1
|
Chen D, Wang W, Chen X, Liang N, Li J, Ding W, Zhang H, Yang Z, Zhao H, Liu Z. Plant-derived extracts or compounds for Helicobacter-associated gastritis: a systematic review of their anti-Helicobacter activity and anti-inflammatory effect in animal experiments. Chin Med 2025; 20:53. [PMID: 40264171 PMCID: PMC12013188 DOI: 10.1186/s13020-025-01093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Helicobacter infection, which is the leading cause of gastritis and stomach cancer, has become common worldwide. Almost all Helicobacter-infected patients have chronic active gastritis, also known as Helicobacter-associated gastritis (HAG). However, the eradication rate of Helicobacter is decreasing due to the poor efficacy of current medications, which causes infection to recur, inflammation to persist, and stomach cancer to develop. Natural components have robust antibacterial activity and anti-inflammatory capacity, as confirmed by many studies of alternative natural medicines. PURPOSE This article aimed to conduct a comprehensive search and meta-analysis to evaluate the efficacy of anti-Helicobacter and anti-inflammatory activities of plant-derived extracts or compounds that can treat HAG in animal experiments. We intended to provide detailed preclinical-research foundation including plant and compound information, as well as the mechanisms by which these plant-derived substances inhibit the progression of Helicobacter infection, gastritis and neoplasms for future study. METHODS The systematic review is aligned with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and the protocol was registered in PROSPERO (CRD42024527889). An extensive search was performed across multiple databases, including PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), the Chinese Scientific Journal database (VIP), the Wanfang database, and the China biomedical literature service system (SinoMed), up until November 2023. Meta-analysis on Review Manager software (RevMan 5.4) estimating anti-Helicobacter and anti-inflammatory activity was performed. We used the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) risk of bias tool to evaluate the risk of bias of each study included. RESULTS Our study encompassed 61 researches, comprised 36 extracts and 37 compounds improving HAG by inhibiting Helicobacter infection, the inflammatory response, oxidative stress, and regulating apoptosis and proliferation. Sixteen families especially Asteraceae, Fabaceae and Rosaceae and nine classes including Terpenoids, Alkaloids, Phenols, and Flavonoids may be promising directions for valuable new drugs. The Meta-analyse demonstrated the plant-base substance treatments possess significant anti-Helicobacter and anti-inflammation activity comparing to control groups. The included plants and compounds confirmed that signaling pathways NF-κB, JAK2/STAT3, MAPK, TLR4/MyD88, PI3K/AKT, NLRP3/Caspase-1 and NRF2/HO-1 play a key role in the progression of HAG. CONCLUSION Plant-derived extracts or compounds actively improve HAG by modulating relevant mechanisms and signaling pathways, particularly through the anti-Helicobacter and inflammatory regulation ways. Further researches to apply these treatments in humans are needed, which will provide direction for the future development of therapeutic drugs to increase eradication rate and alleviate gastritis.
Collapse
Affiliation(s)
- Danni Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Wenlai Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei, Dongcheng District, Beijing, 100700, China
| | - Xiangyun Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiawang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Wei Ding
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Hongrui Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| | - Hongxia Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei, Dongcheng District, Beijing, 100700, China.
| | - Zhenhong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
2
|
Wu P, Zhang M, Kou Y, Liang S, Ni J, Huang Q, Shen Y. Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A. MLIFE 2025; 4:17-28. [PMID: 40026581 PMCID: PMC11868833 DOI: 10.1002/mlf2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
In Sulfolobales cells, transcription of the Ups (UV-inducible pili of Sulfolobus) and Ced (Crenarchaeal system for exchange of DNA) genes is highly induced by DNA damage, and the two systems play key roles in pili-mediated cell aggregation and chromosomal DNA import, respectively. Ups is composed of UpsA, UpsB, UpsE, and UpsF, while Ced is composed of CedA, CedA1, CedA2, and CedB. So far, how DNA is transported by these systems is far from clear. Here, we report three novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A, CedD (SiRe_1715) and CedE (SiRe_2100), paralogs of CedB and CedA, and UpsC (SiRe_1957), a paralog of UpsA/UpsB. We developed a DNA import and export assay method, by which we revealed that CedD, CedE, and UpsC are essential for DNA import, while CedE and UpsC are also involved in DNA export together with CedA1 and Ups. Microscopic analysis revealed that upsC is involved in cell aggregation like other Ups genes. In addition, we found that cedB and cedD co-occur in the Crenarchaeal genomes that lack virB4, an essential component of type IV secretion system. Interestingly, CedB and CedD share homology to different parts of VirB4 N-terminal domain and form stable homo-oligomers in vitro. Collectively, our results indicate that CedD, CedE, and UpsC are integral components of the Ced and Ups systems in Sulfolobales.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Mengqi Zhang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yanlu Kou
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Shikuan Liang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| |
Collapse
|
3
|
Elger W, Tegtmeyer N, Rohde M, Linz B, Hirsch C, Backert S. Cultivation and molecular characterization of viable Helicobacter pylori from the root canal of 170 deciduous teeth of children. Cell Commun Signal 2024; 22:578. [PMID: 39627817 PMCID: PMC11613870 DOI: 10.1186/s12964-024-01948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Helicobacter pylori is a persistent pathogen in the human stomach. However, the proposed transmission route via the oral cavity is not understood and under intense debate. While dozens of studies have shown by PCR that H. pylori DNA is frequently present in the oral cavity, data on the growth and characterization of viable H. pylori from this compartment are very scarce, and it is unclear whether the bacteria can survive in the oral cavity for longer time periods or even colonize it. METHODS Selective growth methods, scanning electron microscopy, urease assay, Western blotting, PCR, and gene sequencing were applied to identify and examine viable H. pylori in decayed milk teeth. RESULTS Here, we studied viable H. pylori in the plaque and root canals of 170 endodontically infected deciduous teeth that were extracted from 54 children. While H. pylori DNA was detected in several plaque and many root canal samples by PCR, live bacteria could only be cultivated from 28 root canals, but not from plaque. These 28 isolates have been identified as H. pylori by PCR and sequencing of vacA, cagA and htrA genes, phylogenetic analyses, protein expression of major H. pylori virulence factors, and by signal transduction events during infection of human cell lines. CONCLUSIONS Thus, the microaerobic environment in the root canals of endodontically infected teeth may represent a protected and transient reservoir for live H. pylori, especially in individuals with poor dental hygiene, which could serve as a potential source for re-infection of the stomach after antibiotic therapy or for transmission to other individuals.
