1
|
O'Leary KM, Slezak T, Kossiakoff AA. Conformation-specific synthetic intrabodies modulate mTOR signaling with subcellular spatial resolution. Proc Natl Acad Sci U S A 2025; 122:e2424679122. [PMID: 40489625 DOI: 10.1073/pnas.2424679122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/02/2025] [Indexed: 06/11/2025] Open
Abstract
Subcellular compartmentalization is integral to the spatial regulation of mechanistic target of rapamycin (mTOR) signaling. However, the biological outputs associated with location-specific mTOR signaling events are poorly understood and challenging to decouple. Here, we engineered synthetic intracellular antibodies (intrabodies) that are capable of modulating mTOR signaling with genetically programmable spatial resolution. Epitope-directed phage display was exploited to generate high affinity synthetic antibody fragments (Fabs) against the FKBP12-Rapamycin binding site of mTOR (mTORFRB). We determined high-resolution crystal structures of two unique Fabs that discriminate distinct conformational states of mTORFRB through recognition of its substrate recruitment interface. By leveraging these conformation-specific binders as intracellular probes, we uncovered the structural basis for an allosteric mechanism governing mTOR complex 1 (mTORC1) stability mediated by subtle structural adjustments within mTORFRB. Furthermore, our results demonstrated that synthetic binders emulate natural substrates by employing divergent yet complementary hydrophobic residues at defined positions, underscoring the broad molecular recognition capability of mTORFRB. Intracellular signaling studies showed differential time-dependent inhibition of S6 kinase 1 and Akt phosphorylation by genetically encoded intrabodies, thus supporting a mechanism of inhibition analogous to the natural product rapamycin. Finally, we implemented a feasible approach to selectively modulate mTOR signaling in the nucleus through spatially programmed intrabody expression. These findings establish intrabodies as versatile tools for dissecting the conformational regulation of mTORC1 and should be useful to explore how location-specific mTOR signaling influences disease progression.
Collapse
Affiliation(s)
- Kelly M O'Leary
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Tomasz Slezak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Réthoré L, Guihot A, Grimaud L, Proux C, Barré B, Guillonneau F, Guette C, Boissard A, Henry C, Cayon J, Perrot R, Henrion D, Legros C, Legendre C. A Novel Function of Na V Channel β3 Subunit in Endothelial Cell Alignment Through Autophagy Modulation. FASEB J 2025; 39:e70663. [PMID: 40445729 PMCID: PMC12124425 DOI: 10.1096/fj.202401558rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
Endothelial cells (EC) play a pivotal role in vascular homeostasis. By sensing shear stress generated by blood flow, EC endorse vasculoprotection through mechanotransduction signaling pathways. Various ion channels are involved in mechanosignaling, and here, we investigated the endothelial voltage-gated Na+ channels (NaV channels), since their mechanosensitivity has been previously demonstrated in cardiomyocytes. First, we showed that EC from aorta (TeloHAEC) behave as EC from umbilical vein (HUVEC) under laminar shear stress (LSS). For both EC models, cell alignment and elongation occurred with the activation of the KLF2/KLF4 atheroprotective signaling pathways. We found that LSS decreased the expression of SCN5A, encoding NaV1.5, while LSS increased that of SCN3B, encoding NaVβ3. We demonstrated that the KLF4 transcription factor is involved in SCN3B expression under both static and LSS conditions. Interestingly, SCN3B silencing impaired EC alignment induced by LSS. The characterization of NaVβ3 interactome by coimmunoprecipitation and proteomic analysis revealed that mTOR, implicated in autophagy, binds to NaVβ3. This result was evidenced by the colocalization between NaVβ3 and mTOR inside cells. Moreover, we showed that SCN3B silencing led to the decrease in LC3B expression and the number of LC3B positive autophagosomes. Furthermore, we showed that NaVβ3 is retained within the cell and colocalized with LAMP1 and LC3B. Finally, we found that resveratrol, a stimulating-autophagy and vasculoprotective molecule, induced KLF4 together with NaVβ3 expression. Altogether, our findings highlight a novel role of NaVβ3 in endothelial function and cell alignment as an actor in shear stress vasculoprotective intracellular pathway through autophagy modulation.
Collapse
Affiliation(s)
- Léa Réthoré
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Anne‐Laure Guihot
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Linda Grimaud
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Coralyne Proux
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Benjamin Barré
- Univ AngersAngersFrance
- Institut de Cancérologie de l'Ouest (ICO)AngersFrance
- Prot'ICO (ICO Proteomic Core Facility)AngersFrance
| | - François Guillonneau
- Institut de Cancérologie de l'Ouest (ICO)AngersFrance
- Prot'ICO (ICO Proteomic Core Facility)AngersFrance
- INSERM, CNRS, CRCI2NA, Nantes Université, Univ AngersAngersFrance
| | - Catherine Guette
- Institut de Cancérologie de l'Ouest (ICO)AngersFrance
- Prot'ICO (ICO Proteomic Core Facility)AngersFrance
- INSERM, CNRS, CRCI2NA, Nantes Université, Univ AngersAngersFrance
| | - Alice Boissard
- Institut de Cancérologie de l'Ouest (ICO)AngersFrance
- Prot'ICO (ICO Proteomic Core Facility)AngersFrance
| | - Cécile Henry
- Institut de Cancérologie de l'Ouest (ICO)AngersFrance
- Prot'ICO (ICO Proteomic Core Facility)AngersFrance
| | - Jérôme Cayon
- SFR ICAT, PACeM (Plateforme d'Analyse Cellulaire et Moléculaire), Univ AngersAngersFrance
| | - Rodolphe Perrot
- SFR ICAT, SCIAM (Service Commun d'Imageries et d'Analyses Microscopiques), Univ AngersAngersFrance
| | - Daniel Henrion
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| | - Claire Legendre
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Univ AngersAngersFrance
| |
Collapse
|
3
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 PMCID: PMC11876448 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Gong GQ, Anandapadamanaban M, Islam MS, Hay IM, Bourguet M, Špokaitė S, Dessus AN, Ohashi Y, Perisic O, Williams RL. Making PI3K superfamily enzymes run faster. Adv Biol Regul 2025; 95:101060. [PMID: 39592347 DOI: 10.1016/j.jbior.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The phosphoinositide 3-kinase (PI3K) superfamily includes lipid kinases (PI3Ks and type III PI4Ks) and a group of PI3K-like Ser/Thr protein kinases (PIKKs: mTOR, ATM, ATR, DNA-PKcs, SMG1 and TRRAP) that have a conserved C-terminal kinase domain. A common feature of the superfamily is that they have very low basal activity that can be greatly increased by a range of regulatory factors. Activators reconfigure the active site, causing a subtle realignment of the N-lobe of the kinase domain relative to the C-lobe. This realignment brings the ATP-binding loop in the N-lobe closer to the catalytic residues in the C-lobe. In addition, a conserved C-lobe feature known as the PIKK regulatory domain (PRD) also can change conformation, and PI3K activators can alter an analogous PRD-like region. Recent structures have shown that diverse activating influences can trigger these conformational changes, and a helical region clamping onto the kinase domain transmits regulatory interactions to bring about the active site realignment for more efficient catalysis. A recent report of a small-molecule activator of PI3Kα for application in nerve regeneration suggests that flexibility of these regulatory elements might be exploited to develop specific activators of all PI3K superfamily members. These activators could have roles in wound healing, anti-stroke therapy and treating neurodegeneration. We review common structural features of the PI3K superfamily that may make them amenable to activation.
