP3 induced ferroptosis through the p53/SLC7A11 signaling pathway. Through tumorigenic experiments in nude mice, we finally verified that the knockdown of STEAP3 could inhibit tumor growth in vivo by promoting ferroptosis through the p53 pathway. Overall, our study identified a novel therapeutic target for ferroptosis in OC and explored its specific mechanism of action.
Collapse
Affiliation(s)
- Yi Han
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Lei Fu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Yan Kong
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Changqing Jiang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Liying Huang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Hualing Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| |
Collapse
|
24
|
Murawski M, Jagodziński A, Bielawska-Pohl A, Klimczak A. Complexity of the Genetic Background of Oncogenesis in Ovarian Cancer-Genetic Instability and Clinical Implications. Cells 2024; 13:345. [PMID: 38391958 PMCID: PMC10886918 DOI: 10.3390/cells13040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.
Collapse
Affiliation(s)
- Marek Murawski
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Adam Jagodziński
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| |
Collapse
|
25
|
Tuncer SB, Celik B, Erciyas SK, Erdogan OS, Gültaslar BK, Odemis DA, Avsar M, Sen F, Saip PM, Yazici H. Germline mutational variants of Turkish ovarian cancer patients suspected of Hereditary Breast and Ovarian Cancer (HBOC) by next-generation sequencing. Pathol Res Pract 2024; 254:155075. [PMID: 38219492 DOI: 10.1016/j.prp.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is characterized by an increased risk of developing breast cancer (BC) and ovarian cancer (OC) due to inherited genetic mutations. Understanding the genetic variants associated with HBOC is crucial for identifying individuals at high risk and implementing appropriate preventive measures. The study included 630 Turkish OC patients with confirmed diagnostic criteria of The National Comprehensive Cancer Network (NCCN) concerning HBOC. Genomic DNA was extracted from peripheral blood samples, and targeted Next-generation sequencing (NGS) was performed. Bioinformatics analysis and variant interpretation were conducted to identify pathogenic variants (PVs). Our analysis revealed a spectrum of germline pathogenic variants associated with HBOC in Turkish OC patients. Notably, several pathogenic variants in BRCA1, BRCA2, and other DNA repair genes were identified. Specifically, we observed germline PVs in 130 individuals, accounting for 20.63% of the total cohort. 76 distinct PVs in genes, BRCA1 (40 PVs), BRCA2 (29 PVs), ATM (1 PV), CHEK2 (2 PVs), ERCC2 (1 PV), MUTYH (1 PV), RAD51C (1 PV), and TP53 (1PV) and also, two different PVs (i.e., c.135-2 A>G p.? in BRCA1 and c.6466_6469delTCTC in BRCA2) were detected in a 34-year-old OC patient. In conclusion, our study contributes to a better understanding of the genetic variants underlying HBOC in Turkish OC patients. These findings provide valuable insights into the genetic architecture of HBOC in the Turkish population and shed light on the potential contribution of specific germline PVs to the increased risk of OC.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Betul Celik
- Erzincan Binali Yıldırım University, Department of Molecular Biology, Erzincan, Türkiye
| | - Seda Kilic Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Busra Kurt Gültaslar
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Health Services Vocational of Higher Education, T.C. Istanbul Aydın University, Istanbul, Türkiye
| | - Fatma Sen
- Clinic of Medical Oncology, Avrasya Hospital, Istanbul, Türkiye
| | - Pınar Mualla Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazici
- Istanbul Arel University, Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye
| |
Collapse
|
26
|
Wilczyński J, Paradowska E, Wilczyński M. High-Grade Serous Ovarian Cancer-A Risk Factor Puzzle and Screening Fugitive. Biomedicines 2024; 12:229. [PMID: 38275400 PMCID: PMC10813374 DOI: 10.3390/biomedicines12010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal tumor of the female genital tract. Despite extensive studies and the identification of some precursor lesions like serous tubal intraepithelial cancer (STIC) or the deviated mutational status of the patients (BRCA germinal mutation), the pathophysiology of HGSOC and the existence of particular risk factors is still a puzzle. Moreover, a lack of screening programs results in delayed diagnosis, which is accompanied by a secondary chemo-resistance of the tumor and usually results in a high recurrence rate after the primary therapy. Therefore, there is an urgent need to identify the substantial risk factors for both predisposed and low-risk populations of women, as well as to create an economically and clinically justified screening program. This paper reviews the classic and novel risk factors for HGSOC and methods of diagnosis and prediction, including serum biomarkers, the liquid biopsy of circulating tumor cells or circulating tumor DNA, epigenetic markers, exosomes, and genomic and proteomic biomarkers. The novel future complex approach to ovarian cancer diagnosis should be devised based on these findings, and the general outcome of such an approach is proposed and discussed in the paper.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Gynecological Oncology, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
27
|
Zhu J, Han M, Yang Y, Feng R, Hu Y, Wang Y. Exploring the Mechanism of Brucea Javanica against Ovarian Cancer based on Network Pharmacology and the Influence of Luteolin on the PI3K/AKT Pathway. Comb Chem High Throughput Screen 2024; 27:157-167. [PMID: 37366364 DOI: 10.2174/1386207326666230627114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is a commonly diagnosed female cancer around the world. The Chinese herbal medicine Brucea Javanica has an anti-cancer effect. However, there is no relevant report on whether Brucea Javanica is effective in treating OC, and the corresponding mechanism is also unknown. OBJECTIVE This study was projected to excavate the active components and underpinned molecular mechanisms of Brucea Javanica in treating ovarian cancer (OC) through network pharmacology combined with in vitro experiments. METHODS The essential active components of Brucea Javanica were selected using the TCMSP database. The OC-related targets were selected by GeneCards, intersecting targets were obtained by Venn Diagram. The core targets were obtained through the PPI network and Cytoscape, and the key pathway was gained through GO and KEGG enrichment analyses. Meanwhile, docking conformation was observed as reflected by molecular docking. MTT, colony formation assay and flow cytometer (FCM) analysis were performed to determine cell proliferation and apoptosis, respectively. Finally, Levels of various signaling proteins were evaluated by western blotting. RESULTS Luteolin, β-sitosterol and their corresponding targets were selected as the essential active components of Brucea Javanica. 76 intersecting targets were obtained by Venn Diagram. TP53, AKT1, and TNF were obtained through the PPI network and Cytoscape, and the key pathway PI3K/AKT was gained through GO and KEGG enrichment analyses. A good docking conformation was observed between luteolin and AKT1. Luteolin could hinder A2780 cell proliferation, induce cell apoptosis and enhance the inhibition of the PI3K/AKT pathway. CONCLUSION It was verified in vitro that luteolin could hinder OC cell proliferation and activate the PI3K/AKT pathway to lead to apoptosis.