Collapse
Affiliation(s)
- Wieland Elger
- Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Leipzig, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Hirsch
- Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Leipzig, Germany.
| | - Steffen Backert
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Li F, Si YT, Tang JW, Umar Z, Xiong XS, Wang JT, Yuan Q, Tay ACY, Chua EG, Zhang L, Marshall BJ, Yang WX, Gu B, Wang L. Rapid profiling of carcinogenic types of Helicobacter pylori infection via deep learning analysis of label-free SERS spectra of human serum. Comput Struct Biotechnol J 2024; 23:3379-3390. [PMID: 39329094 PMCID: PMC11424770 DOI: 10.1016/j.csbj.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
WHO classified Helicobacter pylori as a Group I carcinogen for gastric cancer as early as 1994. However, despite the high prevalence of H. pylori infection, only about 3 % of infected individuals eventually develop gastric cancer, with the highly virulent H. pylori strains expressing cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that H. pylori infection is divided into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA-). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic H. pylori infection holds significant implications for effectively guiding H. pylori eradication and gastric cancer prevention. In this study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I and Type II H. pylori infections. This method holds the potential to facilitate rapid screening of H. pylori infections with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric cancer incidence when used for guiding the eradication of H. pylori infections.
Collapse
Affiliation(s)
- Fen Li
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yu-Ting Si
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zeeshan Umar
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xue-Song Xiong
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jin-Ting Wang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Alfred Chin Yen Tay
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Eng Guan Chua
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Barry J. Marshall
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Xuan Yang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Sharafutdinov I, Harrer A, Müsken M, Rottner K, Sticht H, Täger C, Naumann M, Tegtmeyer N, Backert S. Cortactin-dependent control of Par1b-regulated epithelial cell polarity in Helicobacter infection. CELL INSIGHT 2024; 3:100161. [PMID: 38646547 PMCID: PMC11033139 DOI: 10.1016/j.cellin.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/23/2024]
Abstract
Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Täger
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| |
Collapse
|
6
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
7
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
8
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
9
|
Sokolova O, Maubach G, Naumann M. Helicobacter pylori regulates TIFA turnover in gastric epithelial cells. Eur J Cell Biol 2023; 102:151307. [PMID: 36965415 DOI: 10.1016/j.ejcb.2023.151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogen Helicobacter pylori induces a strong inflammatory response in gastric mucosa manifested by the recruitment of neutrophils and macrophages to the places of infection, and by changes in epithelial integrity and function. At the molecular level, this innate immune response is essentially dependent on the activation of NF-κB transcription factors regulating the expression of chemotactic factors, e.g., IL-8. Recently, it has been demonstrated that the NF-κB signaling pathway is triggered by the bacterial heptose metabolites, which activate the host ALPK1-TIFA axis. TIFA has been suggested to promote oligomerization and activity of the E3 ubiquitin ligase TRAF6, which further stimulates TAK1-IKK signaling. Here, we demonstrate that ALPK1-dependent TIFA activation in H. pylori-infected gastric epithelial cells is followed in time by a decline in TIFA levels, and that this process is impeded by inhibitors of the proteasomal and lysosomal degradation. According to our data, TRAF2, TRAF6, TAK1 or NEMO are not required for TIFA degradation. Additionally, H. pylori promotes the interaction of TIFA with free polyubiquitin as well as with optineurin, TAX1BP1 and LAMP1, which are known protein adaptors involved in intracellular trafficking to lysosomes.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ. Nat Commun 2023; 14:479. [PMID: 36717564 PMCID: PMC9886983 DOI: 10.1038/s41467-023-36218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
The transport of the CagA effector into gastric epithelial cells by the Cag Type IV secretion system (Cag T4SS) of Helicobacter pylori (H. pylori) is critical for pathogenesis. CagA is recruited to Cag T4SS by the Cagβ ATPase. CagZ, a unique protein in H. pylori, regulates Cagβ-mediated CagA transport, but the underlying mechanisms remain unclear. Here we report the crystal structure of the cytosolic region of Cagβ, showing a typical ring-like hexameric assembly. The central channel of the ring is narrow, suggesting that CagA must unfold for transport through the channel. Our structure of CagZ in complex with the all-alpha domain (AAD) of Cagβ shows that CagZ adopts an overall U-shape and tightly embraces Cagβ. This binding mode of CagZ is incompatible with the formation of the Cagβ hexamer essential for the ATPase activity. CagZ therefore inhibits Cagβ by trapping it in the monomeric state. Based on these findings, we propose a refined model for the transport of CagA by Cagβ.
Collapse
|
11
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
12
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
13
|
Freire de Melo F, Marques HS, Fellipe Bueno Lemos F, Silva Luz M, Rocha Pinheiro SL, de Carvalho LS, Souza CL, Oliveira MV. Role of nickel-regulated small RNA in modulation of Helicobacter pylori virulence factors. World J Clin Cases 2022; 10:11283-11291. [PMID: 36387830 PMCID: PMC9649571 DOI: 10.12998/wjcc.v10.i31.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects about half of the world's population. H. pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A (CagA). CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H. pylori infection. In this sense, small regulatory RNAs (sRNAs) are important macromolecules capable of inhibiting and activating gene expression. This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections. Recent discoveries have shown that nickel-regulated small RNA (NikS) is a post-transcriptional regulator of virulence properties of H. pylori, including the oncoprotein CagA. Notably, high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA. In addition, NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without. With that in mind, this minireview approaches, in an accessible way, the most important and current aspects about the role of NikS in the control of virulence factors of H. pylori and the potential clinical repercussions of this modulation.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Brazil
| | - Fabian Fellipe Bueno Lemos
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Lorena Sousa de Carvalho
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Cláudio Lima Souza
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Márcio Vasconcelos Oliveira
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
14
|
USP48 and A20 synergistically promote cell survival in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:461. [PMID: 35913642 PMCID: PMC9343311 DOI: 10.1007/s00018-022-04489-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.