Collapse
Affiliation(s)
- Grace Q Gong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; University College London Cancer Institute, University College London, London, UK
| | | | - Md Saiful Islam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Maxime Bourguet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antoine N Dessus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
5
|
Sahan AZ, Metha S, Zhang J. Visualization of Subcellular mTOR Complex 1 Activity with a FRET-Based Sensor (TORCAR). Methods Mol Biol 2025; 2882:139-162. [PMID: 39992508 DOI: 10.1007/978-1-0716-4284-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing complex that integrates inputs from several pathways to promote cell growth and proliferation. mTORC1 localizes to many cellular compartments, including the nucleus, lysosomes, and plasma membrane. However, little is known about the spatial regulation of mTORC1 and the specific functions of mTORC1 at these locations. To address these questions, we previously developed a Förster resonance energy transfer (FRET)-based mTORC1 activity reporter (TORCAR) to visualize the dynamic changes in mTORC1 activity within live cells. Here, we describe a detailed protocol for using subcellularly targeted TORCAR constructs to investigate subcellular mTORC1 activities via live-cell fluorescence microscopy.
Collapse
Affiliation(s)
- Ayse Z Sahan
- Department of Pharmacology, University of California, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, USA
| | - Sohum Metha
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA.
- Department of Bioengineering, University of California, San Diego, CA, USA.
| |
Collapse
|
6
|
Koothradan S, Nayeem S, Elyas KK. PEGylated iron oxide-gold core-shell nanoparticles for tumor-targeted delivery of Rapamycin. 3 Biotech 2025; 15:23. [PMID: 39735611 PMCID: PMC11669639 DOI: 10.1007/s13205-024-04189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/07/2024] [Indexed: 12/31/2024] Open
Abstract
Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated. SEM, XRD, and FTIR determined the smooth spherical morphology, and compositional structure, and confirmed the conjugation of Rapamycin onto the NPs. The in vitro drug release study showed a controlled release of the drug over time. R-Au-IONPs showed significant cytotoxicity in MCF 7 cells. Anti-proliferative assays such as trypan blue dye exclusion assay, microscopy, Fluorescent staining, and clonogenic assays were performed. NH staining, Rhodamine 123 staining, PS externalization, and the cleavage of PARP protein by western immunoblot assays confirmed the induction of apoptosis. The mechanism of R-Au-IONP-induced cell death was analyzed by flow cytometry. Our in-vitro study, on the impact of R-Au-IONPs on cell viability in the human breast adenocarcinoma cell line (MCF-7), confirms the efficacy of drug delivery using the nanoparticle system. Further results implied the induction of apoptosis. This drug delivery system using Rapamycin could be a potential candidate in the treatment of breast cancer.
Collapse
Affiliation(s)
- Suhana Koothradan
- Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India
| | - Safia Nayeem
- Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India
| | - K. K. Elyas
- Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India
| |
Collapse
|
7
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Millar MW, Najar RA, Slavin SA, Shadab M, Tahir I, Mahamed Z, Lin X, Abe JI, Wright TW, Dean DA, Fazal F, Rahman A. MTOR maintains endothelial cell integrity to limit lung vascular injury. J Biol Chem 2024; 300:107952. [PMID: 39510184 PMCID: PMC11664419 DOI: 10.1016/j.jbc.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
The functional and structural integrity of the endothelium is essential for vascular homeostasis. Loss of barrier function in quiescent and migratory capacity in proliferative endothelium causes exuberant vascular permeability, a cardinal feature of many inflammatory diseases including acute lung injury (ALI). However, the signals governing these fundamental endothelial cell (EC) functions are poorly understood. Here, we identify mechanistic target of rapamycin (MTOR) as an important link in preserving the barrier integrity and migratory/angiogenic responses in EC and preventing lung vascular injury and mortality in mice. Knockdown of MTOR in EC altered cell morphology, impaired proliferation and migration, and increased endocytosis of cell surface vascular endothelial (VE)-cadherin leading to disrupted barrier function. MTOR-depleted EC also exhibited reduced VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR2) levels mediated in part by autophagy. Similarly, lungs from mice with EC-specific MTOR deficiency displayed spontaneous vascular leakage marked by decreased VE-cadherin and VEGFR2 levels, indicating that MTOR deficiency in EC is sufficient to disrupt lung vascular integrity and may be a key pathogenic mechanism of ALI. Indeed, MTOR as well as VEGFR2 and VE-cadherin levels were markedly reduced in injured mouse lungs or EC. Importantly, EC-targeted gene transfer of MTOR complementary DNA, either prophylactically or therapeutically, mitigated inflammatory lung injury, and improved lung function and survival in mouse models of ALI. These findings reveal an essential role of MTOR in maintaining EC function, identify loss of endothelial MTOR as a key mechanism of lung vascular injury, and show the therapeutic potential of EC-targeted MTOR expression in combating ALI and mortality in mice.
