1
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
2
|
Diffusion tensor imaging derived metrics in high grade glioma and brain metastasis differentiation. ARCHIVE OF ONCOLOGY 2022. [DOI: 10.2298/aoo210828007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Pretreatment differentiation between glioblastoma and metastasis
is a frequently encountered dilemma in neurosurgical practice. Distinction
is required for precise planning of resection or radiotherapy, and also for
defining further diagnostic procedures. Morphology and spectroscopy imaging
features are not specific and frequently overlap. This limitation of
magnetic resonance imaging and magnetic resonance spectroscopy was the
reason to initiate this study. The aim of the present study was to determine
whether the dataset of diffusion tensor imaging metrics contains information
which may be used for the distinction between primary and secondary
intra-axial neoplasms. Methods: Two diffusion tensor imaging parameters were
measured in 81 patients with an expansive, ring-enhancing, intra-axial
lesion on standard magnetic resonance imaging (1.5 T system). All tumors
were histologically verified glioblastoma or secondary deposit. For
qualitative analysis, two regions of interest were defined: intratumoral and
immediate peritumoral region (locations 1 and 2, respectively). Fractional
anisotropy and mean difusivity values of both groups were compared.
Additional test was performed to determine if there was a significant
difference in mean values between two locations. Results: A statistically
significant difference was found in fractional anisotropy values among two
locations, with decreasing values in the direction of neoplastic
infiltration, although such difference was not observed in fractional
anisotropy values in the group with secondary tumors. Mean difusivity values
did not appear helpful in differentiation between these two entities. In
both groups there was no significant difference in mean difusivity values,
neither in intratumoral nor in peritumoral location. Conclusion: The results
of our study justify associating the diffusion tensor imaging technique to
conventional morphologic magnetic resonance imaging as an additional
diagnostic tool for the distinction between primary and secondary
intra-axial lesions. Quantitative analysis of diffusion tensor imaging
metric, in particular measurement of fractional anisotropy in peritumoral
edema facilitates accurate diagnosis.
Collapse
|
3
|
Wang K, Zhong H, Li N, Yu N, Wang Y, Chen L, Sun J. Discovery of Novel Anti-Breast-Cancer Inhibitors by Synergistically Antagonizing Microtubule Polymerization and Aryl Hydrocarbon Receptor Expression. J Med Chem 2021; 64:12964-12977. [PMID: 34428056 DOI: 10.1021/acs.jmedchem.1c01099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of unreported dual-receptor inhibitors targeting both the tubulin colchicine site and AhR were designed and synthesized, and their anti-breast-cancer activities were evaluated. Compound 12 showed the strongest activity with an IC50 of 0.9 nM in MCF-7 cell lines. Besides, 12 could significantly inhibit cancer growth in MCF-7 xenograft tumor models with no obvious toxic effects and was more effective than the positive control (combretastatin A-4). With the in-depth study, it was found that 12 could induce apoptosis in breast cancer cells by making arrest in G2/M phase, depolarizing mitochondria and inducing intracellular reactive oxygen generation. This evident anticancer effect and the ability to inhibit cell migration were attributed to the synergistic antagonism of 12 on tubulin and AhR. In general, 12 was worthy of further research as an effective and safe anti-breast-cancer drug.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hui Zhong
- Department of Pharmacology of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Nairong Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yujin Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
4
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
5
|
Pibuel MA, Díaz M, Molinari Y, Poodts D, Silvestroff L, Lompardía SL, Franco P, Hajos SE. 4-Methylumbelliferone as a potent and selective antitumor drug on a glioblastoma model. Glycobiology 2020; 31:29-43. [PMID: 32472122 DOI: 10.1093/glycob/cwaa046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM), the most frequent primary tumor of the central nervous system, has a median survival of 14.6 months. 4-Methylumbelliferone (4MU) is a coumarin derivative widely used as a hyaluronan synthesis inhibitor with proven antitumor activity and without toxic effects reported. We aim to evaluate the antitumor effect of 4MU alone or combined with temozolomide (TMZ) on a GBM cell line, its absence of toxicity on brain cells and its selectivity for tumor cells. The antitumor effect of 4MU alone or combined with TMZ was evaluated on GL26 cells by assessing the metabolic activity through the XTT assay, cell proliferation by BrdU incorporation assay, migration by the wound healing assay, cell death by fluorescein diacetate/propidium iodide (FDA/PI) staining, apoptosis by membrane asymmetry and DNA fragmentation and metalloproteinase activity by zymography. The levels of hyaluronan and its capacity to counteract the effects of 4MU and the expression of RHAMM and CD44 were also determined. The toxicity and selectivity of 4MU were determined by XTT assay and PI staining on normal brain primary cell culture (NBPC-GFP) and GL26/NBPC-GFP cocultures. The GL26 cells expressed RHAMM but not CD44 while synthetized hyaluronan. 4MU decreased hyaluronan synthesis, diminished proliferation and induced apoptosis while reducing cell migration and the activity of metalloproteinases, which was restored by addition of hyaluronic acid. Furthermore, 4MU sensitized GL26 cells to the TMZ effect and showed selective toxicity on tumor cells without exhibiting neurotoxic effects. We demonstrated for the first time the cytotoxic effect of 4MU on GBM cells, highlighting its potential usefulness to improve GBM treatment.