Collapse
|
15
|
Wizenty J, Müllerke S, Kolesnichenko M, Heuberger J, Lin M, Fischer AS, Mollenkopf HJ, Berger H, Tacke F, Sigal M. Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis. EMBO J 2022; 41:e109996. [PMID: 35767364 PMCID: PMC9251867 DOI: 10.15252/embj.2021109996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R‐spondin 3 (Rspo3) signaling. This causes an expansion of the “gland base module,” which consists of self‐renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori‐induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R‐spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF‐κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4‐driven NF‐κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R‐spondin‐Lgr and NF‐κB signaling that links epithelial stem cell behavior and inflammatory responses to gland‐invading H. pylori.
Collapse
Affiliation(s)
- Jonas Wizenty
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefanie Müllerke
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Marina Kolesnichenko
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Heuberger
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Manqiang Lin
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Anne-Sophie Fischer
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| |
Collapse
|
16
|
Chia SPS, Kong SLY, Pang JKS, Soh BS. 3D Human Organoids: The Next "Viral" Model for the Molecular Basis of Infectious Diseases. Biomedicines 2022; 10:1541. [PMID: 35884846 PMCID: PMC9312734 DOI: 10.3390/biomedicines10071541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic has driven the scientific community to adopt an efficient and reliable model that could keep up with the infectious disease arms race. Coinciding with the pandemic, three dimensional (3D) human organoids technology has also gained traction in the field of infectious disease. An in vitro construct that can closely resemble the in vivo organ, organoid technology could bridge the gap between the traditional two-dimensional (2D) cell culture and animal models. By harnessing the multi-lineage characteristic of the organoid that allows for the recapitulation of the organotypic structure and functions, 3D human organoids have emerged as an essential tool in the field of infectious disease research. In this review, we will be providing a comparison between conventional systems and organoid models. We will also be highlighting how organoids played a role in modelling common infectious diseases and molecular mechanisms behind the pathogenesis of causative agents. Additionally, we present the limitations associated with the current organoid models and innovative strategies that could resolve these shortcomings.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Sharleen Li Ying Kong
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
17
|
Ray AK, Luis PB, Mishra SK, Barry DP, Asim M, Pandey A, Chaturvedi M, Gupta J, Gupta S, Mahant S, Das R, Kumar P, Shalimar, Wilson KT, Schneider C, Chaturvedi R. Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Front Cell Infect Microbiol 2021; 11:765842. [PMID: 35004346 PMCID: PMC8740292 DOI: 10.3389/fcimb.2021.765842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Saheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Paula B. Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | | | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shilpi Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Burns DL. Secretion of Pertussis Toxin from Bordetella pertussis. Toxins (Basel) 2021; 13:toxins13080574. [PMID: 34437445 PMCID: PMC8402538 DOI: 10.3390/toxins13080574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Production and secretion of pertussis toxin (PT) is essential for the virulence of Bordetella pertussis. Due to the large oligomeric structure of PT, transport of the toxin across bacterial membrane barriers represents a significant hurdle that the bacteria must overcome in order to maintain pathogenicity. During the secretion process, PT undergoes a two-step transport process. The first step involves transport of the individual polypeptide chains of PT across the inner membrane utilizing a generalized secretion pathway, most likely the bacterial Sec system. The second step involves the use of a specialized apparatus to transport the toxin across the outer membrane of the bacterial cell. This apparatus, which has been termed the Ptl transporter and which is unique to the PT secretion pathway, is a member of the type IV family of bacterial transporters. Here, the current understanding of the PT secretion process is reviewed including a description of the Ptl proteins that assemble to form the transporter, the general structure of type IV transporters, the known similarities and differences between canonical type IV substrate transport and Ptl-mediated transport of PT, as well as the known sequence of events in the assembly and secretion of PT.
Collapse
Affiliation(s)
- Drusilla L Burns
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
19
|
Maubach G, Lim MCC, Sokolova O, Backert S, Meyer TF, Naumann M. TIFA has dual functions in Helicobacter pylori-induced classical and alternative NF-κB pathways. EMBO Rep 2021; 22:e52878. [PMID: 34328245 PMCID: PMC8419686 DOI: 10.15252/embr.202152878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michelle C C Lim
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. World J Gastrointest Oncol 2021; 13:693-705. [PMID: 34322198 PMCID: PMC8299932 DOI: 10.4251/wjgo.v13.i7.693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Approximately 90% of new cases of noncardiac gastric cancer (GC) are related to Helicobacter pylori (H. pylori), and cytotoxin-associated gene A (CagA) is one of the main pathogenic factors. Recent studies have shown that the pharmacological effects of cryptotanshinone (CTS) can be used to treat a variety of tumors. However, the effects of CTS on H. pylori, especially CagA+ strain-induced gastric mucosal lesions, on the development of GC is unknown.
AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells, and determine if CagA+ H. pylori strains causes pathological changes in the gastric mucosa of mice.
METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8 (CCK-8) assay, and the abnormal growth, migration and invasion caused by CagA were detected by CCK-8 and transwell assays. After transfection with pSR-HA-CagA and treatment with CTS, proliferation and metastasis were evaluated by CCK-8 and transwell assays, respectively, and the expression of Src homology 2 (SH2) domain–containing phosphatase 2 (SHP2) and phosphorylated SHP2 (p-SHP2) was detected using western blotting in AGS cells. The enzyme-linked immunosorbent assay was used to determine the immunoglobulin G (IgG) level against CagA in patient serum. Mice were divided into four groups and administered H. pylori strains (CagA+ or CagA-) and CTS (or PBS) intragastrically, and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains. Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.
RESULTS CTS inhibited the growth of GC cells in dose- and time-dependent manners. Overexpression of CagA promoted the growth, migration, and invasion of GC cells. Importantly, we demonstrated that CTS significantly inhibited the CagA-induced abnormal proliferation, migration, and invasion of GC cells. Moreover, the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients. Additionally, CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells. CTS suppressed CagA+ H. pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA- H. pylori strain group.
CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro, and CagA+ H. pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.