Collapse
Affiliation(s)
- Michelle Warren Millar
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rauf A Najar
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Spencer A Slavin
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mohammad Shadab
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Imran Tahir
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Zahra Mahamed
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xin Lin
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Terry W Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - David A Dean
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Fabeha Fazal
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Arshad Rahman
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
9
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
10
|
Zwakenberg S, Westland D, van Es RM, Rehmann H, Anink J, Ciapaite J, Bosma M, Stelloo E, Liv N, Sobrevals Alcaraz P, Verhoeven-Duif NM, Jans JJM, Vos HR, Aronica E, Zwartkruis FJT. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Mol Cell 2024; 84:4368-4384.e6. [PMID: 39486419 DOI: 10.1016/j.molcel.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
Collapse
Affiliation(s)
- Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Denise Westland
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Holger Rehmann
- Department of Energy and Life Science, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jolita Ciapaite
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Ellen Stelloo
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Wang Y, Li C, Ouyang Y, Xie X. Nuclear mTORC1 Live-Cell Sensor nTORSEL Reports Differential Nuclear mTORC1 Activity in Cell Lines. Int J Mol Sci 2024; 25:12117. [PMID: 39596185 PMCID: PMC11594266 DOI: 10.3390/ijms252212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is activated on the surface of lysosomes and phosphorylates substrates at various subcellular locations, including the lysosome, cytosol, and nucleus. However, the signaling and biological functions of nuclear mTORC1 (nmTORC1) are not well understood, primarily due to limited tools for monitoring mTORC1 activity in the nucleus. In this study, we developed a genetically encoded nmTORC1 sensor, termed nTORSEL, based on the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4EBP1) by mTORC1 within the nucleus. nTORSEL, like its predecessor TORSEL, exhibits a fluorescent punctate pattern in the nucleus through multivalent protein-protein interactions between oligomerized 4EBP1 and eIF4E when nmTORC1 activity is low. We validated nTORSEL using biochemical analyses and imaging techniques across representative cell lines with varying levels of nmTORC1 activity. Notably, nTORSEL specifically detects physiological, pharmacological, and genetic inhibition of nmTORC1 in mouse embryonic fibroblast (MEF) cells but not in HEK293T cells. Therefore, nTORSEL is an effective tool for investigating nuclear mTORC1 signaling in cell lines.
Collapse
Affiliation(s)
| | | | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Alesi N, Asrani K, Lotan TL, Henske EP. The Spectrum of Renal "TFEopathies": Flipping the mTOR Switch in Renal Tumorigenesis. Physiology (Bethesda) 2024; 39:0. [PMID: 39012319 DOI: 10.1152/physiol.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Collapse
Affiliation(s)
- Nicola Alesi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol 2024; 26:1918-1933. [PMID: 39385049 PMCID: PMC11567901 DOI: 10.1038/s41556-024-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Julian Nüchel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiyoung Pan
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Yoav Elkis
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Filippo Artoni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | - Sabine Wilhelm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School of Ageing Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell BA, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis. Circ Res 2024; 135:856-872. [PMID: 39224974 PMCID: PMC11424066 DOI: 10.1161/circresaha.124.325023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. METHODS Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice. RESULTS In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo. CONCLUSIONS Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ling Xie
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Feng Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Xian Chen
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| |
Collapse
|
15
|
Elkholi IE, Robert A, Malouf C, Kuasne H, Drapela S, Macleod G, Hébert S, Pacis A, Calderon V, Kleinman CL, Gomes AP, Aguirre-Ghiso JA, Park M, Angers S, Côté JF. Targeting the dependence on PIK3C3-mTORC1 signaling in dormancy-prone breast cancer cells blunts metastasis initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551681. [PMID: 39211165 PMCID: PMC11360912 DOI: 10.1101/2023.08.02.551681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Halting breast cancer metastatic relapses following primary tumor removal and the clinical dormant phase, remains challenging, due to a lack of specific vulnerabilities to target during dormancy. To address this, we conducted genome-wide CRISPR screens on two breast cancer cell lines with distinct dormancy properties: 4T1 (short-term dormancy) and 4T07 (prolonged dormancy). We discovered that loss of class-III PI3K, Pik3c3, revealed a unique vulnerability in 4T07 cells. Surprisingly, dormancy-prone 4T07 cells exhibited higher mTORC1 activity than 4T1 cells, due to lysosome-dependent signaling occurring at the cell periphery. Pharmacological inhibition of Pik3c3 counteracted this phenotype in 4T07 cells, and selectively reduced metastasis burden only in the 4T07 dormancy-prone model. This mechanism was also detected in human breast cancer cell lines in addition to a breast cancer patient-derived xenograft supporting that it may be relevant in humans. Our findings suggest dormant cancer cell-initiated metastasis may be prevented in patients carrying tumor cells that display PIK3C3-peripheral lysosomal signaling to mTORC1. Statement of Significance We reveal that dormancy-prone breast cancer cells depend on the class III PI3K to mediate a constant peripheral lysosomal positioning and mTORC1 hyperactivity. Targeting this pathway might blunt breast cancer metastasis.
