1
|
Akagbosu CO, McCauley KE, Namasivayam S, Romero-Soto HN, O’Brien W, Bacorn M, Bohrnsen E, Schwarz B, Mistry S, Burns AS, Perez-Chaparro PJ, Chen Q, LaPoint P, Patel A, Krausfeldt LE, Subramanian P, Sellers BA, Cheung F, Apps R, Douagi I, Levy S, Nadler EP, Hourigan SK. Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential. Gut Microbes 2025; 17:2467833. [PMID: 39971742 PMCID: PMC11845021 DOI: 10.1080/19490976.2025.2467833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Here, we show that adolescents exhibit significant gut microbiome and metabolome shifts several months after laparoscopic vertical sleeve gastrectomy (VSG), with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited a potentially inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.
Collapse
Affiliation(s)
- Cynthia O. Akagbosu
- Department of Gastroenterology, Weill Cornell Medicine, New York, New York, USA
| | - Kathryn E. McCauley
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sivaranjani Namasivayam
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hector N. Romero-Soto
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wade O’Brien
- Dartmouth Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mickayla Bacorn
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Qing Chen
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Phoebe LaPoint
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anal Patel
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E. Krausfeldt
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian A. Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Iyadh Douagi
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, USA
| | - Shira Levy
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Suchitra K. Hourigan
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Hsieh LC, Hsieh SL, Ping TN, Huang YC, Lin SJ, Chi HY, Wu CC. Apium graveolens L. alleviates acute lung injury in human A-549 cells by reducing NF-κB and NLRP3 inflammasome signaling. PHARMACEUTICAL BIOLOGY 2025; 63:1-13. [PMID: 39670672 DOI: 10.1080/13880209.2024.2433994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Apium graveolens L. (celery) is a dietary vegetable with anti-inflammatory properties. It has the potential to treat acute lung injury (ALI) caused by COVID-19 or other diseases. OBJECTIVE To investigate the effects of Apium graveolens water extract (AGWE) on ALI in human lung A-549 cells induced by lipopolysaccharide (LPS). MATERIALS AND METHODS A-549 cells were treated with AGWE for 24 h and then stimulated with 10 μg/mL LPS for another 24 h. The effects of AGWE on cell viability, the inflammatory response, oxidative stress, and apoptosis and their regulatory factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling activation were analyzed. RESULTS Treatment with 5-50 μg/mL AGWE reversed the decrease in cell viability caused by LPS (p < 0.05). AGWE can reduce interleukin (IL)-1β, IL-6, IL-18, and TNF-α levels; their EC50 values are 61.4, 65.7, 37.8, and 79.7 μg/mL, respectively. AGWE can reduce reactive oxygen species and thiobarbituric acid reactive substances in A-549 cells induced by LPS. AGWE also reduced the levels of apoptosis (EC50 of 74.8 μg/mL) and its regulators (Bid; Caspase-9, -8, and -3; Bax) and increased the levels of the mitochondrial membrane potential in A-549 cells induced by LPS. AGWE can also decrease the protein levels of NLRP3 and Caspase-1 and the activation of NF-κB signaling in A-549 cells induced by LPS. CONCLUSIONS These results show that 10 and 50 μg/mL AGWE can reduce the acute inflammation induced by LPS by reducing NF-κB and NLRP3 inflammasome signaling and mitochondria-dependent apoptosis pathways.
Collapse
Affiliation(s)
- Lan-Chi Hsieh
- Department of Dietetics, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, R.O.C
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Tsu-Ni Ping
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Yi-Chun Huang
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Ssu-Jung Lin
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Hsing-Yu Chi
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| |
Collapse
|
4
|
Hua S, Sun L, Zhang H, Shiu C, Zhang S, Zhu Y, Yan X, Gu P, Huang Z, Jiang W. Yiqi Wenyang decoction protects against the development of atherosclerosis by inhibiting vascular inflammation. PHARMACEUTICAL BIOLOGY 2025; 63:264-274. [PMID: 40254717 PMCID: PMC12010649 DOI: 10.1080/13880209.2025.2492650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
CONTEXT Vascular inflammation is a key process in the pathogenesis of atherosclerosis, which is regulated by NF-κB pathway. Yiqi Wenyang decoction (YQWY), a Traditional Chinese medicine (TCM) formula, has anti-inflammatory properties and may inhibit this pathway, potentially offering anti-atherosclerotic effects. OBJECTIVE The purpose of this study is to investigate the effects of YQWY on atherosclerosis and the underlying mechanism. Materials and methods: ApoE-/- mice were fed a Western diet and administered with YQWY (low or high dose), atorvastatin, or vehicle for 13 weeks. The size of atherosclerotic plaques was assessed using ORO staining. Vascular inflammation was evaluated with IF or IHC staining. The mechanisms and signaling pathways underlying the effect of YQWY on vasculature were studied using transcriptomic analysis and were validated in vitro in endothelial cells and macrophages. RESULTS YQWY attenuated atherosclerotic plaque development which was associated with reduced vascular inflammation as demonstrated by transcriptomic analysis of aorta. This was verified by reduced expression of proinflammatory chemokines, adhesion molecules, and inflammatory cytokines in aortas from YQWY-treated mice at both mRNA and protein levels. Mechanistically, YQWY suppressed NF-κB activation in endothelial cells and, to a lesser extent, macrophages possibly. DISCUSSION AND CONCLUSIONS YQWY protects against vascular inflammation and atherosclerosis by suppressing NF-κB pathway, suggesting the potential of YQWY and its active ingredients as novel anti-atherosclerotic therapeutics.
Collapse
Affiliation(s)
- Shuang Hua
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Lingling Sun
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chiwen Shiu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujie Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingqun Yan
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Zhe Huang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 PMCID: PMC11881735 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
7
|
Dai W, Xu Q, Li Q, Wang X, Zhang W, Zhou G, Chen X, Liu W, Wang W. Piezoelectric nanofilms fabricated by coaxial electrospun polycaprolactone/Barium titanate promote Achilles tendon regeneration by reducing IL-17A/NF-κB-mediated inflammation. Bioact Mater 2025; 49:1-22. [PMID: 40110584 PMCID: PMC11914770 DOI: 10.1016/j.bioactmat.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Tendon injuries are often exacerbated by persistent inflammation, which hampers tissue regeneration. In this study, we developed a noninvasive, wirelessly controlled, and self-powered piezoelectric nanofilm fabricated by coaxial electrospinning of polycaprolactone (PCL) and tetragonal barium titanate nanoparticles (BTO), and investigated its roles in modulating inflammation and repairing Achilles tendon defects as well as the mechanism in a rat model. In vitro study and in vivo study upon subcutaneous implantation showed that the piezoelectric PCL/BTO nanofilms could inhibit M1 macrophage polarization and reduce the secretion of inflammatory factors. Moreover, when bridging an Achilles tendon defect, the nanofilms could promote tenogenic gene expression including collagen deposition, and collagen remodeling, facilitate functional tendon recovery and significantly reduce tissue inflammation by suppressing M1 macrophage polarization and promoting M2 polarization. Moreover, the piezoelectric stimulation could also enhance tendon regeneration by inhibiting angiogenesis, reducing lipid deposition, and decreasing ectopic ossification. Mechanistically, the piezoelectric nanofilms reduced tissue inflammation mainly via inhibiting the nuclear factor (NF)-κB signaling pathway that is mediated by interleukin (IL)-17A secreted from CD3+ T cells, and thus to reduce proinflammatory factors, such as IL-1β and IL-6, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and tumor necrosis factor-α. These findings indicate the potential of piezoelectric stimulation in immunomodulation, and in promoting tendon regeneration via IL-17A/NF-κB-mediated pathway.
Collapse
Affiliation(s)
- Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Qi Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Surgery, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Qinglin Li
- Department of Aesthetic Surgery, Zhumadian Central Hospital, Zhumadian, 463000, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
8
|
Li R, Wang Q, Gao R, Shen R, Wang Q, Cui X, Jiang Z, Zhang L, Fang J. Sepsis Important Genes Identification Through Biologically Informed Deep Learning and Transcriptomic Analysis. Clin Exp Pharmacol Physiol 2025; 52:e70031. [PMID: 40356040 DOI: 10.1111/1440-1681.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 05/15/2025]
Abstract
Sepsis is a life-threatening disease caused by the dysregulation of the immune response. It is important to identify influential genes modulating the immune response in sepsis. In this study, we used P-NET, a biologically informed explainable artificial intelligence model, to evaluate the gene importance for sepsis. About 688 important genes were identified, and these genes were enriched in pathways involved in inflammation and immune regulation, such as the PI3K-Akt signalling pathway, necroptosis and the NF-κB signalling pathway. We further selected differentially expressed genes both at bulk and single-cell levels and found TIMP1, GSTO1 and MYL6 exhibited significant different expressions in multiple cell types. Moreover, the expression levels of these 3 genes were correlated with the abundance of important immune cells, such as M-MDSC cells. Further analysis demonstrated that these three genes were highly expressed in sepsis patients with worse outcomes, such as severe, non-survived and shock sepsis patients. Using a drug repositioning strategy, we found navitoclax, curcumin and rotenone could down-regulate and bind to these genes. In conclusion, TIMP1, GSTO1 and MYL6 may serve as promising biomarkers and targets for sepsis treatment.