Collapse
Affiliation(s)
- Zhang-Ming Chen
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Jie Hu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Yuan-Min Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wei He
- Department of Surgery, East District of First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei 230001, Anhui Province, China
| | - Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ting Huang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Song-Cheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Zhe Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China
| |
Collapse
|
21
|
Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Hatakeyama M. The role of Helicobacter pylori CagA oncoprotein in neoplastic transformation of gastric epithelial cells. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:119-144. [DOI: 10.1016/b978-0-323-85563-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Alam J, Sarkar A, Karmakar BC, Ganguly M, Paul S, Mukhopadhyay AK. Novel virulence factor dupA of Helicobacter pylori as an important risk determinant for disease manifestation: An overview. World J Gastroenterol 2020; 26:4739-4752. [PMID: 32921954 PMCID: PMC7459207 DOI: 10.3748/wjg.v26.i32.4739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a microaerophilic, Gram-negative, human gastric pathogen found usually in the mucous lining of stomach. It infects more than 50% of the world’s population and leads to gastroduodenal diseases. The outcome of disease depends on mainly three factors: Host genetics, environment and bacterial factors. Among these, bacterial virulence factors such as cagA, vacA are well known for their role in disease outcomes. However, based on the global epidemiological results, none of the bacterial virulence (gene) factors was found to be associated with particular diseases like duodenal ulcer (DU) in all populations. Hence, substantial importance has been provided for research in strain-specific genes outside the cag pathogenicity island, especially genes located within the plasticity regions. dupA found within the plasticity regions was first demonstrated in 2005 and was proposed for duodenal ulcer development and reduced risk of gastric cancer in certain geographical regions. Due to the discrepancies in report from different parts of the world in DU development related to H. pylori virulence factor, dupA became an interesting area of research in elucidating the role of this gene in the disease progression. In this review, we shed light on the detailed information available on the polymorphisms in dupA and their clinical relevance. We have critically appraised several pertinent studies on dupA and discussed their merits and shortcomings. This review also highlights dupA gene as an important biomarker for DU in certain populations.
Collapse
Affiliation(s)
- Jawed Alam
- Division of Infectious Diseases, Institute of Life Science, Bhubaneswar 751023, India
| | - Avijit Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Mou Ganguly
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Sangita Paul
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
26
|
Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. mBio 2020; 11:mBio.01296-20. [PMID: 32605987 PMCID: PMC7327173 DOI: 10.1128/mbio.01296-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.
Collapse
|
27
|
Yang JY, Kim P, Jeong SH, Lee SW, Myung YS, Baeg MK, Kim JB. The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2918. [PMID: 32340212 PMCID: PMC7215434 DOI: 10.3390/ijerph17082918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a primary etiologic factor in gastric diseases. Sulglycotide is a glycopeptide derived from pig duodenal mucin. Esterification of its carbohydrate chains with sulfate groups creates a potent gastroprotective agent used to treat various gastric diseases. We investigated the inhibitory effects of sulglycotide on adhesion and inflammation after H. pylori infection in human gastric adenocarcinoma cells (AGS cells). H. pylori reference strain 60190 (ATCC 49503) was cultured on Brucella agar supplemented with 10% bovine serum. Sulgylcotide-mediated growth inhibition of H. pylori was evaluated using the broth dilution method. Inhibition of H. pylori adhesion to AGS cells by sulglycotide was assessed using a urease assay. Effects of sulglycotide on the translocation of virulence factors was measured using western blot to detect cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) proteins. Inhibition of IL-8 secretion was measured using enzyme-linked immunosorbent assay (ELISA) to determine the effects of sulglycotide on inflammation. Sulglycotide did not inhibit the growth of H. pylori, however, after six and 12 hours of infection on AGS cells, H. pylori adhesion was significantly inhibited by approximately 60% by various concentrations of sulglycotide. Sulglycotide decreased H. pylori virulence factor (CagA and VacA) translocation to AGS cells and inhibited IL-8 secretion. Sulglycotide inhibited H. pylori adhesion and inflammation after infection of AGS cells in vitro. These results support the use of sulglycotide to treat H. pylori infections.
Collapse
Affiliation(s)
- Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea;
| | - Pumsoo Kim
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea; (P.K.); (Y.S.M.); (M.K.B.)
| | - Seok-Hoo Jeong
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea; (P.K.); (Y.S.M.); (M.K.B.)
| | | | - Yu Sik Myung
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea; (P.K.); (Y.S.M.); (M.K.B.)
| | - Myong Ki Baeg
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea; (P.K.); (Y.S.M.); (M.K.B.)
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea;
| |
Collapse
|
28
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
29
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
30
|
Xu J, Zhang Z, Chen Q, Yang L, Yin J. miR-146b Regulates Cell Proliferation and Apoptosis in Gastric Cancer by Targeting PTP1B. Dig Dis Sci 2020; 65:457-463. [PMID: 31441000 DOI: 10.1007/s10620-019-05771-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS The purpose of this study is to explore the inhibition or activation effects of microRNA-146 B on the expression of PTP1B in gastric cancer cells. METHODS The expressions of PTP1B and miR-146b in gastric cancer were detected by RT-qPCR. The effects of miR-146b on cell apoptosis and proliferation of gastric cancer were detected. The methods used in the detection process included Annexin V/PI dying method, colony formation assay, and MTT assay. The downstream target gene miR-146b was predicted and screened by bioinformatics and luciferase reporter assay. The mRNA and protein expressions of the target gene PTP1B miR-146b were determined using RT-qPCR and western blot. The expression of miR-146 B in mice was detected by the cells transfected with microRNA-146 B in vivo. RESULTS Compared with normal tissues, PTP1B was higher and miR-146b was lower in cancer cells. Over-expression of miR-146b can inhibit cell viability and increase the apoptosis rate. According to the luciferase reporter assay, PTP1B was the downstream target gene of miR-146b. The re-introduction of PTP1B reversed the growth inhibition and apoptosis of gastric cancer cells induced by miR-146b. From the mouse xenograft model, the over-expression of miR-146b inhibited the tumor growth and reduced the expression level of PTP1B. CONCLUSION miR-146b directly inhibits the expression of PTP1B and suppressed the growth and development of gastric cancer.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Oncology Surgery, People's Hospital of Qinghai Province, Xining City, 810007, Qinghai Province, China
| | - Zilong Zhang
- Department of Oncology Surgery, People's Hospital of Qinghai Province, Xining City, 810007, Qinghai Province, China
| | - Qing Chen
- Department of Orthopedic, The 991 Hospital of PLA, Nanjing City, 441011, Jiangsu Province, China
| | - Lin Yang
- Department of Immunity, Medical College of Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang City, 441053, Hubei Province, China
| | - Jiao Yin
- Department of Immunity, Medical College of Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangyang City, 441053, Hubei Province, China.
| |
Collapse
|
31
|
Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells. Infect Immun 2020; 88:IAI.00790-19. [PMID: 31712269 DOI: 10.1128/iai.00790-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the stomach in about half of the world's population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.