Collapse
Affiliation(s)
- Jufan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengfei Han
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiheng Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Renqian Feng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuli Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
28
|
Gao F, Wu Q, Lu D. MicroRNA-10a-5p-mediated downregulation of GATA6 inhibits tumor progression in ovarian cancer. Hum Cell 2024; 37:271-284. [PMID: 37768544 DOI: 10.1007/s13577-023-00987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer is the common cause of cancer-related death in women and is considered the most deadly gynecological cancer. It has been established that GATA-binding protein 6 (GATA6) is abnormally expressed in several types of malignant tumors and acts as an oncogenic protein or a tumor suppressor. However, the underlying mechanism of GATA6 in ovarian cancer progression has not been elucidated. Data in the present study revealed that GATA6 expression was negatively correlated to microRNA-10a-5p (miR-10a-5p) in ovarian cancer tissue and cells and that GATA6 is directly targeted by miR-10a-5p. Notably, upregulated miR-10a-5p dramatically inhibited ovarian cancer cell proliferation, tumorigenic ability, migration, and invasion by targeting GATA6. In vitro and in vivo experiments confirmed that miR-10a-5p-mediated downregulation of GATA6 suppressed Akt pathway activation. Overall, our findings suggest that miR-10a-5p could be a novel therapeutic target for ovarian cancer, and targeting the miR-10a-5p/GATA6/Akt axis could improve outcomes in this patient population.
Collapse
Affiliation(s)
- Feiying Gao
- Medical College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Yangzhou Jiangdu Binjiang City People's Hospital, Yangzhou, 225211, China
| | - Qiang Wu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dan Lu
- Medical College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Chen X, Song Y. Integrating network pharmacology and Mendelian randomization to explore potential targets of matrine against ovarian cancer. Technol Health Care 2024; 32:3889-3902. [PMID: 38968061 PMCID: PMC11613084 DOI: 10.3233/thc-231051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/15/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Matrine has been reported inhibitory effects on ovarian cancer (OC) cell progression, development, and apoptosis. However, the molecular targets of matrine against OC and the underlying mechanisms of action remain elusive. OBJECTIVE This study endeavors to unveil the potential targets of matrine against OC and to explore the intricate relationships between these targets and the pathogenesis of OC. METHODS The effects of matrine on the OC cells (A2780 and AKOV3) viability, apoptosis, migration, and invasion was investigated through CCK-8, flow cytometry, wound healing, and Transwell analyses, respectively. Next, Matrine-related targets, OC-related genes, and ribonucleic acid (RNA) sequence data were harnessed from publicly available databases. Differentially expressed analyses, protein-protein interaction (PPI) network, and Venn diagram were involved to unravel the core targets of matrine against OC. Leveraging the GEPIA database, we further validated the expression levels of these core targets between OC cases and controls. Mendelian randomization (MR) study was implemented to delve into potential causal associations between core targets and OC. The AutoDock software was used for molecular docking, and its results were further validated using RT-qPCR in OC cell lines. RESULTS Matrine reduced the cell viability, migration, invasion and increased the cell apoptosis of A2780 and AKOV3 cells (P< 0.01). A PPI network with 578 interactions among 105 candidate targets was developed. Finally, six core targets (TP53, CCND1, STAT3, LI1B, VEGFA, and CCL2) were derived, among which five core targets (TP53, CCND1, LI1B, VEGFA, and CCL2) differential expressed in OC and control samples were further picked for MR analysis. The results revealed that CCND1 and TP53 were risk factors for OC. Molecular docking analysis demonstrated that matrine had good potential to bind to TP53, CCND1, and IL1B. Moreover, matrine reduced the expression of CCND1 and IL1B while elevating P53 expression in OC cell lines. CONCLUSIONS We identified six matrine-related targets against OC, offering novel insights into the molecular mechanisms underlying the therapeutic effects of matrine against OC. These findings provide valuable guidance for developing more efficient and targeted therapeutic approaches for treating OC.
