1
|
Abrate C, Canale FP, Bossio SN, Tosello Boari J, Ramello MC, Nuñez N, Richer W, Sedlik C, Denizeau J, Vincent-Salomon A, Borcoman E, Del Castillo A, Gruppi A, Acosta Rodríguez EV, Piaggio E, Montes CL. CD8 + T cells in breast cancer tumors and draining lymph nodes: PD-1 levels, effector functions and prognostic relevance. Oncoimmunology 2025; 14:2502354. [PMID: 40351118 PMCID: PMC12077459 DOI: 10.1080/2162402x.2025.2502354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/07/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
CD8+ T cells shape the antitumor immune response. Here, we evaluated CD8+ T cells expressing different levels of PD-1, their functional status, and distribution in different tissues of luminal breast cancer (BC) patients. We characterized the exhaustion stages of CD8+ T cells in tumors, juxtatumoral tissues (JTs), and tumor-draining lymph nodes (TDLNs). Terminal exhausted CD8+ T cells (PD-1High CD8+) were predominant in tumors and nearly absent in other tissues. However, in all tissues evaluated, most CD8+ T cells exhibited a pre-exhausted phenotype (PD-1Int CD8+) or did not express PD-1. PD-1High and PD-1Int CD8+ T cells from tumors and JTs presented central and effector memory phenotypes, while in TDLNs were primarily central memory. TCR-β sequencing revealed higher clonality among CD8+ T cells from tumor than TDLNs, with tumor-enriched clones also detected in TDLNs. Analysis of scRNA-seq datasets from tumors and JTs of colorectal and non-small cell lung cancer patients, identified a CD8+ terminal exhaustion and a CD8+ pre-exhausted signatures. High expression of exhaustion-associated genes in BC tumors correlated with improved overall survival. Overall, PD-1 expression effectively distinguishes exhaustion stages in CD8+ T cells. PD-1Int cells found in tumors, JTs, and TDLNs represent a promising therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Carolina Abrate
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Fernando P. Canale
- Inflammation Research Lab, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabrina N. Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Jimena Tosello Boari
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Nicolas Nuñez
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jordan Denizeau
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Andres Del Castillo
- Departamento de Mastología y Ginecología – Hospital Rawson, Polo Hospitalario, Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eliane Piaggio
- INSERM U932 Immunity and Cancer, Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
2
|
Ciavattone NG, Bevoor A, Farfel A, Rehman A, Ho KKY, Rock EC, Chen YC, Luker KE, Humphries BA, Luker GD. Inhibiting CXCR4 reduces immunosuppressive effects of myeloid cells in breast cancer immunotherapy. Sci Rep 2025; 15:5204. [PMID: 39939722 PMCID: PMC11822021 DOI: 10.1038/s41598-025-89882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/14/2025] Open
Abstract
Patients with triple negative breast cancer (TNBC) show only modest response rates to immune checkpoint inhibitor immunotherapy, motivating ongoing efforts to identify approaches to boost efficacy. Using an immunocompetent mouse model of TNBC, we investigated combination therapy with an anti-PD-1 immunotherapy antibody plus balixafortide, a cyclic peptide inhibitor of CXCR4. Cell-based assays demonstrated that balixafortide functions as an inverse agonist, establishing a mode of action distinct from most compounds targeting CXCR4. Combination anti-PD-1 plus balixafortide significantly reduced growth of orthotopic tumors and extended overall survival relative to single agent therapy or vehicle. Adding balixafortide to anti-PD-1 increased numbers of tertiary lymphoid structures, a marker of local tumor immune responses associated with favorable response to immunotherapy in TNBC. Single cell RNA sequencing revealed that combination anti-PD-1 plus balixafortide reduced T cell exhaustion and increased markers of effector T cell activity. Combination therapy also reduced signatures of immunosuppressive myeloid derived suppressor cells (MDSCs) in tumors. MDSCs isolated from mice treated with anti-PD-1 plus balixafortide showed reduced inhibition of T cell proliferation following ex vivo stimulation. These studies demonstrate that combining inhibition of CXCR4 with anti-PD-1 to enhances responses to checkpoint inhibitor immunotherapy in TNBC, supporting future clinical trials.
Collapse
Affiliation(s)
- Nicholas G Ciavattone
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Avinash Bevoor
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Alex Farfel
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Aasia Rehman
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Kenneth K Y Ho
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Edwin C Rock
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Brock A Humphries
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA.