Collapse
Affiliation(s)
- Matías A Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Yamila Molinari
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Lucas Silvestroff
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Silvina L Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Paula Franco
- Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| | - Silvia E Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Junin 956, C1113 CABA, Argentina
| |
Collapse
|
6
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Virga J, Bognár L, Hortobágyi T, Csősz É, Kalló G, Zahuczki G, Steiner L, Hutóczki G, Reményi-Puskár J, Klekner A. The Expressional Pattern of Invasion-Related Extracellular Matrix Molecules in CNS Tumors. Cancer Invest 2018; 36:492-503. [PMID: 30501525 DOI: 10.1080/07357907.2018.1545855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Department of Neuropathology, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczki
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - László Steiner
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | | | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Virga J, Szivos L, Hortobágyi T, Chalsaraei MK, Zahuczky G, Steiner L, Tóth J, Reményi-Puskár J, Bognár L, Klekner A. Extracellular matrix differences in glioblastoma patients with different prognoses. Oncol Lett 2018; 17:797-806. [PMID: 30655832 PMCID: PMC6313004 DOI: 10.3892/ol.2018.9649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is the most common malignant central nervous system tumor. Patient outcome remains poor despite the development of therapy and increased understanding of the disease in the past decades. Glioma cells invade the peritumoral brain, which results in inevitable tumor recurrence. Previous studies have demonstrated that the extracellular matrix (ECM) is altered in gliomas and serves a major role in glioma invasion. The present study focuses on differences in the ECM composition of tumors in patients with poor and improved prognosis. The mRNA and protein expression of 16 invasion-associated ECM molecules was determined using reverse trascription-quantitiative polymerase chain reaction and immunohistochemistry, respectively. Clinical factors of patients with different prognoses was also analyzed. It was determined that age and postoperative Karnofsky performance score were associated with patient survival. Furthermore, Fms-related tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR3), murine double minute 2 (MDM2) and matrix metallopeptidase 2 (MMP2) mRNA levels were significantly different between the two prognostic groups. Additionally, brevican, cluster of differentiation 44, hyaluronan mediated motility receptor, integrin-αV and -β1, and MDM2 protein expression were indicated to be significantly different in immunohistochemistry slides. Using the expression profile, including the invasion spectrum of the samples, it was possible to identify the prognostic group of the sample with high efficacy, particularly in cases with poor prognosis. In conclusion, it was determined that ECM components exhibit different expression levels in tumors with different prognoses and thus the invasion spectrum can be used as a prognostic factor in glioblastoma.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Szivos
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mahan Kouhsari Chalsaraei
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Judit Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Reményi-Puskár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Almos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Xiao W, Ehsanipour A, Sohrabi A, Seidlits SK. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells. J Vis Exp 2018:58176. [PMID: 30199037 PMCID: PMC6231877 DOI: 10.3791/58176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common, yet most lethal, central nervous system cancer. In recent years, many studies have focused on how the extracellular matrix (ECM) of the unique brain environment, such as hyaluronic acid (HA), facilitates GBM progression and invasion. However, most in vitro culture models include GBM cells outside of the context of an ECM. Murine xenografts of GBM cells are used commonly as well. However, in vivo models make it difficult to isolate the contributions of individual features of the complex tumor microenvironment to tumor behavior. Here, we describe an HA hydrogel-based, three-dimensional (3D) culture platform that allows researchers to independently alter HA concentration and stiffness. High molecular weight HA and polyethylene glycol (PEG) comprise hydrogels, which are crosslinked via Michael-type addition in the presence of live cells. 3D hydrogel cultures of patient-derived GBM cells exhibit viability and proliferation rates as good as, or better than, when cultured as standard gliomaspheres. The hydrogel system also enables incorporation of ECM-mimetic peptides to isolate effects of specific cell-ECM interactions. Hydrogels are optically transparent so that live cells can be imaged in 3D culture. Finally, HA hydrogel cultures are compatible with standard techniques for molecular and cellular analyses, including PCR, Western blotting and cryosectioning followed by immunofluorescence staining.