Collapse
Affiliation(s)
- Xiaoqun Chen
- Department of Ultrasound, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, Zhejiang, China
| | - Yingliang Song
- Department of Gynaecology and Obstetrics, Xinchang County People’s Hospital, Xinchang, Zhejiang, China
| |
Collapse
|
30
|
Hassin O, Sernik M, Seligman A, Vogel FCE, Wellenstein MD, Smollich J, Halperin C, Pirona AC, Toledano LN, Caballero CD, Schlicker L, Salame TM, Sarusi Portuguez A, Aylon Y, Scherz-Shouval R, Geiger T, de Visser KE, Schulze A, Oren M. p53 deficient breast cancer cells reprogram preadipocytes toward tumor-protective immunomodulatory cells. Proc Natl Acad Sci U S A 2023; 120:e2311460120. [PMID: 38127986 PMCID: PMC10756271 DOI: 10.1073/pnas.2311460120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Miriam Sernik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Adi Seligman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Felix C. E. Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Max D. Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Joachim Smollich
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Anna Chiara Pirona
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Liron Nomi Toledano
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Carolina Dehesa Caballero
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avital Sarusi Portuguez
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tamar Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Karin E. de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg69120, Germany
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
31
|
Zhang J, Qi C, Li H, Ding C, Wang L, Wu H, Dai W, Wang C. Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification. Medicine (Baltimore) 2023; 102:e36656. [PMID: 38134066 PMCID: PMC10735072 DOI: 10.1097/md.0000000000036656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The mortality rate of ovarian cancer is the highest among gynecological cancers, posing a serious threat to women health and life. Scutellaria barbata D. Don (SBD) can effectively treat ovarian cancer. However, its mechanism of action is unclear. The aim of this study was to elucidate the mechanism of SBD in the treatment of ovarian cancer using network pharmacology, and to verify the experimental results using human ovarian cancer SKOV3 cells. The Herb and Disease Gene databases were searched to identify common targets of SBD and ovarian cancer. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind SBD. Finally, the molecular docking and main possible pathways were verified by experimental studies. Cell proliferation, the mRNA expression level of key genes and signaling pathway were all investigated and evaluated in vitro. A total of 29 bioactive ingredients and 137 common targets in SBD were found to inhibit ovarian cancer development. The active ingredients identified include quercetin, luteolin, and wogonin. Analysis of the PPI network showed that AKT1, VEGFA, JUN, TNF, and Caspase-3 shared centrality among all target genes. The results of the KEGG pathway analysis indicated that the cancer pathway, PI3K-Akt signaling pathway, and MAPK signaling pathways mediated the effects of SBD against ovarian cancer progression. Cell experiments showed that quercetin, luteolin, and wogonin inhibited the proliferation and clone formation of SKOV3 cells and regulated mRNA expression of 5 key genes by inhibiting PI3K/Akt signaling pathway. Our results demonstrate that SBD exerted anti-ovarian cancer effects through its key components quercetin, luteolin and wogonin. Mechanistically, its anti-cancer effects were mediated by inhibition of the PI3K/Akt signaling pathways. Therefore, SBD might be a candidate drug for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libo Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjin Wu
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Dai
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenglong Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Hu H, Yan T, Zhu H, Zhan W, Zhang J, Wang S, Jiang L, Escobar D, Zhang T. A novel immune checkpoint-related signature for prognosis and immune analysis in breast cancer. Clin Exp Med 2023; 23:5139-5159. [PMID: 37930605 DOI: 10.1007/s10238-023-01247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Breast cancer is one of the most prevailing forms of cancer globally. Immunotherapy has demonstrated efficacy in improving the overall survival of breast cancer. The aim of us was to formulate a novel signature predicated on immune checkpoint-related genes (ICGs) that could anticipate the prognosis and further analyze the immune status of patients with breast cancer. After acquiring data, we pinpointed the definitive ICGs for constructing the prognostic model of breast cancer. We constructed a novel prognostic model and created a fresh risk score called Immune Checkpoint-related Risk Score in breast cancer (ICRSBC). The nomogram was constructed to evaluate the accuracy of the model, and the new web-based tool was created to be more intuitive for predicting prognosis. We also investigated immunotherapy responsiveness and analyzed the tumor mutational burden (TMB) in ICRSBC subgroups. The ICRSBC was found to have significant correlations with the immune environment, immunotherapy responsiveness, and TMB. The expression levels of the 9 ICGs that construct the prognostic model and their promoter methylation levels are significantly different between breast cancer and normal tissues. Furthermore, the mutation profiles, the copy number alterations, and the levels of protein expression also exhibit marked disparities among the 9 ICGs. We have identified and validated a novel signature related to ICGs that is strongly associated with breast cancer progression. This signature enables us to create a risk score for prognosticating the survival and assessing the immune status of individuals affected by breast cancer.
Collapse
Affiliation(s)
- Haihong Hu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hongxia Zhu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Wendi Zhan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Jingdi Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Siyu Wang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David Escobar
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Liu T, Du J, Cheng X, Wei J. Integrative Analysis of the Role of TP53 in Human Pan-Cancer. Curr Issues Mol Biol 2023; 45:9606-9633. [PMID: 38132447 PMCID: PMC10742156 DOI: 10.3390/cimb45120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor protein P53 (TP53) is an important tumor suppressor gene in humans. Under normal circumstances, TP53 can help repair mutated genes, or promote the death of cells with severe gene mutations (specifically, TP53 prevents cells from arrest in the G1/S phase when deoxyribonucleic acid (DNA) is damaged and promotes apoptosis if not repaired), and prevents normal cells from becoming malignant cells. TP53 mutations affect its tumor suppressor function, leading to the development of malignant tumors. In this study, using a public database, we explored the pan-cancer expression of TP53, its impact on patient survival and prognosis, the types of gene mutations, its correlation with immunity, and its regulation of other transcription factors and micro RNA (miRNA). The docking sites of therapeutic drugs and key amino acid sites of action provide a basis for future targeted therapies. TP53 has important biological functions in the human body. This study provides a theoretical basis for clinical TP53 gene therapy.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Jin Du
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| |
Collapse
|
34
|
