1
|
Sun X, Jia D, Yu Y. Down regulation of RBM10 promotes proliferation and metastasis via miR-224-5p/RBM10/p53 feedback loop in lung adenocarcinoma. Heliyon 2024; 10:e35001. [PMID: 39144991 PMCID: PMC11320444 DOI: 10.1016/j.heliyon.2024.e35001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
RNA-binding motif protein 10 (RBM10) has a tumor suppressor role in multiple cancers. Combining Oncomine database results with tissue samples, Western blot analysis showed that RBM10 was significantly lower in lung adenocarcinoma (LUAD) than in adjacent normal tissues. Moreover, KM analysis revealed that the group with higher RBM10 expression in LUAD correlated with better overall survival (OS). Luciferase reporter assay revealed that an important tumor-promotive miRNA, miR-224-5p, was directly bound to the 3'UTR of RBM10, resulting in inhibition of RBM10 expression, and promoted LUAD progression both in vitro and in vivo. Mechanistically, we found that miR-224-5p directly targeted RBM10 to inhibit p53 expression during LUAD progression. Meanwhile, p53 affected RBM10 expression through p53/miR-224-5p axis. Our study identified RBM10 as a key tumor suppressor in the proliferation and metastasis of LUAD. The findings provide a novel mechanism involving a feedback loop of miR-224-5p/RBM10/p53 regulated tumor progression in LUAD, which may help with the design of more effective LUAD treatments.
Collapse
Affiliation(s)
- Xi Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Li J, Chen C, Luo F, Lin Z, Wang J, Huang A, Sun Y, Qiu B. Highly sensitive biosensor for specific miRNA detection based on cascade signal amplification and magnetic electrochemiluminescence nanoparticles. Anal Chim Acta 2024; 1288:342123. [PMID: 38220270 DOI: 10.1016/j.aca.2023.342123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Herein, magnetic electrochemiluminescence (ECL) nanoparticle Fe3O4@PtPd/Ru(bpy)32+ had been synthesized then been coupled with CRISPR/Cas13a system and Zn2+ dependent DNAzyme to design a novel ECL biosensor for specific detection of microRNA-145 (miRNA). The synthesized multifunctional magnetic nanoluminescent materials Fe3O4@PtPd/Ru(bpy)32+ not only load Ru(bpy)32+ to provide ECL signals, but also can quickly achieve separation and enrichment from complex matrices. In addition, ferrocene (Fc) was used as a quencher in the Ru(bpy)32+/tripropylamine (TPA) system. Fc was modified on DNA bound to Fe3O4@PtPd. Benefited from the highly specific recognition ability of CRISPR/Cas13a, the target miRNA induces CRISPR/Cas13a trans-cleavage to trigger the Zn2+-dependent DNAzyme cyclic cleavage to realize the dual signal amplification. DNA modified by Fc was split by target miRNA-induced cleaving, and then magnetic separation was performed to keep Fc away from the surface of the nanoparticles. Thus, the enhanced ECL signal was obtained to detect miRNA-145. Under optimized conditions, the prepared sensor showed a wide linear range (1 fM to 1 nM) and a low limit of detection (LOD) down to 0.41 fM. Furthermore, it shows excellent selectivity and good reproducibility. The proposed ECL platform has huge potential applications in the development of various sensitive sensors for detecting the other miRNA.
Collapse
Affiliation(s)
- Jiawen Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Aiwen Huang
- Clinical Pharmacy Department, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, PR China.
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First Hospital Affiliated with Fujian Medical University, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
3
|
Mlika M, Zorgati MM, Abdennadher M, Bouassida I, Mezni F, Mrabet A. The diagnostic performance of micro-RNA and metabolites in lung cancer: A meta-analysis. Asian Cardiovasc Thorac Ann 2024; 32:45-65. [PMID: 38009802 DOI: 10.1177/02184923231215538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of lung cancer is based on the microscopic exam of tissue or liquid. During the recent decade, many biomarkers have been pointed to have a potential diagnostic role. These biomarkers may be assessed in blood, pleural effusion or sputum and they could avoid biopsies or other risky procedures. The authors aimed to assess the diagnostic performances of biomarkers focusing on micro-RNA and metabolites. METHODS This meta-analysis was conducted under the PRISMA guidelines during a nine-year-period (2013-2022). the Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to our inclusion criteria, 165 studies from 79 articles were included. The pooled SEN, SPE and dOR accounted, respectively, for 0.76, 0.79 and 13.927. The AUC was estimated to 0.859 suggesting a good diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the sample, the number of biomarkers, the biomarker subtype, the tumor stage and the ethnicity revealed the biomarker number (p = 0.009) and the tumor stage (p = 0.0241) as potential sources of heterogeneity. CONCLUSION Even if this meta-analysis highlighted the potential diagnostic utility of biomarkers, more prospective studies should be performed, especially to assess the biomarkers' diagnostic potential in early-stage lung cancers.
Collapse
Affiliation(s)
- Mona Mlika
- Department of Pathology, Center of Traumatology and Major Burns, Ben Arous, Tunis, Tunisia
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | | | - Mehdi Abdennadher
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Imen Bouassida
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Faouzi Mezni
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Ali Mrabet
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Ministry of Health, Tunis, Tunisia
| |
Collapse
|
4
|
Hong Z, Cui B, Bai X, Li H, Cheng T, Sheng Y, Lu Y, Wu X, Jin D, Zhao J, Gou Y. Meta analysis of the diagnostic value of circulating miRNA in benign and malignant pulmonary nodules. World J Surg Oncol 2023; 21:284. [PMID: 37689670 PMCID: PMC10492278 DOI: 10.1186/s12957-023-03133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/02/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE A meta-analysis was conducted to assess the impact of miRNAs in circulation on diagnosing benign and malignant pulmonary nodules (BPNs and MPNs). METHODS Electronic databases such as Embase, PubMed, Web of Science, and The Cochrane Library were utilized for diagnostic tests of circulating miRNAs to diagnose BPNs and MPNs from the library creation to February 2023. Meta-analysis of the included literature was performed using Stata 16, Meta-Disc 1.4, and Review Manager 5.4 software. This study determined the combined sensitivity, specificity, diagnostic ratio (DOR), positive/negative likelihood ratios (PLR/NLR), as well as value of area under the receiver operating characteristic (ROC) curve. RESULTS This meta-analysis included 14 publications and 17 studies. According to our findings, the pooled sensitivity for miRNA in diagnosing benign and malignant pulmonary nodules was 0.82 [95% CI (0.74, 0.88)], specificity was 0.84 [95% CI (0.79, 0.88)], whereas the DOR was 22.69 [95% CI (13.87, 37.13)], PLR was 5.00 [95% CI (3.87, 6.46)], NLR was 0.22 [95% CI (0.15, 0.32)], and the area under the working characteristic curve (AUC) of the subject was 0.89 [95% CI (0.86, 0.91)]. CONCLUSION Circulating miRNAs could be used with sensitivity, specificity, DOR, PLR, NLR, and AUC as biomarkers to diagnose pulmonary nodules (PNs). However, more research is needed to determine the optimum miRNA combinations for diagnosing PNs due to the significant heterogeneity on previous studies.
Collapse
Affiliation(s)
- Ziqiang Hong
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Baiqiang Cui
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Xiangdou Bai
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hongchao Li
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Cheng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yannan Sheng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yingjie Lu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xusheng Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Dacheng Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Zhao
- Lanzhou First People's Hospital, Lanzhou, China.
| | - Yunjiu Gou
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Wu Y, Hong Q, Lu F, Zhang Z, Li J, Nie Z, He B. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis. Mol Diagn Ther 2023; 27:283-301. [PMID: 36939982 DOI: 10.1007/s40291-023-00641-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND MicroRNA-155 has been discussed as a biomarker in cancer diagnosis and prognosis. Although relevant studies have been published, the role of microRNA-155 remains uncertain because of insufficient data. METHODS We conducted a literature search in PubMed, Embase, and Web of Science databases to obtain relevant articles and extract data to evaluate the role of microRNA-155 in cancer diagnosis and prognosis. RESULTS The pooled results showed that microRNA-155 presented a remarkable diagnostic value in cancers (area under the curve = 0.90, 95% confidence interval (CI 0.87-0.92; sensitivity = 0.83, 95% CI 0.79-0.87; specificity = 0.83, 95% CI 0.80-0.86), which was maintained in the subgroups stratified by ethnicity (Asian and Caucasian), cancer types (breast cancer, lung cancer, hepatocellular carcinoma, leukemia, and pancreatic ductal adenocarcinoma), sample types (plasma, serum, tissue), and sample size (n >100 and n <100). In prognosis, a combined hazard ratio (HR) showed that microRNA-155 was significantly associated with poor overall survival (HR = 1.38, 95% CI 1.25-1.54) and recurrence-free survival (HR = 2.13, 95% CI 1.65-2.76), and was boundary significant with poor progression-free survival (HR = 1.20, 95% CI 1.00-1.44), but not significant with disease-free survival (HR = 1.14, 95% CI 0.70-1.85). Subgroup analyses in overall survival showed that microRNA-155 was associated with poor overall survival in the subgroups stratified by ethnicity and sample size. However, the significant association was maintained in cancer types subgroups of leukemia, lung cancer, and oral squamous cell carcinoma, but not in colorectal cancer, hepatocellular carcinoma, and breast cancer, and was maintained in sample types subgroups of bone marrow and tissue, but not in plasma and serum. CONCLUSIONS Results from this meta-analysis demonstrated that microRNA-155 was a valuable biomarker in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Qiwei Hong
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Fang Lu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhongqiu Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Vykoukal J, Fahrmann JF, Patel N, Shimizu M, Ostrin EJ, Dennison JB, Ivan C, Goodman GE, Thornquist MD, Barnett MJ, Feng Z, Calin GA, Hanash SM. Contributions of Circulating microRNAs for Early Detection of Lung Cancer. Cancers (Basel) 2022; 14:4221. [PMID: 36077759 PMCID: PMC9454665 DOI: 10.3390/cancers14174221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023] Open
Abstract
There is unmet need to develop circulating biomarkers that would enable earlier interception of lung cancer when more effective treatment options are available. Here, a set of 30 miRNAs, selected from a review of the published literature were assessed for their predictive performance in identifying lung cancer cases in the pre-diagnostic setting. The 30 miRNAs were assayed using sera collected from 102 individuals diagnosed with lung cancer within one year following blood draw and 212 controls matched for age, sex, and smoking status. The additive performance of top-performing miRNA candidates in combination with a previously validated four-protein marker panel (4MP) consisting of the precursor form of surfactant protein B (Pro-SFTPB), cancer antigen 125 (CA125), carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA21-1) was additionally assessed. Of the 30 miRNAs evaluated, five (miR-320a-3p, miR-210-3p, miR-92a-3p, miR-21-5p, and miR-140-3p) were statistically significantly (Wilcoxon rank sum test p < 0.05) elevated in case sera compared to controls, with individual AUCs ranging from 0.57−0.62. Compared to the 4MP alone, the combination of 3-miRNAs + 4MP improved sensitivity at 95% specificity by 19.1% ((95% CI of difference 0.0−28.6); two-sided p: 0.006). Our findings demonstrate utility for miRNAs for early detection of lung cancer in combination with a four-protein marker panel.