Collapse
|
16
|
Mei L, Sun H, Yan Y, Ji H, Su Q, Chang L, Wang L. mTOR Signaling: Roles in Hepatitis B Virus Infection and Hepatocellular Carcinoma. Int J Biol Sci 2024; 20:4178-4189. [PMID: 39247820 PMCID: PMC11379076 DOI: 10.7150/ijbs.95894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Currently, chronic hepatitis B virus infection is still one of the most serious public health problems in the world. Though current strategies are effective in controlling infection and slowing down the disease process, it remains a big challenge to achieve a functional cure for chronic hepatitis B in a majority of patients due to the inability to clear the cccDNA pool. The mammalian target of rapamycin (mTOR) integrates nutrition, energy, growth factors, and other extracellular signals, participating in gene transcription, protein translation, ribosome synthesis, and other biological processes. Additionally, mTOR plays an extremely important role in cell growth, apoptosis, autophagy, and metabolism. More and more evidence show that HBV infection can activate the mTOR pathway, suggesting that HBV uses or hijacks the mTOR pathway to facilitate its own replication. Therefore, mTOR signaling pathway may be a key target for controlling HBV infection. However, the role of the central cytokine mTOR in the pathogenesis of HBV infection has not yet been systematically addressed. Notably, mTOR is commonly activated in hepatocellular carcinoma, which can progress from chronic hepatitis B. This review systematically summarizes the role of mTOR in the life cycle of HBV and its impact on the clinical progression of HBV infection.
Collapse
Affiliation(s)
- Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| |
Collapse
|
17
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
18
|
Chen Q, Zhou S, Qu M, Yang Y, Chen Q, Meng X, Fan H. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:332-347. [PMID: 38700955 DOI: 10.1111/tpj.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yun Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
20
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
21
|
Hannaian SJ, Lov J, Cheng-Boivin Z, Abou Sawan S, Hodson N, Gentil BJ, Morais JA, Churchward-Venne TA. Acute effects of a ketone monoester, whey protein, or their coingestion on mTOR trafficking and protein-protein colocalization in human skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C1769-C1775. [PMID: 38682238 PMCID: PMC11371313 DOI: 10.1152/ajpcell.00207.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Zacharie Cheng-Boivin
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | | | - Nathan Hodson
- Department of Sport and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Benoit J Gentil
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, Division of Geriatric Medicine, McGill University, Montreal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, Division of Geriatric Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Xie PL, Zheng MY, Han R, Chen WX, Mao JH. Pharmacological mTOR inhibitors in ameliorating Alzheimer's disease: current review and perspectives. Front Pharmacol 2024; 15:1366061. [PMID: 38873415 PMCID: PMC11169825 DOI: 10.3389/fphar.2024.1366061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Traditionally, pharmacological mammalian/mechanistic targets of rapamycin (mTOR) kinase inhibitors have been used during transplantation and tumor treatment. Emerging pre-clinical evidence from the last decade displayed the surprising effectiveness of mTOR inhibitors in ameliorating Alzheimer's Disease (AD), a common neurodegenerative disorder characterized by progressive cognitive function decline and memory loss. Research shows mTOR activation as an early event in AD development, and inhibiting mTOR may promote the resolution of many hallmarks of Alzheimer's. Aberrant protein aggregation, including amyloid-beta (Aβ) deposition and tau filaments, and cognitive defects, are reversed upon mTOR inhibition. A closer inspection of the evidence highlighted a temporal dependence and a hallmark-specific nature of such beneficial effects. Time of administration relative to disease progression, and a maintenance of a functional lysosomal system, could modulate its effectiveness. Moreover, mTOR inhibition also exerts distinct effects between neurons, glial cells, and endothelial cells. Different pharmacological properties of the inhibitors also produce different effects based on different blood-brain barrier (BBB) entry capacities and mTOR inhibition sites. This questions the effectiveness of mTOR inhibition as a viable AD intervention strategy. In this review, we first summarize the different mTOR inhibitors available and their characteristics. We then comprehensively update and discuss the pre-clinical results of mTOR inhibition to resolve many of the hallmarks of AD. Key pathologies discussed include Aβ deposition, tauopathies, aberrant neuroinflammation, and neurovascular system breakdowns.
Collapse
Affiliation(s)
- Pei-Lun Xie
- University College London, London, United Kingdom
| | | | - Ran Han
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Xin Chen
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Hua Mao
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
24
|
Caligaris M, De Virgilio C. Proxies introduce bias in decoding TORC1 activity. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001170. [PMID: 38605723 PMCID: PMC11007552 DOI: 10.17912/micropub.biology.001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
The eukaryotic TORC1 kinase integrates and links nutritional, energy, and hormonal signals to cell growth and homeostasis, and its deregulation is associated with human diseases including neurodegeneration, cancer, and metabolic syndrome. Quantification of TORC1 activities in various genetic settings and defined physiological conditions generally relies on the assessment of the phosphorylation level of residues in TORC1 targets. Here we show that two commonly used TORC1 effectors in yeast, namely Sch9 and Rps6, exhibit distinct phosphorylation patterns in response to rapamycin treatment or changes in nitrogen availability, indicating that the choice of TORC1 proxies introduces a bias in decoding TORC1 activity.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Fribourg, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Fribourg, Switzerland
| |
Collapse
|
25
|
Chang I, Loo YL, Patel J, Nguyen JT, Kim JK, Krebsbach PH. Targeting of lysosomal-bound protein mEAK-7 for cancer therapy. Front Oncol 2024; 14:1375498. [PMID: 38532930 PMCID: PMC10963491 DOI: 10.3389/fonc.2024.1375498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an evolutionarily conserved lysosomal membrane protein that is highly expressed in several cancer cells. Multiple recent studies have identified mEAK-7 as a positive activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an alternative mTOR complex, implying that mEAK-7 plays an important role in the promotion of cancer proliferation and migration. In addition, structural analyses investigating interactions between mEAK-7 and V-ATPase, a protein complex responsible for regulating pH homeostasis in cellular compartments, have suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1 activation. The C-terminal α-helix of mEAK-7 binds to the D and B subunits of the V-ATPase, creating a pincer-like grip around its B subunit. This binding undergoes partial disruption during ATP hydrolysis, potentially enabling other proteins such as mTOR to bind to the α-helix of mEAK-7. mEAK-7 also promotes chemoresistance and radiation resistance by sustaining DNA damage-mediated mTOR signaling through interactions with DNA-PKcs (DNA-dependent protein kinase catalytic subunit). Taken together, these findings indicate that mEAK-7 may be a promising therapeutic target against tumors. However, the precise molecular mechanisms and signal transduction pathways of mEAK-7 in cancer remain largely unknown, motivating the need for further investigation. Here, we summarize the current known roles of mEAK-7 in normal physiology and cancer development by reviewing the latest studies and discuss potential future developments of mEAK-7 in targeted cancer therapy.