Ma X, Fan M, Yang K, Wang Y, Hu R, Guan M, Hou Y, Ying J, Deng N, Li Q, Jiang G, Zhang Y, Zhang X. ZNF500 abolishes breast cancer proliferation and sensitizes chemotherapy by stabilizing P53 via competing with MDM2. Cancer Sci 2023; 114:4237-4251. [PMID: 37700392 PMCID: PMC10637072 DOI: 10.1111/cas.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Zinc finger protein 500 (ZNF500) has an unknown expression pattern and biological function in human tissues. Our study revealed that the ZNF500 mRNA and protein levels were higher in breast cancer tissues than those in their normal counterparts. However, ZNF500 expression was negatively correlated with advanced TNM stage (p = 0.018), positive lymph node metastasis (p = 0.014), and a poor prognosis (p < 0.001). ZNF500 overexpression abolished in vivo and in vitro breast cancer cell proliferation by activating the p53-p21-E2F4 signaling axis and directly interacting with p53 via its C2H2 domain. This may prevent ubiquitination of p53 in a manner that is competitive to MDM2, thus stabilizing p53. When ZNF500-∆C2H2 was overexpressed, the suppressed proliferation of breast cancer cells was neutralized in vitro and in vivo. In human breast cancer tissues, ZNF500 expression was positively correlated with p53 (p = 0.022) and E2F4 (p = 0.004) expression. ZNF500 expression was significantly lower in patients with Miller/Payne Grade 1-2 than in those with Miller/Payne Grade 3-5 (p = 0.012). ZNF500 suppresses breast cancer cell proliferation and sensitizes cells to chemotherapy.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
- Second Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Mingwei Fan
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Kaibo Yang
- Department of OphthalmologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuanyuan Wang
- Department of AnesthesiologyThe Fourth Affiliated Hospital, China Medical UniversityShenyangChina
| | - Ran Hu
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Mengyao Guan
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yuekang Hou
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jiao Ying
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Ning Deng
- Department of Breast SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Qingchang Li
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Guiyang Jiang
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yong Zhang
- Department of PathologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Xiupeng Zhang
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
35
|
Shi X, Ding H, Tao J, Zhu Y, Zhang X, He G, Yang J, Wu X, Liu X, Yu X. Comprehensive evaluation of cell death-related genes as novel diagnostic biomarkers for breast cancer. Heliyon 2023; 9:e21341. [PMID: 38027811 PMCID: PMC10643282 DOI: 10.1016/j.heliyon.2023.e21341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Breast cancer (BRCA) ranks first among cancers in terms of incidence and mortality rates in women, primarily owing to metastasis, chemo-resistance, and heterogeneity. To predict long-term prognosis and design novel therapies for BRCA, more sensitive markers need to be explored. Methods Data from 1089 BRCA patients were downloaded from TCGA database. Pearson's correlation analysis and univariate and multivariate Cox regression analyses were performed to assess the role of cell death-related genes (CDGs) in predicting BRCA prognosis. Kaplan-Meier survival curves were generated to compare the overall survival in the two subgroups. A nomogram was constructed using risk scores based on the five CDGs and other clinicopathological features. CCK-8, EdU incorporation, and colony formation assays were performed to verify the inhibitory effect of NFKBIA on BRCA cell proliferation. Transwell assay, flow cytometry, and immunohistochemistry analyses were performed to ascertain the biological function of NFKBIA. Results Five differentially expressed CDGs were detected among 156 CDGs. The risk score for each patient was then calculated based on the expression levels of the five CDGs. Distinct differences in immune infiltration, expression of immune-oncological targets, mutation status, and half-maximal inhibitory concentration values of some targeted drugs were observed between the high- and low-risk groups. Finally, in vitro cell experiments verified that NFKBIA overexpression suppresses the proliferation and migration of BRCA cells. Conclusions Our study revealed that some CDGs, especially NFKBIA, could serve as sensitive markers for predicting the prognosis of patients with BRCA and designing more personalized clinical therapies.
Collapse
Affiliation(s)
- Xiaoyue Shi
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hao Ding
- Department of Breast Surgery, Baoying Maternal and Child Health Hospital, 120 Anyi East Road, Yangzhou, Jiangsu 225800, People's Republic of China
| | - Jing Tao
- Department of Thyroid-Breast Surgery, Nanjing Pukou Hospital, The Fourth Affiliated Hospital of Nanjing Medical University, 18 Puyuan Road, Nanjing, Jiangsu 210031, People's Republic of China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Gao He
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
36
|
Jahani S, Zare N, Mirzaei Y, Arefnezhad R, Zarei H, Goleij P, Bagheri N. Mesenchymal stem cells and ovarian cancer: Is there promising news? J Cell Biochem 2023; 124:1437-1448. [PMID: 37682985 DOI: 10.1002/jcb.30471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Ovarian cancer (OC) is described as a heterogeneous complex condition with high mortality, weak prognosis, and late-stage presentation. OC has several subgroups based on different indices, like the origin and histopathology. The current treatments against OC include surgery followed by chemotherapy and radiotherapy; however, these methods have represented diverse side effects without enough effectiveness on OC. Recently, mesenchymal stem cell (MSC)-based therapy has acquired particular attention for treating diverse problems, such as cancer. These multipotent stem cells can be obtained from different sources, such as the umbilical cord, adipose tissues, bone marrow, and placenta, and their efficacy has been investigated against OC. Hence, in this narrative review, we aimed to review and discuss the present studies about the effects of various sources of MSCs on OC with a special focus on involved mechanisms.
Collapse
Affiliation(s)
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
37
|
Song Z, Zhang J, Sun Y, Jiang Z, Liu X. Establishment and validation of an immune infiltration predictive model for ovarian cancer. BMC Med Genomics 2023; 16:227. [PMID: 37759229 PMCID: PMC10538244 DOI: 10.1186/s12920-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The most prevalent mutation in ovarian cancer is the TP53 mutation, which impacts the development and prognosis of the disease. We looked at how the TP53 mutation associates the immunophenotype of ovarian cancer and the prognosis of the disease. METHODS We investigated the state of TP53 mutations and expression profiles in culturally diverse groups and datasets and developed an immune infiltration predictive model relying on immune-associated genes differently expressed between TP53 WT and TP53 MUT ovarian cancer cases. We aimed to construct an immune infiltration predictive model (IPM) to enhance the prognosis of ovarian cancer and investigate the impact of the IPM on the immunological microenvironment. RESULTS TP53 mutagenesis affected the expression of seventy-seven immune response-associated genes. An IPM was implemented and evaluated on ovarian cancer patients to distinguish individuals with low- and high-IPM subgroups of poor survival. For diagnostic and therapeutic use, a nomogram is thus created. According to pathway enrichment analysis, the pathways of the human immune response and immune function abnormalities were the most associated functions and pathways with the IPM genes. Furthermore, patients in the high-risk group showed low proportions of macrophages M1, activated NK cells, CD8+ T cells, and higher CTLA-4, PD-1, PD-L1, and TIM-3 than patients in the low-risk group. CONCLUSIONS The IPM model may identify high-risk patients and integrate other clinical parameters to predict their overall survival, suggesting it is a potential methodology for optimizing ovarian cancer prognosis.