- Department of Computational and Systems Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Gary D Luker
- Department of Radiology, Center for Molecular Imaging, 109 Zina Pitcher Place, A524 BSRB, Ann Arbor, MI, 48109-2200, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Wan Z, Cui M, Yang J, Liao D, Chen J, Li F, Xiang Y, Cui Z, Yang Y. Prognostic significance of programmed cell death 1 expression on CD8+T cells in various cancers: a systematic review and meta-analysis. Front Oncol 2025; 14:1531219. [PMID: 39876901 PMCID: PMC11772205 DOI: 10.3389/fonc.2024.1531219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background Increased PD-1 expression on CD8+ T cells is considered as a hallmark for T-cell exhaustion, and is thought to be related to the prognosis of cancer patients. However, discrepant results have made it difficult to apply PD-1+CD8+T cells and tumor prognosis to clinical practice. Therefore, we conducted a meta-analysis to evaluate its prognostic value in human cancers. Methods PRISMA reporting guidelines were strictly followed for conducting the current meta-analysis. The PubMed, Web of Science, Embase databases were searched from inception to November 2024. The pooled Hazard Ratio (HR) along with 95% confidence intervals (CIs) of each article were combined for the associations of PD-1+CD8+ T cells with overall survival (OS), progression- free survival (PFS) and disease-free survival(DFS). Subgroup analyses were performed for area, specimen type, cancer type, treatment, detected method and cancer stage. Results A total of 20 studies (23 cohorts, 3086 cancer patients) were included in our study. The expression PD-1+CD8+ T cells in cancer patients tended to predict poor overall survival (OS) (HR: 1.379, 95%CI: 1.084-1.753, p= 0.009), and unfavorable disease-free survival(DFS) (HR: 1.468, 95%CI: 0.931-2.316, p=0.099), though it did not reach statistical significance. Begg's and Egger's test demonstrated that no obvious publication bias was exist. Conclusions High PD-1 expression on CD8+ T cells is associated with worse survival outcomes, which can be potentially used as a prognostic marker of malignant tumor.
Collapse
Affiliation(s)
- Zhiyong Wan
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Meng Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Jia Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Dan Liao
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Junliang Chen
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Fanmin Li
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Yin Xiang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Yang Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| |
Collapse
|
4
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
5
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
6
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
7
|
Ciavattone NG, Guan N, Farfel A, Stauff J, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Evaluating immunotherapeutic outcomes in triple-negative breast cancer with a cholesterol radiotracer in mice. JCI Insight 2024; 9:e175320. [PMID: 38502228 PMCID: PMC11141879 DOI: 10.1172/jci.insight.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary D Luker
- Department of Radiology, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Tan J, Egelston CA, Guo W, Stark JM, Lee PP. STING signalling compensates for low tumour mutation burden to drive anti-tumour immunity. EBioMedicine 2024; 101:105035. [PMID: 38401418 PMCID: PMC10904200 DOI: 10.1016/j.ebiom.2024.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND While mutation-derived neoantigens are well recognized in generating anti-tumour T cell response, increasing evidences highlight the complex association between tumour mutation burden (TMB) and tumour infiltrating lymphocytes (TILs). The exploration of non-TMB determinants of active immune response could improve the prognosis prediction and provide guidance for current immunotherapy. METHODS The transcriptomic and whole exome sequence data in The Cancer Genome Atlas were used to examine the relationship between TMB and exhausted CD8+ T cells (Tex), as an indicator of tumour antigen-specific T cells across nine major cancer types. Computational clustering analysis was performed on 4510 tumours to identify different immune profiles. NanoString gene expression analysis and single cell RNA-seq analysis using fresh human breast cancer were performed for finding validation. FINDINGS TMB was found to be poorly correlated with active immune response in various cancer types. Patient clustering analysis revealed a group of tumours with abundant Tex but low TMB. In those tumours, we observed significantly higher expression of the stimulator of interferon genes (STING) signalling. Dendritic cells, particularly those of BATF3+ lineage, were also found to be essential for accumulation of Tex within tumours. Mechanistically, loss of genomic and cellular integrity, marked by decreased DNA damage repair, defective replication stress response, and increased apoptosis were shown to drive STING activation. INTERPRETATION These results highlight that TMB alone does not fully predict tumour immune profiles, with STING signalling compensating for low TMB in non-hypermutated tumours to enhance anti-tumour immunity. Translating these results, STING agonists may benefit patients with non-hypermutated tumours. STING activation may serve as an additional biomarker to predict response to immune checkpoint blockades alongside TMB. Our research also unravelled the interplay between genomic instability and STING activation, informing potential combined chemotherapy targeting the axis of genomic integrity and immunotherapy. FUNDING City of Hope Christopher Family Endowed Innovation Fund for Alzheimer's Disease and Breast Cancer Research in honor of Vineta Christopher; Breast Cancer Alliance Early Career Investigator Award; National Cancer Institute of the National Institutes of Health under award number R01CA256989 and R01CA240392.