Collapse
Affiliation(s)
- Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nikul Patel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary E. Goodman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Matt J. Barnett
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ziding Feng
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Wang W, Li X, Liu C, Zhang X, Wu Y, Diao M, Tan S, Huang S, Cheng Y, You T. MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: a systematic review and meta-analysis. Biosci Rep 2022; 42:BSR20211653. [PMID: 35441676 PMCID: PMC9093699 DOI: 10.1042/bsr20211653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The relationship between microRNA-21 (miRNA-21) and pathogenesis of lung cancer is a considerable focus of research interest. However, to our knowledge, no in-depth meta-analyses based on existing evidence to ascertain the value of miRNA-21 in diagnosis and clinical prognosis of lung cancer have been documented. METHODS We comprehensively searched all the literature pertaining to 'miRNA-21' and 'lung cancer' from four databases from the period of inception of each database until May 2020. Using specific inclusion and exclusion criteria, the literature for inclusion was identified and the necessary data extracted. RESULTS In total, 46 articles were included in the meta-analysis, among which 31 focused on diagnostic value and 15 on prognostic value. Combined sensitivity (SEN) of miRNA-21 in diagnosis of lung cancer was 0.77 (95% confidence interval (CI): 0.72-0.81), specificity (SPE) was 0.86 (95% CI: 0.80-0.90), diagnostic odds ratio (DOR) was (95% CI: 12-33), and area under the SROC curve (AUC) was 0.87 (95% CI: 0.84-0.90). No significant correlations were observed between abnormal expression of miRNA-21 and gender, smoking habits, pathological type and clinical stage of lung cancer (P>0.05). In terms of overall survival (OS), univariate analysis (hazards ratio (HR) = 1.49, 95% CI: 1.22-1.82) revealed high expression of miRNA-21 as an influencing factor for lung cancer. MiRNA-21 was confirmed as an independent risk factor for poor prognosis in multivariate analysis (HR = 1.65, 95% CI: 1.24-2.19). CONCLUSION MiRNA-21 has potential clinical value in the diagnosis and prognosis of lung cancer and may serve as an effective diagnostic marker and therapeutic target in the future.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyao Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chengfei Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xin Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Wu
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Mingxin Diao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Siyu Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shubin Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yin Cheng
- The First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Tao You
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Yi M, Liao Z, Deng L, Xu L, Tan Y, Liu K, Chen Z, Zhang Y. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021; 53:2178-2193. [PMID: 34913774 PMCID: PMC8740622 DOI: 10.1080/07853890.2021.2000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are good candidates as biomarkers for Lung cancer (LC). The aim of this article is to figure out the diagnostic value of both single and combined miRNAs in LC. METHODS Normative meta-analysis was conducted based on PRISMA. We assessed the diagnostic value by calculating the combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) and the area under the curve (AUC) of single and combined miRNAs for LC and specific subgroups. RESULTS A total of 80 qualified studies with a total of 8971 patients and 10758 controls were included. In non-small cell lung carcinoma (NSCLC), we involved 20 single-miRNAs and found their Sen, Spe and AUC ranged from 0.52-0.81, 0.66-0.88, and 0.68-0.90, respectively, specially, miR-19 with the maximum Sen, miR-20 and miR-10 with the highest Spe as well as miR-17 with the maximum AUC. Additionally, we detected miR-21 with the maximum Sen of 0.74 [95%CI: 0.62-0.83], miR-146 with the maximum Spe and AUC of 0.93 [95%CI: 0.79-0.98] and 0.89 [95%CI: 0.86-0.92] for early-stage NSCLC. We also identified the diagnostic power of available panel (miR-210, miR-31 and miR-21) for NSCLC with satisfying Sen, Spe and AUC of 0.82 [95%CI: 0.78-0.84], 0.87 [95%CI: 0.84-0.89] and 0.91 [95%CI: 0.88-0.93], and furtherly constructed 2 models for better diagnosis. CONCLUSIONS We identified several single miRNAs and combined groups with high diagnostic power for NSCLC through pooled quantitative analysis, which shows that specific miRNAs are good biomarker candidates for NSCLC and further researches needed.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zexi Liao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Langmei Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ziliang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wang H, Xu J, Ding L. MicroRNA-21 was a promising biomarker for lung carcinoma diagnosis: An update meta-analysis. Thorac Cancer 2021; 13:316-321. [PMID: 34837469 PMCID: PMC8807252 DOI: 10.1111/1759-7714.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the diagnostic performance of microRNA‐21 detected in serum or sputum as a biomarker for lung carcinoma identification through pooling the open published data. Methods Clinical diagnostic studies related to microRNA‐21 as a biomarker for lung carcinoma identification were electronically searched in the databases of Pubmed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, and Google Scholar. The data of the included studies was extracted and made pooling of diagnostic sensitivity, specificity, diagnostic odds ratio (DOR), area under the summary receiver operating characteristic curve (ROC) (AUC) for microRNA‐21 expression in serum or sputum as a biomarker for lung carcinoma identification. The publication bias was evaluated by Deek's funnel plot. Results Seventeen diagnostic studies were finally included and made data pooling. For the included 17 studies, 4 investigated the microRNA‐21 expression in sputum and 13 studies in serum. The pooled diagnostic sensitivity and specificity were 0.73 (95% CI, 0.67–0.78) and 0.81 (95% CI, 0.75–0.85), respectively, under random effect model. The combined DOR was 9.65 (95% CI, 6.64–14.03) with the AUC of 0.84 (95% CI, 0.80–0.87). Given a pre‐test probability of 50%, the post‐test positive probability and post‐test negative probability were 79% and 25%, respectively, by using microRNA‐21 as a biomarker for lung carcinoma diagnosis. Deek's funnel was obviously asymmetry and indicated significant publication bias (p < 0.05). Conclusion MicroRNA‐21 in serum or sputum was a promising biomarker for lung cancer identification with relative high diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Respiratory, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jia Xu
- Department of Respiratory, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ling Ding
- Department of Respiratory, Hangzhou Third People's Hospital, Hangzhou, China
| |
Collapse
|
10
|
Kuo IY, Liu D, Lai WW, Wang YC, Loh YP. Carboxypeptidase E mRNA: Overexpression predicts recurrence and death in lung adenocarcinoma cancer patients. Cancer Biomark 2021; 33:369-377. [PMID: 34511486 DOI: 10.3233/cbm-210206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Effective biomarkers for prediction of recurrence of lung adenocarcinoma cancer (LADC) patients are needed to determine treatment strategies post-surgery to improve outcome. OBJECTIVE This study evaluates the efficacy of carboxypeptidase E (CPE) mRNA including its splice isoforms, CPE-ΔN, as a biomarker for predicting recurrence in adenocarcinoma patients. METHODS RNA was extracted from resected tumors from 86 patients with different stages of non-small cell LADC. cDNA was synthesized and qRT-PCR carried out to determine the copy numbers of CPE/CPE-ΔN mRNA. Patients were followed for 7 years post-tumor resection to determine recurrence and death. RESULTS ROC curve analysis showed the overall AUC for CPE/CPE-ΔN copy number was 0.563 in predicting recurrence and 0.563 in predicting death. Kaplan-Meier survival analysis showed statistical difference (p= 0.018), indicating that patients with high CPE/CPE-ΔN copy numbers had a shorter time of disease-free survival and also shorter time to death (p= 0.035). Subgroup analyses showed that association of disease-free survival time with CPE/CPE-ΔN copy number was stronger among stage I and II LADC patients (p= 0.047). CONCLUSIONS CPE/CPE-ΔN mRNA is a potentially useful biomarker for predicting recurrence and death in LADC patients, especially in identifying patients at high risk of recurrence at early stages I and II.