Collapse
Affiliation(s)
- Zhenxia Song
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Jingwen Zhang
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Yue Sun
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China
| | - Zhongmin Jiang
- Department of Pathology, Tian Jin Fifth's Central Hospital, #41 Zhejiang Road, Binhai District, Tianjin, 300450, P. R. China
| | - Xiaoning Liu
- Department of Obstetrics, Qingdao women and childeren's hospital, #6 Tongfu Road, Shibei District, Qingdao, Shandong, 266000, P. R. China.
| |
Collapse
|
38
|
Kang M, Jeong S, Park S, Nam S, Chung JW, Kim KO, An J, Kim JH. Significance of 8-OHdG Expression as a Predictor of Survival in Colorectal Cancer. Cancers (Basel) 2023; 15:4613. [PMID: 37760582 PMCID: PMC10526191 DOI: 10.3390/cancers15184613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing worldwide. 8-hydroxy-2'-deoxyguanosine (8-OHdG), one of the most prevalent DNA alterations, is known to be upregulated in several carcinomas; however, 8-OHdG has not been used to predict the prognosis of patients with CRC. We aimed to determine 8-OHdG levels in patients with CRC using immunohistochemistry and conducted a survival analysis according to the pathological stage. The 5-year event-free survival (EFS) and disease-specific survival (DSS) hazard ratios (HRs) of the low 8-OHdG subgroup were 1.41 (95% confidence interval (CI): 1.01-1.98, p = 0.04) and 1.60 (95% CI: 1.12-2.28, p = 0.01), respectively. When tumor node metastasis (TNM) staging and 8-OHdG expression were combined, the 5-year EFS and DSS HRs of patients with CRC with low 8-OHdG expression cancer at the same TNM stage (stage Ⅲ/Ⅳ) were 1.51 (95% CI: 1.02-2.22, p = 0.04) and 1.64 (95% CI: 1.09-2.48, p = 0.02), respectively, compared to those with high 8-OHdG expression cancer, indicating a poor prognosis. Therefore, low 8-OHdG expression is a significant predictive factor for 5-year EFS and DSS in patients with CRC, and it can serve as an essential biomarker of CRC.
Collapse
Affiliation(s)
- Myunghee Kang
- Department of Pathology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Soyeon Jeong
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Sungjin Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; (S.P.); (S.N.)
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; (S.P.); (S.N.)
- Department of Genome Medicine and Science, AI Convergence Center for Genome Medicine, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Jun-Won Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
| | - Kyoung Oh Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
| | - Jungsuk An
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jung Ho Kim
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
- Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (J.-W.C.); (K.O.K.)
- Department of Translational-Clinical Medicine, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
39
|
Pan P, Li J, Wang B, Tan X, Yin H, Han Y, Wang H, Shi X, Li X, Xie C, Chen L, Chen L, Bai Y, Li Z, Tian G. Molecular characterization of colorectal adenoma and colorectal cancer via integrated genomic transcriptomic analysis. Front Oncol 2023; 13:1067849. [PMID: 37546388 PMCID: PMC10401844 DOI: 10.3389/fonc.2023.1067849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Colorectal adenoma can develop into colorectal cancer. Determining the risk of tumorigenesis in colorectal adenoma would be critical for avoiding the development of colorectal cancer; however, genomic features that could help predict the risk of tumorigenesis remain uncertain. Methods In this work, DNA and RNA parallel capture sequencing data covering 519 genes from colorectal adenoma and colorectal cancer samples were collected. The somatic mutation profiles were obtained from DNA sequencing data, and the expression profiles were obtained from RNA sequencing data. Results Despite some similarities between the adenoma samples and the cancer samples, different mutation frequencies, co-occurrences, and mutually exclusive patterns were detected in the mutation profiles of patients with colorectal adenoma and colorectal cancer. Differentially expressed genes were also detected between the two patient groups using RNA sequencing. Finally, two random forest classification models were built, one based on mutation profiles and one based on expression profiles. The models distinguished adenoma and cancer samples with accuracy levels of 81.48% and 100.00%, respectively, showing the potential of the 519-gene panel for monitoring adenoma patients in clinical practice. Conclusion This study revealed molecular characteristics and correlations between colorectal adenoma and colorectal cancer, and it demonstrated that the 519-gene panel may be used for early monitoring of the progression of colorectal adenoma to cancer.