Collapse
Affiliation(s)
- Ruichen Li
- University of Shanghai for Science and Technology, Shanghai, China
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Qiushi Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Ru Gao
- University of Shanghai for Science and Technology, Shanghai, China
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Rutao Shen
- The National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Qihao Wang
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xiuliang Cui
- The National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Lijie Zhang
- Department of Information, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jingjing Fang
- Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Hu X, Wang R, Kille P, Maret W, Hogstrand C. Zinc amino acid chelate and the Aryl Hydrocarbon Receptor (AHR) cooperate in improving the barrier function of a Caco-2 cell intestinal epithelium. J Nutr Biochem 2025; 141:109909. [PMID: 40154643 DOI: 10.1016/j.jnutbio.2025.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Zinc and several physiologically relevant ligands of the aryl hydrocarbon receptor (AHR) are nutrients that promote intestinal barrier function. We have identified that AHR activation upregulates the expression of zinc importers in the intestinal epithelium to increase intracellular zinc concentrations, which leads to improved epithelial barrier function. Here, we investigated if an amino acid chelate of zinc, in cooperation with AHR activation, can improve the barrier function of a differentiated Caco-2 cell epithelium. Functional assays of the Caco-2 cell epithelium demonstrate that both ZnSO4 and a lysine and glutamic acid chelate of Zn, in combination with the physiological AHR agonist 6-formylindolo[3,2-b]carbazole (FICZ), increase expression of tight junction proteins at the mRNA and protein levels. FICZ increases uptake of zinc into the epithelium in the presence of ZnSO4 or the amino acid Zn chelate in the medium to equal extents. We conclude that the lysine and glutamic acid chelate of Zn is as efficacious as ZnSO4 in reducing permeability of the Caco-2 cell epithelium in the presence of FICZ. The results suggest that dietary supplementation with bioavailable forms of zinc together with nutritional AHR agonists may be beneficial in improving gut barrier function and help prevent inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xiuchuan Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Rui Wang
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Christer Hogstrand
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
10
|
Issa H, Singh L, Lai KS, Parusheva-Borsitzky T, Ansari S. Dynamics of inflammatory signals within the tumor microenvironment. World J Exp Med 2025; 15:102285. [DOI: 10.5493/wjem.v15.i2.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tumor stroma, or tumor microenvironment (TME), has been in the spotlight during recent years for its role in tumor development, growth, and metastasis. It consists of a myriad of elements, including tumor-associated macrophages, cancer-associated fibroblasts, a deregulated extracellular matrix, endothelial cells, and vascular vessels. The release of proinflammatory molecules, due to the inflamed microenvironment, such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy. This review discusses the major key players and important chemical inflammatory signals released in the TME. Furthermore, the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted. In addition, recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed.
Collapse
Affiliation(s)
- Hala Issa
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Sciences, Jumla 21200, Karnali, Nepal
| | - Kok-Song Lai
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Tina Parusheva-Borsitzky
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Shamshul Ansari
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| |
Collapse
|
11
|
Yuan HJ, Han QC, Yu H, Yu YD, Liu XJ, Xue YT, Li Y. Calycosin treats acute myocardial infarction via NLRP3 inflammasome: Bioinformatics, network pharmacology and experimental validation. Eur J Pharmacol 2025; 997:177621. [PMID: 40220980 DOI: 10.1016/j.ejphar.2025.177621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Calycosin (CA) is a flavonoid natural product that may effectively treats acute myocardial infarction (AMI), but its mechanism is unclear. METHODS Targets related to AMI and CA were identified using the GEO database, SwissTargetPrediction, PharmMapper and literature searches. Protein-protein interactions analysis and Cytoscape were used to screen the core targets of CA for AMI treatment. Enrichment analysis identified biological pathways linked to AMI and potential mechanisms of CA. Immune infiltration analysis was used to explore the role of immune cells in AMI and the correlation between core targets and immune cells. And further validated in AMI rats with ligated left anterior descending. RESULTS Bioinformatics identified relevant targets and biological mechanisms of AMI, and network pharmacology revealed 31 potential targets affected by CA, with NLRP3, IL-18, IL-1β, MMP9, and TLR4 as core targets. Enrichment analysis demonstrated the biological roles of these potential targets and NLRP3, IL1β and IL18 were selected for further analysis. Immune infiltration analysis showed that both NLRP3 and IL-1β were closely associated with monocytes, mast cells activated and neutrophils, and IL-18 was closely associated with monocytes. CA exerted cardioprotective effects in AMI rats by inhibiting NLRP3 inflammasome activation and reducing IL-18 and IL-1β levels, improving cardiac function and attenuating myocardial injury and fibrosis. CONCLUSION CA effectively protects cardiac function and mitigates myocardial injury in post-AMI rats, probably through NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Hua-Jing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Quan-Cheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hui Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiu-Juan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yi-Tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
12
|
Gu T, Raval R, Bashkin Z, Zhou C, Ko S, Kong N, Hong S, Bhaskara A, Shah S, Joshi A, Thellakal S, Rim K, Marimuthu A, Venkatesan S, Wang E, Li S, Jayabalan A, Tao A, Fang Y, Xia L, Chui A, Shu E, Zhang T, Chen Z, Njoo E. Synthesis, antiproliferative activity, and biological profiling of C-19 trityl and silyl ether andrographolide analogs in colon cancer and breast cancer cells. Bioorg Med Chem Lett 2025; 121:130163. [PMID: 40043819 DOI: 10.1016/j.bmcl.2025.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide, a labdane diterpenoid isolated from Andrographis paniculata, putatively functions through covalent inhibition of NF-κB, a transcription factor that modulates tumor survival and metastasis. Previous studies have found that functionalization of the C-19 hydroxyl alters the primary mode of action from inhibition of NF-κB to the modulation of the Wnt1/β-catenin signaling pathway. Here, we synthesized a series of twelve C-19 trityl and silyl ether analogs, including three novel substituted trityl analogs and four novel substituted silyl analogs of andrographolide. MTT assays revealed cell line selectivity between colorectal and breast cancer cells, which is consistent with known mechanisms of β-catenin-driven cell proliferation in colorectal cancer cell lines. Most compounds exhibited cell line specific antiproliferative activity in HCT-116 and HT-29 colorectal cancer cell lines. Specifically, within 24 h, C-19 analogs of andrographolide exhibit far more limited antiproliferative activity in MCF-7 breast cancer cells compared to HCT-116, HT-29, and MDA-MB-231 cells. Through in vitro TNF-α-dependent NF-κB reporter and Wnt1-dependent luciferase reporter assays, we observed that several analogs generally exhibit greater inhibitory activity compared to andrographolide. Fluorescence imaging demonstrated that cells treated with andrographolide and its C-19 analogs retained similar distributions of active β-catenin, but notable differences in antiproliferative potency upon co-delivery with GSK-3β inhibitor CHIR99021 indicate that several lead compounds exhibit attenuated biological activity selectively in HT-29 cells. Collectively, this work indicates that modest structural modifications at C-19 of andrographolide can have profound implications for its biological activity in mechanisms connected to its anticancer activity.
Collapse
Affiliation(s)
- Tiffany Gu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Rushika Raval
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Zachary Bashkin
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Carina Zhou
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Sanghyuk Ko
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Natalie Kong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Seoyeon Hong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aditya Bhaskara
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samarth Shah
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Aditi Joshi
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samahith Thellakal
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Kaitlyn Rim
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Anushree Marimuthu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Srishti Venkatesan
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Emma Wang
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Sophia Li
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Aditi Jayabalan
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Alice Tao
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Yilin Fang
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Lorelei Xia
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aidan Chui
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Emily Shu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Tracy Zhang
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Zhan Chen
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Edward Njoo
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA.