Collapse
|
32
|
Pachathundikandi SK, Tegtmeyer N, Arnold IC, Lind J, Neddermann M, Falkeis-Veits C, Chattopadhyay S, Brönstrup M, Tegge W, Hong M, Sticht H, Vieth M, Müller A, Backert S. T4SS-dependent TLR5 activation by Helicobacter pylori infection. Nat Commun 2019; 10:5717. [PMID: 31844047 PMCID: PMC6915727 DOI: 10.1038/s41467-019-13506-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor TLR5 recognizes a conserved domain, termed D1, that is present in flagellins of several pathogenic bacteria but not in Helicobacter pylori. Highly virulent H. pylori strains possess a type IV secretion system (T4SS) for delivery of virulence factors into gastric epithelial cells. Here, we show that one of the H. pylori T4SS components, protein CagL, can act as a flagellin-independent TLR5 activator. CagL contains a D1-like motif that mediates adherence to TLR5+ epithelial cells, TLR5 activation, and downstream signaling in vitro. TLR5 expression is associated with H. pylori infection and gastric lesions in human biopsies. Using Tlr5-knockout and wild-type mice, we show that TLR5 is important for efficient control of H. pylori infection. Our results indicate that CagL, by activating TLR5, may modulate immune responses to H. pylori. Toll-like receptor TLR5 recognizes a domain, D1, that is present in flagellins of several pathogenic bacteria but not in Helicobacter pylori. Here, the authors show that TLR5 can be activated independently of flagellin by a component of the H. pylori type IV secretion system that contains a D1-like motif.
Collapse
Affiliation(s)
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Judith Lind
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Neddermann
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Sujay Chattopadhyay
- JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Heinrich Sticht
- Institute of Biochemistry, Division of Bioinformatics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Vieth
- Institute for Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
33
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
34
|
Jang J, Ma SH, Ko KP, Choi BY, Yoo KY, Park SK. Hepatocyte Growth Factor in Blood and Gastric Cancer Risk: A Nested Case-Control Study. Cancer Epidemiol Biomarkers Prev 2019; 29:470-476. [PMID: 31740519 DOI: 10.1158/1055-9965.epi-19-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/17/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Potential of hepatocyte growth factor (HGF)-stimulating signaling pathways related to cytotoxin-associated gene A (CagA) to predict gastric cancer development has not been fully investigated. METHODS We conducted a nested case-control study consisting of 238 gastric cancer cases and 238 matched controls within the Korean Multicenter Cancer Cohort. Plasma HGF concentrations were measured with a human HGF ELISA. Odds ratios (OR) and 95% confidence intervals (CI) for gastric cancer development according to HGF level were calculated using conditional logistic regression model. RESULTS Sequential elevation of gastric cancer risk according to HGF level increase was observed (OR, 10.99; 95% CI, 4.91-24.62) for highest quartile HGF (≥364 pg/mL) versus lowest quartile HGF (<167 pg/mL). A significantly increased gastric cancer risk associated with high HGF level measured even 6 or more years prior to cancer diagnosis was also found. The group with both high risk of HGF and CagA-related genetic variants was associated with highest gastric cancer risk compared with the group with both low risk of HGF and genetic variants (P interaction = 0.05). Model performance using HGF and CagA-related genetic variants to discriminate gastric cancer was fair [area under the curve of receiver operating characteristic (AUC-ROC), 0.71; 95% CI, 0.64-0.78] and significantly higher than that of model not including those biomarkers. CONCLUSIONS Our results suggest HGF as a potential biomarker to predict gastric cancer development. IMPACT These findings suggest HGF as a useful biomarker to predict gastric cancer risk. Further research to assess gastric cancer risk based on useful biomarkers, including HGF, may contribute to primary prevention of gastric cancer.
Collapse
Affiliation(s)
- Jieun Jang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Seung Hyun Ma
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Bo Yul Choi
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,The Armed Forces Capital Hospital, Seongnam, Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
| |
Collapse
|
35
|
Activity and Functional Importance of Helicobacter pylori Virulence Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:35-56. [PMID: 31016624 DOI: 10.1007/5584_2019_358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed.
Collapse
|
36
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
37
|
Su T, Li F, Guan J, Liu L, Huang P, Wang Y, Qi X, Liu Z, Lu L, Wang D. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152968. [PMID: 31280140 DOI: 10.1016/j.phymed.2019.152968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Gastric cancer has a high morbidity and is a leading cause of cancer-related mortality worldwide. Helicobacter pylori (H. pylori) infection is commonly found in the early stage of gastric cancer pathogenesis, which induces chronic gastritis. Artemisinin (ART) and its derivatives (ARTS, artesunate and DHA, dihydroartemisinin), a new class of potent antimalarials, have been reported to exert both preventive and anti-gastric cancer effects. However, the underlying mechanisms of the chemopreventive effects of ART and its derivatives in H. pylori infection induced-gastric cancer are not fully elucidated. PURPOSE We investigated the effects of H. pylori infection in gastric cancer; and the preventive mechanisms of ART, ARTS and DHA. METHODS The H. pylori growth was determined by the broth macro-dilution method, and its adhesion to gastric cancer cells was evaluated by using the urease assay. The protein and mRNA levels, reactive oxygen species (ROS) production, as well as the production of inflammatory cytokines were evaluated by Western blot, real-time PCR, flow cytometry and ELISA, respectively. Moreover, an in vivo MNU (N-methyl-N-nitroso-urea) and H. pylori-induced gastric adenocarcinoma mouse model was established for the investigation of the cancer preventive effects of ART and its derivaties, and the underlying mechanisms of action. RESULTS ART, DHA and ARTS inhibited the growth of H. pylori and gastric cancer cells,suppressed H. pylori adhesion to the gastric cancer cells, and reduced the H. pylori-enhanced ROS production. Moreover, ART, DHA and ARTS significantly reduced tumor incidence, number of tumor nodules and tumor size in the mouse model. Among these three compounds, DHA exerted the most potent chemopreventive effect. Mechanistic studies showed that ART and its derivatives potently inhibited the NF-κB activation. CONCLUSION ART, DHA and ARTS have potent preventive effects in H. pylori-induced gastric carcinogenesis. These effects are, at least in part, attributed to the inhibition of NF-κB signaling pathway. Our findings provide a molecular justification of using ART and its derivatives for the prevention and treatment of gastric cancer.
