1
|
Feng X, Zhang D, Wang G, Lu L, Feng F, Wang X, Yu C, Chai Y, Zhang J, Li W, Liu J, Sun H, Yao L. Mechanisms and Therapeutic Strategies for Minority Cell-Induced Paclitaxel Resistance and Tumor Progression Mediated by Mechanical Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417805. [PMID: 40270447 DOI: 10.1002/advs.202417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Chemotherapy remains a prevalent strategy in cancer therapy; however, the emergence of drug resistance poses a considerable challenge to its efficacy. Most drug resistance arises from the accumulation of genetic mutations in a minority of resistant cells. The mechanisms underlying the emergence and progression of cancer resistance from these minority-resistant cells (MRCs) remain poorly understood. This study employs force-induced remnant magnetization spectroscopy (FIRMS) alongside various biological investigations to reveal the mechanical pathways for MRCs fostering drug resistance and tumor progression. The findings show that minority Paclitaxel-resistant cancer cells have enhanced mechanical properties. These cells can transmit high-intensity forces to surrounding sensitive cells (SCs) through the force transducer, Merlin. This force transmission facilitates the assimilation of surrounding SCs, subsequently strengthening the contraction and adhesion of tumor cells. This process is termed "mechano-assimilation," which accelerates the development of drug resistance and tumor progression. Interestingly, disturbances and reductions of mechano-assimilation within tumors can restore sensitivity to Paclitaxel both in vitro and in vivo. This study provides preliminary evidence highlighting the contribution of MRCs to the development of drug resistance and malignancy, mediated through mechanical interactions. It also establishes a foundation for future research focused on integrating mechanical factors into innovative cancer therapies.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guoxun Wang
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liwei Lu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuyu Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Chanchan Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yahong Chai
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wenchao Li
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100007, P. R. China
| | - Jing Liu
- Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Hongxia Sun
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Bu X, Ashby N, Vitali T, Lee S, Gottumukkala A, Yun K, Tabbara S, Latham P, Teal C, Chung I. Cell crowding activates pro-invasive mechanotransduction pathway in high-grade DCIS via TRPV4 inhibition and cell volume reduction. eLife 2025; 13:RP100490. [PMID: 40256993 PMCID: PMC12011371 DOI: 10.7554/elife.100490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.
Collapse
Affiliation(s)
- Xiangning Bu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Nathanael Ashby
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Teresa Vitali
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Sulgi Lee
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Ananya Gottumukkala
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
- Thomas Jefferson High School for Science and TechnologyAlexandriaUnited States
| | - Kangsun Yun
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Sana Tabbara
- Department of Pathology, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Patricia Latham
- Department of Pathology, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Christine Teal
- Department of Surgery, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Inhee Chung
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
- Department of Biomedical Engineering, GW School of Engineering and Applied Science, George Washington UniversityWashington, DCUnited States
| |
Collapse
|
3
|
Kim SH, Yasunaga AB, Zhang H, Whitley KD, Li ITS. Quantitative Super-Resolution Imaging of Molecular Tension. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408280. [PMID: 40245301 DOI: 10.1002/advs.202408280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/08/2025] [Indexed: 04/19/2025]
Abstract
DNA-based molecular tension probes have revolutionized the localization of mechanical events in live cells with super-resolution. However, imaging the magnitude of these forces at super-resolution has been challenging. Here, qtPAINT (quantitative tension points accumulation for imaging in nanoscale topography) is introduced as a strategy to image the magnitude of molecular tension with super-resolution accuracy. By leveraging the force-dependent dissociation kinetics of short DNA oligonucleotides on their complementary strands, tension is encoded on individual molecules through their binding kinetics. This method allowed for a quantitative analysis of these kinetics, providing a detailed reconstruction of the force magnitudes acting on each tension probe. The technique integrates a molecular-beacon PAINT imager with a hairpin molecular tension probe, achieving a force quantification range of 9-30 pN and maintaining a spatial resolution of 30-120 nm in low and high-density regions. Additionally, qtPAINT offers a temporal resolution on the order of a minute, enhancing its applicability for studying dynamic cellular processes.
Collapse
Affiliation(s)
- Seong Ho Kim
- Department of Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Department of Chemistry and Advanced Materials, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Adam B Yasunaga
- Department of Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Hongyuan Zhang
- Department of Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Kevin D Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Isaac T S Li
- Department of Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
4
|
Kary AD, Noelle H, Magin CM. Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering. ACS Macro Lett 2025; 14:434-447. [PMID: 40102038 DOI: 10.1021/acsmacrolett.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Irreversible progressive pulmonary diseases drastically reduce the patient quality of life, while transplantation remains the only definitive cure. Research into lung regeneration pathways holds significant potential to expand and promote the discovery of new treatment options. Polymeric biomaterials designed to replicate key tissue characteristics (i.e., biochemical composition and mechanical cues) show promise for creating environments in which to study chronic lung diseases and initiate lung tissue regeneration. In this Viewpoint, we explore how naturally derived materials can be employed alone or combined with engineered polymer systems to create advanced tissue culture platforms. Pulmonary tissue models have historically leveraged natural materials, including basement membrane extracts and a decellularized extracellular matrix, as platforms for lung regeneration studies. Here, we provide an overview of the progression of pulmonary regenerative engineering, exploring how innovations in the growing field of tissue-informed biomaterials have the potential to advance lung regeneration research by bridging the gap between biological relevance and mechanical precision.
Collapse
Affiliation(s)
- Anton D Kary
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Haley Noelle
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Alqosiri HM, Alqasiri HM, Alqasire SE, Nava VE, Bandyopadhyay BC, Raub CB. Breast cancer extracellular matrix invasion depends on local mechanical loading of the collagen network. J Mater Chem B 2025. [PMID: 40135428 DOI: 10.1039/d4tb01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Active mechanical stresses in and around tumors affect cancer cell behavior and independently regulate cancer progression. To investigate the role of mechanical stress in breast cancer cell invasion, magnetic alginate beads loaded with iron oxide nanoparticles were coated with MDA-MB-231 breast cancer cells and embedded in a three-dimensional extracellular matrix (ECM) model subjected to an external magnetic field during culture. Bead displacement, cell shape and patterns of invasion of the collagen gel, and cell proliferation were assessed over 7 days of culture. The alginate beads swelled over the first 24 h in culture, creating circumferential stress akin to that created by tumor growth, while bead magnetic properties enabled local mechanical loading (compression, tension, and relaxation) and motion within the in vitro tissue constructs upon exposure to an external magnetic field. Beads displaced 0.2-1.6 mm through the collagen gels, depending on magnet size and distance, compressing the collagen network microstructure without gel mechanical failure. Invading cells formed a spatulate pattern as they moved into the compressed ECM region, with individual cells aligned parallel to the bead surface. During the first 24 hours of compressive magnetic force loading, invading cancer cells became round, losing elongation and ability to invade out from the bead surface, while still actively dividing. In contrast, cell invasion in unloaded constructs and in loaded constructs away from the compression region invaded as single cells, transversely outward from the bead surface. Finally, cell proliferation was 1.3× higher only after external magnet removal, which caused relaxation of mechanical stress in the collagen network. These findings indicate effects on breast cancer invasion of mechanical loading of ECM, both from compressive loading and from load relaxation. Findings point to the influence of mechanical stress on cancer cell behavior and suggest that relaxing mechanical stress in and around a tumor may promote cancer progression through higher proliferation and invasion.