Collapse
Affiliation(s)
- Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
Lin L, Li H, Wang X, Wang Z, Su G, Zhou J, Sun S, Ma X, Chen Y, You C, Gu Y. Components of the tumor immune microenvironment based on m-IHC correlate with prognosis and subtype of triple-negative breast cancer. Cancer Med 2023; 12:21639-21650. [PMID: 38059408 PMCID: PMC10757132 DOI: 10.1002/cam4.6718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/26/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND AND AIM The spatial distribution and interactions of cells in the tumor immune microenvironment (TIME) might be related to the different responses of triple-negative breast cancer (TNBC) to immunomodulators. The potential of multiplex IHC (m-IHC) in evaluating the TIME has been reported, but the efficacy is insufficient. We aimed to research whether m-IHC results could be used to reflect the TIME, and thus to predict prognosis and complement the TNBC subtyping system. METHODS The clinical, imaging, and prognosis data for 86 TNBC patients were retrospectively reviewed. CD3, CD4, CD8, Foxp3, PD-L1, and Pan-CK markers were stained by m-IHC. Particular cell spatial distributions and interactions in the TIME were evaluated with the HALO multispectral analysis platform. Then, we calculated the prognostic value of components of the TIME and their correlations with TNBC transcriptomic subtypes and MRI radiomic features reflecting TNBC subtypes. RESULTS The components of the TIME score were established by m-IHC and demonstrated positive prognostic value for TNBC (p = 0.0047, 0.039, <0.0001 for DMFS, RFS, and OS). The score was calculated from several indicators, including Treg% in the tumor core (TC) or stromal area (SA), PD-L1+ cell% in the SA, CD3 + cell% in the TC, and PD-L1+ /CD8+ cells in the invasive margin and SA. According to the TNBC subtyping system, a few TIME indicators were significantly different in different subtypes and significantly correlated with MRI radiomic features reflecting TNBC subtypes. CONCLUSION We demonstrated that the m-IHC-based quantitative score and indicators related to the spatial distribution and interactions of cells in the TIME can aid in the accurate diagnosis of TNBC in terms of prognosis and classification.
Collapse
Affiliation(s)
- Luyi Lin
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Haiming Li
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zezhou Wang
- Department of Cancer PreventionFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Municipal Hospital Oncological Specialist AllianceShanghaiChina
| | - Guanhua Su
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Department of Breast Surgery, Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
| | - Jiayin Zhou
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shiyun Sun
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xiaowen Ma
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yan Chen
- Division of Cancer and Stem CellSchool of Medicine at University of NottinghamNottinghamUK
| | - Chao You
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yajia Gu
- Department of RadiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Yang J, Qiu L, Wang X, Chen X, Cao P, Yang Z, Wen Q. Liquid biopsy biomarkers to guide immunotherapy in breast cancer. Front Immunol 2023; 14:1303491. [PMID: 38077355 PMCID: PMC10701691 DOI: 10.3389/fimmu.2023.1303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy has emerged as a promising treatment strategy for breast cancer (BC). However, current reliance on immunohistochemical (IHC) detection of PD-L1 expression alone has limited predictive capability, resulting in suboptimal efficacy of ICIs for some BC patients. Hence, developing novel predictive biomarkers is indispensable to enhance patient selection for immunotherapy. In this context, utilizing liquid biopsy (LB) can provide supplementary or alternative value to PD-L1 IHC testing for identifying patients most likely to benefit from immunotherapy and exhibit favorable responses. This review discusses the predictive and prognostic value of LB in breast cancer immunotherapy, as well as its limitations and future directions. We aim to promote the individualization and precision of immunotherapy in BC by elucidating the role of LB in clinical practice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Biological Science, Vanderbilt University, Nashville, TN, United States
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Human Resource, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingdong Cao
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Ciavattone NG, Guan J, Farfel A, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Predicting efficacy of immunotherapy in mice with triple negative breast cancer using a cholesterol PET radiotracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560577. [PMID: 37873149 PMCID: PMC10592945 DOI: 10.1101/2023.10.02.560577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.
Collapse
|
12
|
Watson J, Wang T, Ho KL, Feng Y, Mahawan T, Dobbin KK, Zhao S. Human basal-like breast cancer is represented by one of the two mammary tumor subtypes in dogs. Breast Cancer Res 2023; 25:114. [PMID: 37789381 PMCID: PMC10546663 DOI: 10.1186/s13058-023-01705-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND About 20% of breast cancers in humans are basal-like, a subtype that is often triple-negative and difficult to treat. An effective translational model for basal-like breast cancer is currently lacking and urgently needed. To determine whether spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. METHODS We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We identified feature genes for human BLBC and luminal A subtypes via machine learning and used these genes to repeat canine-alone and cross-species tumor classifications. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. RESULTS Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 and feature gene classifications, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched in histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors and with the expression of T cell exhaustion markers (e.g., PDCD1) in ER-PR+ canine tumors. CONCLUSIONS We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall and thus could serve as a vital translational model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.
Collapse
Affiliation(s)
- Joshua Watson
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Kun-Lin Ho
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Yuan Feng
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Tanakamol Mahawan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kevin K Dobbin
- Department of Biostatistics, University of Georgia, Athens, GA, 30602, USA
| | - Shaying Zhao
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA.