Collapse
Key Words
- ARTS, artesunate
- Abbreviations: ART, artemisinin
- Artemisinin
- Artesunate
- CFU, colony forming units
- COX-2, cyclooxygenase-2
- DHA, dehydroartemisinin
- DMSO, dimethyl sulfoxide
- Dihydroartemisinin
- ELISA, enzyme-linked immunosorbent assay
- Gastric cancer
- Helicobacter pylori
- IARC, International Agency for Research on Cancer
- IL-8, interleukin-8
- MNU, N-methyl-N-nitroso-urea
- MOI, multiplicity of infection
- NF-κB signaling
- NF-κB, nuclear factor-κB
- PBS, phosphate buffer solution
- ROS, reactive oxygen species
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangyuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaji Guan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Lu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China.
| |
Collapse
|
38
|
Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations. Sci Rep 2019; 9:11794. [PMID: 31409845 PMCID: PMC6692382 DOI: 10.1038/s41598-019-48030-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori plays an essential role in the pathogenesis of gastritis, peptic ulcer disease, and gastric cancer. The serine protease HtrA, an important secreted virulence factor, disrupts the gastric epithelium, which enables H. pylori to transmigrate across the epithelium and inject the oncogenic CagA protein into host cells. The function of periplasmic HtrA for the H. pylori cell is unknown, mainly due to unavailability of the htrA mutants. In fact, htrA has been described as an essential gene in this bacterium. We have screened 100 worldwide H. pylori isolates and show that only in the N6 strain it was possible to delete htrA or mutate the htrA gene to produce proteolytically inactive HtrA. We have sequenced the wild-type and mutant chromosomes and we found that inactivation of htrA is associated with mutations in SecA – a component of the Sec translocon apparatus used to translocate proteins from the cytoplasm into the periplasm. The cooperation of SecA and HtrA has been already suggested in Streptococcus pneumonia, in which these two proteins co-localize. Hence, our results pinpointing a potential functional relationship between HtrA and the Sec translocon in H. pylori possibly indicate for the more general mechanism responsible to maintain bacterial periplasmic homeostasis.
Collapse
|
39
|
Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel) 2019; 11:cancers11081163. [PMID: 31412675 PMCID: PMC6721621 DOI: 10.3390/cancers11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen and carcinogen Helicobacter pylori(H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Andrés Julián Gutiérrez-Escobar
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany.
| |
Collapse
|
40
|
Sigal M, Reinés MDM, Müllerke S, Fischer C, Kapalczynska M, Berger H, Bakker ERM, Mollenkopf HJ, Rothenberg ME, Wiedenmann B, Sauer S, Meyer TF. R-spondin-3 induces secretory, antimicrobial Lgr5 + cells in the stomach. Nat Cell Biol 2019; 21:812-823. [PMID: 31235935 DOI: 10.1038/s41556-019-0339-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Wnt signalling stimulated by binding of R-spondin (Rspo) to Lgr-family members is crucial for gastrointestinal stem cell renewal. Infection of the stomach with Helicobacter pylori stimulates increased secretion of Rspo by myofibroblasts, leading to an increase in proliferation of Wnt-responsive Axin2+Lgr5- stem cells in the isthmus of the gastric gland and finally gastric gland hyperplasia. Basal Lgr5+ cells are also exposed to Rspo3, but their response remains unclear. Here, we demonstrate that-in contrast to its known mitogenic activity-Rspo3 induces differentiation of basal Lgr5+ cells into secretory cells that express and secrete antimicrobial factors, such as intelectin-1, into the lumen. The depletion of Lgr5+ cells or the knockout of Rspo3 in myofibroblasts leads to hypercolonization of the gastric glands with H. pylori, including the stem cell compartment. By contrast, systemic administration or overexpression of Rspo3 in the stroma clears H. pylori from the gastric glands. Thus, the Rspo3-Lgr5 axis simultaneously regulates both antimicrobial defence and mucosal regeneration.
Collapse
Affiliation(s)
- Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany.
| | - Maria Del Mar Reinés
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefanie Müllerke
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Cornelius Fischer
- Max Delbrück Center for Molecular Medicine (BIMSB) and BIH, Berlin, Germany
| | - Marta Kapalczynska
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elvira R M Bakker
- Department of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael E Rothenberg
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine (BIMSB) and BIH, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
41
|
Pfannkuch L, Hurwitz R, Traulsen J, Sigulla J, Poeschke M, Matzner L, Kosma P, Schmid M, Meyer TF. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J 2019; 33:9087-9099. [PMID: 31075211 PMCID: PMC6662969 DOI: 10.1096/fj.201802555r] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastric pathogen Helicobacter pylori activates the NF-κB pathway in human epithelial cells via the recently discovered α-kinase 1 TRAF-interacting protein with forkhead-associated domain (TIFA) axis. We and others showed that this pathway can be triggered by heptose 1,7-bisphosphate (HBP), an LPS intermediate produced in gram-negative bacteria that represents a new pathogen-associated molecular pattern (PAMP). Here, we report that our attempts to identify HBP in lysates of H. pylori revealed surprisingly low amounts, failing to explain NF-κB activation. Instead, we identified ADP-glycero-β-D-manno-heptose (ADP heptose), a derivative of HBP, as the predominant PAMP in lysates of H. pylori and other gram-negative bacteria. ADP heptose exhibits significantly higher activity than HBP, and cells specifically sensed the presence of the β-form, even when the compound was added extracellularly. The data lead us to conclude that ADP heptose not only constitutes the key PAMP responsible for H. pylori–induced NF-κB activation in epithelial cells, but it acts as a general gram-negative bacterial PAMP.—Pfannkuch, L., Hurwitz, R., Traulsen, J., Sigulla, J., Poeschke, M., Matzner, L., Kosma, P., Schmid, M., Meyer, T. F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori.