Collapse
Affiliation(s)
- Hanadi M Alqosiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Hadeel M Alqasiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Sara E Alqasire
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
6
|
Wang D, Silvani G, Schroeter L, Brynn R, Chou J, Poole K. The mechanosensitive channel ELKIN1 regulates cellular adaptations to simulated microgravity. NPJ Microgravity 2025; 11:10. [PMID: 40090965 PMCID: PMC11911437 DOI: 10.1038/s41526-025-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
In conditions of microgravity the human body undergoes extensive alterations in physiological function. However, it has proven challenging to determine how these changes are mediated at the molecular and cellular level. Here, we investigated whether ELKIN1, a mechanically activated ion channel, regulates changes in cellular and molecular structures in conditions of simulated microgravity. Deletion of ELKIN1 inhibited the simulated microgravity-induced alterations of cellular structure and attachment. In addition, cells lacking ELKIN1 did not exhibit changes in focal adhesion structures and redistribution of the YAP1 transcription factor in response to simulated microgravity, consistent with wild type cells. Finally, melanoma cell invasion of a collagen gel, from organotypic spheroids, was reduced in simulated microgravity, in an ELKIN1 dependent manner. Thus, the force sensing molecule, ELKIN1, modulates the impact of microgravity at both the molecular and cellular levels, revealing one of the molecular mechanisms that underpins cellular adaptations to conditions of microgravity.
Collapse
Affiliation(s)
- Daphne Wang
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- Laboratory for Advanced Biomaterials & Matrix Engineering, School of Chemistry and School of Materials Science and Engineering, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Lioba Schroeter
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Remi Brynn
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- EXPLOR Biologics, NSW, 2000, Sydney, Australia
| | - Kate Poole
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Outla Z, Oyman-Eyrilmez G, Korelova K, Prechova M, Frick L, Sarnova L, Bisht P, Novotna P, Kosla J, Bortel P, Borutzki Y, Bileck A, Gerner C, Rahbari M, Rahbari N, Birgin E, Kvasnicova B, Galisova A, Sulkova K, Bauer A, Jobe N, Tolde O, Sticova E, Rösel D, O'Connor T, Otahal M, Jirak D, Heikenwälder M, Wiche G, Meier-Menches SM, Gregor M. Plectin-mediated cytoskeletal crosstalk as a target for inhibition of hepatocellular carcinoma growth and metastasis. eLife 2025; 13:RP102205. [PMID: 40052672 PMCID: PMC11893104 DOI: 10.7554/elife.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Gizem Oyman-Eyrilmez
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Lukas Frick
- Institute of Molecular Cancer Research, University of ZurichZurichSwitzerland
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Piyush Bisht
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Petra Novotna
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Kosla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer FeldHeidelbergGermany
| | - Patricia Bortel
- Department of Analytical Chemistry, University of ViennaViennaAustria
| | - Yasmin Borutzki
- Institute of Inorganic Chemistry, University of ViennaViennaAustria
| | - Andrea Bileck
- Department of Analytical Chemistry, University of ViennaViennaAustria
- Joint Metabolome Facility, Medical University of Vienna and University of ViennaHeidelbergGermany
| | - Christopher Gerner
- Department of Analytical Chemistry, University of ViennaViennaAustria
- Joint Metabolome Facility, Medical University of Vienna and University of ViennaHeidelbergGermany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer FeldHeidelbergGermany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Nuh Rahbari
- Department of General and Visceral Surgery, Ulm University HospitalUlmGermany
| | - Emrullah Birgin
- Department of General and Visceral Surgery, Ulm University HospitalUlmGermany
| | - Bibiana Kvasnicova
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in PraguePragueCzech Republic
| | - Andrea Galisova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Katerina Sulkova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Andreas Bauer
- Department of Physics, University of Erlangen-NurembergErlangenGermany
| | - Njainday Jobe
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, PrumyslovaVestecCzech Republic
| | - Ondrej Tolde
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, PrumyslovaVestecCzech Republic
| | - Eva Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental MedicinePragueCzech Republic
- Department of Pathology, Third Faculty of Medicine, Charles UniversityPragueCzech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, PrumyslovaVestecCzech Republic
| | - Tracy O'Connor
- Department of Biology, North Park UniversityChicagoUnited States
| | - Martin Otahal
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in PraguePragueCzech Republic
| | - Daniel Jirak
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer FeldHeidelbergGermany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of ViennaViennaAustria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, University of ViennaViennaAustria
- Institute of Inorganic Chemistry, University of ViennaViennaAustria
- Joint Metabolome Facility, Medical University of Vienna and University of ViennaHeidelbergGermany
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
9
|
Scott S, Villiou M, Colombo F, la Cruz‐García AD, Tydecks L, Toelke L, Siemsen K, Selhuber‐Unkel C. Dynamic and Reversible Tuning of Hydrogel Viscoelasticity by Transient Polymer Interactions for Controlling Cell Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408616. [PMID: 39935068 PMCID: PMC11938001 DOI: 10.1002/adma.202408616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Indexed: 02/13/2025]
Abstract
Cells are highly responsive to changes in their mechanical environment, influencing processes such as stem cell differentiation and tumor progression. To meet the growing demand for materials used for high throughput mechanotransduction studies, simple means of dynamically adjusting the environmental viscoelasticity of cell cultures are needed. Here, a novel method is presented to dynamically and reversibly control the viscoelasticity of naturally derived polymer hydrogels through interactions with poly (ethylene glycol) (PEG). Interactions between PEG and hydrogel polymers, possibly involving hydrogen bonding, stiffen the hydrogel matrices. By dynamically changing the PEG concentration of the solution in which polymer hydrogels are incubated, their viscoelastic properties are adjusted, which in turn affects cell adhesion and cytoskeletal organization. Importantly, this effects is reversible, providing a cost-effective and simple strategy for dynamically adjusting the viscoelasticity of polymer hydrogels. This method holds promise for applications in mechanobiology, biomedicine, and the life sciences.