| |
Collapse
|
13
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2025; 62:6998-7021. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Ozkanlar S, Ozkanlar Y, Kara A, Dalkilinc E. Astaxanthin Alleviates Lung Injury by Regulating Oxidative Stress, Inflammatory Response, P2X7 Receptor, NF-κB, Bcl-2, and Caspase-3 in LPS-Induced Endotoxemia. ENVIRONMENTAL TOXICOLOGY 2025; 40:924-934. [PMID: 39873358 PMCID: PMC12069755 DOI: 10.1002/tox.24481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Sepsis remains the leading cause of multiple-organ injury due to endotoxemia. Astaxanthin (ASTA), widely used in marine aquaculture, has an extraordinary potential for antioxidant and anti-inflammatory activity. Purinergic receptor (e.g., P2X7R) activation is a powerful signaling in the modulation of inflammation. The effect of ASTA was investigated on the regulation of oxidative stress, inflammatory response, apoptotic mediators, and P2X7R expression in the lung injury during lipopolysaccharide (LPS)-induced endotoxemia. Twenty-four rats were blocked into four groups as Control, LPS, ASTA, and LPS + ASTA. LPS was administered by intraperitoneal injection and ASTA by gavage. Blood and lung samples were taken 6 h after the administrations. The methods were ELISA, western blotting, histopathology, and immunohistochemistry. Sepsis was confirmed by the elevations of IL-1β, IL-6, IL-10, and TNF-α levels in bloodstream. Lung injury was determined by histopathological changes. There were increased P2X7R expression, malondialdehyde (MDA), IL-1β, TNF-α, nuclear factor kappa B (NF-κB), and Caspase-3 and decreased B-cell lymphoma 2 (Bcl-2) and glutathione (GSH) in the septic lung tissue (p < 0.05). ASTA treatment improved MDA, GSH, IL-1β, TNF-α, P2X7R, NF-κB, Caspase-3, and Bcl-2 levels and reduced P2X7R immunoreactivity and histological abnormalities in the lung (p < 0.05). The production of pro-inflammatory cytokines, oxidative stress, P2X7R expression, and apoptotic mediators in the lung is associated with LPS-induced endotoxemia. The ASTA administration appears to regulate the expressions of P2X7R, NF-κB, Bcl-2, and Caspase-3 improving the antioxidative and anti-inflammatory response of the lung tissue in sepsis, in vivo.
Collapse
Affiliation(s)
- Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary MedicineAtaturk UniversityErzurumTurkey
| | - Yunusemre Ozkanlar
- Department of Internal Medicine, Faculty of Veterinary MedicineOndokuz Mayis UniversitySamsunTurkey
| | - Adem Kara
- Department of Genetics, Faculty of ScienceErzurum Technical UniversityErzurumTurkey
| | - Elif Dalkilinc
- Department of Biochemistry, Faculty of Veterinary MedicineAtaturk UniversityErzurumTurkey
| |
Collapse
|
15
|
Jahdkaran M, Sistanizad M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J Steroid Biochem Mol Biol 2025; 250:106744. [PMID: 40158704 DOI: 10.1016/j.jsbmb.2025.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Dyslipidemia is recognized as one of the most prevalent metabolic disorders and is frequently associated with other prevalent conditions, particularly diabetes mellitus. There appears to be a bidirectional connection between these two metabolic disorders. While considerable research has focused on how insulin resistance can lead to lipid abnormalities, the reverse relationship specifically, how dyslipidemia could assist in developing insulin resistance and diabetes mellitus has received relatively less attention. This review aims to comprehensively evaluate the mechanisms through which dyslipidemia can induce insulin resistance. Dyslipidemia is primarily classified into three main categories: hypercholesterolemia, hypertriglyceridemia, and low levels of HDL. These conditions may promote insulin resistance across multiple pathways, including the accumulation of lipid metabolites, dysfunction of pancreatic β-cells, increased reactive oxygen species, endoplasmic reticulum stress and inflammation, endothelial dysfunction, alterations in adiponectin levels, changes in bile acid composition and concentration, and dysbiosis of gut microbiota. However, further investigation is required to fully elucidate the cellular and molecular mechanisms underlying the relationship between lipid disorders and insulin resistance. Emphasizing such research could facilitate the development of therapeutic strategies targeting both conditions simultaneously.
Collapse
Affiliation(s)
- Mahtab Jahdkaran
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025; 62:7242-7267. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
17
|
Wafaey AA, El-Hawary SS, Mohamed OG, Abdelrahman SS, Ali AM, El-Rashedy AA, Abdelhameed MF, Kirollos FN. UHPLC-QTOF-MS/MS profiling, molecular networking, and molecular docking analysis of Gliricidia sepium (Jacq.) Kunth. ex. Walp. stem ethanolic extract and its gastroprotective effect on gastritis in rats. Toxicol Rep 2025; 14:101944. [PMID: 39996039 PMCID: PMC11848478 DOI: 10.1016/j.toxrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Metabolic profiling of the crude ethanolic extract of Gliricidia sepium (Jacq.) Kunth. ex. Walp. stem ethanolic extract (GSS) was conducted using ultra-high performance quadrupole time of flight mass spectrometry/mass spectrometry (UHPLC-QTOF-MS/MS) in negative mode, resulting in the identification of 23 compounds belonging to various classes such as flavonoids, fatty acids, triterpenoid saponins, and phenolic acids. Notably, eight flavonoids including kaempferol-3-O-robinoside-7-O-rhamnoside, isoquercitrin, kaempferol-3-O-rutinoside, apigenin-7-glucoside, kaempeferol-7-O-rhamnoside, luteolin, apigenin, and liquiritigenin, along with two phenolic acids (4-hydroxycinnamic acid and 2-hydroxyhydrocinnamic acid) and four triterpenoid saponins (soyasaponin I, soyasaponin II, soyasaponin III, and kaikasaponin III) were dereplicated. Additionally, nine fatty acid derivatives were identified, including azelaic acid and 2-isopropyl malic acid. Molecular networking analysis revealed the formation of clusters among compounds while others do not form clusters. Further analysis indicated that the GSS ethanolic extract exhibited a total phenolic content of 38.78 ± 1.609 µg of gallic acid equivalent/mg and a total flavonoid content of 5.62 ± 0.50 µg of rutin equivalent/mg. Biological evaluations showed that GSS ethanolic extract mitigated gastric tissue injury induced by pyloric ligation, with a notable reduction in oxidative stress marker reactive oxygen species levels and inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha levels. Additionally, it enhanced superoxide dismutase and inhibitor of nuclear factor kappa B alpha levels, while lowering the expression of inducible nitric oxide synthase. Histopathological examination revealed significant improvements in gastric tissue morphology in GSS-treated groups compared to the control group. Molecular docking studies indicated potential interactions between GSS ethanolic extract compounds and various target proteins involved in oxidative stress, inflammation, and gastric protection in gastritis. This study aims to investigate the potential gastroprotective activity of GSS ethanolic extract against gastritis induced via pyloric ligation.
Collapse
Affiliation(s)
- Aya A. Wafaey
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Seham S. El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Osama G. Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sahar S. Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Alaa M. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed A. El-Rashedy
- Natural and Microbial Products Department, National Research Center, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Farid N. Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
18
|
Yan D, Fu Y, Mei J, Wang J, Jiamaliding A, Liu Y, Zhao Z, Ma Q. The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways. Basic Clin Pharmacol Toxicol 2025; 136:e70045. [PMID: 40312968 PMCID: PMC12046208 DOI: 10.1111/bcpt.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%-50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.