Collapse
Affiliation(s)
- Peng Pan
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Bo Wang
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoyan Tan
- Department of Gastroenterology, Maoming People's Hospital, Maoming, China
| | - Hekun Yin
- Department of Gastroenterology, Jiangmen Central Hospital, Jiangmen, China
| | - Yingmin Han
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| | - Haobin Wang
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| | - Xiaoli Shi
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoshuang Li
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Cuinan Xie
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Longfei Chen
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Lanyou Chen
- Department of Science, Geneis Beijing Co., Ltd., Beijing, China
| | - Yu Bai
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Shanghai, China
| | - Geng Tian
- Department of Bioinformatics, Boke Biotech Co., Ltd., Wuxi, China
| |
Collapse
|
40
|
Tian Y, Dong J, Li L. Bridging Pyroptosis and Immunity: A Comprehensive Study of the Pyroptosis-Related Long Non-Coding RNA Signature in Breast Cancer. Life (Basel) 2023; 13:1599. [PMID: 37511974 PMCID: PMC10381440 DOI: 10.3390/life13071599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer continuously poses serious clinical challenges to human health due to its intrinsic heterogenicity and evolving drug resistance. Recently, increasing evidence has shown that pyroptosis, known as a programmed and inflammatory form of cell death, participates in tumorigenesis, progression, and remodeling of the tumor immune microenvironment (TIME). However, a comprehensive insight into pyroptosis-related signatures for breast cancer remains elusive. The current study established a pyroptosis-related lncRNA signature using transcriptome data and corresponding clinical information from The Cancer Genome Atlas (TCGA). Pyroptosis-related gene clusters, the associated differential expression in breast cancer patients' subtypes, and the potential mechanisms were all discussed. This integrative analysis revealed a unique signature underpinning the dichotomy of breast cancer progression and survival outcomes. Interestingly, the pyroptosis-related lncRNA signature was revealed as closely intertwined with the TIME. A correlation was established between the pyroptosis-related LncRNA signature and the TIME, underlying the mutual effect between pyroptosis and the immune responses implicated in breast cancer. The findings in this work underline the critical role exerted by pyroptosis in breast cancer, providing new insights into disease progression, prognosis, and therapeutic potential. This work has been poised to provide new avenues for personalized, immune-based cancer therapeutics by enhancing our understanding of pyroptosis in breast cancer.
Collapse
Affiliation(s)
- Ye Tian
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
41
|
Lian X, Liu B, Wang C, Wang S, Zhuang Y, Li X. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response. Front Endocrinol (Lausanne) 2023; 14:1182776. [PMID: 37342266 PMCID: PMC10277615 DOI: 10.3389/fendo.2023.1182776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
Background Programmed cell death (PCD) is an overwhelming factor affecting tumor cell metastasis, but the mechanism of PCD in ovarian cancer (OV) is still uncertain. Methods To define the molecular subtypes of OV, we performed unsupervised clustering based on the expression level of prognosis related PCD genes in the Cancer Genome Atlas (TCGA)-OV. COX and least absolute shrinkage and selection operator (LASSO) COX analysis were used to identify the OV prognostic related PCD genes, and the genes identified according to the minimum Akaike information criterion (AIC) were the OV prognostic characteristic genes. According to the regression coefficient in the multivariate COX analysis and gene expression data, the Risk Score of OV prognosis was constructed. Kaplan-Meier analysis was conducted to assess the prognostic status of OV patients, and receiver operating characteristic (ROC) curves were conducted to assess the clinical value of Risk Score. Moreover, RNA-Seq date of OV patient derived from Gene Expression Omnibus (GEO, GSE32062) and the International Cancer Genome Consortium (ICGC) database (ICGC-AU), verifying the robustness of the Risk Score via Kaplan-Meier and ROC analysis.Pathway features were performed by gene set enrichment analysis and single sample gene set enrichment analysis. Finally, Risk Score in terms of chemotherapy drug sensitivity and immunotherapy suitability was also evaluated in different groups. Results 9-gene composition Risk Score system was finally determined by COX and LASSO COX analysis. Patients in the low Risk Score group possessed improved prognostic status, immune activity. PI3K pathway activity was increased in the high Risk Score group. In the chemotherapy drug sensitivity analysis, we found that the high Risk Score group might be more suitable for treatment with PI3K inhibitors Taselisib and Pictilisib. In addition, we found that patients in the low-risk group responded better to immunotherapy. Conclusion Risk Score of 9-gene composition of PCD signature possesses promising clinical potential in OV prognosis, immunotherapy, immune microenvironment activity, and chemotherapeutic drug selection, and our study provides the basis for an in-depth investigation of the PCD mechanism in OV.
Collapse
Affiliation(s)
- Xin Lian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Wang
- Department Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wang
- Department Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Zhuang
- Department Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Li
- Department Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Liu J, Zhang X, Wang H, Zuo X, Hong L. Comprehensive Analysis of Purine-Metabolism-Related Gene Signature for Predicting Ovarian Cancer Prognosis, Immune Landscape, and Potential Treatment Options. J Pers Med 2023; 13:jpm13050776. [PMID: 37240946 DOI: 10.3390/jpm13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Purine metabolism is an important branch of metabolic reprogramming and has received increasing attention in cancer research. Ovarian cancer is an extremely dangerous gynecologic malignancy for which there are no adequate tools to predict prognostic risk. Here, we identified a prognostic signature consisting of nine genes related to purine metabolism, including ACSM1, CACNA1C, EPHA4, TPM3, PDIA4, JUNB, EXOSC4, TRPM2, and CXCL9. The risk groups defined by the signature are able to distinguish the prognostic risk and the immune landscape of patients. In particular, the risk scores offer promising personalized drug options. By combining risk scores with clinical characteristics, we have created a more detailed composite nomogram that allows for a more complete and individualized prediction of prognosis. In addition, we demonstrated metabolic differences between platinum-resistant and platinum-sensitive ovarian cancer cells. In summary, we have performed the first comprehensive analysis of genes related to purine metabolism in ovarian cancer patients and created a feasible prognostic signature that will aid in risk prediction and support personalized medicine.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohu Zuo
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
43
|
Ragu ME, Lim JMC, Ng PS, Yip CH, Rajadurai P, Teo SH, Pan JW. TP53 somatic mutations in Asian breast cancer are associated with subtype-specific effects. Breast Cancer Res 2023; 25:48. [PMID: 37101199 PMCID: PMC10134541 DOI: 10.1186/s13058-023-01635-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/07/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Recent genomics studies of breast cancer in Asian cohorts have found a higher prevalence of TP53 mutations in Asian breast cancer patients relative to Caucasian patients. However, the effect of TP53 mutations on Asian breast tumours has not been comprehensively studied. METHODS Here, we report an analysis of 492 breast cancer samples from the Malaysian Breast Cancer cohort where we examined the impact of TP53 somatic mutations in relation to PAM50 subtypes by comparing whole exome and transcriptome data from tumours with mutant and wild-type TP53. RESULTS We found that the magnitude of impact of TP53 somatic mutations appears to vary between different subtypes. TP53 somatic mutations were associated with higher HR deficiency scores as well as greater upregulation of gene expression pathways in luminal A and luminal B tumours compared to the basal-like and Her2-enriched subtypes. The only pathways that were consistently dysregulated when comparing tumours with mutant and wild-type TP53 across different subtypes were the mTORC1 signalling and glycolysis pathways. CONCLUSION These results suggest that therapies that target TP53 or other downstream pathways may be more effective against luminal A and B tumours in the Asian population.