Collapse
Affiliation(s)
- Shane Scott
- Department of Materials Science and EngineeringMcMaster University1280 Main St. W.HamiltonOntarioL8S 4L8Canada
| | - Maria Villiou
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
- Max Planck School Matter to LifeHeidelberg UniversityJahnstraße 2969120HeidelbergGermany
- Max Planck Institute for Polymer ResearchAckermannweg 10A55128MainzGermany
| | - Federico Colombo
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
| | - Angeles De la Cruz‐García
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
| | - Leon Tydecks
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
| | - Lotta Toelke
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
| | - Katharina Siemsen
- Institute for Materials ScienceKiel UniversityKaiserstraße 224143KielGermany
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityD‐69120HeidelbergGermany
- Max Planck School Matter to LifeHeidelberg UniversityJahnstraße 2969120HeidelbergGermany
| |
Collapse
|
10
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2025; 15:389-406. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
11
|
Yadav S, Kc S, Blaskovich MAT, Lu CT, Lam AK, Nguyen NT. RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer. Adv Biol (Weinh) 2025:e2400626. [PMID: 39887960 DOI: 10.1002/adbi.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells. RhoA controls cell adhesion and migration, while Rac1 drives cell movement and invasion. As CRC tumors grow and reshape the colon's mechanical environment, these pathways become disrupted, accelerating cancer progression. Examining the level of RhoA and Rac1 in CRC clinical samples under mechanical strain reveals their potential as diagnostic markers. Tracking the activity of these proteins can unlock valuable insights into cancer cell dissemination, offering new avenues for understanding and diagnosing CRC. This approach holds promise for earlier detection and better outcomes by offering key insights for more effective diagnostic strategies.
Collapse
Affiliation(s)
- Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sanjaya Kc
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Mark A T Blaskovich
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Cu-Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
12
|
Emon B, Joy MSH, Drennan WC, Saif MTA. A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro. Nat Protoc 2025:10.1038/s41596-024-01106-8. [PMID: 39856342 DOI: 10.1038/s41596-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 11/08/2024] [Indexed: 01/27/2025]
Abstract
Cell-matrix interactions, mediated by cellular force and matrix remodeling, result in dynamic reciprocity that drives numerous biological processes and disease progression. Currently, there is no available method for directly quantifying cell traction force and matrix remodeling in three-dimensional matrices as a function of time. To address this long-standing need, we developed a high-resolution microfabricated device that enables longitudinal measurement of cell force, matrix stiffness and the application of mechanical stimulation (tension or compression) to cells. Here a specimen comprising of cells and matrix self-assembles and self-integrates with the sensor. With primary fibroblasts, cancer cells and neurons we have demonstrated the feasibility of the sensor by measuring single or multiple cell force with a resolution of 1 nN and changes in tissue stiffness due to matrix remodeling by the cells. The sensor can also potentially be translated into a high-throughput system for clinical assays such as patient-specific drug and phenotypic screening. We present the detailed protocol for manufacturing the sensors, preparing experimental setup, developing assays with different tissues and for imaging and analyzing the data. Apart from microfabrication of the molds in a cleanroom (one time operation), this protocol does not require any specialized skillset and can be completed within 4-5 h.
Collapse
Affiliation(s)
- Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Md Saddam Hossain Joy
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William C Drennan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
13
|
Sheth M, Sharma M, Kongsomros S, Lehn M, Takebe T, Takiar V, Wise-Draper T, Chutipongtanate S, Esfandiari L. Matrix stiffness modulated release of spheroid-derived extracellular vesicles and discovery of Piezo1 cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632826. [PMID: 39868119 PMCID: PMC11760731 DOI: 10.1101/2025.01.13.632826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown. Small extracellular vesicles (EVs) are communicators of altered biophysical cues to distant sites through EV-ECM interactions and EV-mediated recipient cell-ECM interactions. Here we demonstrate stiffness-mediated modulation of small EVs secretion and cargo from three-dimensional oral squamous cell carcinoma spheroids. Using a spheroid culture platform with varying matrix stiffness properties, we show that small EVs carry parental biomolecular cargo, including mechanosensitive Piezo1 ion channel and adhesion molecule CD44. We comprehensively validate the presence of both markers in our EV populations using proteomic and genetic analysis. Transcriptomic analysis of microRNA and long non-coding RNA cargo of small EVs released from soft and stiff ECM spheroids revealed enrichment of tumorigenic and metastatic profiles in EVs from stiff ECM cultures compared to that of soft ones. Gene set enrichment analysis of a comparative dataset obtained by overlaying spheroid mRNA and EV miRNA profiles identified key oncogenic pathways involved in cell-EV crosstalk in the spheroid model.
Collapse
|
14
|
Wang Z, Wang W, Luo Q, Song G. High matrix stiffness accelerates migration of hepatocellular carcinoma cells through the integrin β1-Plectin-F-actin axis. BMC Biol 2025; 23:8. [PMID: 39789506 PMCID: PMC11721467 DOI: 10.1186/s12915-025-02113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear. In this study, we aimed to investigate whether plectin responds to variations in ECM stiffness and to explore its involved molecular mechanisms in regulating HCC cell migration. RESULTS Our results showed that, when compared with control group (7 kPa), high ECM stiffness (53 kPa) boosts HCC cell migration by upregulating plectin and integrin β1 expression and increasing F-actin polymerization. Knockdown of integrin β1 negated the high stiffness-upregulated plectin expression. Furthermore, reducing either plectin or integrin β1 levels, or using latrunculin A, effectively prevented the high ECM stiffness-induced F-actin polymerization and HCC cell migration. CONCLUSIONS These findings demonstrate that integrin β1-plectin-F-actin axis is necessary for high matrix stiffness-driven migration of HCC cells, and provide evidence for the critical role of plectin in mechanotransduction in HCC cells.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Wenbin Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
15
|
Scott NR, Kang S, Parekh SH. Mechanosensitive nuclear uptake of chemotherapy. SCIENCE ADVANCES 2024; 10:eadr5947. [PMID: 39693448 DOI: 10.1126/sciadv.adr5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX). Rapid changes in cell strain by disruption of cytoskeletal and nuclear filaments sensitize nuclei to DOX, whereas chronic reduction of cell strain desensitize nuclei to DOX. Extracted nuclei from invasive cancer cells lines from different tissues have distinct nuclear permeability to DOX. Last, we show that mechano-priming of cells by paclitaxel markedly improves DOX nuclear internalization, rationalizing the observed drug synergies. Our findings reveal that nuclear uptake is a critical, previously unquantified aspect of drug resistance. With nuclear permeability to chemotherapy being tunable via modulation of nuclear mechanotransduction, mechano-priming may be useful to help overcome drug resistance in the future.