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Watson J, Wang T, Ho KL, Feng Y, Dobbin KK, Zhao S. Human basal-like breast cancer is represented by one of the two mammary tumor subtypes in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530622. [PMID: 37034591 PMCID: PMC10081165 DOI: 10.1101/2023.03.02.530622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background About 20% of breast cancers in humans are basal-like, a subtype that is often triple negative and difficult to treat. An effective translational model for basal-like breast cancer (BLBC) is currently lacking and urgently needed. To determine if spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. Methods We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. Results Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 classification, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors, and with the expression of T cell exhaustion markers (e.g., PDCD1 ) in ER-PR+ canine tumors. Conclusions We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall, and thus could serve as a vital spontaneous animal model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.
Collapse
Affiliation(s)
- Joshua Watson
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Kun-Lin Ho
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Yuan Feng
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Kevin K Dobbin
- Department of Biostatistics, University of Georgia, Athens, GA 30602, USA
| | - Shaying Zhao
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Pomatto-Watson LCD, Bodogai M, Carpenter M, Chowdhury D, Krishna P, Ng S, Bosompra O, Kato J, Wong S, Reyes-Sepulveda C, Bernier M, Price NL, Biragyn A, de Cabo R. Replenishment of myeloid-derived suppressor cells (MDSCs) overrides CR-mediated protection against tumor growth in a murine model of triple-negative breast cancer. GeroScience 2022; 44:2471-2490. [PMID: 35996062 PMCID: PMC9768076 DOI: 10.1007/s11357-022-00635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) is the leading non-pharmacological intervention to delay induced and spontaneous tumors in pre-clinical models. These effects of CR are largely attributed to canonical inhibition of pro-growth pathways. However, our recent data suggest that CR impairs primary tumor growth and cancer progression in the murine 4T1 model of triple negative breast cancer (TNBC), at least in part, through reduced frequency of the myeloid-derived suppressor cells (MDSC). In the present study, we sought to determine whether injection of excess MDSCs could block regression in 4T1 tumor growth and metastatic spread in BALB/cJ female mice undergoing daily CR. Our findings show that MDSC injection impeded CR-mediated protection against tumor growth without increasing lung metastatic burden. Overall, these results reveal that CR can slow cancer progression by affecting immune suppressive cells.Impact statement: Inoculation of MDSCs from donor mice effectively impedes the ability of calorie restriction to protect against primary tumor growth without impacting lung metastatic burden in recipient animals.
Collapse
Affiliation(s)
- Laura C D Pomatto-Watson
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Melissa Carpenter
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dolly Chowdhury
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Priya Krishna
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sandy Ng
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Oye Bosompra
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah Wong
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Reyes-Sepulveda
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Wang D, Fang J, Wen S, Li Q, Wang J, Yang L, Dai W, Lu H, Guo J, Shan Z, Xie W, Liu X, Wen L, Shen J, Wang A, Chen Q, Wang Z. A comprehensive profile of TCF1+ progenitor and TCF1− terminally exhausted PD-1+CD8+ T cells in head and neck squamous cell carcinoma: implications for prognosis and immunotherapy. Int J Oral Sci 2022; 14:8. [PMID: 35153298 PMCID: PMC8841504 DOI: 10.1038/s41368-022-00160-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
The heterogeneity of exhausted T cells (Tex) is a critical determinant of immune checkpoint blockade therapy efficacy. However, few studies have explored exhausted T cell subpopulations in human cancers. In the present study, we examined samples from two cohorts of 175 patients with head and neck squamous cell cancer (HNSCC) by multiplex immunohistochemistry (mIHC) to investigate two subsets of Tex, CD8+PD1+TCF1+ progenitor exhausted T cells (TCF1+Texprog) and CD8+PD1+TCF1− terminally exhausted T cells (TCF1−Texterm). Moreover, fresh tumor samples from 34 patients with HNSCC were examined by flow cytometry and immunohistochemistry to further investigate their properties and cytotoxic capabilities and their correlation with regulatory T cells (Tregs) in the tumor immune microenvironment (TIME). mIHC and flow cytometry analysis showed that TCF1−Texterm represented a greater proportion of CD8+PD1+Tex than TCF1+Texprog in most patients. TCF1+Texprog produced abundant TNFα, while TCF1−Texterm expressed higher levels of CD103, TIM-3, CTLA-4, and TIGIT. TCF1−Texterm exhibited a polyfunctional TNFα+GZMB+IFNγ+ phenotype; and were associated with better overall survival and recurrence-free survival. The results also indicated that larger proportions of TCF1−Texterm were accompanied by an increase in the proportion of Tregs. Therefore, it was concluded that TCF1−Texterm was the major CD8+PD1+Tex subset in the HNSCC TIME and that these cells favor patient survival. A high proportion of TCF1−Texterm was associated with greater Treg abundance.