Collapse
Affiliation(s)
- Dong Yan
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Yuanwei Fu
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijingChina
| | - Junhong Wang
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Ayijiang Jiamaliding
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijingChina
| | - Zanmei Zhao
- Department of Occupational DiseasePeking University Third HospitalBeijingChina
| | - Qingbian Ma
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| |
Collapse
|
19
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
20
|
Fu Y, Hu P, Hu Y, Fang Y, Zhou Y, Shi Y, Yang K, Fu T, Li W, Gritskevitch ER, Jin L, Lyu J, Zhao Q. Hepatocyte-specific RAP1B deficiency ameliorates high-fat diet-induced obesity and liver inflammation in mice. Diabetes Obes Metab 2025; 27:3036-3049. [PMID: 40083059 DOI: 10.1111/dom.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
AIM This study investigated the role of RAP1B in hepatic lipid metabolism and its implications in obesity and associated metabolic disorders, focusing on the molecular mechanisms through which RAP1B influences lipid accumulation, inflammation and oxidative stress in liver tissues and hepatocyte cell lines. MATERIALS AND METHODS Liver-specific RAP1B-knockout (LKO) and overexpression (OE) mice were generated and fed a high-fat diet for 18 weeks to evaluate systemic and hepatic metabolic changes. Comprehensive metabolic phenotyping included measurements of body weight, body fat content, activity levels, energy expenditure (EE), respiratory exchange ratio (RER), glucose tolerance test and insulin tolerance test. RAP1B-knockdown AML12 hepatocytes were used for in vitro studies. Comprehensive transcriptome and metabolome analyses identified differentially expressed genes and key metabolic shifts. Biochemical and histological analyses were performed to assess lipid accumulation, oxidative stress and inflammatory markers. RESULTS We found that LKO mice exhibited significant reductions in body weight, fat pad size and liver mass, along with decreased hepatic lipid accumulation due to enhanced lipid breakdown. These mice demonstrated improved glucose tolerance and insulin sensitivity without changes in food intake. Liver histology showed reduced F4/80-positive macrophage infiltration, indicating decreased inflammatory cell recruitment. Additionally, markers of oxidative stress were significantly lower, and molecular analysis revealed downregulation of the MAPK(p38) and NF-κB signaling pathways, further supporting an anti-inflammatory hepatic environment. In contrast, OE mice showed increased liver weight, aggravated hepatic lipid accumulation driven by enhanced lipogenesis, worsened insulin resistance and elevated inflammation. CONCLUSIONS This study highlights RAP1B's pivotal role in hepatic metabolism and positions it as a potential therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yinxu Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Pingyi Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yanyang Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yu Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yaping Zhou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Weijia Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- International Sakharov Environmental Institute, Belarusian State University, Minsk, Republic of Belarus
| | | | - Liqin Jin
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiongya Zhao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Škorjanc A, Smrkolj V, Umek N. GOReverseLookup: A gene ontology reverse lookup tool. Comput Biol Med 2025; 191:110185. [PMID: 40239235 DOI: 10.1016/j.compbiomed.2025.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND AND OBJECTIVE The Gene Ontology (GO) project has been pivotal in providing a structured framework for characterizing genes and annotating them to specific biological concepts. While traditional gene annotation primarily focuses on mapping genes to GO terms, descriptors of biological concepts, there is a growing need for tools facilitating reverse querying. This paper introduces GOReverseLookup, a novel tool designed to identify over- or underrepresented genes in researcher-defined states of interest (phenotypes), described by sets of GO terms. GOReverseLookup supplements the existing power of Gene Ontology by the possibility of orthologous gene querying across several databases, such as Ensembl and UniProtKB. This combination allows for a more nuanced identification of significant genes across a range of cross-species research contexts. METHODS GOReverseLookup queries genes associated with input GO terms. Bundles of GO terms encapsulate user-defined states of interest, e.g., angiogenesis. In the second stage of the analysis, all GO terms associated with each gene are fetched, and finally, the statistical relevance of the genes being involved in one (or all) of the defined states of interests is computed. RESULTS The two presented use cases illustrate its utility in discovering genes related to rheumatoid arthritis and genes linked with chronic inflammation and tumorigenesis. In both cases, GOReverseLookup discovered a substantial number of genes significantly associated with the aforementioned states of interest. CONCLUSIONS GOReverseLookup proves to be a valuable resource for unraveling the genetic basis of phenotypes, with diverse practical potentials in functional genomics, systems biology, and drug discovery. We anticipate that GOReverseLookup will significantly aid in identifying potential gene targets during the initial research phases.
Collapse
Affiliation(s)
- Aljoša Škorjanc
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Vladimir Smrkolj
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova ulica 19, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Song H, Yang A, Wang Y, Xu R, Hu W. Potential roles of inhalation aromatherapy on stress-induced depression by inhibiting inflammation in the peripheral olfactory system. Neurochem Int 2025; 186:105967. [PMID: 40158533 DOI: 10.1016/j.neuint.2025.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
According to principles of Traditional Chinese Medicine, the nose is the passage for exogenous evil to invade the body, while essential or volatile oils extracted from herbs have the effects of dispelling melancholy, repelling foulness, and resuscitation with aromatics. Inhalation aromatherapy can target the brain and has a potential therapeutic effect on mood disorders. However, in particular, the mechanism of the effect of inhalation aromatherapy on the olfactory mucosa (OM) of the nasal cavity at the peripheral level, the first step in olfactory detection, where olfactory sensory neurons (OSNs) relay information to brain for signal processing, remains unclear. Here, we examined the roles of inhalation aromatherapy with compound essential oils derived from Bergamot, Peppermint and Rosa rugose on chronic unpredictable mild stress (CUMS)-induced depression and explored potential therapeutic targets in the peripheral OM. We found that inhalation aromatherapy effectively ameliorated CUMS-induced depression and olfactory dysfunction in rats. Strikingly, inhalation aromatherapy improved pathological changes, significantly reduced apoptosis levels, and promoted olfactory neurogenesis in the OM, which may contribute to the beneficial effects on the olfactory function of depressed rats. Further, inhalation aromatherapy significantly may reverse inflammation levels in the OM through Sirt1/FKBP5/GR/NF-κB signaling pathway, and prevented neuroinflammation in other parts of the olfactory system such as the hippocampus and prefrontal cortex, which may play a role in the olfactory impairments in rats with depression. Collectively, we have demonstrated that inhalation aromatherapy could efficiently prevent the local inflammatory responses in the OM of CUMS depression model rats. These findings provide new insights into the treatment of depression with aromatherapy, as well as new concept for the identification of novel antidepressant strategies.
Collapse
Affiliation(s)
- Hongxiu Song
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Aihong Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Wang
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rui Xu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Hu
- Department of Rheumatology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China; Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
Wu F, Deng Y, Sokolov EP, Falfushynska H, Glänzer A, Xie L, Sokolova IM. Nanopollutants (nZnO) amplify hypoxia-induced cellular stress in a keystone marine bivalve, Mytilus edulis. ENVIRONMENTAL RESEARCH 2025; 274:121346. [PMID: 40058547 DOI: 10.1016/j.envres.2025.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Zinc oxide nanoparticles (nZnO) are increasingly utilized in industrial, medical, and personal care products, particularly as the main ingredient in sunscreens, raising concerns about their environmental impact, especially in coastal ecosystems. The Baltic Sea, experiencing severe eutrophication, faces persistent hypoxia due to excessive nutrient runoff and limited water exchange. Simultaneously, coastal pollution from industrial and urban activities introduces nZnO, a highly biotoxic nanopollutant. The combined effects of hypoxia and nZnO contamination may amplify environmental stress, yet their interactions remain insufficiently studied. This study investigates the combined effects of nZnO exposure and fluctuating dissolved oxygen regimes (specifically short- and long-term hypoxia and subsequent reoxygenation) on Mytilus edulis, a sentinel species in these ecosystems. By assessing a range of cellular and molecular markers, including oxidative stress, oxygen sensing, protein quality control, stress response, apoptosis, and inflammation, we show that nZnO exacerbates hypoxia-induced oxidative stress, delaying redox recovery and prolonging oxidative damage during reoxygenation. Specifically, nZnO exposure maintains elevated LPO and PC levels after reoxygenation, indicating prolonged oxidative imbalance. While M. edulis typically recovers from hypoxia-induced stress, nZnO disrupts this process by impairing antioxidant defenses, prolonging HIF-1α activation, and dysregulating p53, JNK, and p38 expression, thereby interfering with normal hypoxia-reoxygenation response. Additionally, nZnO alters HSP70, Lon protease, and caspase-3 regulation, disrupting protein-folding and apoptotic pathways. These findings suggest a synergistic interaction between nZnO and hypoxia, heightening the organism's vulnerability to environmental stress and suggesting risks for marine organisms in nanoparticle-polluted, hypoxia-prone coastal regions.
Collapse
Affiliation(s)
- Fangli Wu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Yuqing Deng
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Eugene P Sokolov
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Faculty of Economics, Anhalt University of Applied Sciences, 06406, Köthen, Germany; ENERTRAG SE, Gut Dauerthal, Dauerthal, 17291, Germany
| | - Aneka Glänzer
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
24
|
Salem MB, El-Lakkany NM, Hammam OA, Seif el-Din SH. Bacillus clausii spores maintain gut homeostasis in murine ulcerative colitis via modulating microbiota, apoptosis, and the TXNIP/NLRP3 inflammasome cascade. Toxicol Rep 2025; 14:101858. [PMID: 39802600 PMCID: PMC11721221 DOI: 10.1016/j.toxrep.2024.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis (UC), a persistent immune-mediated disorder lacking effective treatment, is distinguished by gut microbiota dysbiosis, abnormal activation of the NLRP3 inflammasome pathway, and apoptosis. Despite growing attention to these factors, understanding their significance in UC pathogenesis remains a challenge. The present study explores the potential therapeutic impact of Bacillus clausii (Bc) spores in a murine UC model induced by drinking 4 % (w/v) dextran sulfate sodium (DSS) in C57BL/6 mice. Subsequently, the DSS-induced mice were orally administered either Bc at varying concentrations (105 and 1010 Colony forming unit, CFU) or sulfasalazine (SSZ) at a dosage of 200 mg/kg for 7 days. The disease-specific activity index (DAI) was calculated daily utilizing parameters such as body weight, diarrhea, and bloody stool. Changes in fecal Firmicutes and Bacteroidetes abundance, colonic TXNIP and NLRP3 contents, as well as colonic caspase-1, IL-1β, Bax, and Bcl-2 expression, were investigated. Additionally, markers related to oxidative stress and inflammation, histopathological changes and caspase-3 immunohistochemistry testing were conducted. DSS-treated mice had significantly higher DAI scores compared to controls, indicating severe colitis. However, SSZ treatment or Bc (105 CFU) dramatically lowered DAI scores, with the highest Bc dosage (1010 CFU) producing the greatest improvement. Furthermore, Bc (1010 CFU) substantially (p < 0.05) boosted fecal Firmicutes while decreased Bacteroidetes, indicating reversal of gut dysbiosis. Bc effectively reduced colonic oxidative stress and inflammation by replenishing GSH and catalase and modulating the NF-κB, Nrf2/HO-1, and TXNIP/NLRP3 pathways. Additionally, Bc (1010 CFU) exhibited histologically almost normal mucosa, with maintained architecture and reduced apoptosis, as seen by normalization of Bcl2 and Bax with decreased caspase-3. Collectively, these findings point to the potential usefulness of Bc spores in preventing and treating DSS-induced colitis, positioning them as a promising candidate for UC management.