Collapse
Affiliation(s)
- Insoon Chang
- Section of Endodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yi-Ling Loo
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jay Patel
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joe Truong Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Oral Immunobiology Unit, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Jin Koo Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Krebsbach
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Yan X, Kuang BH, Ma S, Wang R, Lin J, Zeng YX, Xie X, Feng L. NOP14-mediated ribosome biogenesis is required for mTORC2 activation and predicts rapamycin sensitivity. J Biol Chem 2024; 300:105681. [PMID: 38272224 PMCID: PMC10891341 DOI: 10.1016/j.jbc.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bo-Hua Kuang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengsuo Ma
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruihua Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai, China
| | - Yi-Xin Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
27
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
28
|
Chen Y, Han L, Dufour CR, Alfonso A, Giguère V. Canonical and Nuclear mTOR Specify Distinct Transcriptional Programs in Androgen-Dependent Prostate Cancer Cells. Mol Cancer Res 2024; 22:113-124. [PMID: 37889103 DOI: 10.1158/1541-7786.mcr-23-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
mTOR is a serine/threonine kinase that controls prostate cancer cell growth in part by regulating gene programs associated with metabolic and cell proliferation pathways. mTOR-mediated control of gene expression can be achieved via phosphorylation of transcription factors, leading to changes in their cellular localization and activities. mTOR also directly associates with chromatin in complex with transcriptional regulators, including the androgen receptor (AR). Nuclear mTOR (nmTOR) has been previously shown to act as a transcriptional integrator of the androgen signaling pathway in association with the chromatin remodeling machinery, AR, and FOXA1. However, the contribution of cytoplasmic mTOR (cmTOR) and nmTOR and the role played by FOXA1 in this process remains to be explored. Herein, we engineered cells expressing mTOR tagged with nuclear localization and export signals dictating mTOR localization. Transcriptome profiling in AR-positive prostate cancer cells revealed that nmTOR generally downregulates a subset of the androgen response pathway independently of its kinase activity, while cmTOR upregulates a cell cycle-related gene signature in a kinase-dependent manner. Biochemical and genome-wide transcriptomic analyses demonstrate that nmTOR functionally interacts with AR and FOXA1. Ablation of FOXA1 reprograms the nmTOR cistrome and transcriptome of androgen responsive prostate cancer cells. This works highlights a transcriptional regulatory pathway in which direct interactions between nmTOR, AR and FOXA1 dictate a combinatorial role for these factors in the control of specific gene programs in prostate cancer cells. IMPLICATIONS The finding that canonical and nuclear mTOR signaling pathways control distinct gene programs opens therapeutic opportunities to modulate mTOR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Yonghong Chen
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lingwei Han
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | | | - Anthony Alfonso
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| |
Collapse
|
29
|
Derosa S, Misztak P, Mingardi J, Mazzini G, Müller HK, Musazzi L. Changes in neurotrophic signaling pathways in brain areas of the chronic mild stress rat model of depression as a signature of ketamine fast antidepressant response/non-response. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110871. [PMID: 37793481 DOI: 10.1016/j.pnpbp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Major Depressive Disorder (MDD) is a highly debilitating disorder characterized by a persistent feeling of sadness and anhedonia. Traditional antidepressants have a delayed onset of action and lack of efficacy in up to one third of patients, leading to treatment resistant depression (TRD). Recent years have witnessed a revolutionary treatment of TRD with the introduction of the fast-acting antidepressant ketamine. However, ketamine's mechanisms of action are still poorly understood. Here, we used the chronic mild stress animal model of depression on male rats to investigate the involvement of neurotrophic signaling pathways in stress vulnerability/resilience and fast antidepressant response/non-response to acute subanesthetic ketamine. We performed our analysis on both the hippocampus and the prefrontal cortex, two brain areas implicated in stress-related disorders, considering different subcellular fractions. We measured the activation by phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), glycogen synthase kinase-3 beta (GSK3 β), mammalian target of rapamycin (mTOR), and eukaryotic elongation factor 2 (eEF2), key effectors in the regulation of neuroplasticity and glutamatergic transmission which were previously associated to ketamine's fast antidepressant effect. We showed here for the first time that both stress and ketamine induced brain area and subcellular fraction specific changes in these pathways. Our study represents the first attempt to identify molecular mechanisms underlying the response/non-response to ketamine in an animal model of depression. This approach could give a crucial contribution to the study of etiopathogenetic mechanisms as well as to the identification of novel targets for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Sara Derosa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Mazzini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
30
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
31
|
Moellmann J, Krueger K, Wong DWL, Klinkhammer BM, Buhl EM, Dehairs J, Swinnen JV, Noels H, Jankowski J, Lebherz C, Boor P, Marx N, Lehrke M. 2,8-Dihydroxyadenine-induced nephropathy causes hexosylceramide accumulation with increased mTOR signaling, reduced levels of protective SirT3 expression and impaired renal mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166825. [PMID: 37536502 DOI: 10.1016/j.bbadis.2023.166825] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
AIM Chronic kidney disease (CKD) is accompanied by increased cardiovascular risk and heart failure (HF). In rodents, 2,8-dihydroxyadenine (DHA)-induced nephropathy is a frequently used CKD model. Cardiac and kidney tubular cells share high energy demand to guarantee constant contractive force of the heart or reabsorption/secretion of primary filtrated molecules and waste products by the kidney. Here we analyze time-dependent mechanisms of kidney damage and cardiac consequences under consideration of energetic pathways with the focus on mitochondrial function and lipid metabolism in mice. METHODS AND RESULTS CKD was induced by alternating dietary adenine supplementation (0.2 % or 0.05 % of adenine) in C57BL/6J mice for 9 weeks. Progressive kidney damage led to reduced creatinine clearance, kidney fibrosis and renal inflammation after 3, 6, and 9 weeks. No difference in cardiac function, mitochondrial respiration nor left ventricular fibrosis was observed at any time point. Investigating mechanisms of renal damage, protective SirT3 was decreased in CKD, which contrasted an increase in protein kinase B (AKT) expression, mechanistic target of rapamycin (mTOR) downstream signaling, induction of oxidative and endoplasmic reticulum (ER) stress. This occurred together with impaired renal mitochondrial function and accumulation of hexosylceramides (HexCer) as an established mediator of inflammation and mitochondrial dysfunction in the kidney. CONCLUSIONS 2,8-DHA-induced CKD results in renal activation of the mTOR downstream signaling, endoplasmic reticulum stress, tubular injury, fibrosis, inflammation, oxidative stress and impaired kidney mitochondrial function in conjunction with renal hexosylceramide accumulation in C57BL/6J mice.