Collapse
|
16
|
Qiu D, Zhang G, Yan X, Xiao X, Ma X, Lin S, Wu J, Li X, Wang W, Liu J, Ma Y, Ma M. Prospects of Immunotherapy for Triple-Negative Breast Cancer. Front Oncol 2022; 11:797092. [PMID: 35111680 PMCID: PMC8801574 DOI: 10.3389/fonc.2021.797092] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
In the classification and typing of breast cancer, triple-negative breast cancer (TNBC) is one type of refractory breast cancer, while chemotherapy stays in the traditional treatment methods. However, the impact of chemotherapy is short-lived and may lead to recurrence due to incomplete killing of tumor cells. The occurrence, development, and relapse of breast cancer are relevant to T cell dysfunction, multiplied expression of related immune checkpoint molecules (ICIs) such as programmed death receptor 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) produce immunosuppressive effect. Immunotherapy (namely, immune checkpoint inhibitors, adoptive cellular immunotherapy, CAR-T immunotherapy and some potential treatments) provides new hope in TNBC. This review focuses on the new immune strategies of TNBC patients.
Collapse
Affiliation(s)
- Dan Qiu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing of Jinan University, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinqin Xiao
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyi Ma
- School Public Health, Southern Medical University (No: 3210090112), Guangzhou, China
| | - Shujun Lin
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Jieyan Wu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyuan Li
- School of Medicine, Jinan University, Guangzhou, China
| | - Wandi Wang
- School of Medicine, Jinan University, Guangzhou, China
| | - Junchen Liu
- School of Medicine, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Yang Z, Deng Y, Cheng J, Wei S, Luo H, Liu L. Tumor-Infiltrating PD-1 hiCD8 +-T-Cell Signature as an Effective Biomarker for Immune Checkpoint Inhibitor Therapy Response Across Multiple Cancers. Front Oncol 2021; 11:695006. [PMID: 34604032 PMCID: PMC8479164 DOI: 10.3389/fonc.2021.695006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Stratification of patients who could benefit from immune checkpoint inhibitor (ICI) therapy is of much importance. PD-1hiCD8+ T cells represent a newly identified and effective biomarker for ICI therapy response biomarker in lung cancer. Accurately quantifying these T cells using commonly available RNA sequencing (RNA-seq) data may extend their applications to more cancer types. Method We built a transcriptome signature of PD-1hiCD8+ T cells from bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data of tumor-infiltrating immune cells. The signature was validated by flow cytometry and in independent datasets. The clinical applications of the signature were explored in non-small-cell lung cancer, melanoma, gastric cancer, urothelial cancer, and a mouse model of breast cancer samples treated with ICI, and systematically evaluated across 21 cancer types in The Cancer Genome Atlas (TCGA). Its associations with other biomarkers were also determined. Results Signature scores could be used to identify the PD-1hiCD8+ T subset and were correlated with the fraction of PD-1hiCD8+ T cells in tumor tissue (Pearson correlation, R=0.76, p=0.0004). Furthermore, in the scRNA-seq dataset, we confirmed the capability of PD-1hiCD8+ T cells to secrete CXCL13, as well as their interactions with other immune cells. In 581 clinical samples and 204 mouse models treated with ICIs, high signature scores were associated with increased survival, and the signature achieved area under the receiver operating characteristic curve scores of 0.755 (ranging from 0.61 to 0.91) in predicting therapy response. In TCGA pan-cancer datasets, our signature scores were consistently correlated with therapy response (R=0.78, p<0.0001) and partially explained the diverse response rates among different cancer types. Finally, our signature generally outperformed other mRNA-based predictors and showed improved predictive performance when used in combination with tumor mutational burden (TMB). The signature score is available in the R package “PD1highCD8Tscore” (https://github.com/Liulab/PD1highCD8Tscore). Conclusion Through estimating the fraction of the PD-1hiCD8+ T cell, our signature could predict response to ICI therapy across multiple cancers and could serve as a complementary biomarker to TMB.
Collapse
Affiliation(s)
- Zhenyu Yang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Yulan Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Jiahan Cheng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Hao Luo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Park Y, Seo AN, Koh J, Nam SK, Kwak Y, Ahn SH, Park DJ, Kim HH, Lee HS. Expression of the immune checkpoint receptors PD-1, LAG3, and TIM3 in the immune context of stage II and III gastric cancer by using single and chromogenic multiplex immunohistochemistry. Oncoimmunology 2021; 10:1954761. [PMID: 34367732 PMCID: PMC8312618 DOI: 10.1080/2162402x.2021.1954761] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We sought to determine the clinicopathological significance of PD-1, LAG3, and TIM3 in gastric cancer (GC) by examining their expression and immune context. Immunohistochemistry (IHC) for PD-1, TIM3, LAG3, and tumor-infiltrating immune cell (TIIC) markers was performed in 385 stage II/III GCs. Epstein-Barr virus (EBV) and microsatellite stability (MSI) testing were performed for molecular classification. Chromogenic multiplex IHC (mIHC) for PD1, TIM3, LAG3, CD3, CD8, FOXP3, CD68, and cytokeratin was performed in 58 of the total samples. PD-1, LAG3, and TIM3 expression in TIICs was observed in 91 (23.6%), 193 (50.1%), and 257 (66.8%) GCs by single IHC, respectively. The expression was associated with EBV+ and MSI-H molecular subtypes (p ≤ 0.001). A positive expression of LAG3 in the invasive margin of the tumor was associated with better prognosis in univariate (p = .020) and multivariate (p = .026) survival analyses. The expression of different immune checkpoint receptors (ICRs) was significantly positively correlated. Dual or triple ICR expression was more frequent in high PD-1 and TIM3 density groups than in low-density groups by mIHC (all p ≤ 0.05). ICRs were mainly expressed in CD3+CD8+ and CD3+CD8− T cells. Fifty-eight GCs were classified into three groups by clustering analysis based on mIHC, and the group with the highest ICR expression in TIICs showed significantly better outcomes in progression-free survival (p = .020). In GC, PD-1, LAG3, and TIM3 expression is positively correlated and associated with better prognosis. Our study provides information for the application of effective immune checkpoint inhibitors against GC.