Collapse
Affiliation(s)
- I-Ying Kuo
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Danping Liu
- Biostatistics and Bioinformatics Branch, Bethesda, MD, USA.,Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wu-Wei Lai
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Le NQK, Kha QH, Nguyen VH, Chen YC, Cheng SJ, Chen CY. Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22179254. [PMID: 34502160 PMCID: PMC8431041 DOI: 10.3390/ijms22179254] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (N.Q.K.L.); (S.-J.C.); Tel.: +886-02-66382736 (ext. 1992) (N.Q.K.L.)
| | - Quang Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.H.K.); (V.H.N.)
| | - Van Hiep Nguyen
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Q.H.K.); (V.H.N.)
- Oncology Center, Bai Chay Hospital, Quang Ninh 20000, Vietnam
| | - Yung-Chieh Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Sho-Jen Cheng
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Correspondence: (N.Q.K.L.); (S.-J.C.); Tel.: +886-02-66382736 (ext. 1992) (N.Q.K.L.)
| | - Cheng-Yu Chen
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Faraldi M, Gerosa L, Gomarasca M, Sansoni V, Perego S, Ziemann E, Banfi G, Lombardi G. A Physically Active Status Affects the Circulating Profile of Cancer-Associated miRNAs. Diagnostics (Basel) 2021; 11:diagnostics11050820. [PMID: 33946605 PMCID: PMC8147229 DOI: 10.3390/diagnostics11050820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Circulating miRNAs are ideal diagnostics and prognostics biomarkers in cancer since altered levels of specific miRNAs have been associated to development/progression of several cancers. Physical activity is a recognized preventive strategy against several cancers, but it may also modify the baseline levels of cancer-associated miRNAs and, hence, may act as a confounding pre-analytical variable. This study aimed at understanding whether physical activity-dependent changes in cancer-associated circulating miRNAs profile could act as a confounding variable. A panel comprising 179 miRNAs was assayed in plasma from 20 highly trained and 10 sedentary men. RT-qPCR data were analyzed with the 2−2ΔΔCT methods and normalized on hsa-miR-320d, as determined by bioinformatics analysis. miRNAs associated with the diagnosis of the most prevalent cancers were considered. Only those miRNAs, relevantly associated with cancers, found ≥2-fold up- or downregulated in highly trained subjects compared to sedentary were disclosed. The results reveal that chronic physical activity determined modifications altering the baseline level of several cancer-associated miRNAs and, hence, their diagnostic and prognostic potential. In conclusion, based on our results, a physically active status emerges as an important pre-analytical variable able to alter the basal level of circulating miRNAs, and these alterations might be considered as potentially misleading the analytical output.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
| | - Laura Gerosa
- Gruppo San Donato Foundation, 20122 Milano, Italy
- Correspondence: ; Tel.: +39-02166214068
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
| | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland;
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy; (M.F.); (M.G.); (V.S.); (S.P.); (G.B.); (G.L.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland;
| |
Collapse
|
13
|
Liu J, Yoo J, Ho JY, Jung Y, Lee S, Hur SY, Choi YJ. Plasma-derived exosomal miR-4732-5p is a promising noninvasive diagnostic biomarker for epithelial ovarian cancer. J Ovarian Res 2021; 14:59. [PMID: 33910598 PMCID: PMC8082916 DOI: 10.1186/s13048-021-00814-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exosomal miRNAs regulate gene expression and play important roles in several diseases. We used exosomal miRNA profiling to investigate diagnostic biomarkers of epithelial ovarian cancer (EOC). METHODS In total, 55 individuals were enrolled, comprising healthy (n = 21) and EOC subjects (n = 34). Small mRNA (smRNA) sequencing and real-time PCR (RT-PCR) were performed to identify potential biomarkers. Receiver operating characteristic (ROC) curves were conducted to determine biomarker sensitivity and specificity. RESULTS Using smRNA sequencing, we identified seven up-regulated (miR-4732-5p, miR-877-5p, miR-574-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7f-5p) and two down-regulated miRNAs (miR-1273f and miR-342-3p) in EOC patients when compared with healthy subjects. Of these, miR-4732-5p and miR-1273f were the most up-regulated and down-regulated respectively, therefore they were selected for RT-PCR analysis. Plasma derived exosomal miR-4732-5p had an area under the ROC curve of 0.889, with 85.7% sensitivity and 82.4% specificity in distinguishing EOC patients from healthy subjects (p<0.0001) and could be a potential biomarker for monitoring the EOC progression from early stage to late stage (p = 0.018). CONCLUSIONS Plasma derived exosomal miR-4732-5p may be a promising candidate biomarker for diagnosing EOC.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jigeun Yoo
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yoon Ho
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yuyeon Jung
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sanha Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Ding Y, Hou Y, Liu Y, Xie X, Cui Y, Nie H. Prospects for miR-21 as a Target in the Treatment of Lung Diseases. Curr Pharm Des 2021; 27:415-422. [PMID: 32867648 DOI: 10.2174/1381612826999200820160608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
MicroRNA (miRNA/miR) is a class of small evolutionarily conserved non-coding RNA, which can inhibit the target gene expression at the post-transcriptional level and serve as significant roles in cell differentiation, proliferation, migration and apoptosis. Of note, the aberrant miR-21 has been involved in the generation and development of multiple lung diseases, and identified as a candidate of biomarker, therapeutic target, or indicator of prognosis. MiR-21 relieves acute lung injury via depressing the PTEN/Foxo1-TLR4/NF-κB signaling cascade, whereas promotes lung cancer cell growth, metastasis, and chemo/radio-resistance by decreasing the expression of PTEN and PDCD4 and promoting the PI3K/AKT transduction. The purpose of this review is to elucidate the potential mechanisms of miR-21 associated lung diseases, with an emphasis on its dual regulating effects, which will trigger novel paradigms in molecular therapy.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaoyong Xie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
17
|
Circulating MicroRNAs as Potential Biomarkers in the Diagnosis of Neurosyphilis: A Case Control Study. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021. [DOI: 10.1097/jd9.0000000000000127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ning J, Ge T, Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y. Early diagnosis of lung cancer: which is the optimal choice? Aging (Albany NY) 2021; 13:6214-6227. [PMID: 33591942 PMCID: PMC7950268 DOI: 10.18632/aging.202504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
The prognosis of lung cancer patients with different clinical stages is significantly different. The 5-year survival of stage IA groups can exceed 90%, while patients with stage IV can be less than 10%. Therefore, early diagnosis is extremely important for lung cancer patients. This research focused on various diagnosis methods of early lung cancer, including imaging screening, bronchoscopy, and emerging potential liquid biopsies, as well as volatile organic compounds, autoantibodies, aiming to improve the early diagnosis rate and explore feasible and effective early diagnosis strategies.
Collapse
Affiliation(s)
- Jing Ning
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Tao Ge
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University, Shanghai 200433, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
19
|
Hiraku Y, Watanabe J, Kaneko A, Ichinose T, Murata M. MicroRNA expression in lung tissues of asbestos-exposed mice: Upregulation of miR-21 and downregulation of tumor suppressor genes Pdcd4 and Reck. J Occup Health 2021; 63:e12282. [PMID: 34679210 PMCID: PMC8535435 DOI: 10.1002/1348-9585.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Asbestos causes lung cancer and malignant mesothelioma in humans, but the precise mechanism has not been well understood. MicroRNA (miRNA) is a short non-coding RNA that suppresses gene expression and participates in human diseases including cancer. In this study, we examined the expression levels of miRNA and potential target genes in lung tissues of asbestos-exposed mice by microarray analysis. METHODS We intratracheally administered asbestos (chrysotile and crocidolite, 0.05 or 0.2 mg/instillation) to 6-week-old ICR male mice four times weekly. We extracted total RNA from lung tissues and performed microarray analysis for miRNA and gene expression. We also carried out real-time polymerase chain reaction (PCR), Western blotting, and immunohistochemistry to confirm the results of microarray analysis. RESULTS Microarray analysis revealed that the expression levels of 14 miRNAs were significantly changed by chrysotile and/or crocidolite (>2-fold, P < .05). Especially, miR-21, an oncogenic miRNA, was significantly upregulated by both chrysotile and crocidolite. In database analysis, miR-21 was predicted to target tumor suppressor genes programmed cell death 4 (Pdcd4) and reversion-inducing-cysteine-rich protein with kazal motifs (Reck). Although real-time PCR showed that Pdcd4 was not significantly downregulated by asbestos exposure, Western blotting and immunohistochemistry revealed that PDCD4 expression was reduced especially by chrysotile. Reck was significantly downregulated by chrysotile in real-time PCR and immunohistochemistry. CONCLUSIONS This is the first study demonstrating that miR-21 was upregulated and corresponding tumor suppressor genes were downregulated in lung tissues of asbestos-exposed animals. These molecular events are considered to be an early response to asbestos exposure and may contribute to pulmonary toxicity and carcinogenesis.