Collapse
Affiliation(s)
- Nicholas R Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sowon Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Deptuła P, Łysik D, Wolak P, Król G, Paprocka P, Bijak P, Ziembicka D, Mystkowska J, Bucki R. Mechanical Properties of Inflamed Appendix Tissues. Biomedicines 2024; 12:2588. [PMID: 39595154 PMCID: PMC11591559 DOI: 10.3390/biomedicines12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Histopathological examination enables visualization of morphological changes in cells and tissues. In recent years, there has been increasing interest in assessing the mechanical properties of tissues that cannot be determined by standard histopathological examinations. Mechanobiology is crucial in human physiology and holds promise for uncovering new diagnostic markers for disease processes such as carcinogenesis and inflammation. In this study, we concentrated on measuring the mechanical properties of appendix biopsy specimens to identify potential mechanomarkers of inflammation. Appendix tissues provided the opportunity to measure mechanical properties both with an atomic force microscope and a shear rheometer. Methods: The atomic force microscope AFM-NanoWizard 4 BioScience JPK/Bruker was used for the evaluation of the elastic modulus (i.e., Young's modulus) of appendix tissues. Young's modulus was derived from the Hertz-Sneddon model applied to force-indentation curves. The rheological properties of macroscopic samples were measured on a parallel-plate, strain-controlled shear rheometer Anton Paar MCR302. Results: The data collected suggest that elasticity, expressed as Young's modulus and the storage modulus, could be considered a marker indicating appendix tissue inflammation. Young's modulus of inflamed appendix tissues was found to be significantly lower than that of healthy ones, with an average reduction of 67%. Furthermore, it was observed that inflamed appendix tissues, in comparison to healthy ones, respond differently under varying axial and shear stresses, enabling their identification. Conclusions: Our findings suggest that the specific mechanical properties of inflamed vermiform appendices could serve as novel mechanomarkers for the early detection and monitoring of appendicitis.
Collapse
Affiliation(s)
- Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, PL-15222 Białystok, Poland;
| | - Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, PL-15351 Białystok, Poland; (D.Ł.); (J.M.)
| | - Przemysław Wolak
- Faculty of Medicine, Collegium Medicum, Jan Kochanowski University, PL-25369 Kielce, Poland;
- Department of Pediatric Surgery, Urology and Traumatology, Provincial Hospital in Kielce, PL-25736 Kielce, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Piotr Bijak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (G.K.); (P.P.); (P.B.)
| | - Dominika Ziembicka
- Department of Public Health, Medical University of Bialystok, PL-15089 Białystok, Poland;
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, PL-15351 Białystok, Poland; (D.Ł.); (J.M.)
| | - Robert Bucki
- Faculty of Medicine, Collegium Medicum, Jan Kochanowski University, PL-25369 Kielce, Poland;
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Białystok, Poland
| |
Collapse
|
17
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Eikanger MM, Sane S, Schraufnagel KS, Slunecka JL, Potts RA, Freeling J, Sereda G, Rasulev B, Brockstein RL, Emon MAB, Saif MTA, Rezvani K. Veratridine, a plant-derived alkaloid, suppresses the hyperactive Rictor-mTORC2 pathway: a new targeted therapy for primary and metastatic colorectal cancer. RESEARCH SQUARE 2024:rs.3.rs-5199838. [PMID: 39502780 PMCID: PMC11537347 DOI: 10.21203/rs.3.rs-5199838/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Despite considerable advances to improve colorectal cancer (CRC) survival over the last decade, therapeutic challenges remain due to the rapid metastatic dissemination of primary tumors and screening limitations. Meanwhile, the rise of CRC in younger adults (Early-onset CRC), commonly diagnosed with a metastatic form of the disease, shows the pressing need to develop more effective targeted therapies to decrease the high mortality rates associated with metastatic disease. Hyperactivation of the Rictor-mTORC2-AKT signaling pathway drives key metastatic players in diverse malignant tumors, including early- and late-onset colorectal cancer. Selective mTORC2 inhibitors are becoming a potential treatment strategy for CRC due to the therapeutic limitations of mTORC1 inhibitors. Veratridine (VTD), a lipid-soluble alkaloid extracted from Liliaceae plants, can transcriptionally increase UBXN2A, which induces 26S proteasomal degradation of the Rictor protein, a key member in the mTORC2 complex. Destabilization of Rictor protein by VTD decreases Akt phosphorylation on Ser473, which is responsible for metastatic signaling downstream of the mTORC2 pathway in diverse malignant tumors. VTD decreases the population of metastatic colon cancer stem cells and functions as an angiogenesis inhibitor. VTD effectively reduces the spheroid growth rate and restricts cell migration. Live cell migration and invasion assays alongside biomechanical-force-based experiments revealed that VTD suppresses colon cancer cell invasiveness and the ensuing risk of tumor metastasis. A CRC mouse model that mimics the natural stages of human sporadic CRC revealed that VTD treatment significantly decreases tumor growth in a UBXN2A-dependent manner. This study showed a novel mechanistic connection between a ubiquitin-like protein and mTORC2-dependent migration and invasion in CRC tumors. This study revealed the therapeutic benefit of selective inhibition of Rictor in CRC, particularly in tumors with a hyperactive Rictor-mTORC2 signaling pathway. Finally, this study opened a new platform for repurposing VTD, a supplemental anti-hypertension molecule, into an effective targeted therapy in CRC tumors.
Collapse
Affiliation(s)
| | - Sanam Sane
- University of South Dakota Sanford School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Del Favero G, Bergen J, Palm L, Fellinger C, Matlaeva M, Szabadi A, Fernandes AS, Saraiva N, Schröder C, Marko D. Short-Term Exposure to Foodborne Xenoestrogens Affects Breast Cancer Cell Morphology and Motility Relevant for Metastatic Behavior In Vitro. Chem Res Toxicol 2024; 37:1634-1650. [PMID: 39262136 PMCID: PMC11497359 DOI: 10.1021/acs.chemrestox.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is highly susceptible to metastasis formation. During the time of disease progression, tumor pathophysiology can be impacted by endogenous factors, like hormonal status, as well as by environmental exposures, such as those related to diet and lifestyle. New lines of evidence point toward a potential role for foodborne endocrine disruptive chemicals in this respect; however, mechanistic understanding remains limited. At the molecular level, crucial steps toward metastasis formation include cell structural changes, alteration of adhesion, and reorganization of cytoskeletal proteins involved in motility. Hence, this study investigates the potential of dietary xenoestrogens to impact selected aspects of breast cancer cell mechanotransduction. Taking the onset of the metastatic cascade as a model, experiments focused on cell-matrix adhesion, single-cell migration, and adaptation of cell morphology. Dietary mycoestrogens alternariol (AOH, 1 μM) and α-zearalenol (α-ZEL, 10 nM), soy isoflavone genistein (GEN, 1 μM), and food packaging plasticizer bisphenol A (BPA, 10 nM) were applied as single compounds or in mixtures. Pursuing the hypothesis that endocrine active molecules could affect cell functions beyond the estrogen receptor-dependent cascade, experiments were performed comparing the MCF-7 cell line to the triple negative breast cancer cells MDA MB-231. Indeed, the four compounds functionally affected the motility and the adhesion of both cell types. These responses were coherent with rearrangements of the actin cytoskeleton and with the modulation of the expression of integrin β1 and cathepsin D. Mechanistically, molecular dynamics simulations confirmed a potential interaction with fragments of the α1 and β1 integrin subunits. In sum, dietary xenoestrogens proved effective in modifying the motility and adhesion of breast cancer cells, as predictive end points for metastatic behavior in vitro. These effects were measurable after short incubation times (1 or 8 h) and contribute to shed novel light on the activity of compounds with hormonal mimicry potential in breast cancer progression.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Janice Bergen
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Lena Palm
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Fellinger
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
for Pharmaceutical Sciences, University
of Vienna, Vienna 1090, Austria
| | - Maria Matlaeva
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - András Szabadi