Collapse
Affiliation(s)
- Yujun Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyoung Nam
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
19
|
Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer patients. NPJ Precis Oncol 2021; 5:62. [PMID: 34188163 PMCID: PMC8242049 DOI: 10.1038/s41698-021-00197-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
A single dose of bevacizumab reduced the density of angiopoietin-2-positive vessels while improving the infiltration of CD4+ T and CD8+ T cells, and mature dendritic cells in patients with primary triple-negative breast cancer. Our findings provide a rationale for including bevacizumab during neoadjuvant treatment to enhance the efficacy of immune checkpoint blockers in this disease.
Collapse
|
20
|
Li C, Xu L. Single-Cell Transcriptome Analysis Reveals the M2 Macrophages and Exhausted T Cells and Intratumoral Heterogeneity in Triple-Negative Breast Cancer. Anticancer Agents Med Chem 2021; 22:294-312. [PMID: 34145996 DOI: 10.2174/1871520621666210618100857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly heterogeneous and invasive malignancy that is characterized by high recurrence and mortality rates as well as extremely poor prognosis. OBJECTIVE This study aimed to analyze T cells and macrophages in the tumor microenvironment with the aim of identifying targets with therapeutic potential. METHOD Single-cell sequencing data of TNBC patients from the GSE118389 dataset were analyzed to examine the immune environment and intratumoral heterogeneity of TNBC patients. RESULT Polarized alternatively activated macrophages (M2) and exhausted CD8+ T cells were identified in TNBC patients. Immunosuppressive checkpoint analysis revealed that levels of lymphocyte-activation gene 3 (LAG3) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) of exhausted T cells were significantly higher than levels of programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). This indicates that these markers are potential immunotherapy targets. Furthermore, analysis of significantly altered immune cell markers showed that several markers are associated with the prognosis of TNBC. CONCLUSION Overall, these findings demonstrate inter-tissue heterogeneity of TNBC and provide novel therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Chen Li
- Department of Hematology, Fuyang People's Hospital, NO.501, sanqing road, Fuyang City, Anhui Province, China
| | - Lingyun Xu
- Department of Hematology, Fuyang People's Hospital (Anhui Medical University Affiliated Fuyang People's Hospital) NO.501, sanqing road, Fuyang City, Anhui Province, China
| |
Collapse
|
21
|
Toh JWT, Ferguson AL, Spring KJ, Mahajan H, Palendira U. Cytotoxic CD8+ T cells and tissue resident memory cells in colorectal cancer based on microsatellite instability and BRAF status. World J Clin Oncol 2021; 12:238-248. [PMID: 33959477 PMCID: PMC8085513 DOI: 10.5306/wjco.v12.i4.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies in non-colorectal malignancy have associated T resident memory (TRM) cells with improved patient survival. It is unknown if TRM plays a role in colorectal cancer (CRC).
AIM To examine the potential role of TRM cells in providing immunogenicity in CRC stratified by microsatellite instability (MSI) and BRAF status.
METHODS Patients with known MSI and BRAF mutation status were eligible for inclusion in this study. CRC tumour sections stained with haematoxylin and eosin were microscopically reviewed and the images scanned prior to assessment for location of invading edge and core of tumour. Sequential sections were prepared for quantitative multiplex immunohistochemistry (IHC) staining. Opal Multiplex IHC staining was performed with appropriate positive and negative controls and imaged using a standard fluorescent microscope fitted with a spectral scanning camera (Mantra) in conjunction with Mantra snap software. Images were unmixed and annotated in inForm 2.2.0. Statistical analysis was performed using Graphpad Prism Version 7 and Stata Version 15.
RESULTS Seventy-two patients with known MSI and BRAF status were included in the study. All patients were assessed for MSI by IHC and high resolution capillary electrophoresis testing and 44 of these patients successfully underwent quantitative multiplex IHC staining. Overall, there was a statistically significant increase in CD8+ TRM cells in the MSI (BRAF mutant and wild type) group over the microsatellite stable (MSS) group. There was a statistically significant difference in CD8+ TRM between high level MSI (MSI-H):BRAF mutant [22.57, 95% confidence interval (CI): 14.31-30.84] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0076 andMSI-H:BRAF wild type [16.18 (95%CI: 10.44-21.93)] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0279. There was no statistically significant difference in CD8 T cells (both CD8+CD103- and CD8+CD103+TRM) between MSI-H: BRAF mutant and wild type CRC.