Collapse
Affiliation(s)
- Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles
| | | | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles
| | - Stephanie K Seidlits
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, Brain Research Institute, University of California, Los Angeles;
| |
Collapse
|
10
|
Su Z, Kishida S, Tsubota S, Sakamoto K, Cao D, Kiyonari S, Ohira M, Kamijo T, Narita A, Xu Y, Takahashi Y, Kadomatsu K. Neurocan, an extracellular chondroitin sulfate proteoglycan, stimulates neuroblastoma cells to promote malignant phenotypes. Oncotarget 2017; 8:106296-106310. [PMID: 29290949 PMCID: PMC5739734 DOI: 10.18632/oncotarget.22435] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Neurocan (NCAN), a secreted chondroitin sulfate proteoglycan, is one of the major inhibitory molecules for axon regeneration in nervous injury. However, its role in cancer is not clear. Here we observed that high NCAN expression was closely associated with the unfavorable outcome of neuroblastoma (NB). NCAN was also highly and ubiquitously expressed in the early lesions and terminal tumor of TH-MYCN mice, a NB model. Interestingly, exogenous NCAN (i.e., overexpression, recombinant protein and conditioned medium) transformed adherent NB cells into spheres whose malignancies in vitro (anchorage-independent growth and chemoresistance) and in vivo (xenograft tumor growth) were potentiated. Both chondroitin sulfate sugar chains and NCAN's core protein were essential for the sphere formation. The CSG3 domain was essential in the moiety of NCAN. Our comprehensive microarray analysis and RT-qPCR of mRNA expression suggested that NCAN treatment promoted cell division, and urged cells to undifferentiated state. The knockdown of NCAN in tumor sphere cells cultured from TH-MYCN mice resulted in growth suppression in vitro and in vivo. Our findings suggest that NCAN, which stimulates NB cells to promote malignant phenotypes, is an extracellular molecule providing a growth advantage to cancer cells.
Collapse
Affiliation(s)
- Zhendong Su
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Dongliang Cao
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Saitama, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
12
|
Tumor Grade versus Expression of Invasion-Related Molecules in Astrocytoma. Pathol Oncol Res 2017; 24:35-43. [DOI: 10.1007/s12253-017-0194-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
|
13
|
Hutóczki G, Bognár L, Tóth J, Scholtz B, Zahuczky G, Hanzély Z, Csősz É, Reményi-Puskár J, Kalló G, Hortobágyi T, Klekner A. Effect of Concomitant Radiochemotherapy on Invasion Potential of Glioblastoma. Pathol Oncol Res 2015; 22:155-60. [PMID: 26450124 DOI: 10.1007/s12253-015-9989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/29/2015] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with inevitable recurrence after oncotherapy. The insufficient effect of "gold standard" temozolomide-based concomitant radiochemotherapy may be due to the inability to prevent tumor cell invasion. Peritumoral infiltration depends mainly on the interaction between extracellular matrix (ECM) components and cell membrane receptors. Changes in invasive behaviour after oncotherapy can be evaluated at the molecular level by determining the RNA expression and protein levels of the invasion-related ECM components. The expression of nineteen ECM molecules was determined at both RNA and protein levels in thirty-one GBM samples. Fifteen GBM samples originated from the first surgical procedure on patients before oncotherapy, and sixteen GBM samples were collected at the second surgery due to local recurrence after concomitant chemoirradiation. RNA expressions were measured with qRT-PCR, and protein levels were determined by quantitative analysis of Western blots. Only MMP-9 RNA transcript level was reduced (p < 0.05) whereas at protein level, eight molecules showed changes concordant with RNA expression with significant decrease in brevican only. The results suggest that concomitant radiochemotherapy does not have sufficient impact on the expression of invasion-related ECM components of glioblastoma, oncotherapy does not significantly affect its invasive behavior. To avoid the spread of tumors into the brain parenchyma, supplementation of antiproliferative treatment with anti-invasive agents may be worth consideration in oncotherapy for glioblastoma.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Judit Tóth