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona’s Research Center
for Biosciences & Health Technologies, Lisboa 1749-024, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona’s Research Center
for Biosciences & Health Technologies, Lisboa 1749-024, Portugal
| | - Christian Schröder
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Doris Marko
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
21
|
Kim C, Sharkey J, Slutzky LC, Diaz G. Relief of benign paroxysmal positional vertigo and temporomandibular disorder using a myofascial induction in genu recurvatum patients: Case reports. J Bodyw Mov Ther 2024; 40:1531-1535. [PMID: 39593484 DOI: 10.1016/j.jbmt.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 06/14/2024] [Accepted: 07/20/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND In the realm of research, the single case study has been recognized as a valuable tool for sharing insights, demonstrating new concepts, discovering novel phenomena, consolidating hypotheses, and sparking original ideas. In this physician-guided narrative, phenomena previously unreported in the clinical context are explored. These case studies aim to offer insights that may inform an existing theoretical model that encapsulates a distinct therapeutic intervention. Original research in fascia-focused therapies presents many challenges, including the lack of universal terminology, inconsistent techniques, and difficulties in quantifying treatment effects. Tensegrity-based approaches, which concentrate on tissue tension, also face challenges in establishing their validity within living organisms. For centuries, fascia was seen only as ribbons and sheets of soft, inert, mostly fatty tissue. Consequently, most anatomy textbooks provide a sterile view of anatomical structures devoid of the context of unifying fascia. Now, however, consensus of research describes fascia as an omnipresent, ubiquitous, body-wide tissue that acts as a system, transmitting mechanical information via tensional force changes. METHODS AND RESULTS The clinical outcomes in the cases provided in this narrative report suggest that induction of thigh fascia resulted in immediate anatomically distant therapeutic benefit, as reported by the patients. CONCLUSIONS Rather than measuring treatment efficacy, these two case studies utilize a specific myofascial induction performed at high velocity to elucidate the possibility of a fascia-based, tensegrity-mediated, mechanism for commonly managed, yet often incurable conditions - Benign Paroxysmal Positional Vertigo (BPPV) symptoms and Temporomandibular Joint (TMJ) pain (within the spectrum of Temporomandibular Disorder (TMD)).
Collapse
Affiliation(s)
- Cathy Kim
- Community Memorial Health System, 147 N. Brent St, Ventura, CA, USA.
| | - John Sharkey
- University of Chester/NTC, Dublin, Leinster, Ireland
| | | | - Graal Diaz
- Community Memorial Health System, 147 N. Brent St, Ventura, CA, USA
| |
Collapse
|
22
|
Dang LN, Choi J, Lee E, Lim Y, Kwon JW, Park S. Exploiting mechanoregulation via FAK/YAP to overcome platinum resistance in ovarian cancer. Biomed Pharmacother 2024; 179:117335. [PMID: 39191020 DOI: 10.1016/j.biopha.2024.117335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer cells mechanically interact with the tumor microenvironment during cancer development. Mechano-reciprocity has emerged as a crucial factor affecting anti-cancer drug resistance during adjuvant therapy. Here, we investigated the focal adhesion kinase (FAK)/Yes-associated protein (YAP) signaling axis as a prospective strategy for circumventing cisplatin resistance in ovarian cancer (OC). The Cancer Genome Atlas (TCGA) data analysis revealed that FAK overexpression significantly correlated with unfavorable clinical outcomes in patients with ovarian cancer. AFM indentation experiments showed that cell elasticity depends on FAK activity. Notably, the combination of FAK inhibition and cisplatin treatment led to a 69 % reduction in the IC50 of cisplatin. This combined treatment also increased apoptosis compared to the individual treatments, along with the upregulation of the pro-apoptotic factor BAX and cleaved PARP. Suppressing FAK expression sequestered YAP in the cytosol, potentially reducing cellular proliferation and promoting apoptosis. Moreover, reduced FAK expression sensitized drug-resistant OC cells to cisplatin treatment owing to a decrease in nuclear tension, allowing the relocation of YAP to the cytosol. In a mouse model, the co-administration of an FAK inhibitor and cisplatin significantly suppressed tumor growth and increased apoptotic events and DNA fragmentation. Our findings suggest that drug resistance can be attributed to the perturbation of mechanosensing signaling pathways, which drive the mechanical reinforcement of cancer cells. OC cells can restore their sensitivity to cisplatin treatment by strategically reducing YAP localization in the nucleus through FAK downregulation.
Collapse
Affiliation(s)
- Loi Nguyen Dang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jinsol Choi
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Eunhee Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Yeonju Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Won Kwon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
23
|
Granero-Moya I, Venturini V, Belthier G, Groenen B, Molina-Jordán M, González-Martín M, Trepat X, van Rheenen J, Andreu I, Roca-Cusachs P. Nucleocytoplasmic transport senses mechanical forces independently of cell density in cell monolayers. J Cell Sci 2024; 137:jcs262363. [PMID: 39120491 PMCID: PMC11423809 DOI: 10.1242/jcs.262363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators, such as YAP (also known as YAP1). However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that NCT responds to mechanical forces but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks and to the inhibition of cell contractility. Furthermore, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP is sensitive to cell density, showing that the YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.
Collapse
Affiliation(s)
- Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Guillaume Belthier
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bart Groenen
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- Eindhoven University of Technology, Department of Biomedical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Miguel González-Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08014 Barcelona, Spain
| | - Jacco van Rheenen
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ion Andreu
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
24
|
Jafari A, Sadeghi A, Lafouti M. Mechanical properties of human kidney cells and their effects on the atomic force microscope beam vibrations. Microsc Res Tech 2024; 87:1704-1717. [PMID: 38501545 DOI: 10.1002/jemt.24543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
In the present investigation, the mechanical properties of normal and carcinomatous cells of kidney tissue (HEK-293, ACHN, respectively) were investigated using atomic force microscopy (AFM). Initially, the elastic modulus of ACHN cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. The MTT assay was employed to ascertain the most effective dosages for incubation periods of 12, 24, 48, 72, and 96 h, guided by the IC50 concentration for cell viability during chemotherapy treatment. Analysis at these specified time points revealed a progressive increase in the elastic modulus of ACHN cells when subjected to Cisplatin-based chemotherapy. Specifically, the elastic modulus increased by 1.847, 4.416, 6.035, 8.029, and 9.727 times in comparison to untreated cells at 12, 24, 48, 72, and 96 h, respectively. ACHN cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation periods. The plasma treatment increased the ACHN cell's elastic modulus. In the subsequent phase of the research, a combination of theoretical (finite element method [FEM]) and experimental methodologies was employed to investigate the resonant frequencies and magnitude of the frequency response function (FRF) concerning the movement of the AFM cantilever. This examination was conducted using ACHN cells as specimens, both before and after exposure to chemotherapy and plasma treatments. The results showed that higher sample elastic modulus increased the resonant frequency, indicating that treated cells had a higher resonant frequency than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement. HIGHLIGHTS: Using Cisplatin anti-cancer drug increases the elastic modulus of ACHN cell. Applying plasma treatment increases the elastic modulus of ACHN cell. For both of the chemo and plasma therapies, increasing the incubation time increases the influence of therapies oh the cell mechanics. Using finite element modeling (FEM) the real dynamic behavior of atomic force microscope cantilever by considering human kidney cells as the soft samples is possible.