CONCLUSION This study has shown that CD8+ TRM are found in greater abundance in MSI-H CRC, both BRAF mutant and MSI-H:BRAF wild type, when compared with their MSS counterpart. CD8+ TRM may play a role in the immunogenicity in MSI-H CRC (BRAF mutant and BRAF wild type). Further studies should focus on the potential immunogenic qualities of TRM cells and investigate potential immunotherapeutic approaches to improve treatment and survival associated with CRC.
Collapse
Affiliation(s)
- James Wei Tatt Toh
- Division of Surgery and Anaesthesia, Department of Colorectal Surgery, Westmead Hospital, Westmead Clinical School, The University of Sydney, Ingham Institute for Applied Medical Research, Westmead 2145, NSW, Australia
| | - Angela L Ferguson
- Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, Human Viral & Cancer Immunology, Centenary Institute, Charles Perkin Centre, The University of Sydney, Sydney 2000, NSW, Australia
| | - Kevin J Spring
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool Clinical School, University of Western Sydney, South Western Clinical School UNSW, Liverpool 2170, NSW, Australia
| | - Hema Mahajan
- Department of Anatomical Pathology, ICPMR, Westmead Hospital, Westmead 2145, NSW, Australia
| | - Umaimainthan Palendira
- Department of Immunology and Infectious Diseases, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2000, NSW, Australia
| |
Collapse
|
22
|
Parlato S, Grisanti G, Sinibaldi G, Peruzzi G, Casciola CM, Gabriele L. Tumor-on-a-chip platforms to study cancer-immune system crosstalk in the era of immunotherapy. LAB ON A CHIP 2021; 21:234-253. [PMID: 33315027 DOI: 10.1039/d0lc00799d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunotherapy is a powerful therapeutic approach able to re-educate the immune system to fight cancer. A key player in this process is the tumor microenvironment (TME), which is a dynamic entity characterized by a complex array of tumor and stromal cells as well as immune cell populations trafficking to the tumor site through the endothelial barrier. Recapitulating these multifaceted dynamics is critical for studying the intimate interactions between cancer and the immune system and to assess the efficacy of emerging immunotherapies, such as immune checkpoint inhibitors (ICIs) and adoptive cell-based products. Microfluidic devices offer a unique technological approach to build tumor-on-a-chip reproducing the multiple layers of complexity of cancer-immune system crosstalk. Here, we seek to review the most important biological and engineering developments of microfluidic platforms for studying cancer-immune system interactions, in both solid and hematological tumors, highlighting the role of the vascular component in immune trafficking. Emphasis is given to image processing and related algorithms for real-time monitoring and quantitative evaluation of the cellular response to microenvironmental dynamic changes. The described approaches represent a valuable tool for preclinical evaluation of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
O'Melia MJ, Manspeaker MP, Thomas SN. Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer Immunol Immunother 2021; 70:2179-2195. [PMID: 33459842 DOI: 10.1007/s00262-020-02792-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) is a significant clinical problem to which immunotherapeutic strategies have been applied with limited success. Using the syngeneic E0771 TNBC mouse model, this work explores the potential for antitumor CD8+ T cell immunity to be primed extratumorally in lymphoid tissues and therapeutically leveraged. CD8+ T cell viability and responses within the tumor microenvironment (TME) were found to be severely impaired, effects coincident with local immunosuppression that is recapitulated in lymphoid tissues in late stage disease. Prior to onset of a locally suppressed immune microenvironment, however, CD8+ T cell priming within lymph nodes (LN) that depended on tumor lymphatic drainage remained intact. These results demonstrate tumor-draining LNs (TdLN) to be lymphoid tissue niches that support the survival and antigenic priming of CD8+ T lymphocytes against lymph-draining antigen. The therapeutic effects of and CD8+ T cells response to immune checkpoint blockade were furthermore improved when directed to LNs within the tumor-draining lymphatic basin. Therefore, TdLNs represent a unique potential tumor immunity reservoir in TNBC for which strategies may be developed to improve the effects of ICB immunotherapy.