Collapse
Grants
- 23659328 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 24390153 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 15H04784 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 18H03038 Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesEiheijiFukuiJapan
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Jun Watanabe
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Akira Kaneko
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Takamichi Ichinose
- Department of Health SciencesOita University of Nursing and Health SciencesOitaJapan
| | - Mariko Murata
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
20
|
Tao S, Ju X, Zhou H, Zeng Q. Circulating microRNA-145 as a diagnostic biomarker for non-small-cell lung cancer: A systemic review and meta-analysis. Int J Biol Markers 2020; 35:51-60. [PMID: 33103527 DOI: 10.1177/1724600820967124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of small non-coding, highly stable RNAs, have been reported to have diagnostic value for variety types of cancers. OBJECTIVES To assess the diagnostic value of circulating miR-145 for non-small cell lung cancer (NSCLC) by using systemic review and meta-analysis. METHODS A systematic literature search was conducted in five databases until 20 February 2020 to identify diagnostic trials of miR-145 in the diagnosis of NSCLC. The quality of included studies was assessed by the QUADAS-2 tool with Review Manager 5.3, and the summary receiver operating characteristic (SROC) curve was plotted by STATA 13.1 software. RESULTS A total of 1394 patients from 11 data sets in trials (published in nine studies) were recruited. The area under the curve of the SROC was 0.83. According to the meta regression, the specimen selection was considered the source of heterogeneity, the SROC in serum (0.90 (95% CI 0.87, 0.92), the sensitivity was 0.84 (95% CI 0.79, 0.89), and the specificity was 0.80 (95% CI 0.71, 0.89)) was obviously higher than that in plasma (SROC=0.75). CONCLUSION Serum miR-145 might be served as a potentially useful biomarker for NSCLC diagnosis. However, due to the existing limited-quality research, more large-scale and multicenter studies are required for further verification.
Collapse
Affiliation(s)
- Shaohua Tao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College, Chengdu University, Chengdu, China
| | - Xuegui Ju
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College, Chengdu University, Chengdu, China
| | - Qianglin Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College, Chengdu University, Chengdu, China
| |
Collapse
|
21
|
Hetta HF, Zahran AM, Shafik EA, El-Mahdy RI, Mohamed NA, Nabil EE, Esmaeel HM, Alkady OA, Elkady A, Mohareb DA, Hosni A, Mostafa MM, Elkady A. Circulating miRNA-21 and miRNA-23a Expression Signature as Potential Biomarkers for Early Detection of Non-Small-Cell Lung Cancer. Microrna 2020; 8:206-215. [PMID: 30652656 DOI: 10.2174/1573399815666190115151500] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Lung Cancer (LC) is a major cancer killer worldwide, and 5-yr survival is extremely poor (≤15%), accentuating the need for more effective diagnostic and therapeutic strategies. Studies have shown cell-free microRNAs (miRNAs) circulating in the serum and plasma with specific expression in cancer, indicating the potential of using miRNAs as biomarkers for cancer diagnosis and therapy. This study aimed to identify differentially-expressed two miRNAs in the plasma of Non-Small Cell Lung Cancer (NSCLC) patients that might be a clinically useful tool for lung cancer early detection. miRNA-21 is one of the most abundant oncomirs. miRNA-23a functions as an oncogene in several human cancers, however, its clinical value has not been investigated in NSCLC. MATERIALS AND METHODS A case-control study was conducted in Assiut University Hospital, Egypt, from 2017 to 2018. Plasma samples were obtained from 45 NSCLC patients. The expression level of miR-21 and miRNA-23a was detected by qRT-PCR and compared to 40 healthy control subjects. The relation between both miRNAs and clinicopathological parameters was evaluated. RESULTS The expression level of miR-21 and miRNA-23a was significantly up-regulated (36.9 ± 18.7 vs. 1.12 ± 0.84 and 24.7 ± 19.09 vs. 1.16 ± 0.45) in NSCLC compared to matched controls (P<0.0001each). There was a significant difference in the level of plasma miRNA-21 and miRNA- 23a expression between the different grades of the disease (P = 0.032 and P = 0.001, respectively). The plasma miRNA-21 and miRNA-23a levels in the lung cancer patients with distant metastasis (n = 20) were significantly higher than those in the patients without metastasis (n = 25) (P<0.0001 each), the expression of miR-21 and miRNA-23a was significantly associated with tumor size (P = 0.001, P = 0.0001, respectively), but not significantly related to lymph node metastasis (P = 0.687 and 0.696, respectively). A positive correlation was observed between miRNA-21 and miRNA-23a (r = 0.784, P<0.01), There was no significant difference in the plasma miRNA-21 and miRNA-23a levels in the lung cancer patients with different histopathological types. CONCLUSION miR-21 and miR-23a might play an oncogenic role in LC and is a poor prognostic factor. Switching off miRNA-21 and miRNA-23a may improve the treatment of LC. Our results must be verified by large-scale prospective studies with standardized methodology.
Collapse
Affiliation(s)
- Helal Fouad Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, United States.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Engy A Shafik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Reham I El-Mahdy
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nahed A Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad Eldin Nabil
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hend M Esmaeel
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ola A Alkady
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Dina A Mohareb
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Mahmoud Mostafa
- Department of Cardiothoracic Surgery, Assiut University Hospital, Assiut University, Assiut, Egypt
| | - Abeer Elkady
- Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
22
|
Abstract
The 2010's saw demonstration of the power of lung cancer screening to reduce mortality. However, with implementation of lung cancer screening comes the challenge of diagnosing millions of lung nodules every year. When compared to other cancers with widespread screening strategies (breast, colorectal, cervical, prostate, and skin), obtaining a lung nodule tissue biopsy to confirm a positive screening test remains associated with higher morbidity and cost. Therefore, non-invasive diagnostic biomarkers may have a unique opportunity in lung cancer to greatly improve the management of patients at risk. This review covers recent advances in the field of liquid biomarkers and computed tomographic imaging features, with special attention to new methods for combination of biomarkers as well as the use of artificial intelligence for the discrimination of benign from malignant nodules.
Collapse
Affiliation(s)
- Michael N Kammer
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.,Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pierre P Massion
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Medical Service, Tennessee Valley Healthcare Systems, Nashville Campus, Nashville, TN, USA
| |
Collapse
|
23
|
Shi ZY, Yang XX, Malichewe C, Li YS, Guo XL. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol 2020; 158:530-541. [PMID: 32360962 DOI: 10.1016/j.ijbiomac.2020.04.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles with a diameter of about 30 to 100 nm, which play a crucial role in intercellular communication. Compared with normal cells, the release rate of tumor-derived exosomes (TDEs) significantly increased, and exosomal contents, especially microRNAs (miRNAs), greatly changed. TDEs contribute to the proliferation, metastasis and resistance of tumor cells, regulate immune response and tumor autophagy, and mediate tumor-stroma communication. In addition, exosomes may be involved in tumor complications. In view of the role of exosomes in intercellular communication, exosomes have been developed as tumor biomarkers, therapeutic targets, and drug delivery systems for tumor diagnosis, prognosis and treatment. Despite the many advantages of exosomes, there are many challenges in exosomal development and application, such as incomprehensive understanding of biological functions, safety and specificity for therapeutic use. This article reviews the biogenesis of TDEs and focuses on the role of exosomal miRNAs in intercellular communication and exosome-based treatment for cancer.
Collapse
Affiliation(s)
- Zhao-Yu Shi
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - ChristinaYallen Malichewe
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ying-Shuang Li
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China..
| |
Collapse
|
24
|
Zheng YY, Fei Y, Wang Z, Chen Y, Qiu C, Li FR. Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system. J Transl Med 2020; 18:108. [PMID: 32122370 PMCID: PMC7053089 DOI: 10.1186/s12967-020-02280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Department of Pathophysiology, The Basic Medical School, Jinan University, Guangzhou, China.,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Yun Fei
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Zheng Wang
- Department of Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Cheng Qiu
- Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China. .,Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
25
|
Shao C, Yang F, Qin Z, Jing X, Shu Y, Shen H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis. BMC Cancer 2019; 19:1103. [PMID: 31727002 PMCID: PMC6854776 DOI: 10.1186/s12885-019-6297-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, a growing number of studies have reported the coorelation between miR-155 and the diagnosis and prognosis of lung cancer, but results of these researches were still controversial due to insufficient sample size. Thus, we carried out the systematic review and meta-analysis to figure out whether miR-155 could be a screening tool in the detection and prognosis of lung cancer. METHODS A meta-analysis of 13 articles with 19 studies was performed by retrieving the PubMed, Embase and Web of Science. We screened all correlated literaters until December 1st, 2018. For the diagnosis analysis of miR-155 in lung cancer, sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the ROC curve (AUC) were pooled to evaluate the accuracy of miRNA-155 in the diagnosis of lung cancer. For the prognosis analysis of miR-155 in lung cancer, the pooled HRs and 95% CIs of miR-155 for overall survival/disease free survival/progression-free survival (OS/DFS/PFS) were calculated. In addition, Subgroup and meta-regression analyses were performed to distinguish the potential sources of heterogeneity between studies. RESULTS For the diagnostic analysis of miR-155 in lung cancer, the pooled SEN and SPE were 0.82 (95% CI: 0.72-0.88) and 0.78 (95% CI: 0.71-0.84), respectively. Besides, the pooled PLR was 3.75 (95% CI: 2.76-5.10), NLR was 0.23 (95% CI: 0.15-0.37), DOR was 15.99 (95% CI: 8.11-31.52) and AUC was 0.87 (95% CI: 0.84-0.90), indicating a significant value of miR-155 in the lung cancer detection. For the prognostic analysis of miR-155 in lung cancer, up-regulated miRNA-155 expression was not significantly associated with a poor OS (pooled HR = 1.26, 95% CI: 0.66-2.40) or DFS/PFS (pooled HR = 1.28, 95% CI: 0.82-1.97). CONCLUSIONS The present meta-analysis demonstrated that miR-155 could be a potential biomarker for the detection of lung cancer but not an effective biomarker for predicting the outcomes of lung cancer. Furthermore, more well-designed researches with larger cohorts were warranted to confirm the value of miR-155 for the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chuchu Shao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinming Jing
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
27
|
Yang X, Su W, Chen X, Geng Q, Zhai J, Shan H, Guo C, Wang Z, Fu H, Jiang H, Lin J, Lagisetty KH, Zhang J, Li Y, Yang S, Massion PP, Beer DG, Chang AC, Ramnath N, Chen G. Validation of a serum 4-microRNA signature for the detection of lung cancer. Transl Lung Cancer Res 2019; 8:636-648. [PMID: 31737499 PMCID: PMC6835096 DOI: 10.21037/tlcr.2019.09.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/05/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Our previous studies have identified a serum-based 4-microRNA (4-miRNA) signature that may help distinguish patients with lung cancer (LC) from non-cancer controls (NCs). Here, we used an extended independent cohort of 398 subjects to further validate the diagnostic ability of this 4-miRNA signature. METHODS Using quantitative reverse transcription polymerase chain reaction (qRT-PCR), expression of the 4-miRNAs was assessed in a total of 398 sera that included 213 LC patients and 185 NCs. A logistic regression model using training-test sets, receiver operating characteristic (ROC) curve analysis and t-test were used to test the impact of varying expression of these miRNAs on its diagnostic accuracy for LC. The cell proliferation and colony formation affected by these miRNAs, as well as gene ontology (GO) analysis of miRNA target genes were performed. RESULTS The levels of the 4-miRNAs were significantly higher in the serum of patients with LCs as compared to NCs. Using a logistic regression prediction model based on training and test sets analysis, we obtained the area under the curve (AUC) of 0.921 [95% confidence interval (CI), 0.876-0.966] on the test set with specificity 90.6%, sensitivity 77.9%, accuracy 84.1%, positive predictive value (PPV) 89.8% and negative predictive value (NPV) 79.5%. CONCLUSIONS We have verified that this serum 4-miRNA signature could provide a promising noninvasive biomarker for the prediction of LC, particularly in patients with indeterminate lung nodules on screening CT scans.