Collapse
Affiliation(s)
- Ali Jafari
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Ali Sadeghi
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Mansoureh Lafouti
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| |
Collapse
|
25
|
Zhang X, Zhang X, Yong T, Gan L, Yang X. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine 2024; 105:105200. [PMID: 38876044 PMCID: PMC11225208 DOI: 10.1016/j.ebiom.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
26
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
27
|
Chen H, Wang S, Cao Y, Lei H. Molecular Force Sensors for Biological Application. Int J Mol Sci 2024; 25:6198. [PMID: 38892386 PMCID: PMC11173168 DOI: 10.3390/ijms25116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to μm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.
Collapse
Affiliation(s)
- Huiyan Chen
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Shouhan Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Zadeh NM, Sadeghi A, Lafouti M. Mechanical Properties of Mouse Lung Cells and Their Effects on the Atomic Force Microscope Beam Vibrations. Cell Biochem Biophys 2024; 82:1079-1099. [PMID: 38713404 DOI: 10.1007/s12013-024-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
In the present investigation, the mechanical properties of mouse normal and carcinomatous (LL/2) lung tissue cells were investigated using atomic force microscopy (AFM). The normal lung cells have been derived directly from C57BL mice. Initially, the elastic modulus of LL/2 cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. MTT evaluation was used to determine the optimal dosages for 24- and 48-h incubations based on the IC50 cell viability concentration during chemotherapy treatment. After 24 and 48 h, the results demonstrated that Cisplatin-based chemotherapy increases the elastic modulus of LL/2 cells by 1.599 and 2.308 times compared to untreated cells. LL/2 cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation. The plasma treatment decreased the LL/2 cell's elastic modulus, and the time duration of plasma treatment increased the reduction amount of elastic modulus. During the second section of the study, theoretical (finite element analysis [FEM]) and experimental techniques were used to examine the resonant frequencies and magnitude of the frequency response function (FRF) of the AFM cantilever's movements when applying normal and cancerous cells before and after chemo and plasma treatments as specimens. The results indicated that increasing the samples' elastic modulus raises the resonant frequency, so the resonant frequency of treated cells as a sample is greater than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement.
Collapse
Affiliation(s)
- Nazanin Maleki Zadeh
- Biomedical Department, Central Tehran Branch, Islamic Azad University, Damavand, Iran
| | - Ali Sadeghi
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran.
| | - Mansoureh Lafouti
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| |
Collapse
|
29
|
Lunova M, Jirsa M, Dejneka A, Sullivan GJ, Lunov O. Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100093. [PMID: 38585282 PMCID: PMC10992729 DOI: 10.1016/j.bbiosy.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| | | | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18200, Czech Republic
| |
Collapse
|
30
|
Fonseca P, Cui W, Struyf N, Tong L, Chaurasiya A, Casagrande F, Zhao H, Fernando D, Chen X, Tobin NP, Seashore-Ludlow B, Lundqvist A, Hartman J, Göndör A, Östling P, Holmgren L. A phenotypic screening approach to target p60AmotL2-expressing invasive cancer cells. J Exp Clin Cancer Res 2024; 43:107. [PMID: 38594748 PMCID: PMC11003180 DOI: 10.1186/s13046-024-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nona Struyf
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Le Tong
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Ayushi Chaurasiya
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Felipe Casagrande
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Honglei Zhao
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Dinura Fernando
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Department of Clinical Molecular Biology, University of Oslo, Akershus Universitetssykehus, 1478, Lørenskog, Oslo, Norway
| | - Päivi Östling
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden.
| |
Collapse
|
31
|
Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S, Velez-Bravo FD, Hong Y, Ostapiuk A, Lutsik P, Onishi I, Yamauchi S, Hiraguri Y, Ito G, Kinugasa Y, Ohashi K, Watanabe M, Okamoto R, Tejpar S, Yui S. Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines. iScience 2024; 27:109247. [PMID: 38439969 PMCID: PMC10910304 DOI: 10.1016/j.isci.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.
Collapse
Affiliation(s)
- Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Pavlo Lutsik
- Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iichiroh Onishi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
32
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
33
|
Wang J, Zhang B, Chen X, Xin Y, Li K, Zhang C, Tang K, Tan Y. Cell mechanics regulate the migration and invasion of hepatocellular carcinoma cells via JNK signaling. Acta Biomater 2024; 176:321-333. [PMID: 38272199 DOI: 10.1016/j.actbio.2024.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Hepatocellular carcinoma (HCC) cells, especially those with metastatic competence, show reduced stiffness compared to the non-malignant counterparts. However, it is still unclear whether and how the mechanics of HCC cells influence their migration and invasion. This study reports that HCC cells with enhanced motility show reduced mechanical stiffness and cytoskeleton, suggesting the inverse correlation between cellular stiffness and motility. Through pharmacologic and genetic approaches, inhibiting actomyosin activity reduces HCC cellular stiffness but promotes their migration and invasion, while activating it increases cell stiffness but impairs cell motility. Actomyosin regulates cell motility through the influence on cellular stiffness. Mechanistically, weakening/strengthening cells inhibits/promotes c-Jun N terminal kinase (JNK) phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion. Further, HCC cancer stem cells (CSCs) exhibit higher motility but lower stiffness than control cells. Increasing CSC stiffness weakens migration and invasion through the activation of JNK signaling. In conclusion, our findings unveil a new regulatory role of actomyosin-mediated cellular mechanics in tumor cell motility and present new evidence to support that tumor cell softening may be one driving force for HCC metastasis. STATEMENT OF SIGNIFICANCE: Tumor cells progressively become softened during metastasis and low cell stiffness is associated with high metastatic potential. However, it remains unclear whether tumor cell softening is a by-product of or a driving force for tumor progression. This work reports that the stiffness of hepatocellular carcinoma cells is linked to their migration and invasion. Importantly, tumor cell softening promotes migration and invasion, while cell stiffening impairs the mobility. Weakening/strengthening cells inhibits/promotes JNK phosphorylation, activation/inhibition of which rescues the effects of cell mechanics on their migration and invasion ability. Further, stiffening liver cancer stem cells attenuates their motility through activating JNK signaling. In summary, our study uncovers a previously unappreciated role of tumor cell mechanics in migration and invasion and implicates the therapeutic potential of cell mechanics in the mechanotargeting of metastasis.