Collapse
Affiliation(s)
- Maha B. Salem
- Pharmcology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Olfat A. Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
25
|
Zhang L, Luo X, Wu D, Zhou Q, Qiu J, Yan M, Wang Y. CD40 promotes AML survival via non-canonical NF-κB signaling and aberrant lipid metabolism. Int Immunopharmacol 2025; 156:114665. [PMID: 40252467 DOI: 10.1016/j.intimp.2025.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Despite the identification of several pathogenic drivers, the molecular mechanisms underlying the development of acute myeloid leukemia (AML) remain largely unknown. Therefore, we sought to explore the key genes associated with leukemia and identified cluster of differentiation 40 (CD40) as a key mediator linked to the incidence and progression of AML. Higher levels of CD40 were detected in patients with AML compared to healthy donors. Moreover, elevated CD40 expression was associated with lower overall survival rates. Furthermore, anti-CD40 antibody significantly induced apoptosis and enhanced drug sensitivity in human AML cell lines. Conversely, ex vivo treatment of primary AML samples with a CD40 agonist significantly decreased cell apoptosis and drug sensitivity. In Kasumi-1 AML cells, CD40 knockout (KO) significantly impaired the engraftment ability of leukemia cells and reduced the leukemia burden in NSG mice compared to wild-type mice. RNA sequencing showed that differentially expressed genes were significantly enriched in the nuclear factor-kB (NF-kB) signaling pathway in CD40-KO cells, which was confirmed through Western blotting. Untargeted metabolomic analysis revealed 179 metabolites with differential expression between WT and CD40 KO cells. Subsequent analysis revealed significant changes in the main metabolic pathways, particularly the biosynthesis of unsaturated fatty acids and lipid metabolism. A targeted metabolomics study of fatty acid metabolism demonstrated that cis-5, 8, 11, 14, 17-eicosapentaenoic acid (EPA) was markedly downregulated in CD40-KO cells compared to wild-type cells. Remarkably, EPA reversed the apoptosis and cell cycle arrest induced by CD40 deletion, simultaneously reducing the drug sensitivity of CD40-KO cells. Together, our study highlights the potential of CD40 as a target in the treatment of AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Animals
- Humans
- Lipid Metabolism
- NF-kappa B/metabolism
- CD40 Antigens/metabolism
- CD40 Antigens/genetics
- Signal Transduction
- Mice
- Apoptosis/drug effects
- Male
- Cell Line, Tumor
- Female
- Middle Aged
- Mice, Knockout
- Adult
- Mice, Inbred NOD
- Aged
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Dongyan Wu
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qiang Zhou
- The People's Hospital of Le'an County, Fuzhou, China
| | - Jiachun Qiu
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Qian M, Zhu Y, Lin W, Lian H, Xia Y, Papadimos T, Wang J. PICK1 overexpression ameliorates endotoxin-induced acute lung injury by regulating mitochondrial quality control via maintaining Nrf-2 stabilization through activating the PI3K/Akt/GSK-3β pathway and disrupting the E3 ubiquitin ligase adapter β-TrCP. Int Immunopharmacol 2025; 156:114685. [PMID: 40286782 DOI: 10.1016/j.intimp.2025.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Mitochondria are important targets for preventing oxidative damage during the progression of sepsis-induced lung injury. Numerous studies have pointed out that maintaining the stabilization of Nrf-2, thereby activating its transcription, may combat pathological inflammation by sustaining the integrity of mitochondrial function. Our previous study found that protein interaction with C-kinase 1 (PICK1) deficiency disrupts the physiological anti-inflammatory mechanism by affecting Nrf-2 transcription. However, whether PICK1 participates in mitochondrial quality control regulation through Nrf-2 has not been explored, and the underlying interaction between PICK1 and Nrf-2 has not been fully elucidated. We found that PICK1 decreased mitochondria-derived ROS, upregulated MnSOD activity in endotoxin-induced acute lung injury mice, improved mitochondrial membrane potential, and restored the damaged structure of mitochondria in LPS-stimulated macrophages. Through in-depth studies, we demonstrated that PICK1 maintains the stability of Nrf-2 by preserving mitochondrial dynamic equilibrium, facilitating mitochondrial biogenesis, and participating in mitophagy by activating the PI3K/AKT/GSK-3β pathway. PICK1 also inhibits the β-TrCP-mediated ubiquitination of Nrf-2. Thus, PICK1 offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation. Our study demonstrated the protective effects of PICK1 overexpression in endotoxin-associated ALI. PICK1 overexpression and the subsequent PI3K/AKT/Nrf-2/HO-1 pathway-dependent and E3 ubiquitin ligase adapter β-TrCP-mediated mitochondrial quality control contribute to lung repair, which offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation.
Collapse
Affiliation(s)
- Meizi Qian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yurun Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Wen Lin
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Huidan Lian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Yun Xia
- The Ohio State University Wexner Medical Center, Department of Anesthesiology, Columbus, OH, USA
| | - Thomas Papadimos
- The University of Toledo Medical Center, Department of Anesthesiology, Toledo, OH, USA.
| | - Junlu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
27
|
Hahn S, Han IW, Shin SH, Kim G, Kim JH. Modeling diabetic intestinal organoids: Aspects of rapid gut barrier disruption. Biochem Biophys Res Commun 2025; 760:151730. [PMID: 40168710 DOI: 10.1016/j.bbrc.2025.151730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Increased intestinal permeability can occur in patients with diabetes mellitus. Previous studies demonstrated a correlation between impaired intestinal barrier function, elevated blood glucose levels, and diminished protective capacity of intestinal epithelial cells. However, few studies have explored gut-barrier disruption using three-dimensional (3D) in vitro models. In this study, we developed and optimized a 3D intestinal organoid model that mimics diabetic conditions by exposing the organoids to high glucose (HG) and palmitic acid (PA) levels. Human intestinal organoids derived from samples of both healthy individuals and patients with diabetes mellitus were analyzed. We evaluated the transcript levels of tight junction proteins and inflammation-related genes in ex vivo mouse intestinal organoids cultured under HG and PA conditions for 48 h. Human intestinal organoids from patients with diabetes mellitus exhibited reduced expression of genes associated with intestinal function and barrier integrity compared with those from healthy individuals. In mouse intestinal organoids, PA treatment induced cytotoxicity and significantly reduced the expression of intestinal stem cells and tight junction proteins, including zonula occludens-1 and occludin, compared with the control and HG-treated groups. Furthermore, treatment with HG and PA resulted in increased levels of inflammatory factors compared with those in the control group. Our in vitro model using 3D intestinal organoids can be used to investigate the impact of diabetic conditions and provide insights into gut barrier disruption.