Collapse
Affiliation(s)
- Julia Moellmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Katja Krueger
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dickson W L Wong
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Barbara M Klinkhammer
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
32
|
Dupont N, Claude-Taupin A, Codogno P. A historical perspective of macroautophagy regulation by biochemical and biomechanical stimuli. FEBS Lett 2024; 598:17-31. [PMID: 37777819 DOI: 10.1002/1873-3468.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.
Collapse
Affiliation(s)
- Nicolas Dupont
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Aurore Claude-Taupin
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Patrice Codogno
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| |
Collapse
|
33
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
34
|
Maji S, Pirozzi M, Ruturaj, Pandey R, Ghosh T, Das S, Gupta A. Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Traffic 2023; 24:587-609. [PMID: 37846526 DOI: 10.1111/tra.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.
Collapse
Affiliation(s)
- Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Tamal Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
35
|
Li HP, Huang CY, Lui KW, Chao YK, Yeh CN, Lee LY, Huang Y, Lin TL, Kuo YC, Huang MY, Fan HC, Lin AC, Hsieh CH, Chang KP, Lin CY, Wang HM, Chao M, Liu JS, Chang YS, Hsu CL. Nasopharyngeal carcinoma patient-derived xenograft mouse models reveal potential drugs targeting cell cycle, mTOR, and autophagy pathways. Transl Oncol 2023; 38:101785. [PMID: 37713975 PMCID: PMC10509698 DOI: 10.1016/j.tranon.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is associated with Epstein-Barr virus (EBV) infection. To test preclinical NPC drugs, we established two patient-derived xenograft (PDX) mouse models, EBV-positive PDX-B13 and EBV-negative PDX-Li41, for drug screening. METHODS Based on next generation sequencing (NGS) studies, PDX-B13 had CCND1 copy number (CN) gain but CDKN2A CN loss, whereas PDX-Li41 had CDKN2A and RB1 CN loss, TSC1 (negative regulator of mTOR) frameshift deletion mutation, and increased activation of mTOR, a serine/threonine kinase that governs metabolism, autophagy, and apoptosis. Increased mTOR was also associated with poor NPC prognosis. RESULTS Everolimus, an mTOR inhibitor, suppressed tumor growth in the two PDX NPC models and had an additive antitumor effect with palbociclib, a CDK4/6 inhibitor. PDX tumors treated with various drugs or untreated were subjected to RNA sequencing, transcriptome profile analysis, and selective Western blotting to understand the interactions between these drugs and gene expression profiles. Palbociclib also suppressed EB viral nuclear antigen (EBNA1) expression in PDX-B13. Everolimus together with autophagy inhibitor, hydroxychloroquine, had additive anti-tumor effect on PDX-B13 tumor. Immunohistochemistry revealed that high mTOR levels were correlated with poor overall survival in patients with metastatic NPC (N = 90). CONCLUSIONS High mTOR levels are a poor prognostic factor in NPC, and cell cycle, mTOR and autophagy pathways may serve as therapeutic targets in NPC. In addition, PDX models can be used for efficiently testing potential NPC drugs.
Collapse
Affiliation(s)
- Hsin-Pai Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chen-Yang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kar-Wai Lui
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yin-Kai Chao
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chun-Nan Yeh
- Department of General Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsien-Chi Fan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - An-Chi Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chien-Yu Lin
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Mei Chao
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33305, Taiwan; Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Jai-Shin Liu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Yu-Sun Chang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33305, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33305, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| |
Collapse
|
36
|
Wittenstein A, Caspi M, Rippin I, Elroy-Stein O, Eldar-Finkelman H, Thoms S, Rosin-Arbesfeld R. Nonsense mutation suppression is enhanced by targeting different stages of the protein synthesis process. PLoS Biol 2023; 21:e3002355. [PMID: 37943958 PMCID: PMC10684085 DOI: 10.1371/journal.pbio.3002355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.