Collapse
Affiliation(s)
- Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Qianqian Geng
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jingyi Zhai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Chunfang Guo
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhuwen Wang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Han Fu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jules Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kiran Hari Lagisetty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pierre P. Massion
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David G. Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew C. Chang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nithya Ramnath
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Oncology, Veterans Administration Health System, Ann Arbor, MI, USA
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Qu J, Yang J, Chen M, Cui L, Wang T, Gao W, Tian J, Wei R. MicroRNA-21 as a diagnostic marker for hepatocellular carcinoma: A systematic review and meta-analysis. Pak J Med Sci 2019; 35:1466-1471. [PMID: 31489028 PMCID: PMC6717466 DOI: 10.12669/pjms.35.5.685] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA-21 (miR-21) is one of the oncogenic miRNAs which may be a potential diagnostic biomarker for hepatocellular carcinoma (HCC). Methods We systematically searched Medline, Embase, the Cochrane Library, ISI Web of Knowledge, Scopus from inception to August 15, 2018, and reference lists of identified primary studies. Two independent investigators extracted patient and study characteristics. The sensitivity and specificity of microRNA-21 for HCC detection and were analyzed with a random effect model. The area under summary receiver operating characteristic curve (AUC) was used to estimate overall test performance. Results A total of 515 HCC patients, and 338 healthy or chronic hepatitis controls from six published studies were enrolled in this meta-analysis. All articles were published in English with moderate-to-high quality. The overall pooled sensitivity and specificity were 85.2% (73.3% to 88.4%) and 79.2% (68.4% to 87.0%), respectively. The AUC area was 0.89 (95% CI: 0.85-0.91). The studies had moderate heterogeneity (I2=70.11%). None of the subgroups investigated-ethnicity, controls, sample source-could account for the heterogeneity. Conclusion MiR-21 is a helpful biomarker for early diagnosis of HCC. Nevertheless, the results of the test must be interpreted carefully in the context of medical history, erological tests and imaging examinations for HCC surveillance.
Collapse
Affiliation(s)
- Juan Qu
- Juan Qu, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jizhi Yang
- Jizhi Yang, Department of Traditional Chinese Medicine, Chentangzhuang Hospital, Hexi District, Tianjin 300222, China
| | - Ming Chen
- Ming Chen, Department of Hepatopathy and Hepatic Oncology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Lihong Cui
- Lihong Cui, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Tianxi Wang
- Tianxi Wang, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Wei Gao
- Wei Gao, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jingjing Tian
- Jingjing Tian, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Rongna Wei
- Rongna Wei, Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
29
|
Min L, Zhu S, Chen L, Liu X, Wei R, Zhao L, Yang Y, Zhang Z, Kong G, Li P, Zhang S. Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs. J Extracell Vesicles 2019; 8:1643670. [PMID: 31448068 PMCID: PMC6691764 DOI: 10.1080/20013078.2019.1643670] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Early diagnosis of colon cancer (CC) is clinically important, as it can significantly improve patients’ survival rate and quality of life. Although the potential role for small extracellular vesicles (sEVs) in early detection of many diseases has been repeatedly mentioned, systematic screening of plasma sEVs derived early CC specific biomarkers has not yet been reported. In this work, plasma sEVs enriched fractions were derived from 15 early-stage (TisN0M0) CC patients and 10 normal controls (NC). RNA sequencing identified a total number of 95 sEVs enriched fraction derived miRNAs with differential expression between CC and NC, most of which (60/95) was in well accordance with tissue results in the Cancer Genome Atlas (TCGA) dataset. Among those miRNAs, we selected let-7b-3p, miR-139-3p, miR-145-3p, and miR-150-3p for further validation in an independent cohort consisting of 134 participants (58 CC and 76 NC). In the validation cohort, the AUC of 4 individual miRNAs ranged from 0.680 to 0.792. A logistic model combining two miRNAs (i.e. let-7b-3p and miR-145-3p) achieved an AUC of 0.901. Adding the 3rd miRNA into this model can further increase the AUC to 0.927. Side by side comparison revealed that sEVs miRNA profile outperformed cell-free plasma miRNA in the diagnosis of early CC. In conclusion, we suggested that circulating sEVs enriched fractions have a distinct miRNA profile in CC patients, and sEVs derived miRNA could be used as a promising biomarker to detect CC at an early stage.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Xiang Liu
- Department of R&D, Echo Biotech Co., Ltd, Beijing, P. R. China
| | - Rui Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Libo Zhao
- Department of R&D, Echo Biotech Co., Ltd, Beijing, P. R. China
| | - Yuqing Yang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Guanyi Kong
- Department of R&D, Echo Biotech Co., Ltd, Beijing, P. R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| |
Collapse
|
30
|
Wang Y, Guan J, Wang Y. Could microRNA be used as a diagnostic tool for lung cancer? J Cell Biochem 2019; 120:18937-18945. [PMID: 31237019 DOI: 10.1002/jcb.29214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Current methods for diagnosing lung cancer (LC) have varying degrees of risks and complications. MicroRNA (miRNA) is a small molecule noncoding RNA with gene regulation functions. Many studies have shown that miRNA can be used for the diagnosis of LC, but there are differences in diagnostic accuracy. Therefore, we aim to systematically review and meta-analyze published articles to comprehensively evaluate the diagnostic value of miRNA for LC. MATERIALS AND METHODS We searched the PubMed, Embase, and Cochrane databases, and calculated the area under the curve (AUC) by plotting the summary receiver operator characteristic curve using the sensitivity and specificity of each included study. The AUC was calculated and the likelihood ratio was plotted to assess the diagnostic accuracy of miRNA. We used QUADAS-2 in Review Manager 5.3 to evaluate the quality of all the articles. The other analyses were performed using the STATA 12.0 software. RESULTS We included a total of 29 articles, 98 studies, and the qualities of all the articles were satisfactory. The overall pooled parameters calculated from all studies were as follows: sensitivity = 0.77, specificity = 0.83, positive likelihood ratio (PLR) = 4.6, negative likelihood ratio (NLR) = 0.28, and AUC = 0.87 for miRNA diagnosis. It had significant advantages over other biomarkers. Subgroup analysis showed that when combined four or more miRNA for the diagnosis of LC, the parameters were as follows: sensitivity = 0.90, specificity = 0.93, PLR = 13.2, NLR = 0.11, and AUC = 0.97. CONCLUSION Four or more miRNA combination could be used for the diagnosis of LC. Besides this, we also found that miRNA showed a greater advantage in distinguishing LC from benign lung diseases than distinguishing between LC and normal people. Our findings provided a new way of thinking about the clinical diagnosis of LC from a nonmorphological aspect.