Collapse
Affiliation(s)
- Soojung Hahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - In Woong Han
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Sang Hyun Shin
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| |
Collapse
|
28
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
29
|
Zhang Y, Guan Y, Dai M, Yang Y, Yang F. Microcystin-LR induces lung injury in mice through the NF-κB/NLRP3 pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:385-394. [PMID: 39773316 DOI: 10.1080/15287394.2024.2443525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Microcystin-LR (MC-LR) a cyclic toxin produced by cyanobacterial species is known to exert detrimental effects on various organs, including lung. Several investigators demonstrated that MC-LR exerts pulmonary toxicity, but the underlying mechanisms remain unclear. This study aimed to investigate whether exposure to MC-LR-induced lung inflammation and examine the underlying mechanisms. Thirty specific pathogen-free (SPF) male mice were allocated into control and MC-LR treatment groups. Mice were intraperitoneally injected with physiological saline or MC-LR (20 μg/kg) daily for a total of 21 days. Our findings indicated that exposure to MC-LR-produced histopathological changes in lung tissue, including thickening of alveolar walls and inflammatory infiltration. MC-LR was found to upregulate mRNA expression levels of pro-inflammatory cytokines TNFα, IL-6, IL-1β, and IL-18. Further, MC-LR significantly elevated the expression levels of proteins associated with the NF-κB/NLRP3 pathway p-NF-κB, NLRP3, Caspase-1, ASC. The activation of NF-κB/NLRP3 pathway further promoted the release of inflammatory cytokine IL-1β and cleavage of pyroptosis-associated GSDMD protein. These findings indicate that MC-LR may induce lung inflammation by promoting cell pyroptosis via the activation of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Yin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Guan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Manni Dai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
30
|
Lindkvist M, Göthlin Eremo A, Paramel GV, Anisul Haque S, Rydberg Millrud C, Rattik S, Grönberg C, Liberg D, Sirsjö A, Fransén K. IL1RAP Expression in Human Atherosclerosis: A Target of Novel Antibodies to Reduce Vascular Inflammation and Adhesion. J Am Heart Assoc 2025:e039557. [PMID: 40371594 DOI: 10.1161/jaha.124.039557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Blockade of IL1RAP (interleukin 1 receptor associated protein) was recently shown to reduce atherosclerosis in mice, but the effect on human vascular cells is largely unknown. Targeting the IL1RAP coreceptor represents a novel strategy to block the IL1RAP-dependent cytokines IL (interleukin)-1, IL-33, and IL-36. In the present study, we aimed to evaluate the role of novel antibodies targeting IL1RAP to reduce the effects of IL-1β, IL-33, or IL-36γ in human vascular cells. METHODS Expression of IL1RAP was observed in human atherosclerotic plaques by immunohistochemistry and microarray and in endothelial cells by flow cytometry. Endothelial cells were cultured with IL-1β, IL-33, or IL-36γ cytokines with or without IL1RAP antibodies and analyzed with Olink proteomics, ELISA, Western blot, and real-time quantitative polymerase chain reaction. The functional effect of IL1RAP antibodies on endothelial cells were analyzed with adhesion and permeability assays. RESULTS Olink proteomics showed inhibition of the inflammatory proteins LIF (leukemia inhibitory factor), OPG (osteoprotegerin), CCL4 (C-C motif chemokine ligand 4), and MCP-3 (monocyte chemoattractant protein 3) by IL1RAP-blockade in endothelial cells after IL-1β stimulation. In addition, the IL1RAP antibodies inhibited IL-1β, and IL-33 induced IL-6 and IL-8 secretion. Secretion of MCP-1 (monocyte chemoattractant protein 1) was induced by IL-1β, IL-33, and IL-36γ, and subsequently was inhibited by IL1RAP antibodies. Similar effects were found on mRNA expression level. Endothelial expression of the adhesion markers ICAM1, VCAM1, and SELE were significantly reduced by IL1RAP antibodies, and neutrophil adhesion to endothelial cells induced by IL-1β and IL-33 was reduced by IL1RAP blockade. In human atherosclerotic lesions, IL1RAP expression correlated with markers of inflammation like IL6, IL8, and MCP1. CONCLUSIONS IL1RAP-targeting antibodies can reduce the expression of inflammatory cytokines and markers of adhesion in endothelial cells, which may be of importance for future putative targeted treatments against cardiovascular disease.
Collapse
Affiliation(s)
- Madelene Lindkvist
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Anna Göthlin Eremo
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- Department of Clinical Research Laboratory, School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Sheikh Anisul Haque
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | | | | | | | | | - Allan Sirsjö
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Karin Fransén
- Cardiovascular Research Centre, Faculty of Medicine and Health Örebro University Örebro Sweden
- School of Medical Sciences, Faculty of Medicine and Health Örebro University Örebro Sweden
| |
Collapse
|
31
|
Lee J, Lee J, Choi BH. Exosomes of Human Fetal Cartilage Progenitor Cells (hFCPCs) Inhibited Interleukin-1β (IL-1β)-Induced Osteoarthritis Phenotype via miR-125b-5p In Vitro. Tissue Eng Regen Med 2025:10.1007/s13770-025-00720-1. [PMID: 40372627 DOI: 10.1007/s13770-025-00720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND This study investigated anti-inflammatory effects of exosomes derived from human fetal cartilage progenitor cells (hFCPC-Exo) and their microRNAs (miRNAs) on the osteoarthritis (OA) phenotype in vitro in comparison with exosomes from bone marrow mesenchymal stem cells (MSC-Exo). METHODS SW982 cells (synoviocytes) or hFCPCs (chondrocytes) were stimulated with 10 ng/mL IL-1β to mimic OA phenotypes. The effects of hFCPC-Exo and MSC-Exo were compared by measuring the expression of inflammatory cytokines and an anti-inflammatory protein. miRNA profiles of hFCPC-Exo and MSC-Exo were analyzed using a 2588 human miRNA dataset, and miRNAs potentially involved in the anti-inflammatory effect of hFCPC-Exo were selected. miRNA mimics and antisense inhibitors were used to investigate the role of selected miRNAs in the IL-1β signaling pathways. RESULTS Both hFCPC-Exo and MSC-Exo significantly decreased the expression of inflammatory cytokines (IL-1β, IL-6, and MCP-1), while slightly increased an anti-inflammatory protein (SOCS1) in IL-1β-treated SW982 cells. miRNA sequencing revealed anti-inflammatory miRNAs present in large amounts in both hFCPC-Exo and MSC-Exo. Among them, miR-125b-5p mimic significantly suppressed the expression of inflammatory cytokines induced by IL-1β, while anti-sense inhibitor of miR-125b-5p efficiently blocked anti-inflammatory effects of hFCPC-Exo. Both hFCPC-Exo and miR-125b-5p inhibited IκBα down-regulation and -NF-κB stabilization in IL-1β-treated SW982 cells. Additionally, hFCPC-Exo and miR-125b-5p showed similar effects on IL-1β-treated hFCPCs as an OA model in chondrocytes by down-regulating the expression of IL-1β, MMP13, and ADAMTS-5 and up-regulating the expression of aggrecan (ACAN) and type II collagen (COL2A1). CONCLUSION This study demonstrated that hFCPC-Exo exhibits anti-inflammatory effects on IL-1β-treated synoviocytes and chondrocytes in vitro possibly by down-regulating the IL-1β-TRAF6-NF-κB pathway via anti-inflammatory miRNAs such as miR-125b-5p.
Collapse
Affiliation(s)
- JuHyeok Lee
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jiyoung Lee
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
32
|
Kimura K, Motoyama E, Kanki S, Asano K, Sips P, Sheikh MAA, Clarin MTRDC, Raja E, Takeda M, Ishii R, Murata K, Deleeuw V, Muiño Mosquera L, De Backer J, Mizuno S, Sakai LY, Nakamura T, Yanagisawa H. Novel Aortic Dissection Model Links Endothelial Dysfunction and Immune Infiltration. Circ Res 2025. [PMID: 40365676 DOI: 10.1161/circresaha.125.326230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Aortic dissection (AD) is the separation of medial layers of the aorta and is a major cause of death in patients with connective tissue disorders such as Marfan syndrome. However, molecular triggers instigating AD, its temporospatial progression, and how vascular cells in each vessel layer interact and participate in the pathological process remain incompletely understood. To unravel the underlying molecular mechanisms of AD, we generated a spontaneous AD mouse model. METHODS We incorporated a novel missense variant (p.G234D) in FBN1, the gene for fibrillin-1, identified in a patient with nonsyndromic familial AD into mice using the CRISPR/Cas9 system. We performed molecular pathological analyses of the aortic lesions by histology, immunofluorescence staining, electron microscopy, synchrotron-based imaging, and single-cell RNA sequencing. Biochemical analysis was performed to examine the binding capacity of mutant human FBN1G234D protein to LTBPs (latent TGFβ [transforming growth factor-beta] binding proteins), and signaling pathways in the mutant aortic wall were examined by the Western blot analysis. RESULTS Fifty percent of the Fbn1G234D/G234D mutant mice died within 5 weeks of age from multiple intimomedial tears that expanded longitudinally and progressed to aortic rupture accompanied by massive immune cell infiltration. Fbn1G234D/G234D endothelial cells exhibited altered mechanosensing with loss of parallel alignment to blood flow and upregulation of VCAM-1 and ICAM-1 as early as 1 week of age. Single-cell RNA sequencing, validated by immunostaining, revealed a cluster of monocyte/macrophage predominantly in the intima at 3 weeks of age before the dissection, and the second cluster of macrophages increased during the progression of intimomedial tears, exhibiting strong CCR2+ and both M1- and M2-like features. Consistently, upregulation of MMP2/9 was observed. Biochemically, FBN1G234D lost the ability to bind to LTBP-1, -2, and -4, resulting in the downregulation of TGFβ signaling in the aortic wall. CONCLUSIONS We show that interactions involving endothelial cells and macrophages/monocytes in the intima, where the ECM (extracellular matrix) microenvironment contains reduced TGFβ signaling, contribute to the initiation of AD. Our novel AD mouse model provides a unique opportunity to identify target molecules involved in the intimomedial tears that can be utilized for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kenichi Kimura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
| | - Eri Motoyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
| | - Sachiko Kanki
- Thoracic and Cardiovascular Surgery, Osaka Medical and Pharmaceutical University, Japan (S.K.)
| | - Keiichi Asano
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Belgium (P.S., V.D.)
| | - Md Al Amin Sheikh
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
- School of Integrative and Global Major, University of Tsukuba, Japan. (M.A.A.S., M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
- School of Integrative and Global Major, University of Tsukuba, Japan. (M.A.A.S., M.T.R.D.C.C.)