Collapse
Affiliation(s)
- Junfan Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
34
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
35
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
36
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
37
|
Rahman Z, Bordoloi AD, Rouhana H, Tavasso M, van der Zon G, Garbin V, Ten Dijke P, Boukany PE. Interstitial flow potentiates TGF-β/Smad-signaling activity in lung cancer spheroids in a 3D-microfluidic chip. LAB ON A CHIP 2024; 24:422-433. [PMID: 38087979 PMCID: PMC10826459 DOI: 10.1039/d3lc00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-β (TGF-β). TGF-β promotes in part via a Smad-dependent signaling pathway the epithelial-mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-β) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-β induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-β induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-β. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME.
Collapse
Affiliation(s)
- Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Ankur Deep Bordoloi
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Haifa Rouhana
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Margherita Tavasso
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gerard van der Zon
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
38
|
Jobst M, Hossain M, Kiss E, Bergen J, Marko D, Del Favero G. Autophagy modulation changes mechano-chemical sensitivity of T24 bladder cancer cells. Biomed Pharmacother 2024; 170:115942. [PMID: 38042111 DOI: 10.1016/j.biopha.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Maliha Hossain
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Janice Bergen
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
40
|
Tervonen A, Korpela S, Nymark S, Hyttinen J, Ihalainen TO. The Effect of Substrate Stiffness on Elastic Force Transmission in the Epithelial Monolayers over Short Timescales. Cell Mol Bioeng 2023; 16:475-495. [PMID: 38099211 PMCID: PMC10716100 DOI: 10.1007/s12195-023-00772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/26/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The importance of mechanical forces and microenvironment in guiding cellular behavior has been widely accepted. Together with the extracellular matrix (ECM), epithelial cells form a highly connected mechanical system subjected to various mechanical cues from their environment, such as ECM stiffness, and tensile and compressive forces. ECM stiffness has been linked to many pathologies, including tumor formation. However, our understanding of the effect of ECM stiffness and its heterogeneities on rapid force transduction in multicellular systems has not been fully addressed. Methods We used experimental and computational methods. Epithelial cells were cultured on elastic hydrogels with fluorescent nanoparticles. Single cells were moved by a micromanipulator, and epithelium and substrate deformation were recorded. We developed a computational model to replicate our experiments and quantify the force distribution in the epithelium. Our model further enabled simulations with local stiffness gradients. Results We found that substrate stiffness affects the force transduction and the cellular deformation following an external force. Also, our results indicate that the heterogeneities, e.g., gradients, in the stiffness can substantially influence the strain redistribution in the cell monolayers. Furthermore, we found that the cells' apico-basal elasticity provides a level of mechanical isolation between the apical cell-cell junctions and the basal focal adhesions. Conclusions Our simulation results show that increased ECM stiffness, e.g., due to a tumor, can mechanically isolate cells and modulate rapid mechanical signaling between cells over distances. Furthermore, the developed model has the potential to facilitate future studies on the interactions between epithelial monolayers and elastic substrates. Supplementary Information The online version of this article (10.1007/s12195-023-00772-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aapo Tervonen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Department of Biological and Environmental Science, Faculty of Mathematics and Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland
| | - Sanna Korpela
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Soile Nymark
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
41
|
Zhang YZ, Li MZ, Wang GX, Wang DW. Bibliometric analysis of the global research status and trends of mechanotransduction in cancer. World J Clin Oncol 2023; 14:518-534. [PMID: 38059188 PMCID: PMC10696219 DOI: 10.5306/wjco.v14.i11.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The development of cancer is thought to involve the dynamic crosstalk between the tumor cells and the microenvironment they inhabit. Such crosstalk is thought to involve mechanotransduction, a process whereby the cells sense mechanical cues such as stiffness, and translate these into biochemical signals, which have an impact on the subsequent cellular activities. Bibliometric analysis is a statistical method that involves investigating different aspects (including authors' names and affiliations, article keywords, journals and citations) of large volumes of literature. Despite an increase in mechanotransduction-related research in recent years, there are currently no bibliometric studies that describe the global status and trends of mechanotransduction-related research in the cancer field. AIM To investigate the global research status and trends of mechanotransduction in cancer from a bibliometric viewpoint. METHODS Literature on mechanotransduction in cancer published from January 1, 1900 to December 31, 2022 was retrieved from the Web of Science Core Collection. Excel and GraphPad software carried out the statistical analysis of the relevant author, journal, organization, and country information. The co-authorship, keyword co-occurrence, and keyword burst analysis were visualized with VOSviewer and CiteSpace. RESULTS Of 597 publications from 745 institutions in 45 countries were published in 268 journals with 35510 citation times. With 270 articles, the United States is a well-established global leader in this field, and the University of California system, the most productive (n = 36) and influential institution (n = 4705 citations), is the most highly active in collaborating with other organizations. Cancers was the most frequent publisher with the highest H-index. The most productive researcher was Valerie M. Weaver, with 10 publications. The combined analysis of concurrent and burst keywords revealed that the future research hotspots of mechanotransduction in cancer were related to the plasma membrane, autophagy, piezo1/2, heterogeneity, cancer diagnosis, and post-transcriptional modifications. CONCLUSION Mechanotransduction-related cancer research remains a hot topic. The United States is in the leading position of global research on mechano-oncology after almost 30 years of investigations. Research group cooperations exist but remain largely domestic, lacking cross-national communications. The next big topic in this field is to explore how the plasma membrane and its localized mechanosensor can transduce mechanical force through post-transcriptional modifications and thereby participate in cellular activity regulations and cancer development.
Collapse
Affiliation(s)
- Yi-Zhan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan 250021, Shandong Province, China
| | - Meng-Zhu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan 250021, Shandong Province, China
| | - Guang-Xin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Da-Wei Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan 250021, Shandong Province, China
| |
Collapse
|
42
|
Liang P, Zhang J, Wu Y, Zheng S, Xu Z, Yang S, Wang J, Ma S, Xiao L, Hu T, Jiang W, Huang C, Xing Q, Kundu M, Wang B. An ULK1/2-PXN mechanotransduction pathway suppresses breast cancer cell migration. EMBO Rep 2023; 24:e56850. [PMID: 37846507 PMCID: PMC10626438 DOI: 10.15252/embr.202356850] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Yuchen Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Shanyuan Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Zhaopeng Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Shuo Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Jinfang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Suibin Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Li Xiao
- Department of OncologyZhongshan Hospital of Xiamen UniversityXiamenChina
| | - Tianhui Hu
- Cancer Research Center, School of MedicineXiamen UniversityXiamenChina
| | - Wenxue Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Chaoqun Huang
- Central LaboratoryThe Fifth Hospital of XiamenXiamenChina
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life SciencesHubei UniversityWuhanChina
| | - Mondira Kundu
- Department of Cell and Molecular BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
- Shenzhen Research Institute of Xiamen UniversityShenzhenChina
| |
Collapse
|
43
|
Liu Y, Yao X, Zhao Y, Fang D, Shi L, Yang L, Song G, Cai K, Li L, Deng Q, Li M, Luo Z. Mechanotransduction in response to ECM stiffening impairs cGAS immune signaling in tumor cells. Cell Rep 2023; 42:113213. [PMID: 37804510 DOI: 10.1016/j.celrep.2023.113213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Youbo Zhao
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Lei Shi
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing 400044, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China; 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
44
|
Gruber L, Jobst M, Kiss E, Karasová M, Englinger B, Berger W, Del Favero G. Intracellular remodeling associated with endoplasmic reticulum stress modifies biomechanical compliance of bladder cells. Cell Commun Signal 2023; 21:307. [PMID: 37904178 PMCID: PMC10614373 DOI: 10.1186/s12964-023-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 11/01/2023] Open
Abstract
Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.