Collapse
Affiliation(s)
- Yang Wang
- Department of Clinical Medicine, Shihezi University School of Medicine, Shihezi, China
| | - Jian Guan
- Department of Pulmonary and Critical Care Medicine, The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Yaolin Wang
- Department of Clinical Medicine, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
31
|
Zhang J, Zhang H, Qin Y, Chen C, Yang J, Song N, Gu M. MicroRNA-200c-3p/ZEB2 loop plays a crucial role in the tumor progression of prostate carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:141. [PMID: 31157262 DOI: 10.21037/atm.2019.02.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The microRNA (miRNA) miR-200c-3p is involved in the tumorigenesis and progression of a variety of cancers. However, the underlying regulatory role of miR-200c-3p in prostate cancer (PCa) remains unclear. Methods Online databases including Oncomine, Linkedomics and StarBase were used to investigate the clinical significance of miR-200c-3p, along with associated gene targets. PCa tissues and adjacent normal tissues were used for the detection of miR-200c-3p expression. A lentivirus overexpressing miR-200c-3p was constructed and transfected into PC3 and DU145 cells. Cell formation of proliferation, migration, and invasion were determined by cell viability and colony-formation assay, wound healing assay, and Matrigel invasion assay, respectively. Epithelial-mesenchymal transition (EMT)-associated markers were determined by qRT-PCR and Western blot. A luciferase reporter assay was performed to determine the direct relationship of miR-200c-3p and ZEB2. The tumor-suppressive role of miR-200c-3p was further confirmed by a xenograft tumor model and immunohistochemical (IHC) staining. Results Online database analyses showed that miR-200c-3p was associated with pathologic T and N stage in PCa, and miR-200c-3p was downregulated in PCa tissues. Overexpression of miR-200c-3p was considered a tumor suppressor and was found to significantly suppress the formation of migration and invasion in PCa cells via repression of E-cadherin-induced EMT. The bioinformatic database indicated that ZEB2 has a significant correlation with miR-200c-3p and was upregulated in PCa tissues. Further, ZEB2 expression was suppressed by the upregulation of miR-200c-3p and was identified as a direct target of miR-200c-3p. In addition, repression of ZEB2 could restore the levels of miR-200c-3p in PCa cells in turn, suggesting a potential negative loop between miR-200c-3p and ZEB2. miR-200c-3p also had an antitumor effect by negatively regulating ZEB2 in a xenograft mouse model. Conclusions Taken together, the results of our study demonstrated the novel regulatory loop of miR-200c-3/ZEB2 in PCa progression, providing effective therapeutic strategies for PCa in the future.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Hengcheng Zhang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuan Qin
- Department of Urology, Jiangsu Provincial Second Chinese Medicine Hospital, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Chen Chen
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jie Yang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Ninghong Song
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
32
|
Yu H, Guan Z, Cuk K, Zhang Y, Brenner H. Circulating MicroRNA Biomarkers for Lung Cancer Detection in East Asian Populations. Cancers (Basel) 2019; 11:E415. [PMID: 30909610 PMCID: PMC6468694 DOI: 10.3390/cancers11030415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer-related death in Eastern Asia. The prognosis of LC highly depends on tumor stages and early detection could substantially reduce LC mortality. Accumulating evidence suggested that circulating miRNAs in plasma or serum may have applications in early LC detection. We thus conducted a systematic literature review on the diagnostic value of miRNAs markers for LC in East Asian populations. METHODS PubMed and ISI Web of Knowledge were searched to retrieve relevant articles published up to 17 September 2018. Information on study design, population characteristics, investigated miRNAs and diagnostic accuracy (including sensitivity, specificity and area under the curve (AUC)) were independently extracted by two reviewers. RESULTS Overall, 46 studies that evaluated a total of 88 miRNA markers for LC diagnosis in East Asian populations were identified. Sixteen of the 46 studies have incorporated individual miRNA markers as panels (with 2⁻20 markers). Three promising miRNA panels with ≥90% sensitivity and ≥90% specificity were discovered, two of which were externally validated. Diagnostic performance of circulating miRNAs in East Asian populations was comparable to previously summarized performance in Western populations. Forty-four miRNAs were reported in both populations. No major differences in diagnostic performance by ethnicity of the same miRNA was observed. CONCLUSIONS Circulating miRNAs or miRNA panels, possibly in combination with other promising molecular markers including epigenetic and genetic markers, may be promising candidates for noninvasive LC early detection. However, large studies with samples collected prospectively in true screening settings are required to validate the promising markers or marker panels.
Collapse
Affiliation(s)
- Haixin Yu
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Zhong Guan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Lin J, Ma L, Zhang D, Gao J, Jin Y, Han Z, Lin D. Tumour biomarkers-Tracing the molecular function and clinical implication. Cell Prolif 2019; 52:e12589. [PMID: 30873683 PMCID: PMC6536410 DOI: 10.1111/cpr.12589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.
Collapse
Affiliation(s)
- Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lie Ma
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Han
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Sethi S, Sethi S, Bluth MH. Clinical Implication of MicroRNAs in Molecular Pathology: An Update for 2018. Clin Lab Med 2019; 38:237-251. [PMID: 29776629 DOI: 10.1016/j.cll.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are poised to provide diagnostic, prognostic, and therapeutic targets for several diseases including malignancies for precision medicine applications. The miRNAs have immense potential in the clinical arena because they can be detected in the blood, serum, tissues (fresh and formalin-fixed paraffin-embedded), and fine-needle aspirate specimens. The most attractive feature of miRNA-based therapy is that a single miRNA could be useful for targeting multiple genes that are deregulated in cancers, which can be further investigated through systems biology and network analysis that may provide cancer-specific personalized therapy.
Collapse
Affiliation(s)
- Seema Sethi
- Department of Pathology, University of Michigan and VA Hospital, E300, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Sajiv Sethi
- Department of Gastroenterology, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 82, Tampa, FL 33612, USA
| | - Martin H Bluth
- Department of Pathology, Wayne State University, School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; Pathology Laboratories, Michigan Surgical Hospital, 21230 Dequindre Road, Warren, MI 48091, USA
| |
Collapse
|
35
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
Affiliation(s)
- Radha D. Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Irina Y. Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
36
|
Aiso T, Ohtsuka K, Ueda M, Karita S, Yokoyama T, Takata S, Matsuki N, Kondo H, Takizawa H, Okada AA, Watanabe T, Ohnishi H. Serum levels of candidate microRNA diagnostic markers differ among the stages of non-small-cell lung cancer. Oncol Lett 2018; 16:6643-6651. [PMID: 30405804 PMCID: PMC6202492 DOI: 10.3892/ol.2018.9464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating microRNAs (miRNAs) are promising markers for cancer diagnosis and prognosis. Numerous studies evaluating miRNAs as markers for non-small cell lung cancer (NSCLC) have been conducted in recent years; however, the majority of candidate markers proposed via individual studies were inconsistent and no marker miRNAs for the diagnosis of early stage NSCLC have been established. In the present study, miR-145, miR-20a, miR-21 and miR-223, which were previously reported as candidate diagnostic markers of NSCLC, were re-evaluated. The serum levels of these miRNAs were quantified in 56 patients with stage I-IV NSCLC using the TaqMan microRNA assays and separately compared the levels at each stage with those in 26 control patients. The level of miR-145 was significantly reduced in patients with NSCLC, regardless of clinical stage, and its level increased following tumor resection in patients with stage I-II disease. These results indicate that miR-145 is relevant as a diagnostic marker for stages I-IV NSCLC. Additionally, the levels of miR-20a and miR-21 demonstrated notable differences among patients at different clinical stages. These miRNAs distinguished patients in a number of, but not all, stages of NSCLC from cancer-free control patients. These results indicated that it is essential to analyze miRNA levels at each stage separately in order to evaluate marker miRNAs for NSCLC diagnosis.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Kouki Ohtsuka
- Department of Laboratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Makiko Ueda
- Department of Medical Technology, Faculty of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shin Karita
- Department of General Thoracic Surgery, School of Medicine, Kyorin University, Tokyo 181-8611, Japan.,Department of Thoracic Surgery, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Takuma Yokoyama
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Saori Takata
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Naoko Matsuki
- Department of Ophthalmology, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Haruhiko Kondo
- Department of General Thoracic Surgery, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, School of Medicine, Kyorin University, Tokyo 181-8611, Japan
| |
Collapse
|
37
|
Clinically Correlated MicroRNAs in the Diagnosis of Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5930951. [PMID: 30050938 PMCID: PMC6046186 DOI: 10.1155/2018/5930951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
(1) Background. Non-small cell lung cancer (NSCLC) has a high mortality rate. MiRNAs have been found to be diagnostic biomarkers for NSCLC. However, controversial results exist. We conducted this meta-analysis to evaluate the diagnostic value of miRNAs for NSCLC. (2) Methods. Databases and reference lists were searched. Pooled sensitivity (SEN), specificity (SPE), and area under the curve (AUC) were applied to examine the general diagnostic efficacy, and subgroup analysis was also performed. (3) Results. Pooled SEN, SPE, and AUC were 85%, 88%, and 0.93, respectively, for 71 studies. Multiple miRNAs (AUC: 0.96) obtained higher diagnostic value than single miRNA (AUC: 0.86), and the same result was found for Caucasian population (AUC: 0.97) when compared with Asian (AUC: 0.91) and Caucasian/African population (AUC: 0.92). MiRNA had higher diagnostic efficacy when participants contained both smokers and nonsmokers (AUC is 0.95 for imbalanced group and 0.91 for balanced group) than when containing only smokers (AUC: 0.90). Meanwhile, AUC was 0.91 for both miR-21 and miR-210. (4) Conclusions. Multiple miRNAs such as miR-21 and miR-210 could be used as diagnostic tools for NSCLC, especially for the Caucasian and nonsmoking NSCLC.