- Department of Oncology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Beáta Scholtz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gábor Zahuczky
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,UD-Genomed Medical Genomic Technologies Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Zoltán Hanzély
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, 1145, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Judit Reményi-Puskár
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Clinical Center, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|
14
|
Expression pattern of invasion-related molecules in the peritumoral brain. Clin Neurol Neurosurg 2015; 139:138-43. [PMID: 26451999 DOI: 10.1016/j.clineuro.2015.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The effectiveness of therapy of intracerebral neoplasms is mainly influenced by the invasive behaviour of the tumour. The peritumoral invasion depends on the interaction between the tumour cells and the extracellular matrix (ECM) of the surrounding brain. The invading tumour cells induce change in the activity of proteases, synthases and expression of ECM-components. These alterations in the peritumoral ECM are in connection to the highly different invasiveness of gliomas and metastatic brain tumours. To understand the fairly modified invasive potential of anaplastic intracerebral tumours of different origin, the effect of tumour on the peritumoral ECM and alterations of invasion related ECM components in the peritumoral brain were evaluated. METHODS For this reason the mRNA expression of 19 invasion-related molecules by quantitative reverse transcriptase polymerase chain reaction was determined in normal brain tissue (Norm), in the peritumoral brain tissue of glioblastoma (peri-GBM) and of intracerebral adenocarcinoma metastasis (peri-Met). To evaluate the translational expression of the investigated molecules protein levels were determined by targeted proteomic methods. RESULTS Establishing the invasion pattern of the investigated tissue samples 8 molecules showed concordant difference at mRNA and protein levels in the peri-GBM and peri-Met, 11 molecules in the peri-Met and normal brain and 12 in the peri-GBM and normal brain comparison. CONCLUSION Our results bring some ECM molecules into focus that probably play key role in arresting tumour cell invasion around the metastatic tumour, and also in the lack of impeding tumour cell migration in case of glioblastoma.
Collapse
|
15
|
Wang S, Kim SJ, Poptani H, Woo JH, Mohan S, Jin R, Voluck MR, O'Rourke DM, Wolf RL, Melhem ER, Kim S. Diagnostic utility of diffusion tensor imaging in differentiating glioblastomas from brain metastases. AJNR Am J Neuroradiol 2014; 35:928-34. [PMID: 24503556 DOI: 10.3174/ajnr.a3871] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Differentiation of glioblastomas and solitary brain metastases is an important clinical problem because the treatment strategy can differ significantly. The purpose of this study was to investigate the potential added value of DTI metrics in differentiating glioblastomas from brain metastases. MATERIALS AND METHODS One hundred twenty-eight patients with glioblastomas and 93 with brain metastases were retrospectively identified. Fractional anisotropy and mean diffusivity values were measured from the enhancing and peritumoral regions of the tumor. Two experienced neuroradiologists independently rated all cases by using conventional MR imaging and DTI. The diagnostic performances of the 2 raters and a DTI-based model were assessed individually and combined. RESULTS The fractional anisotropy values from the enhancing region of glioblastomas were significantly higher than those of brain metastases (P < .01). There was no difference in mean diffusivity between the 2 tumor types. A classification model based on fractional anisotropy and mean diffusivity from the enhancing regions differentiated glioblastomas from brain metastases with an area under the receiver operating characteristic curve of 0.86, close to those obtained by 2 neuroradiologists using routine clinical images and DTI parameter maps (area under the curve = 0.90 and 0.85). The areas under the curve of the 2 radiologists were further improved to 0.96 and 0.93 by the addition of the DTI classification model. CONCLUSIONS Classification models based on fractional anisotropy and mean diffusivity from the enhancing regions of the tumor can improve diagnostic performance in differentiating glioblastomas from brain metastases.