Collapse
Affiliation(s)
- Lennart Pfannkuch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Infectious Diseases and Pulmonary Medicine, Charité, University Hospital Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Robert Hurwitz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Traulsen
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Janine Sigulla
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marcella Poeschke
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Laura Matzner
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences-Vienna, Vienna, Austria
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
42
|
Wu H, Iwai N, Suzuki Y, Nakano T. Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori. Med Mol Morphol 2019; 52:226-234. [PMID: 31134430 DOI: 10.1007/s00795-019-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
43
|
Arya T, Oudouhou F, Casu B, Bessette B, Sygusch J, Baron C. Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagα from the Helicobacter pylori type IV secretion system. Sci Rep 2019; 9:6474. [PMID: 31019200 PMCID: PMC6482174 DOI: 10.1038/s41598-019-42876-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/05/2019] [Indexed: 01/16/2023] Open
Abstract
Type IV secretion systems are multiprotein complexes that mediate the translocation of macromolecules across the bacterial cell envelope. In Helicobacter pylori a type IV secretion system encoded by the cag pathogenicity island encodes 27 proteins and most are essential for virulence. We here present the identification and characterization of inhibitors of Cagα, a hexameric ATPase and member of the family of VirB11-like proteins that is essential for translocation of the CagA cytotoxin into mammalian cells. We conducted fragment-based screening using a differential scanning fluorimetry assay and identified 16 molecules that stabilize the protein suggesting that they bind Cagα. Several molecules affect binding of ADP and four of them inhibit the ATPase activity. Analysis of enzyme kinetics suggests that their mode of action is non-competitive, suggesting that they do not bind to the active site. Cross-linking suggests that the active molecules change protein conformation and gel filtration and transmission electron microscopy show that molecule 1G2 dissociates the Cagα hexamer. Addition of the molecule 1G2 inhibits the induction of interleukin-8 production in gastric cancer cells after co-incubation with H. pylori suggesting that it inhibits Cagα in vivo. Our results reveal a novel mechanism for the inhibition of the ATPase activity of VirB11-like proteins.
Collapse
Affiliation(s)
- Tarun Arya
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Flore Oudouhou
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Bastien Casu
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Benoit Bessette
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jurgen Sygusch
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
44
|
Neddermann M, Backert S. How many protein molecules are secreted by single
Helicobacter pylori
cells: Quantification of serine protease HtrA. Cell Microbiol 2019; 21:e13022. [DOI: 10.1111/cmi.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Matthias Neddermann
- Department of Biology, Division of MicrobiologyFriedrich Alexander University Erlangen Erlangen Germany
| | - Steffen Backert
- Department of Biology, Division of MicrobiologyFriedrich Alexander University Erlangen Erlangen Germany
| |
Collapse
|
45
|
Román-Román A, Martínez-Santos VI, Castañón-Sánchez CA, Albañil-Muñoz AJ, González-Mendoza P, Soto-Flores DG, Martínez-Carrillo DN, Fernández-Tilapa G. CagL polymorphisms D58/K59 are predominant in Helicobacter pylori strains isolated from Mexican patients with chronic gastritis. Gut Pathog 2019; 11:5. [PMID: 30805032 PMCID: PMC6373039 DOI: 10.1186/s13099-019-0286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Helicobacter pylori is a Gram-negative bacterium that colonizes the gastric mucosa in humans. One of the main virulence factors of H. pylori is the cag pathogenicity island (cagPAI), which encodes a type 4-secretion system (T4SS) and the cytotoxin CagA. Translocation of CagA through the T4SS triggers host-signaling pathways. One of the T4SS proteins is CagL, which is necessary for CagA translocation. CagL is a 26-kDa protein that contains a hypervariable motif, which spans residues 58 to 62. Several polymorphisms in this region have been associated with different disease outcomes, e.g. in Mexico, N58 is associated with a higher risk of gastric cancer. The aim of this work is to analyze the sequence of the hypervariable motif (residues 58 to 62) of clinical isolates from Mexican patients with chronic gastritis, and to correlate these polymorphisms with the vacA genotype. Results Of the 164 biopsies analyzed, only 30.5% (50/164) were positive for H. pylori. Thirty-six of the 50 clinical isolates (72%) were cagA positive, and 40 (80%) had the most virulent vacA genotype (s1/m1). Of the cagA positive strains, 94.4% were vacA s1/m1. All the cagA+ strains contained the cagL gene. The most prevalent sequence in the polymorphic region (residues 58–62) was DKMGE (75.8%, 25/33), followed by NKMGQ and NEIGQ (6.1%, 2/33), and DEIGQ, NKMGE, DKIGE, and DKIGK (3%, 1/33). Regarding polymorphisms in positions 58 and 59, the most common were D58/K59 (81.8%, 27/33), followed by N58/K59 (9.1%, 3/33), and D58/E59 (3%, 1/33). Only two isolates (6.1%) contained residues N58/E59, which correspond to those found in H. pylori strain ATCC 26695. 92.6% of the clinical isolates having polymorphism D58/K59 had the genotype vacA s1/m1, considered to be the most virulent, while 7.4% had the genotypes vacA s1/m2 and s2/m2. Conclusions In Mexican patients, CagL polymorphisms D58, K59, M60, E62, K122, and I134 are more common in patients with chronic gastritis.