Collapse
|
38
|
Zheng W, Zhao J, Tao Y, Guo M, Ya Z, Chen C, Qin N, Zheng J, Luo J, Xu L. MicroRNA-21: A promising biomarker for the prognosis and diagnosis of non-small cell lung cancer. Oncol Lett 2018; 16:2777-2782. [PMID: 30127862 DOI: 10.3892/ol.2018.8972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer worldwide. The high mortality rate of NSCLC is due to a limited number of diagnosis being made at an early stage of disease. Therefore, the development of a novel biological marker for the diagnosis and prognosis prediction of NSCLC remains urgent. Current literature shows that microRNA-21 (miRNA-21/miR-21), as an oncogenic miRNA, is involved in the growth, metastasis and apoptosis of NSCLC cells through its control of various target molecules and signaling pathways. Notably, a growing body of evidence further shows that miR-21 is closely associated with the prognosis prediction, recurrence and diagnosis of cancer patients, indicating that miR-21 may be a novel promising biomarker for the diagnosis and prognosis prediction of NSCLC. The present review aimed to provide a summary of recent findings on the associated progression toward finding a novel biomarker for NSCLC.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yijing Tao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhou Ya
- Department of Medical Physics, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jing Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
39
|
Qian F, Yang W, Chen Q, Zhang X, Han B. Screening for early stage lung cancer and its correlation with lung nodule detection. J Thorac Dis 2018; 10:S846-S859. [PMID: 29780631 PMCID: PMC5945694 DOI: 10.21037/jtd.2017.12.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Currently, the most effective way of reducing lung cancer mortality is early diagnosis of lung cancer. The National Lung Screening Trial has proved the efficacy of lung cancer screening using low-dose computed tomography to reduce lung cancer mortality. However, many questions remain surrounding lung cancer screening implementation, among which include how to select the optimal risk population, the personalized screening interval based different levels of risk, methods to improve diagnostic discrimination between malignant and benign disease in detected lung nodules, and the roles of biomolecular markers in stratifying risk and in guiding the management of indeterminate nodules. This review concentrates on the latest developments of lung cancer screening and provides an overview of the main unanswered questions on lung nodule detection.
Collapse
Affiliation(s)
- Fangfei Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjia Yang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qunhui Chen
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xueyan Zhang
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
40
|
Gao Y, Dai M, Liu H, He W, Lin S, Yuan T, Chen H, Dai S. Diagnostic value of circulating miR-21: An update meta-analysis in various cancers and validation in endometrial cancer. Oncotarget 2018; 7:68894-68908. [PMID: 27655698 PMCID: PMC5356598 DOI: 10.18632/oncotarget.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
MiR-21 has been identified as one of the most common proto-oncogenes. It is hypothesized that up-regulated miR-21 could be served as a potential biomarker for human cancer diagnosis. However, inconsistencies or discrepancies about diagnostic accuracy of circulating miR-21 still remain. In this sense, miR-21′s diagnostic value needs to be fully validated. In this study, we performed an update meta-analysis to estimate the diagnostic value of circulating miR-21 in various human cancers. Additionally, we conducted a validation test on 50 endometrial cancer patients, 50 benign lesion patients and 50 healthy controls. A systematical literature search for relevant articles was performed in Pubmed, Embase and Cochrane Library. A total of 48 studies from 39 articles, involving 3,568 cancer patients and 2,248 controls, were included in this meta-analysis. The overall sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were 0.76 (0.71-0.80), 0.82 (0.79-0.85), 4.3 (3.6-5.1), 0.29 (0.24-0.35), 15 (11-20) and 0.86 (0.83-0.89), respectively. In the validation test, the expression levels of serum miR-21 were significantly higher in benign lesion patients (p = 0.003) and endometrial cancer patients (p = 0.000) compared with that of healthy controls. Endometrial cancer patients showed higher miR-21 expression levels (p = 0.000) compared with benign lesion patients. In conclusion, the meta-analysis shows that circulating miR-21 has excellent performance on the diagnosis for various cancers and the validation test demonstrates that serum miR-21 could be served as a novel biomarker for endometrial carcinoma.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Meiyu Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Haihua Liu
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Wangjiao He
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengzhang Lin
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Tianzhu Yuan
- Department of Thoracic Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Hong Chen
- Department of Haematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| |
Collapse
|
41
|
Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget 2018; 7:26070-86. [PMID: 27036025 PMCID: PMC5041965 DOI: 10.18632/oncotarget.8429] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background The subtypes of NSCLC have unique characteristics of pathogenic mechanism and responses to targeted therapies. Thus, non-invasive markers for diagnosis of different subtypes of NSCLC at early stage are needed. Results Based on the results from the screening and validation process, 3 miRNAs (miR-532, miR-628-3p and miR-425-3p) were found to display significantly different expression levels in early-stage lung adenocarcinoma, as compared to those in healthy controls. ROC analysis showed that the miRNA–based biomarker could distinguish lung adenocarcinoma from healthy controls with high AUC (0.974), sensitivity (91.5%), and specificity (97.8%). Importantly, these three miRNAs could also distinguish lung adenocarcinoma from lung benigh diseases and other subtypes of lung cancer. Methods Two hundreds and one early-stage lung adenocarcinoma cases and one hundreds seventy eight age- and sex-matched healthy controls were recruited to this study. We screened the differentially expressed plasma miRNAs using TaqMan Low Density Arrays (TLDA) followed by three-phase qRT-PCR validation. A risk score model was established to evaluate the diagnostic value of the plasma miRNA profiling system. Conclusions Taken together, these findings suggest that the 3 miRNA–based biomarker might serve as a novel non-invasive approach for diagnosis of early-stage lung adenocarcinoma.
Collapse
|
42
|
Powrózek T, Mlak R, Dziedzic M, Małecka-Massalska T, Sagan D. Investigation of relationship between precursor of miRNA-944 and its mature form in lung squamous-cell carcinoma - the diagnostic value. Pathol Res Pract 2018; 214:368-373. [PMID: 29496309 DOI: 10.1016/j.prp.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION MicroRNA (miRNA) are attractive markers of lung cancer, due to their regulatory role in cell cycle. However, we know more about function of miRNA in cancer development, there is still little known about role of their precursors (primary miRNA; pri-miRNA) in tumorgenesis. In present study we investigated potential role of miRNA-944 and its precursor pri-miRNA-944 in development of squamous-cell lung cancer (SCC) and explored interdependence between miRNA precursor and its mature form. This is a first available literature report analyzing pri-miRNA as a cancer diagnostic marker. MATERIAL AND METHODS Expression of miRNA-944 and its precursor was analyzed in 58 fresh-frozen tissues of non-small cell lung cancer and corresponding adjacent non-cancerous tissues using qRT-PCR. Expression of pri-miRNA-944 was correlated with TP63 and miRNA-944. Using ROC analysis diagnostic accuracy of studied markers was evaluated. RESULTS miRNA-944 and its precursor were significantly overexspressed in SCC compared to adenocarcinoma (AC) and non-cancerous tissue. pri-miRNA-944 strongly and positively correlated with TP63 (r = 0.739, p < 0.001) and with mature miRNA-944 expression (r = 0.691, p < 0.001). Also, TP63 expression significantly correlated with mature miRNA (r = 0.785, p < 0.001). Combined analysis of pri-miRNA-944 and mature miRNA-944 allowed to distinguish SCC tissue form AC with sensitivity of 93.3% and specificity of 100% (AUC = 0.978), and SCC from non-cancerous tissue with 92.9% sensitivity and 100% specificity (AUC = 0.992). CONCLUSION We assumed that pri-miRNA-944 and miRNA-944 may be involved in early squamous-type differentiation of lung tumors. Moreover, analysis of both markers provided high diagnostic accuracy for SCC detection.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Poland.
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Poland.
| | - Marcin Dziedzic
- Department of Laboratory Diagnostic, Medical University of Lublin, Poland.
| | | | - Dariusz Sagan
- Department of Thoracic Surgery, Medical University of Lublin, Poland.