Collapse
Affiliation(s)
- S Wang
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - S J Kim
- Department of Radiology (S.J.K.), University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - H Poptani
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - J H Woo
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - S Mohan
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - R Jin
- Medical Data Research Center (R.J.), Providence Health and Services, Portland, Oregon
| | - M R Voluck
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - D M O'Rourke
- Neurosurgery (D.M.O.), Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - R L Wolf
- From the Departments of Radiology (S.W., H.P., J.H.W., S.M., M.R.V., R.L.W.)
| | - E R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine (E.R.M.), University of Maryland Medical Center, Baltimore, Maryland
| | - S Kim
- Department of Radiology (S.K.), New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Ulasov I, Thaci B, Sarvaiya P, Yi R, Guo D, Auffinger B, Pytel P, Zhang L, Kim CK, Borovjagin A, Dey M, Han Y, Baryshnikov AY, Lesniak MS. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas. Cancer Med 2013; 2:457-67. [PMID: 24156018 PMCID: PMC3799280 DOI: 10.1002/cam4.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022] Open
Abstract
Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy. Glioblastoma remains an incurable form of brain cancer. In this manuscript, we show that inhibition of MMP14 can potentiate the efficacy of current standard of care which includes chemo- and radiotherapy.
Collapse
Affiliation(s)
- Ilya Ulasov
- The Brain Tumor Center, The University of Chicago Chicago, Illinois, 60637
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin. PLoS One 2013; 8:e68030. [PMID: 23826359 PMCID: PMC3694904 DOI: 10.1371/journal.pone.0068030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells.
Collapse
|
18
|
Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol 2012; 3:67-79. [PMID: 22582165 PMCID: PMC3349915 DOI: 10.5306/wjco.v3.i5.67] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/12/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are characterized by an aggressive local growth pattern, a marked degree of invasiveness and poor prognosis. Tumor invasiveness is facilitated by the increased activity of proteolytic enzymes which are involved in destruction of the extracellular matrix of the surrounding healthy brain tissue. Elevated levels of matrix metalloproteinases (MMPs) were found in glioblastoma (GBM) cell-lines, as well as in GBM biopsies as compared with low-grade astrocytoma (LGA) and normal brain samples, indicating a role in malignant progression. A careful review of the available literature revealed that both the expression and role of several of the 23 human MMP proteins is controversely discussed and for some there are no data available at all. We therefore screened a panel of 15 LGA and 15 GBM biopsy samples for those MMPs for which there is either no, very limited or even contradictory data available. Hence, this is the first complete compilation of the expression pattern of all 23 human MMPs in astrocytic tumors. This study will support a better understanding of the specific expression patterns and interaction of proteolytic enzymes in malignant human glioma and may provide additional starting points for targeted patient therapy.
Collapse
Affiliation(s)
- Carsten Hagemann
- Carsten Hagemann, Ralf-Ingo Ernestus, Giles H Vince, Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
19
|
Varga I, Hutóczki G, Szemcsák CD, Zahuczky G, Tóth J, Adamecz Z, Kenyeres A, Bognár L, Hanzély Z, Klekner A. Brevican, Neurocan, Tenascin-C and Versican are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma. Pathol Oncol Res 2011; 18:413-20. [DOI: 10.1007/s12253-011-9461-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022]
|
20
|
Sabari J, Lax D, Connors D, Brotman I, Mindrebo E, Butler C, Entersz I, Jia D, Foty RA. Fibronectin matrix assembly suppresses dispersal of glioblastoma cells. PLoS One 2011; 6:e24810. [PMID: 21980357 PMCID: PMC3184095 DOI: 10.1371/journal.pone.0024810] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5β1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal.
Collapse
Affiliation(s)
- Joshua Sabari
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Daniel Lax
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Daniel Connors
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ian Brotman
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Eric Mindrebo
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Christine Butler
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ildiko Entersz
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Dongxuan Jia
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ramsey A. Foty
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
All cells exist within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These cues can be disrupted through perturbations to mechanotransduction, from the nanoscale-level to the tissue-level, which compromises tensional homeostasis to promote pathologies such as cardiovascular disease and cancer. The mechanisms of such perturbations suggest that a complex interplay exists between the extracellular microenvironment and cellular function. Furthermore, sustained disruptions in tensional homeostasis can be caused by alterations in the extracellular matrix, allowing it to serve as a mechanically based memory-storage device that can perpetuate a disease or restore normal tissue behaviour.
Collapse
|