Collapse
Affiliation(s)
- Adolfo Román-Román
- 1Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| | - Verónica I Martínez-Santos
- 2Universidad Autónoma de Guerrero, Av. Javier Méndez Aponte No. 1, Fracc. 10, Col. Servidor Agrario, C.P. 39070 Chilpancingo, Guerrero Mexico
| | - Carlos A Castañón-Sánchez
- Hospital Regional de Alta Especialidad de Oaxaca, Aldama s/n, Col. Centro, C.P. 71256 San Bartolo Coyotepec, Oaxaca Mexico
| | - Alan J Albañil-Muñoz
- 4Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| | - Paola González-Mendoza
- 4Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| | - Diana G Soto-Flores
- 4Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| | - Dinorah N Martínez-Carrillo
- 4Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| | - Gloria Fernández-Tilapa
- 4Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur., C.P. 39090 Chilpancingo, Guerrero Mexico
| |
Collapse
|
46
|
Sugiyama N, Miyake S, Lin MH, Wakabayashi M, Marusawa H, Nishiumi S, Yoshida M, Ishihama Y. Comparative proteomics of Helicobacter pylori strains reveals geographical features rather than genomic variations. Genes Cells 2019; 24:139-150. [PMID: 30548729 DOI: 10.1111/gtc.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori, a pathogen of various gastric diseases, has many genome sequence variants. Thus, the pathogenesis and infection mechanisms of the H. pylori-driven gastric diseases have not been elucidated. Here, we carried out a large-scale proteome analysis to profile the heterogeneity of the proteome expression of 7 H. pylori strains by using an LC/MS/MS-based proteomics approach combined with a customized database consisting of nonredundant tryptic peptide sequences derived from full genome sequences of 52 H. pylori strains. The nonredundant peptide database enabled us to identify more peptides in the database search of MS/MS data compared with a simply merged protein database. Using this approach, we carried out proteome analysis of genome-unknown strains of H. pylori at as large a scale as genome-known ones. Clustering of the H. pylori strains using proteome profiling slightly differed from the genome profiling and more clearly divided the strains into two groups based on the isolated area. Furthermore, we identified phosphorylated proteins and sites of the H. pylori strains and obtained the phosphorylation motifs located in the N-terminus that are commonly observed in bacteria.
Collapse
Affiliation(s)
- Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Satomi Miyake
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Miao-Hsia Lin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Wakabayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,AMED-CREST, AMED, Kobe, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Hatakeyama M. Malignant Helicobacter pylori-Associated Diseases: Gastric Cancer and MALT Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:135-149. [DOI: 10.1007/5584_2019_363] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Ying L, Ferrero RL. Role of NOD1 and ALPK1/TIFA Signalling in Innate Immunity Against Helicobacter pylori Infection. Curr Top Microbiol Immunol 2019; 421:159-177. [PMID: 31123889 DOI: 10.1007/978-3-030-15138-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori interacts intimately with gastric epithelial cells to induce inflammatory responses that are a hallmark of the infection. This inflammation is a critical precursor to the development of peptic ulcer disease and gastric cancer. A major driver of this inflammation is a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI), present in a subpopulation of more virulent H. pylori strains. The cagPAI T4SS specifically activates signalling pathways in gastric epithelial cells that converge on the transcription factor, nuclear factor-κB (NF-κB), which in turn upregulates key immune and inflammatory genes, resulting in various host responses. It is now clear that H. pylori possesses several mechanisms to activate NF-κB in gastric epithelial cells and, moreover, that multiple signalling pathways are involved in these responses. Two of the dominant signalling pathways implicated in NF-κB-dependent responses in epithelial cells are nucleotide-binding oligomerisation domain 1 (NOD1) and a newly described pathway involving alpha-kinase 1 (ALPK1) and tumour necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA). Although the relative roles of these two pathways in regulating NF-κB-dependent responses still need to be clearly defined, it is likely that they work cooperatively and non-redundantly. This chapter will give an overview of the various mechanisms and pathways involved in H. pylori induction of NF-κB-dependent responses in gastric epithelial cells, including a 'state-of-the-art' review on the respective roles of NOD1 and ALPK1/TIFA pathways in these responses.
Collapse
Affiliation(s)
- Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.
- Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
49
|
Dyer V, Brüggemann H, Sörensen M, Kühl AA, Hoffman K, Brinkmann V, Reines MDM, Zimmerman S, Meyer TF, Koch M. Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns. Mol Microbiol 2018; 110:761-776. [PMID: 30230643 DOI: 10.1111/mmi.14123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
Abstract
The human gastric pathogen Helicobacter pylori occurs in two basic variants, either exhibiting a functional cagPAI-encoded type-4-secretion-system (T4SS) or not. Only a few cagPAI-positive strains have been successfully adapted for long-term infection of mice, including the pre-mouse Sydney strain 1 (PMSS1). Here we confirm that PMSS1 induces gastric inflammation and neutrophil infiltration in mice, progressing to intestinal metaplasia. Complete genome analysis of PMSS1 revealed 1,423 coding sequences, encompassing the cagPAI gene cluster and, unusually, the location of the cytotoxin-associated gene A (cagA) approximately 15 kb downstream of the island. PMSS1 harbours three genetically exchangeable loci that are occupied by the hopQ coding sequences. HopQ represents a critical co-factor required for the translocation of CagA into the host cell and activation of NF-κB via the T4SS. Long-term colonisation of mice led to an impairment of cagPAI functionality. One of the bacterial clones re-isolated at four months post-infection revealed a mutation in the cagPAI gene cagW, resulting in a frame shift mutation, which prevented CagA translocation, possibly due to an impairment of T4SS function. Rescue of the mutant cagW re-established CagA translocation. Our data reveal intriguing insights into the adaptive abilities of PMSS1, suggesting functional modulation of the H. pylori cagPAI virulence attribute.
Collapse
Affiliation(s)
- Victoria Dyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
| | - Meike Sörensen
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Anja A Kühl
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Campus Benjamin Franklin, Charité, Berlin, 12200, Germany
| | - Kirstin Hoffman
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Maria Del Mar Reines
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Stephanie Zimmerman
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| | - Manuel Koch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, 10117, Germany
| |
Collapse
|
50
|
Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 2018; 29:151-162. [DOI: 10.1093/glycob/cwy095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.
Collapse
Affiliation(s)
- Fang-Yen Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|