- National Institute for Material Science, Tsukuba, Japan (M.T.R.D.C.C.)
| | - Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
| | - Mariko Takeda
- Department of Pharmacology, Kansai Medical University, Osaka, Japan (M.T., T.N.)
| | - Ryutaro Ishii
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
- Faculty of Medicine, University of Tsukuba, Japan. (R.I., H.Y.)
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Japan. (K.M., S.M.)
| | - Violette Deleeuw
- Department of Biomolecular Medicine, Ghent University, Belgium (P.S., V.D.)
| | - Laura Muiño Mosquera
- Department of Pediatric Cardiology and Center for Medical Genetics, Ghent University Hospital, Belgium. (L.M.M.)
| | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Belgium. (J.D.B.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Japan. (K.M., S.M.)
| | - Lynn Y Sakai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland (L.Y.S.)
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Osaka, Japan (M.T., T.N.)
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan. (K.K., E.M., K.A., M.A.A.S., M.T.R.D.C.C., E.R., R.I., H.Y.)
- Faculty of Medicine, University of Tsukuba, Japan. (R.I., H.Y.)
| |
Collapse
|
33
|
Meng Y, Jia Y, He Z, Li J, Yuan L. Aryl Hydrocarbon Receptor-Dependent miRNA-382-5p Mediates the Classical Pyroptosis Induced by Foodborne Benzo(a)pyrene through Targeting IκB in Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40368843 DOI: 10.1021/acs.jafc.5c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Benzo(a)pyrene (BaP), a carcinogen prevalent in high-temperature processed foods, activates the aryl hydrocarbon receptor (AhR) and induces liver pyroptotic injury. MicroRNAs regulate mRNA expression and are involved in BaP toxicity. In this study, we investigated the essential role of microRNA in BaP-induced pyroptosis. In vivo, BaP induces liver pyroptotic injury by activating AhR, which may be attributed to AhR's influence on microRNA expression. The miRNA-382-5p/Akt and miRNA-382-5p/IκB pairs were predicted to post-transcriptionally regulate pyroptosis. In vitro, miRNA-382-5p activates the classical NF-κB/NLRP3/Caspase-1 pyroptosis signaling pathway by targeting and inhibiting the IκB gene. Furthermore, AhR activation by BaP could promote the high expression of miRNA-382-5p, thereby upregulating the NF-κB/NLRP3/Caspase-1 pyroptosis signaling pathway. In summary, we established that the AhR-mediated miR-382-5p/NF-κB/NLRP3/Caspase-1 axis is a key driver of BaP-induced pyroptosis in hepatocytes and elucidated the underlying mechanisms. These findings provide a valuable theoretical basis for considering miRNA-382-5p as a potential target for preventing BaP toxicity.
Collapse
Affiliation(s)
- Yao Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Yingyu Jia
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Ziyan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Jianke Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710119, People' s Republic of China
| |
Collapse
|
34
|
Wychowaniec JK, Bektas EI, Muerner M, Sapudom J, Šrejber M, Airoldi M, Schmidt R, Vernengo AJ, Edwards-Gayle CJC, Tipay PS, Otyepka M, Teo J, Eglin D, D'Este M. Effect of Tyrosine-Containing Self-Assembling β-Sheet Peptides on Macrophage Polarization and Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27740-27758. [PMID: 40235215 DOI: 10.1021/acsami.4c19900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Self-assembling peptides (SAPs) are fully defined nanobiomaterials offering unprecedented opportunities to control nanostructure and chemical attributes to investigate and manipulate cellular signals. To investigate the influence of chemical and morphological characteristics on inflammatory signaling in native immunity, we designed five β-sheet SAPs: EFEFKFEFK (EF8), YEFEFKFEFK (YEF8), EFEFKFEFKY (EF8Y), YEFEFKFEFKY (YEF8Y), and EYEFKFEFK (EYF8) (F: phenylalanine; E: glutamic acid; K: lysine, Y: tyrosine). The position of tyrosine in the peptide sequence dictated the self-assembly into nanostructures, with all SAPs self-assembling into thin constituent nanofibers with d ≈ 3.8 ± 0.4 nm, and sequences YEF8 and EF8 showing a propensity for associative bundling. These distinct SAPs induced contrasting inflammatory responses of monocytic model THP-1 cells-derived macrophages (MΦs). Presence of soluble EF8 nanofibers (at 2 mM) induced an anti-inflammatory response and polarization toward an M2 state, whereas YEF8 (at 2 mM) displayed a tendency for inducing a pro-inflammatory response and polarization toward an M1 state. EF8Y, YEF8Y, and EYF8 SAPs did not induce an inflammatory response in our models. These results were validated using peripheral blood mononuclear cells (PBMCs)-derived MΦs from human donors, confirming the critical role of EF8 and YEF8 SAPs as possible orchestrators of the repair of tissues or inducers of pro-inflammatory state, respectively. The same MΦs polarization responses from THP-1-derived MΦs cultured on 20 mM hydrogels were obtained. These findings will facilitate the utilization of this family of SAPs as immunomodulatory nanobiomaterials potentially changing the course of inflammation during the progression of various diseases.
Collapse
Affiliation(s)
| | - Ezgi Irem Bektas
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Marcia Muerner
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
- ETH Zürich, Rämistrasse 101, Zürich 8092, Switzerland
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Martin Šrejber
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| | - Marielle Airoldi
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Roland Schmidt
- Hitachi High-Tech Europe GmbH, Europark Fichtenhain A12, 47807 Krefeld, Germany
| | - Andrea J Vernengo
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | | | - Paul Sean Tipay
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - David Eglin
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, UMR 1059 Sainbiose, 1059, Saint-Étienne, France
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| |
Collapse
|
35
|
Delalat S, Sultana I, Osman H, Sieme M, Zhazykbayeva S, Herwig M, Budde H, Kovács Á, Kaçmaz M, Göztepe E, Borgmann N, Shahriari G, Sasko B, Wintrich J, Haldenwang P, Schmidt WE, Fenske W, Khan M, Jaquet K, Mügge A, Máthé D, Tóth VE, Varga ZV, Ferdinandy P, El-Battrawy I, van Heerebeek L, Hamdani N. Dysregulated inflammation, oxidative stress, and protein quality control in diabetic HFpEF: unraveling mechanisms and therapeutic targets. Cardiovasc Diabetol 2025; 24:211. [PMID: 40369521 DOI: 10.1186/s12933-025-02734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a significant risk factor for cardiovascular disease, particularly heart failure with preserved ejection fraction (HFpEF). HFpEF predominantly affects elderly individuals and women, and is characterized by dysfunctions associated with metabolic, inflammatory, and oxidative stress pathways. Despite HFpEF being the most prevalent heart failure phenotype in patients with T2DM, its underlying pathophysiological mechanisms remain inadequately elucidated. OBJECTIVE This study aims to investigate the effects of diabetes mellitus on myocardial inflammation, oxidative stress, and protein quality control (PQC) mechanisms in HFpEF, with particular emphasis on insulin signaling, autophagy, and chaperone-mediated stress responses. METHODS We conducted an analysis of left ventricular myocardial tissue from HFpEF patients, both with and without diabetes, employing a range of molecular, biochemical, and functional assays. The passive stiffness of cardiomyocytes (Fpassive) was assessed in demembranated cardiomyocytes before and after implementing treatments aimed at reducing inflammation (IL-6 inhibition), oxidative stress (Mito-TEMPO), and enhancing PQC (HSP27, HSP70). Inflammatory markers (NF-κB, IL-6, TNF-α, ICAM-1, VCAM-1, NLRP3), oxidative stress markers (ROS, GSH/GSSG ratio, lipid peroxidation), and components of signaling pathways (PI3K/AKT/mTOR, AMPK, MAPK, and PKG) were evaluated using western blotting, immunofluorescence, and ELISA techniques. RESULTS Hearts from diabetic HFpEF patients exhibited significantly heightened inflammation, characterized by the upregulation of NF-κB, IL-6, and the NLRP3 inflammasome. This increase in inflammation was accompanied by elevated oxidative stress, diminished nitric oxide (NO) bioavailability, and impaired activation of the NO-sGC-cGMP-PKG signaling pathway. Notably, dysregulation of insulin signaling was observed, as indicated by decreased AKT phosphorylation and impaired autophagy regulation mediated by AMPK and mTOR. Additionally, PQC dysfunction was evidenced by reduced expression levels of HSP27 and HSP70, which correlated with increased cardiomyocyte passive stiffness. Targeted therapeutic interventions effectively reduced Fpassive, with IL-6 inhibition, Mito-TEMPO, and HSP administration leading to improvements in cardiomyocyte mechanical properties. CONCLUSION The findings of this study elucidate a mechanistic relationship among diabetes, inflammation, oxidative stress, and PQC impairment in the context of HFpEF. Therapeutic strategies that target these dysregulated pathways, including IL-6 inhibition, mitochondrial antioxidants, and chaperone-mediated protection, may enhance myocardial function in HFpEF patients with T2DM. Addressing these molecular dysfunctions could facilitate the development of novel interventions specifically tailored to the diabetic HFpEF population.