Collapse
Affiliation(s)
- Livia Gruber
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna, 1090, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Martina Karasová
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
45
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
46
|
Hu P, Miller AE, Yeh CR, Bingham GC, Civelek M, Barker TH. SEMA7a primes integrin α5β1 engagement instructing fibroblast mechanotransduction, phenotype and transcriptional programming. Matrix Biol 2023; 121:179-193. [PMID: 37422024 DOI: 10.1016/j.matbio.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Integrins are cellular receptors that bind the extracellular matrix (ECM) and facilitate the transduction of biochemical and biophysical microenvironment cues into cellular responses. Upon engaging the ECM, integrin heterodimers must rapidly strengthen their binding with the ECM, resulting in the assembly of force-resistant and force-sensitive integrin associated complexes (IACs). The IACs constitute an essential apparatus for downstream signaling and fibroblast phenotypes. During wound healing, integrin signaling is essential for fibroblast motility, proliferation, ECM reorganization and, ultimately, restoration of tissue homeostasis. Semaphorin 7A (SEMA7a) has been previously implicated in post-injury inflammation and tissue fibrosis, yet little is known about SEMA7a's role in directing stromal cell, particularly fibroblast, behaviors. We demonstrate that SEMA7a regulates integrin signaling through cis-coupling with active integrin α5β1 on the plasma membrane, enabling rapid integrin adhesion strengthening to fibronectin (Fn) and normal downstream mechanotransduction. This molecular function of SEMA7a potently regulates fibroblast adhesive, cytoskeletal, and migratory phenotype with strong evidence of downstream alterations in chromatin structure resulting in global transcriptomic reprogramming such that loss of SEMA7a expression is sufficient to impair the normal migratory and ECM assembly phenotype of fibroblasts resulting in significantly delayed tissue repair in vivo.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Chiuan-Ren Yeh
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Grace C Bingham
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Mete Civelek
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
47
|
Kheirkhah N, Kornecki A, Czarnota GJ, Samani A, Sadeghi-Naini A. Enhanced full-inversion-based ultrasound elastography for evaluating tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Phys Med 2023; 112:102619. [PMID: 37343438 DOI: 10.1016/j.ejmp.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
PURPOSE An enhanced ultrasound elastography technique is proposed for early assessment of locally advanced breast cancer (LABC) response to neoadjuvant chemotherapy (NAC). METHODS The proposed elastography technique inputs ultrasound radiofrequency data obtained through tissue quasi-static stimulation and adapts a strain refinement algorithm formulated based on fundamental principles of continuum mechanics, coupled with an iterative inverse finite element method to reconstruct the breast Young's modulus (E) images. The technique was explored for therapy response assessment using data acquired from 25 LABC patients before and at weeks 1, 2, and 4 after the NAC initiation (100 scans). The E ratio of tumor to the surrounding tissue was calculated at different scans and compared to the baseline for each patient. Patients' response to NAC was determined many months later using standard clinical and histopathological criteria. RESULTS Reconstructed E ratio changes obtained as early as one week after the NAC onset demonstrate very good separation between the two cohorts of responders and non-responders to NAC. Statistically significant differences were observed in the E ratio changes between the two patient cohorts at weeks 1 to 4 after treatment (p-value < 0.001; statistical power greater than 97%). A significant difference in axial strain ratio changes was observed only at week 4 (p-value = 0.01; statistical power = 76%). No significant difference was observed in tumor size changes at weeks 1, 2 or 4. CONCLUSION The proposed elastography technique demonstrates a high potential for chemotherapy response monitoring in LABC patients and superior performance compared to strain imaging.
Collapse
Affiliation(s)
- Niusha Kheirkhah
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Anat Kornecki
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Abbas Samani
- School of Biomedical Engineering, Western University, London, ON, Canada; Departments of Medical Biophysics, Western University, London, ON, Canada; Department of Electrical and Computer Engineering, Western University, London, ON, Canada; Imaging Research, Robarts Research Institute, Western University, London, ON, Canada
| | - Ali Sadeghi-Naini
- School of Biomedical Engineering, Western University, London, ON, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada.
| |
Collapse
|
48
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
49
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
50
|
Micalet A, Pape J, Bakkalci D, Javanmardi Y, Hall C, Cheema U, Moeendarbary E. Evaluating the Impact of a Biomimetic Mechanical Environment on Cancer Invasion and Matrix Remodeling. Adv Healthc Mater 2023; 12:e2201749. [PMID: 36333907 PMCID: PMC11468596 DOI: 10.1002/adhm.202201749] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Indexed: 10/13/2024]
Abstract
The stiffness of tumors and their host tissues is much higher than most hydrogels, which are conventionally used to study in vitro cancer progression. The tumoroid assay is an engineered 3D in vitro tumor model that allows investigation of cancer cell invasion in an environment that is biomimetic in terms of extracellular matrix (ECM) composition and stiffness. Using this model, the change in matrix stiffness by epithelial colorectal cancer cells is systematically characterized by atomic force microscopy indentation tests. Less invasive epithelial cancer cells stiffen the tumor microenvironment while highly aggressive epithelial cancer cells show significant softening of the tumor microenvironment. Changes in stiffness are attributed to both cell-generated active forces as well as ECM degradation and remodeling. The degradation is in part attributed to the enzymatic activity of matrix metalloproteinases (MMPs) as demonstrated by the significant expression of MMP-2 and MMP-9 at both gene and protein levels. Targeting MMP activity through broad-spectrum drug inhibition (BB-94) reverses the changes in stiffness and also decreases cancer cell invasion. These results promote the idea of using mechano-based cancer therapies such as MMP inhibition.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Judith Pape
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Chloe Hall
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and DiseaseDepartment of Targeted InterventionDivision of Surgery and Interventional ScienceUniversity College LondonCharles Bell House43–45 Foley StreetLondonW1W 7TSUK
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|