1
|
Liu X, Ye Q, Hao M, Li H, Yuan D, Huang W, Li W, Ding L. Exploring mechanisms of britannin against colorectal cancer based on experimentally validated network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03995-2. [PMID: 40080155 DOI: 10.1007/s00210-025-03995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Britannin is an active compound derived from Inula japonica Thunb. that possess a wide range of pharmacological activities. However, the mechanism underlying its influence on colorectal cancer (CRC) is not clear. This study aimed to explore the mechanism of britannin in treating colorectal cancer. We employed network pharmacology and single-cell RNA sequencing to assess the potential mechanism of britannin in CRC therapy. In vivo and in vitro experiments were conducted to confirm the effect of britannin on CRC cells and tumor environment. Network pharmacology analysis identified 36 britannin-related genes associated with CRC. Key signaling pathways, including the PI3K-Akt pathway, PD-L1 expression, and HIF-1 signaling, were implicated in britannin's anti-CRC effects. CIBERSORT and scRNA-seq analyses revealed that britannin affects tumor cells, macrophages, and endothelial cells, with a particular impact on macrophage polarization. In vitro assays confirmed that britannin suppressed CRC cell proliferation, promoted apoptosis, and inhibited AKT phosphorylation. In vivo, britannin significantly suppressed tumor growth and modulated the tumor microenvironment by inhibiting M1 macrophage polarization. Britannin may inhibit colorectal by directly inhibiting colon cancer cells and modulating macrophage polarization.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiuxia Ye
- Department of Liver Vascular Disease Diagnosis and Treatment Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenjie Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Kajdanek A, Kołat D, Zhao LY, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż. Britanin - a beacon of hope against gastrointestinal tumors? World J Clin Oncol 2024; 15:523-530. [PMID: 38689621 PMCID: PMC11056858 DOI: 10.5306/wjco.v15.i4.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024] Open
Abstract
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties. It also exhibits significant anti-tumor activity, suppressing tumor growth in vitro and in vivo. The current body of research on Britanin includes thirty papers predominantly related to neoplasms, the majority of which are gastrointestinal tumors that have not been summarized before. To drive academic debate, the present paper reviews the available research on Britanin in gastrointestinal tumors. It also outlines novel research directions using data not directly concerned with the digestive system, but which could be adopted in future gastrointestinal research. Britanin was found to counteract liver, colorectal, pancreatic, and gastric tumors, by regulating proliferation, apoptosis, autophagy, immune response, migration, and angiogenesis. As confirmed in pancreatic, gastric, and liver cancer, its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation, as well as Bcl-2-associated X protein upregulation. Moreover, it has been found to induce the Akt kinase and Forkhead box O1 axis, activate the AMP-activated protein kinase pathway, elevate interleukin-2 and peroxisome proliferator-activated receptor-γ levels, reduce interleukin-10, as well as downregulate matrix metalloproteinase-9, Twist family bHLH transcription factor 1, and cyclooxygenase-2. It also inhibits Myc-HIF1α interaction and programmed death ligand 1 transcription by interrupting the Ras/ RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling. Future research should aim to unravel the link between Britanin and acetylcholinesterase, mast cells, osteolysis, and ischemia, as compelling data have been provided by studies outside the gastrointestinal context. Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells, while still being effective against the latter, further in-depth studies with the use of animal models are merited. The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent, which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Agnieszka Kajdanek
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
4
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
5
|