Collapse
Affiliation(s)
- Amnon Wittenstein
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sven Thoms
- Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
Affiliation(s)
- Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
38
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell B, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563200. [PMID: 37961551 PMCID: PMC10634693 DOI: 10.1101/2023.10.19.563200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
|
39
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
40
|
He L, Chen J, Deng P, Huang S, Liu P, Wang C, Huang X, Li Y, Chen B, Shi D, Xiao Y, Chen X, Ouyang Y, Song L, Lin C. Lysosomal cyst(e)ine storage potentiates tolerance to oxidative stress in cancer cells. Mol Cell 2023; 83:3502-3519.e11. [PMID: 37751742 DOI: 10.1016/j.molcel.2023.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cyst(e)ine is a key precursor for the synthesis of glutathione (GSH), which protects cancer cells from oxidative stress. Cyst(e)ine is stored in lysosomes, but its role in redox regulation is unclear. Here, we show that breast cancer cells upregulate major facilitator superfamily domain containing 12 (MFSD12) to increase lysosomal cyst(e)ine storage, which is released by cystinosin (CTNS) to maintain GSH levels and buffer oxidative stress. We find that mTORC1 regulates MFSD12 by directly phosphorylating residue T254, while mTORC1 inhibition enhances lysosome acidification that activates CTNS. This switch modulates lysosomal cyst(e)ine levels in response to oxidative stress, fine-tuning redox homeostasis to enhance cell fitness. MFSD12-T254A mutant inhibits MFSD12 function and suppresses tumor progression. Moreover, MFSD12 overexpression correlates with poor neoadjuvant chemotherapy response and prognosis in breast cancer patients. Our findings reveal the critical role of lysosomal cyst(e)ine storage in adaptive redox homeostasis and suggest that MFSD12 is a potential therapeutic target.
Collapse
Affiliation(s)
- Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jinxin Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pinwei Deng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chanjuan Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, Guangzhou 510060, China.
| |
Collapse
|
41
|
Reichlmeir M, Canet-Pons J, Koepf G, Nurieva W, Duecker RP, Doering C, Abell K, Key J, Stokes MP, Zielen S, Schubert R, Ivics Z, Auburger G. In Cerebellar Atrophy of 12-Month-Old ATM-Null Mice, Transcriptome Upregulations Concern Most Neurotransmission and Neuropeptide Pathways, While Downregulations Affect Prominently Itpr1, Usp2 and Non-Coding RNA. Cells 2023; 12:2399. [PMID: 37830614 PMCID: PMC10572167 DOI: 10.3390/cells12192399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Júlia Canet-Pons
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Wasifa Nurieva
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Ruth Pia Duecker
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Claudia Doering
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA; (K.A.); (M.P.S.)
| | - Stefan Zielen
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
- Respiratory Research Institute, Medaimun GmbH, 60596 Frankfurt am Main, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children’s Hospital, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (R.P.D.); (S.Z.); (R.S.)
| | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, 63225 Langen, Germany; (W.N.); (Z.I.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (M.R.); (J.C.-P.); (J.K.)
| |
Collapse
|
42
|
Casagrande S, Loveland JL, Oefele M, Boner W, Lupi S, Stier A, Hau M. Dietary nucleotides can prevent glucocorticoid-induced telomere attrition in a fast-growing wild vertebrate. Mol Ecol 2023; 32:5429-5447. [PMID: 37658759 DOI: 10.1111/mec.17114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Telomeres are chromosome protectors that shorten during eukaryotic cell replication and in stressful conditions. Developing individuals are susceptible to telomere erosion when their growth is fast and resources are limited. This is critical because the rate of telomere attrition in early life is linked to health and life span of adults. The metabolic telomere attrition hypothesis (MeTA) suggests that telomere dynamics can respond to biochemical signals conveying information about the organism's energetic state. Among these signals are glucocorticoids, hormones that promote catabolic processes, potentially impairing costly telomere maintenance, and nucleotides, which activate anabolic pathways through the cellular enzyme target of rapamycin (TOR), thus preventing telomere attrition. During the energetically demanding growth phase, the regulation of telomeres in response to two contrasting signals - one promoting telomere maintenance and the other attrition - provides an ideal experimental setting to test the MeTA. We studied nestlings of a rapidly developing free-living passerine, the great tit (Parus major), that either received glucocorticoids (Cort-chicks), nucleotides (Nuc-chicks) or a combination of both (NucCort-chicks), comparing these with controls (Cnt-chicks). As expected, Cort-chicks showed telomere attrition, while NucCort- and Nuc-chicks did not. NucCort-chicks was the only group showing increased expression of a proxy for TOR activation (the gene TELO2), of mitochondrial enzymes linked to ATP production (cytochrome oxidase and ATP-synthase) and a higher efficiency in aerobically producing ATP. NucCort-chicks had also a higher expression of telomere maintenance genes (shelterin protein TERF2 and telomerase TERT) and of enzymatic antioxidant genes (glutathione peroxidase and superoxide dismutase). The findings show that nucleotide availability is crucial for preventing telomere erosion during fast growth in stressful environments.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Jasmine L Loveland
- Department of Cognitive and Behavioral Biology, University of Vienna, Vienna, Austria
| | - Marlene Oefele
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Winnie Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sara Lupi
- Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Antoine Stier
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR7178, Strasbourg, France
- Department of Biology, University of Turku, Turku, Finland
| | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
43
|
Voss PA, Gornik SG, Jacobovitz MR, Rupp S, Dörr M, Maegele I, Guse A. Host nutrient sensing is mediated by mTOR signaling in cnidarian-dinoflagellate symbiosis. Curr Biol 2023; 33:3634-3647.e5. [PMID: 37572664 DOI: 10.1016/j.cub.2023.07.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
To survive in the nutrient-poor waters of the tropics, reef-building corals rely on intracellular, photosynthetic dinoflagellate symbionts. Photosynthates produced by the symbiont are translocated to the host, and this enables corals to form the structural foundation of the most biodiverse of all marine ecosystems. Although the regulation of nutrient exchange between partners is critical for ecosystem stability and health, the mechanisms governing how nutrients are sensed, transferred, and integrated into host cell processes are largely unknown. Ubiquitous among eukaryotes, the mechanistic target of the rapamycin (mTOR) signaling pathway integrates intracellular and extracellular stimuli to influence cell growth and cell-cycle progression and to balance metabolic processes. A functional role of mTOR in the integration of host and symbiont was demonstrated in various nutritional symbioses, and a similar role of mTOR was proposed for coral-algal symbioses. Using the endosymbiosis model Aiptasia, we examined the role of mTOR signaling in both larvae and adult polyps across various stages of symbiosis. We found that symbiosis enhances cell proliferation, and using an Aiptasia-specific antibody, we localized mTOR to symbiosome membranes. We found that mTOR signaling is activated by symbiosis, while inhibition of mTOR signaling disrupts intracellular niche establishment and symbiosis altogether. Additionally, we observed that dysbiosis was a conserved response to mTOR inhibition in the larvae of a reef-building coral species. Our data confim that mTOR signaling plays a pivotal role in integrating symbiont-derived nutrients into host metabolism and symbiosis stability, ultimately allowing symbiotic cnidarians to thrive in challenging environments.