| |
Collapse
|
43
|
Qu K, Lin T, Pang Q, Liu T, Wang Z, Tai M, Meng F, Zhang J, Wan Y, Mao P, Dong X, Liu C, Niu W, Dong S. Extracellular miRNA-21 as a novel biomarker in glioma: Evidence from meta-analysis, clinical validation and experimental investigations. Oncotarget 2017; 7:33994-4010. [PMID: 27166186 PMCID: PMC5085133 DOI: 10.18632/oncotarget.9188] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Evidence is accumulating highlighting the importance of extracellular miRNA as a novel biomarker for diagnosing various kinds of malignancies. MiR-21 is one of the most studied miRNAs and is over-expressed in cancer tissues. To explore the clinical implications and secretory mechanisms of extracellular miR-21, we firstly meta-analyzed the diagnostic efficiency of extracellular miR-21 in different cancer types. Eighty-one studies based on 59 articles were finally included. In our study, extracellular miR-21 was observed to exhibit an outstanding diagnostic accuracy in detecting brain cancer (area under the summary receiver operating characteristic curve or AUC = 0.94), and this accuracy was more obvious in glioma diagnosis (AUC = 0.95). Our validation study (n = 45) further confirmed the diagnostic and prognostic role of miR-21 in cerebrospinal fluid (CSF) for glioma. These findings inspired us to explore the biological function of miR-21. We next conducted mechanistic investigations to explain the secretory mechanisms of extracellular miR-21 in glioma. TGF-β/Smad3 signaling was identified to participate in mediating the release of miR-21 from glioma cells. Further targeting TGF-β/Smad3 signaling using galunisertib, an inhibitor of the TGF-β type I receptor kinase, can attenuate the secretion of miR-21 from glioma cells. Taken together, CSF-based miR-21 might serve as a potential biomarker for diagnosing brain cancer, especially for patients with glioma. Moreover, extracellular levels of miR-21 were affected by exogenous TGF-β activity and galunisertib treatment.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tian Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhixin Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qinghai University, Xining 810001, Qinghai, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Minghui Tai
- Department of Ultrasound Diagnostics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wenquan Niu
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
44
|
Yang Y, Hu Z, Zhou Y, Zhao G, Lei Y, Li G, Chen S, Chen K, Shen Z, Chen X, Dai P, Huang Y. The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers. Oncotarget 2017; 8:90197-90214. [PMID: 29163821 PMCID: PMC5685742 DOI: 10.18632/oncotarget.21644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies have investigated the diagnostic role of circulating microRNAs (miRNAs) in patients with lung cancer; however, the results still remain inconclusive. An updated system review and meta-analysis was necessary to give a comprehensive evaluation of diagnostic role of circulating miRNAs in lung cancer. Eligible studies were searched in electronical databases. The sensitivity and specificity were used to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the curve (AUC). The between-study heterogeneity was evaluated by Q test and I2 statistics. Subgroup analyses and meta-regression were further performed to explore the potential sources of heterogeneity. A total of 134 studies from 65 articles (6,919 patients with lung cancer and 7,064 controls) were included for analysis. Overall analysis showed that circulating miRNAs had a good diagnostic performance in lung cancers, with a sensitivity of 0.83, a specificity of 0.84, and an AUC of 0.90. Subgroup analysis suggested that combined miRNAs and Caucasian populations may yield relatively higher diagnostic performance. In addition, we found serum might serve as an ideal material to detecting miRNA as good diagnostic performance. We also found the diagnostic role of miRNAs in early stage lung cancer was still relatively high (the sensitivity, specificity and an AUC of stage I/II was 0.81, 0.82 and 0.88; and for stage I, it was 0.80, 0.81, and 0.88). We also identified a panel of miRNAs such as miR-21-5p, miR-223-3p, miR-155-5p and miR-126-3p might serve as potential biomarkers for lung cancer. As a result, circulating miRNAs, particularly the combination of multiple miRNAs, may serve as promising biomarkers for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yongchun Zhou
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Shuai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Kai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zhenghai Shen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Xiao Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Peilin Dai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| |
Collapse
|
45
|
Kang M, Li Y, Zhao Y, He S, Shi J. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 2017; 20:457-466. [PMID: 28871425 DOI: 10.1007/s12094-017-1730-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lung cancer continues to be one of the top five causes of cancer-related mortality. This study aims to identify down- and upregulated miRNAs and mRNA which can be used as potential biomarkers and/or therapeutic targets for lung cancer. METHODS Integrated analysis of differential expression profiles of miRNA and mRNA in lung cancer was performed by searching Gene Expression Omnibus datasets. Based on miRNA expression profiles, direct mRNA targets of miRNAs with experimental support were identified through miRTarBase. The levels of representative miRNAs and mRNAs were confirmed through qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS The miR-33a was decreased in non-small cell lung cancer (NSCLC) tissues compared with the para-carcinoma tissues, whereas its target mRNA of cullin-associated NEDD8-dissociated protein 1 (CAND1) was increased in NSCLC tissues. Further research has shown that miR-33a can inhibit lung cancer cell proliferation, cell cycle progression, and migration by targeting CAND1. Moreover, the CAND1 knockout lung cancer cells showed similar results as cells transfected with miR-33a mimic. CONCLUSIONS These results suggested that the data mining based on online databases was an effective method in finding novel target in cancer research, and the miR-33a and CAND1 played an important role in lung cancer proliferation and cell migration.
Collapse
Affiliation(s)
- M Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Li
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Zhao
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - S He
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| | - J Shi
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
46
|
Kunz M, Göttlich C, Walles T, Nietzer S, Dandekar G, Dandekar T. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumour Biol 2017; 39:1010428317706430. [DOI: 10.1177/1010428317706430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| | - Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Sarah Nietzer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Disease”, Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| |
Collapse
|
47
|
Zhao Y, Song Y, Yao L, Song G, Teng C. Circulating microRNAs: Promising Biomarkers Involved in Several Cancers and Other Diseases. DNA Cell Biol 2017; 36:77-94. [DOI: 10.1089/dna.2016.3426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yicheng Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuanyuan Song
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Li Yao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangqi Song
- Junior Research Group of microRNA, Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
48
|
Kunz M, Wolf B, Schulze H, Atlan D, Walles T, Walles H, Dandekar T. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools. Genes (Basel) 2016; 8:E8. [PMID: 28035947 PMCID: PMC5295003 DOI: 10.3390/genes8010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
| | - Beat Wolf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
- University of Applied Sciences and Arts of Western Switzerland, Perolles 80, 1700 Fribourg, Switzerland.
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany.
| | - David Atlan
- Phenosystems SA, 137 Rue de Tubize, 1440 Braine le Château, Belgium.
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
- Translational Center Wuerzburg "Regenerative therapies in oncology and musculoskeletal disease" Wuerzburg branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB), Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
- BioComputing Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
49
|
Chen SD, Sun XY, Niu W, Kong LM, He MJ, Fan HM, Li WS, Zhong AF, Zhang LY, Lu J. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia. Psychiatry Res 2016; 244:324-32. [PMID: 27512922 DOI: 10.1016/j.psychres.2016.04.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder of unknown etiology, and its diagnosis is essentially based on clinical symptoms. Despite growing evidence on the relation of altered expression of miRNAs and schizophrenia, most patients with schizophrenia usually had an extensive antipsychotic treatment history before miRNA expression profile analysis, and the pharmacological effects on miRNA expression are largely unknown. To overcome these impediments, miRNA microarray analysis was performed in peripheral blood mononuclear cells (PBMCs) obtained from patients with schizophrenia who were not on antipsychotic medication and healthy controls. Then, using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we verified the top 10 miRNAs with the highest fold-change values from microarray analysis in 82 patients with schizophrenia and 43 healthy controls, and nine miRNAs demonstrated significant differences in expression levels. Finally, we compared these nine miRNA profiles before and after antipsychotic treatment. Our results revealed that serum miR-21 expression decreased strikingly in patients after antipsychotic treatment. The change of miR-21 expression was negatively correlated with improvement of positive, general psychopathology, and aggressiveness symptoms. This study preliminarily analyzed the possible changes in circulating miRNAs expression in response to antipsychotic medication for schizophrenia, and the molecular mechanisms of this needs to be further explored.
Collapse
Affiliation(s)
- Sheng-Dong Chen
- Department of Psychiatry and Psychology, Second Military Medical University, Shanghai 200433, People's Republic of China; Department of Neurology, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xin-Yang Sun
- Department of Psychiatry and Psychology, Ping An Health Cloud Company Ltd. of China, Shanghai 200030, People's Republic of China
| | - Wei Niu
- Department of Rehabilitation, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Ling-Ming Kong
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou 213003, Jiangsu, People's Republic of China
| | - Ming-Jun He
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou 213003, Jiangsu, People's Republic of China
| | - Hui-Min Fan
- Cadre Ward, Chengdu Military General Hospital, Chengdu, Sichuan 610083, People's Republic of China
| | - Wan-Shuai Li
- GoPath Diagnostic Laboratory Co. Ltd, No. 801, Changwuzhong Road, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ai-Fang Zhong
- Department of Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu 213003, People's Republic of China
| | - Li-Yi Zhang
- Department of Psychiatry and Psychology, Second Military Medical University, Shanghai 200433, People's Republic of China; Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou 213003, Jiangsu, People's Republic of China.
| | - Jim Lu
- GoPath Diagnostic Laboratory Co. Ltd, No. 801, Changwuzhong Road, Changzhou, Jiangsu 213164, People's Republic of China; GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, United States.
| |
Collapse
|
50
|
Campomenosi P, Gini E, Noonan DM, Poli A, D'Antona P, Rotolo N, Dominioni L, Imperatori A. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol 2016; 16:60. [PMID: 27538962 PMCID: PMC4991011 DOI: 10.1186/s12896-016-0292-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
Background Selected microRNAs (miRNAs) that are abnormally expressed in the serum of patients with lung cancer have recently been proposed as biomarkers of this disease. The measurement of circulating miRNAs, however, requires a highly reliable quantification method. Quantitative real-time PCR (qPCR) is the most commonly used method, but it lacks reliable endogenous reference miRNAs for normalization of results in biofluids. When used in absolute quantification, it must rely on the use of external calibrators. Droplet digital PCR (ddPCR) is a recently introduced technology that overcomes the normalization issue and may facilitate miRNA measurement. Here we compared the performance of absolute qPCR and ddPCR techniques for quantifying selected miRNAs in the serum. Results In the first experiment, three miRNAs, proposed in the literature as lung cancer biomarkers (miR-21, miR-126 and let-7a), were analyzed in a set of 15 human serum samples. Four independent qPCR and four independent ddPCR amplifications were done on the same samples and used to estimate the precision and correlation of miRNA measurements obtained with the two techniques. The precision of the two methods was evaluated by calculating the Coefficient of Variation (CV) of the four independent measurements obtained with each technique. The CV was similar or smaller in ddPCR than in qPCR for all miRNAs tested, and was significantly smaller for let-7a (p = 0.028). Linear regression analysis of the miRNA values obtained with qPCR and ddPCR showed strong correlation (p < 0.001). To validate the correlation obtained with the two techniques in the first experiment, in a second experiment the same miRNAs were measured in a larger cohort (70 human serum samples) by both qPCR and ddPCR. The correlation of miRNA analyses with the two methods was significant for all three miRNAs. Moreover, in our experiments the ddPCR technique had higher throughput than qPCR, at a similar cost-per-sample. Conclusions Analyses of serum miRNAs performed with qPCR and ddPCR were largely concordant. Both qPCR and ddPCR can reliably be used to quantify circulating miRNAs, however, ddPCR revealed similar or greater precision and higher throughput of analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy. .,The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and University of Insubria, Varese, Italy.
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Albino Poli
- Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Paola D'Antona
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Nicola Rotolo
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Lorenzo Dominioni
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Andrea Imperatori
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| |
Collapse
|