Collapse
Affiliation(s)
- Mohana Eswari Ragu
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia.
| | | | - Pei-Sze Ng
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | - Cheng-Har Yip
- Subang Jaya Medical Centre, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | - Pathmanathan Rajadurai
- Subang Jaya Medical Centre, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Jia-Wern Pan
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
44
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
45
|
Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076834. [PMID: 37047814 PMCID: PMC10095386 DOI: 10.3390/ijms24076834] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations. All these factors have led to the development of new therapies, such as selective estrogen receptor degraders (SERDs), or combination therapies with cyclin-dependent kinases (CDK) 4/6 or PI3K inhibitors. Therefore, understanding the estrogen pathway is essential for the treatment and new drug development of hormone-dependent cancers. This mini-review summarizes current literature on the signalization, mechanisms of action and clinical implications of estrogen receptors in breast cancer.
Collapse
Affiliation(s)
- Léa Clusan
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - François Ferrière
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
46
|
Zhong J, Shen X, Zhou J, Yu H, Wang B, Sun J, Wang J, Liu F. Development and validation of a combined hypoxia and ferroptosis prognostic signature for breast cancer. Front Oncol 2023; 13:1077342. [PMID: 36998462 PMCID: PMC10043308 DOI: 10.3389/fonc.2023.1077342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundHypoxia is involved in tumor biological processes and disease progression. Ferroptosis, as a newly discovered programmed cell death process, is closely related to breast cancer (BC) occurrence and development. However, reliable prognostic signatures based on a combination of hypoxia and ferroptosis in BC have not been developed.MethodWe set The Cancer Genome Atlas (TCGA) breast cancer cohort as training set and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) BC cohort as the validation set. Least Absolute Shrinkage and Selection Operator (LASSO) and COX regression approaches were used to construct ferroptosis-related genes (FRGs) and hypoxia-related genes (HRGs) prognostic signature (HFRS). The CIBERSORT algorithm and ESTIMATE score were used to explore the relationship between HFRS and tumor immune microenvironment. Immunohistochemical staining was used to detect protein expression in tissue samples. A nomogram was developed to advance the clinical application of HFRS signature.ResultsTen ferroptosis-related genes and hypoxia-related genes were screened to construct the HFRS prognostic signature in TCGA BC cohort, and the predictive capacity was verified in METABRIC BC cohort. BC patients with high-HFRS had shorter survival time, higher tumor stage, and a higher rate of positive lymph node. Moreover, high HFRS was associated with high hypoxia, ferroptosis, and immunosuppression status. A nomogram that was constructed with age, stage, and HFRS signature showed a strong prognostic capability to predict overall survival (OS) for BC patients.ConclusionWe developed a novel prognostic model with hypoxia and ferroptosis-related genes to predict OS, and characterize the immune microenvironment of BC patients, which might provide new cures for clinical decision-making and individual treatment of BC patients.
Collapse
Affiliation(s)
- Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xi Shen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Yu
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Birong Wang
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Jianbin Sun
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Jing Wang
- Department of Thoracic Surgery, Wuhan Fourth Hospital, Wuhan, China
- *Correspondence: Jing Wang, ; Feng Liu,
| | - Feng Liu
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
- *Correspondence: Jing Wang, ; Feng Liu,
| |
Collapse
|
47
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. BDP1 as a biomarker in serous ovarian cancer. Cancer Med 2023; 12:6401-6418. [PMID: 36305848 PMCID: PMC10028122 DOI: 10.1002/cam4.5388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TFIIIB, an RNA polymerase III specific transcription factor has been found to be deregulated in human cancers with much of the research focused on the TBP, BRF1, and BRF2 subunits. To date, the TFIIIB specific subunit BDP1 has not been investigated in ovarian cancer but has previously been shown to be deregulated in neuroblastoma, breast cancer, and Non-Hodgkins lymphoma. RESULTS Using in silico analysis of clinically derived platforms, we report a decreased BDP1 expression as a result of deletion in serous ovarian cancer and a correlation with higher and advanced ovarian stages. Further analysis in the context of TP53 mutations, a major contributor to ovarian tumorigenesis, suggests that high BDP1 expression is unfavorable for overall survival and high BDP1 expression occurs in stages 2, 3 and 4 serous ovarian cancer. Additionally, high BDP1 expression is disadvantageous and unfavorable for progression-free survival. Lastly, BDP1 expression significantly decreased in patients treated with first-line chemotherapy, platin and taxane, at twelve-month relapse-free survival. CONCLUSIONS Taken together with a ROC analysis, the data suggest BDP1 could be of clinical relevance as a predictive biomarker in serous ovarian cancer. Lastly, this study further demonstrates that both the over- and under expression of BDP1 warrants further investigation and suggests BDP1 may exhibit dual function in the context of tumorigenesis.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Biology Department, St. John's University, Queens, New York, USA
| |
Collapse
|
48
|
Sun Y, Luo Y, Sun L, Wang XR, Chen LW, Zhang N, Wang Y, Dong LY, Guo H, Wang XH. Improving performance of cell imprinted PDMS by integrating boronate affinity and local post-imprinting modification for selective capture of circulating tumor cells from cancer patients. Biosens Bioelectron 2023; 223:115023. [PMID: 36542938 DOI: 10.1016/j.bios.2022.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Efficient capture of circulating tumor cells (CTCs) from cancer patients is an important technique that may promote early diagnosis and prognosis monitoring of cancer. However, the existing systems have certain disadvantages, such as poor selectivity, low capture efficiency, consumption of antibodies, and difficulty in release of CTCs for downstream analysis. Herein, we fabricated an innovative PEGylated boronate affinity cell imprinted polydimethylsiloxane (PBACIP) for highly efficient capture of CTCs from cancer patients. The antibody-free PBACIP possessed hierarchical structure of imprinted cavities, which were inlaid with boronic acid modified SiO2 nanoparticles (SiO2@BA), so it could specifically capture target CTCs from biological samples due to the synergistic effect of boronate affinity and cell imprinting. Furthermore, PEGylation was accurately completed in the non-imprinted region by the template cells occupying the imprinted cavity, which not only retained the microstructure of original imprinted cavities, but also endowed PBACIP with hydrophilicity. The artificial PBACIP could efficiently capture human breast-cancer cells from biological sample. When 5 to 500 SKBR3 cells were spiked in 1 mL mice lysed blood, the capture efficiency reached 86.7 ± 11.5% to 96.2 ± 2.3%. Most importantly, the PBACIP was successfully used to capture CTCs from blood of breast cancer patients, and the captured CTCs were released for subsequent gene mutation analysis. The PBACIP can efficiently capture and release CTCs for downstream analysis, which provides a universal strategy toward individualized anti-tumor comprehensive treatments and has great potential in the future cell-based clinical applications.