Collapse
Affiliation(s)
- Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, IBB 2310, 315 Ferst Drive NW, Atlanta, GA, 30332, USA. .,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
24
|
Li HN, Li XR, Lv ZT, Cai MM, Wang G, Yang ZF. Elevated expression of FREM1 in breast cancer indicates favorable prognosis and high-level immune infiltration status. Cancer Med 2020; 9:9554-9570. [PMID: 33058542 PMCID: PMC7774739 DOI: 10.1002/cam4.3543] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) poses one of the major threats to female's health worldwide. Immune infiltration in BC is a key representative of the tumor microenvironment and has been proven highly relevant for prognosis. The role of the FREM1 (FRAS1-Related Extracellular Matrix 1) gene in carcinoma has not studied, moreover, the underlying mechanism remains largely unknown. This study aims to investigate the expression profile and potential action of FREM1 on BC progression. We applied series of bioinformatic methods as well as immunohistochemistry (IHC) and immunofluorescence (IF) to analyze FREM1 expression profile, its relationship with clinicopathological characteristics, impact on clinical outcomes, relevant functions, correlation with immune infiltration in BC. The results demonstrated that FREM1 had a dramatically reduced expression in BC tissues, possessed an inverse correlation with stage, age, and metastasis, and exhibited a higher level in invasive lobular breast carcinoma than in ductal one. Furthermore, decreased FREM1 expression was often associated with estrogen receptor (ER)/progesterone receptor (PR) negative and triple negative breast carcinoma (TNBC) status while human epidermal growth factor 2 (Her-2) positive status, and considerably correlated with a worse overall survival (OS) and recurrence-free survival (RFS). Meanwhile, the univariate/multivariate Cox model revealed that low-FREM1 expression can be an independent prognostic factor for BC. Additionally, FREM1 was mainly involved in the cell metabolism and immune cells infiltration. Moreover, IHC and IF demonstrated a positive correlation of its expression with the immune infiltrating levels of CD4+ , CD8+ T cells, and CD86+ M1 macrophages while a negative correlation with CD68+ pan-macrophages and CD163+ M2 macrophages. These findings suggest that FREM1 can be a potential biomarker for evaluating the immune infiltrating status, and the BC prognosis.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao-Miao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Fang Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Keup C, Kimmig R, Kasimir-Bauer S. Liquid Biopsies to Evaluate Immunogenicity of Gynecological/Breast Tumors: On the Way to Blood-Based Biomarkers for Immunotherapies. Breast Care (Basel) 2020; 15:470-480. [PMID: 33223990 PMCID: PMC7650128 DOI: 10.1159/000510509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the assumption of breast cancer (BC) as a cold, non-immunogenic tumor, immune checkpoint inhibitor (ICI) therapy is favorable for a subgroup of patients. Immunohistochemical assessment of the programmed cell death ligand 1 (PD-L1) is the only approved companion diagnostic for anti-PD-L1 therapy in metastatic triple-negative BC; however, challenges regarding the standardization of PD-L1 scoring in tumor tissue still remain. Consequently, to select patients most likely to respond to ICI, blood-based biomarkers are urgently needed. SUMMARY AND KEY MESSAGES Liquid biopsy, comprising circulating immune cells, circulating tumor cells and extracellular vesicles, as well as their surface proteins, is of high potential, and these analytes were already shown to be molecular correlates or regulators of the evasion from antitumoral immune reaction. Liquid biopsy, also enabling the evaluation of tumor mutational burden (TMB), microsatellite instability, and the T-cell receptor repertoire, allows serial sampling for monitoring purposes and reflects intra-tumoral heterogeneity which qualifies as marker for immunogenicity. Only a very few studies have already elucidated the potential of these analytes as biomarkers under ICI therapy. Nonetheless, the topic is of growing interest and has high relevance for the future. However, for clinical implementation, these multifarious analytes first need to pass robust standardization and validation procedures.
Collapse
Affiliation(s)
| | | | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
26
|
Li F, Teng H, Liu M, Liu B, Zhang D, Xu Z, Wang Y, Zhou H. Prognostic Value of Immune-Related Genes in the Tumor Microenvironment of Bladder Cancer. Front Oncol 2020; 10:1302. [PMID: 32850407 PMCID: PMC7399341 DOI: 10.3389/fonc.2020.01302] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex system that plays an important role in tumor development and progression, but the current knowledge about its effect on bladder cancer (BC) is scarce. In this study, we performed a comprehensive analysis of the relationship between the TME and gene expression profiles to identify prognostic biomarkers for BC. The ESTIMATE algorithm was used to calculate immune and stromal scores of BC patients who were obtained from the Gene Expression Omnibus database. We found that the immune and stromal scores were associated with clinical characteristics and the prognosis of BC patients. Based on these scores, 104 immune-related differentially expressed genes were identified. Further, functional enrichment analysis revealed that these genes were mainly involved in the immune-related biological processes and signaling pathways. Three prognostic genes were then identified and used to establish a risk prediction model using Cox regression analyses. Kaplan–Meier survival analysis showed that the expression levels of COL1A1, COMP, and SERPINE2 significantly correlated with cancer-specific survival and overall survival of BC patients. Additionally, we validated the prognostic values of these genes using two independent cohorts from The Cancer Genome Atlas and Gene Expression Omnibus databases. Finally, the relationships between the three prognostic genes and several immune cells were evaluated using Tumor Immune Estimation Resource, indicating that the expression levels of COL1A1, COMP, and SERPINE2 correlated positively with the tumor infiltration levels of CD4+ T cells and macrophages. In conclusion, the current study comprehensively analyzed the TME and presented immune-related prognostic genes for BC, providing new insights into immunotherapeutic strategies for BC patients.
Collapse
Affiliation(s)
- Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|