Wang Y, Yu B, Qu M, Liu F, Wu X. Britannin inhibits cell proliferation, migration and glycolysis by downregulating KLF5 in lung cancer. Exp Ther Med 2024; 27:109. [PMID: 38361511 PMCID: PMC10867720 DOI: 10.3892/etm.2024.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 02/17/2024] Open
Abstract
Lung cancer is a harmful type of malignancy and the leading cause of cancer-associated mortality. It is therefore imperative to develop novel drugs effective for treating this cancer. The Traditional Chinese Medicine compound Britannin has been previously reported to inhibit the development of certain cancers, such as pancreatic, breast and liver cancer. Moreover, Kruppel-like factor 5 (KLF5) has been identified an on oncogene in lung cancer. In the present study, the possible regulatory effects and underlying mechanism of Britannin in lung cancer were investigated. A549 and 16HBE cells were treated with different concentrations of Britannin. Subsequently, Cell counting kit-8, EdU staining and colony formation assays were used to detect the proliferative ability of these cells. Cell migration was detected by wound healing and Transwell assays, respectively. XF96 extracellular flux analyzer was used to analyze the extent of extracellular acidification and oxygen consumption rate in cells, whereas assay kits were used to detect glucose and lactic acid levels in the cell supernatant. The targeting effect between Britannin and the KLF5 protein was investigated using molecular docking technology. The protein expression levels of KLF5 in cells challenged with Britannin was detected by western blotting. Finally, overexpression of KLF5 in A549 cells was performed before cell proliferation, migration and the glycolysis rate were measured to explore the regulatory effects of Britannin. Britannin was found to inhibit the proliferation, migration and glycolysis of lung cancer cells, during which the protein expression levels of KLF5 were decreased. This suggests that Britannin regulated the expression of KLF5 in A549 cells. Overexpression of KLF5 reversed the inhibitory effects of Britannin on the proliferation, migration and glycolysis in lung cancer cells. In conclusion, these results suggest that Britannin can inhibit cell proliferation, migration and glycolysis by downregulating KLF5 expression in lung cancer cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nosocomial Infection, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Botao Yu
- Department of Emergency Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Mengyuan Qu
- Department of Radiophysics, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Fengjuan Liu
- Ward for Phase I Clinical Trial, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Xiao Wu
- Department of Pulmonary and Critical Care Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
6
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
7
|
Cao F, Chu C, Qin JJ, Guan X. Research progress on antitumor mechanisms and molecular targets of Inula sesquiterpene lactones. Chin Med 2023; 18:164. [PMID: 38111074 PMCID: PMC10726648 DOI: 10.1186/s13020-023-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti-tumor drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many pharmacological activities such as anti-inflammation, anti-asthma, anti-tumor, neuroprotective and anti-allergic. In recent years, more and more studies have proved that they are important candidate drugs for the treatment of a variety of cancers because of its good anti-tumor activity. In this paper, the structure, structure-activity relationship, antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed in order to provide clues for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Hong H, Luo B, Xie Z, Li M, Xu Q, He Z, Peng Z. Retracted: Britannin mediates apoptosis and glycolysis of T-cell lymphoblastic lymphoma cells by AMPK-dependent autophagy. J Biochem Mol Toxicol 2023; 37:e23211. [PMID: 36120848 DOI: 10.1002/jbt.23211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
The above article, published online on 19 September 2022 in Wiley Online Library (https://onlinelibrary.wiley.com/doi/abs/10.1002/jbt.23211), has been retracted by agreement between the authors, the journal Editor in Chief, Hari Bhat, and Wiley Periodicals, LLC. The article is being retracted at the authors' request because some of the data underlying this article refer to a different cell line from the one reported in it. As a result, the article's conclusions do not accurately reflect the full data and cannot be considered reliable.