Collapse
Affiliation(s)
- Yi Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Rui Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Li-Wei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
49
|
Cui S, Feng J, Tang X, Lou S, Guo W, Xiao X, Li S, Chen X, Huan Y, Zhou Y, Xiao L. The prognostic value of tumor mutation burden (TMB) and its relationship with immune infiltration in breast cancer patients. Eur J Med Res 2023; 28:90. [PMID: 36805828 PMCID: PMC9940352 DOI: 10.1186/s40001-023-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Although the tumor mutation burden (TMB) was reported as a biomarker for immunotherapy of various cancers, whether it can effectively predict the survival prognosis in breast cancer patients remains unclear. In this study, the prognostic value of TMB and its correlation with immune infiltration were explored by using multigroup studies. METHODS The somatic mutation data of 986 breast cancer patients were obtained from TCGA database. Breast cancer patients were divided into a low-TMB group and a high-TMB group according to the quartile of TMB scores. The differentially expressed genes (DEGs) were identified by the "limma" R program. The CIBERSORT algorithm was utilized to estimate the immune cell fraction of each sample. The TIMER database was utilized to evaluate the association between CNVs of immune genes and tumor immune cell infiltration and the prognostic value of the immune cells in breast cancer. RESULTS In breast cancer, TP53, PIK3CA, TTN, CDH1 and other genes were the most important mutated genes. Higher survival rate of patients was found in the low-TMB group. Among the top 10 DEGs, three of them belong to the KRT gene family. GSEA enrichment analysis showed that MAPK, Hedgehog, mTOR, TGF-bate and GnRH signaling pathways were enriched in the low-TMB group. The infiltration levels of the most of immune cells were higher in the low-TMB group (P < 0.01). Higher expression of CCL18 and TRGC1 was correlated with poor prognosis. Breast cancer patients with CCL18 copy number variations, especially arm-level gains, showed significantly decreased immune cell infiltration. In the low B cell infiltration group, the survival prognosis of breast cancer patients was poor. CONCLUSIONS TMB is a potential prognosis marker in breast cancer. Immune-related gene CCL18 and TRGC1 are biomarkers of poor prognosis while immune (B cell) infiltration is a biomarker of good prognosis.
Collapse
Affiliation(s)
- Shengjin Cui
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Jingying Feng
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xi Tang
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Shuang Lou
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Weiquan Guo
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xiaowei Xiao
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Shuping Li
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xue Chen
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Yu Huan
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Yiwen Zhou
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101, Guangdong, China.
| | - Lijia Xiao
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101, Guangdong, China.
| |
Collapse
|
50
|
Chuang TC, Shao WS, Hsu SC, Lee SL, Kao MC, Wang V. Baicalein Induces G 2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells. Molecules 2023; 28:molecules28031039. [PMID: 36770705 PMCID: PMC9919047 DOI: 10.3390/molecules28031039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is a lethal gynecological cancer because drug resistance often results in treatment failure. The CHK2, a tumor suppressor, is considered to be an important molecular target in ovarian cancer due to its role in DNA repair. Dysfunctional CHK2 impairs DNA damage-induced checkpoints, reduces apoptosis, and confers resistance to chemotherapeutic drugs and radiation therapy in ovarian cancer cells. This provides a basis for finding new effective agents targeting CHK2 upregulation or activation to treat or prevent the progression of advanced ovarian cancer. Here, the results show that baicalein (5,6,7-trihydroxyflavone) treatment inhibits the growth of highly invasive ovarian cancer cells, and that baicalein-induced growth inhibition is mediated by the cell cycle arrest in the G2/M phase. Baicalein-induced G2/M phase arrest is associated with an increased reactive oxygen species (ROS) production, DNA damage, and CHK2 upregulation and activation. Thus, baicalein modulates the expression of DNA damage response proteins and G2/M phase regulatory molecules. Blockade of CHK2 activation by CHK2 inhibitors protects cells from baicalein-mediated G2/M cell cycle arrest. All the results suggest that baicalein has another novel growth inhibitory effect on highly invasive ovarian cancer cells, which is partly related to G2/M cell cycle arrest through the ROS-mediated DNA breakage damage and CHK2 activation. Collectively, our findings provide a molecular basis for the potential of baicalein as an adjuvant therapeutic agent in the treatment of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
- Correspondence:
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei 114311, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei 231009, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242062, Taiwan
| |
Collapse
|