Collapse
Affiliation(s)
- Philipp A Voss
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Marie R Jacobovitz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Sebastian Rupp
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Melanie Dörr
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Ira Maegele
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany.
| |
Collapse
|
44
|
de Wet S, Theart R, Loos B. Cogs in the autophagic machine-equipped to combat dementia-prone neurodegenerative diseases. Front Mol Neurosci 2023; 16:1225227. [PMID: 37720551 PMCID: PMC10500130 DOI: 10.3389/fnmol.2023.1225227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often characterized by hydrophobic inclusion bodies, and it may be the case that the aggregate-prone proteins that comprise these inclusion bodies are in fact the cause of neurotoxicity. Indeed, the appearance of protein aggregates leads to a proteostatic imbalance that causes various interruptions in physiological cellular processes, including lysosomal and mitochondrial dysfunction, as well as break down in calcium homeostasis. Oftentimes the approach to counteract proteotoxicity is taken to merely upregulate autophagy, measured by an increase in autophagosomes, without a deeper assessment of contributors toward effective turnover through autophagy. There are various ways in which autophagy is regulated ranging from the mammalian target of rapamycin (mTOR) to acetylation status of proteins. Healthy mitochondria and the intracellular energetic charge they preserve are key for the acidification status of lysosomes and thus ensuring effective clearance of components through the autophagy pathway. Both mitochondria and lysosomes have been shown to bear functional protein complexes that aid in the regulation of autophagy. Indeed, it may be the case that minimizing the proteins associated with the respective neurodegenerative pathology may be of greater importance than addressing molecularly their resulting inclusion bodies. It is in this context that this review will dissect the autophagy signaling pathway, its control and the manner in which it is molecularly and functionally connected with the mitochondrial and lysosomal system, as well as provide a summary of the role of autophagy dysfunction in driving neurodegenerative disease as a means to better position the potential of rapamycin-mediated bioactivities to control autophagy favorably.
Collapse
Affiliation(s)
- Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rensu Theart
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Gao Y, Tian T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int J Mol Sci 2023; 24:11811. [PMID: 37511569 PMCID: PMC10380532 DOI: 10.3390/ijms241411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) integrates multiple intracellular and extracellular upstream signals involved in the regulation of anabolic and catabolic processes in cells and plays a key regulatory role in cell growth and metabolism. The activation of the mTOR signaling pathway has been reported to be associated with a wide range of human diseases. A growing number of in vivo and in vitro studies have demonstrated that gut microbes and their complex metabolites can regulate host metabolic and immune responses through the mTOR pathway and result in disorders of host physiological functions. In this review, we summarize the regulatory mechanisms of gut microbes and mTOR in different diseases and discuss the crosstalk between gut microbes and their metabolites and mTOR in disorders in the gastrointestinal tract, liver, heart, and other organs. We also discuss the promising application of multiple potential drugs that can adjust the gut microbiota and mTOR signaling pathways. Despite the limited findings between gut microbes and mTOR, elucidating their relationship may provide new clues for the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
46
|
Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight 2023; 8:e158098. [PMID: 37427586 PMCID: PMC10371348 DOI: 10.1172/jci.insight.158098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) senses multiple upstream stimuli to orchestrate anabolic and catabolic events that regulate cell growth and metabolism. Hyperactivation of mTORC1 signaling is observed in multiple human diseases; thus, pathways that suppress mTORC1 signaling may help to identify new therapeutic targets. Here, we report that phosphodiesterase 4D (PDE4D) promotes pancreatic cancer tumor growth by increasing mTORC1 signaling. GPCRs paired to Gαs proteins activate adenylyl cyclase, which in turn elevates levels of 3',5'-cyclic adenosine monophosphate (cAMP), whereas PDEs catalyze the hydrolysis of cAMP to 5'-AMP. PDE4D forms a complex with mTORC1 and is required for mTORC1 lysosomal localization and activation. Inhibition of PDE4D and the elevation of cAMP levels block mTORC1 signaling via Raptor phosphorylation. Moreover, pancreatic cancer exhibits an upregulation of PDE4D expression, and high PDE4D levels predict the poor overall survival of patients with pancreatic cancer. Importantly, FDA-approved PDE4 inhibitors repress pancreatic cancer cell tumor growth in vivo by suppressing mTORC1 signaling. Our results identify PDE4D as an important activator of mTORC1 and suggest that targeting PDE4 with FDA-approved inhibitors may be beneficial for the treatment of human diseases with hyperactivated mTORC1 signaling.
Collapse
Affiliation(s)
- Mi-Hyeon Jeong
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | - Greg Urquhart
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| | | | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine, and
| |
Collapse
|
47
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
48
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Sharp ZD, Strong R. Rapamycin, the only drug that has been consistently demonstrated to increase mammalian longevity. An update. Exp Gerontol 2023; 176:112166. [PMID: 37011714 PMCID: PMC10868408 DOI: 10.1016/j.exger.2023.112166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Zelton Dave Sharp
- Department of Molecular Medicine and Institute of Biotechnology, San Antonio, TX, United States of America; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States of America; Mays Cancer Center, San Antonio, TX, United States of America.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States of America; Department of Pharmacology, UT Health, San Antonio, TX, United States of America; Research Service of the South Texas Veterans Health Care System, San Antonio, TX 78229, United States of America.
| |
Collapse
|
50
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|