Collapse
Affiliation(s)
- Haoyuan Hong
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bin Luo
- Department of Hematology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Zucheng Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Meiwei Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyuan Xu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhendong He
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhigang Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Abdolmohammadi MH, Roozbehani M, Hamzeloo-Moghadam M, Heidari F, Fallahian F. Targeting PPARγ/ NF-κB Signaling Pathway by Britannin, a Sesquiterpene Lactone from Inula aucheriana DC., in Gastric Cancer. Anticancer Agents Med Chem 2023; 23:2102-2110. [PMID: 37723632 DOI: 10.2174/1871520623666230918140559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Gastric cancer is one of the most common and deadliest malignancies in the world. Therefore, there is an urgent need to develop new and effective agents to reduce mortality. The plants of genus Inula have gained the attention of researchers worldwide as a rich source of potent medicinal compounds. OBJECTIVE This study explores the anti-cancer activity of Britannin, a sesquiterpene lactone isolated from Inula aucheriana DC., and its molecular mechanism in gastric cancer cells, AGS and MKN45. METHODS Cytotoxicity was evaluated through the MTT assay following 24 h, 48 h, and 72 h treatment with different concentrations of Britannin. Apoptosis rate and caspase-3 activity were measured 24 h after treatment by Britannin. . Western blotting was performed to determine the expression of the NF-κB, IκBα, and PPARγ proteins. Moreover, quantitative RT-PCR was applied to measure the expression of NF-κB target genes. RESULTS We showed that Britannin induced cell growth inhibition and apoptosis in gastric cancer cells. Britannin caused an elevation in mRNA and protein levels of PPARγ. The involvement of PPARγ was more confirmed using GW9662, a PPARγ inhibitor. Suppression of NF-κB was demonstrated by western blot analysis. Down-regulation of MMP-9, TWIST-1, COX-2, and Bcl-2 and up-regulation of Bax were also observed in gastric cancer cells. CONCLUSION These results imply that activation of the PPARγ signaling pathway through suppression of NF-κB underlies the anti-cancer properties of Britannin in gastric cancer. Therefore, Britannin could be considered as a promising anti-cancer candidate for further evaluation.
Collapse
Affiliation(s)
| | - Maryam Roozbehani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Faranak Fallahian
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
10
|
Mohammadlou H, Hamzeloo-Moghadam M, Moeinifard M, Gharehbaghian A. The Cytotoxic Effects of Britannin on Acute and Chronic Myeloid Leukemia Cells Through Inducing p21-mediated Apoptotic Cell Death. Turk J Pharm Sci 2021; 19:314-321. [DOI: 10.4274/tjps.galenos.2021.88655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
12
|
Britannin, a sesquiterpene lactone induces ROS-dependent apoptosis in NALM-6, REH, and JURKAT cell lines and produces a synergistic effect with vincristine. Mol Biol Rep 2021; 48:6249-6258. [PMID: 34478011 DOI: 10.1007/s11033-021-06572-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Britannin, a Sesquiterpene Lactone isolated from Inula aucheriana, has recently gained attraction in the therapeutic fields due to its anti-tumor properties. This study was designed to evaluate the effect of this agent on Acute Lymphoblastic Leukemia (ALL) cell lines, either as a monotherapy or in combination with Vincristine (VCR). METHODS AND RESULTS To determine the anti-leukemic effects of Britannin on ALL-derived cell lines and suggest a mechanism of action for the agent, we used MTT assay, Annexin-V/PI staining, ROS assay, and real-time PCR analysis. Moreover, by using a combination index (CI), we evaluated the synergistic effect of Britannin on Vincristine. We found that unlike normal Peripheral Blood Mononuclear Cells (PBMCs) and L929 cells, Britannin reduced the viability of NALM-6, REH, and JURKAT cells. Among tested cells, NALM-6 cells had the highest sensitivity to Britannin, and this agent was able to induce p21/p27-mediated G1 cell cycle arrest and Reactive Oxygen Specious (ROS)-mediated apoptotic cell death in this cell line. When NALM-6 cells were treated with Nacetyl-L-Cysteine (NAC), a scavenger of ROS, Britannin could induce neither apoptosis nor reduce the survival of the cells suggesting that the cytotoxic effect of Britannin is induced through ROS-dependent manner. Moreover, we found that a low dose of Britannin enhanced the effect of Vincristine in NALM-6 cells by inducing apoptotic cell death via altering the expression of apoptotic-related genes. CONCLUSIONS Overall, our results proposed a mechanism for the cytotoxic effect of Britannin, either as a single agent or in combination with Vincristine, in NALM-6 cells.
Collapse
|