Collapse
Affiliation(s)
- Simin Delalat
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Innas Sultana
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Hersh Osman
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Marcel Sieme
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Melissa Herwig
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Heidi Budde
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Árpád Kovács
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mustafa Kaçmaz
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Eda Göztepe
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Natalie Borgmann
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Gelareh Shahriari
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Benjamin Sasko
- Medical Department II, Marien Hospital Herne, Ruhr University Bochum, Bochum, Germany
| | - Jan Wintrich
- Medical Department II, Marien Hospital Herne, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Wolfgang E Schmidt
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr University Bochum, 44801, Bochum, Germany
| | - Wiebke Fenske
- Department of Internal Medicine I- General Internal Medicine, Endocrinology and Diabetology, Gastroenterology and Hepatology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Muchtiar Khan
- Department of Cardiology, OLVG, 1091 AC, Amsterdam, The Netherlands
| | - Kornelia Jaquet
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Andreas Mügge
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó utca 37-47, 1094, Budapest, 1085, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - Viktória E Tóth
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Péter Ferdinandy
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Ibrahim El-Battrawy
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nazha Hamdani
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany.
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.
- Medical Faculty, Department Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, MA 2/156, 44780, Bochum, Germany.
- Institut Für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Gudrunstraße 56, 44791, Bochum, Germany.
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
36
|
Liu J, Huang H, Zhang X, Shen Y, Jiang D, Hu S, Li S, Yan Z, Hu W, Luo J, Yao H, Chen Y, Tang B. Unveiling the Cuproptosis in Colitis and Colitis-Related Carcinogenesis: A Multifaceted Player and Immune Moderator. RESEARCH (WASHINGTON, D.C.) 2025; 8:0698. [PMID: 40370501 PMCID: PMC12076167 DOI: 10.34133/research.0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Cuproptosis represents a novel mechanism of cellular demise characterized by the intracellular buildup of copper ions. Unlike other cell death mechanisms, its distinct process has drawn considerable interest for its promising applications in managing inflammatory bowel disease (IBD) and colorectal cancer (CRC). Emerging evidence indicates that copper metabolism and cuproptosis may exert dual regulatory effects within pathological cellular environments, specifically modulating oxidative stress responses, metabolic reprogramming, and immunotherapeutic efficacy. An appropriate level of copper may promote disease progression and exert synergistic effects, but exceeding a certain threshold, copper can inhibit disease development by inducing cuproptosis in pathological cells. This makes abnormal copper levels a potential new therapeutic target for IBD and CRC. This review emphasizes the dual function of copper metabolism and cuproptosis in the progression of IBD and CRC, while also exploring the potential application of copper-based therapies in disease treatment. The analysis further delineates the modulatory influence of tumor immune microenvironment on cuproptosis dynamics, while establishing the therapeutic potential of cuproptosis-targeted strategies in circumventing resistance to both conventional chemotherapeutic agents and emerging immunotherapies. This provides new research directions for the development of future cuproptosis inducers. Finally, this article discusses the latest advances in potential molecular targets of cuproptosis and their related genes in the treatment of IBD and CRC, highlighting future research priorities and unresolved issues.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hairuo Huang
- China Medical University, Shenyang 110122, China
| | - Xiaojie Zhang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yang Shen
- Department of Radiation Oncology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| | - DeMing Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering,
Zhejiang University, Hangzhou 310007, China
| | - Shurong Hu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyan Li
- Department of Nursing, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zelin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Wen Hu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Jinhua Luo
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Haibo Yao
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital,
Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Yan Chen
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bufu Tang
- Department of Interventional Radiology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| |
Collapse
|
37
|
Xu G, Zhou J, Liu K, Wang Y, Tsikari T, Qin F, van den Hil F, Boor PPC, Ayada I, de Vries AC, Li J, Jiang S, Offermans DM, Kainov DE, Janssen HLA, Peppelenbosch MP, Bijvelds MJC, Wang W, Orlova VV, Pan Q, Li P. Macrophage-augmented intestinal organoids model virus-host interactions in enteric viral diseases and facilitate therapeutic development. Nat Commun 2025; 16:4475. [PMID: 40368896 DOI: 10.1038/s41467-025-59639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
The pathogenesis of enteric viral infections is attributed to both viral replication and the resultant immune-inflammatory response. To recapitulate this complex pathophysiology, we engineer macrophage-augmented organoids (MaugOs) by integrating human macrophages into primary intestinal organoids. Echovirus 1, echovirus 6, rotavirus, seasonal coronavirus OC43 and SARS-CoV-2- known to directly invade the intestine- are used as disease modalities. We demonstrate that these viruses efficiently propagate in MaugOs and stimulate the host antiviral response. However, rotavirus, coronavirus OC43 and SARS-CoV-2, but not the two echoviruses, trigger inflammatory responses. Acetate, a microbial metabolite abundantly present in the intestine, potently inhibits virus-induced inflammatory responses in MaugOs, while differentially affecting viral replication in macrophages and organoids. Furthermore, we provide a proof-of-concept of combining antiviral agent with either anti-inflammatory regimen or acetate to simultaneously inhibit viral infection and inflammatory response in MaugOs. Collectively, these findings demonstrate that MaugOs are innovative tools for studying the complex virus-host interactions and advancing therapeutic development.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiangrong Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kuan Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Theano Tsikari
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fang Qin
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Francijna van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Ibrahim Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jiajing Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dewy M Offermans
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Saka WA, Oyedokun PA, Adegbola CA, Akhigbe TM, Ashonibare PJ, Kolawole OR, Oladipo AA, Akhigbe RE. Micronized Purified Flavonoid Fraction (Diosmin/Hesperidin) Ameliorates Cardiac Structural and Functional Integrity in Cisplatin-treated Male Wistar Rats by Modulating NLRP3/Caspase-1/-3 Signaling. Cell Biochem Biophys 2025:10.1007/s12013-025-01774-7. [PMID: 40358918 DOI: 10.1007/s12013-025-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Cisplatin is an effective chemotherapeutic agent in managing several cancers. Yet, its usage is restricted by its toxicity to non-target organs, such as cardiotoxicity that is mediated by nucleotide-binding Oligomerisation Domain (NOD)-Like Receptors family pyrin domain containing 3 (NLRP3)-driven inflammation, oxidative stress, and apoptosis. Conversely, micronized purified flavonoid fractions (MPFF) attenuate oxido-inflammation by downregulating NLRP3 inflammasome. However, there is a dearth of information on the effect of MPFF on cisplatin-induced cardiac injury. This study examined the possible protective effect of MPFF in cisplatin-induced cardiac injury. Also, the role of NLRP3 inflammasome and caspase-1/-3 signaling was evaluated. Thirty-two adult male Wistar rats were randomly allotted to four equal groups (n = 8 rats per group). The control received 0.5 mL of distilled water orally daily, the MPFF-treated rats received 100 mg/kg/day of MPFF orally for 14 days, the cisplatin-treated rats had 7 mg/kg of cisplatin via an intraperitoneal route on day 8, and the cisplatin+MPFF -treated rats received cisplatin and MPFF as those in the cisplatin- and MPFF-treated groups. Cisplatin therapy significantly increased cardiac injury markers and plasma glucose. Cisplatin also induced dyslipidemia and insulin resistance. Moreover, cisplatin altered cardiac histology evidenced by vascular congestion, and increased myofibril thickness and interstitial space. These observations were accompanied by cisplatin-induced cardiac oxidative stress (increased malondialdehyde and a decline in reduced glutathione, superoxide dismutase, and catalase), inflammation (increased tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6), apoptosis (increased caspase 1 and caspase 3) and a marked increase in NLPR3 inflammasome. These derangements were blunted by MPFF co-therapy. In conclusion, this study for the first time demonstrated that MPFF attenuated cisplatin-induced cardiac structural and functional damage by suppressing oxidative stress and inflammation via the downregulation of NLPR3 /caspase-1/-3 signaling.
Collapse
Affiliation(s)
- W A Saka
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - P A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - C A Adegbola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State University, Ejigbo campus, Ejigbo, Osun State, Nigeria
| | - P J Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - O R Kolawole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A A Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
39
|
Hagos B, Brasov I, Branscome H, Rashid S, Bradford R, Leonelli J, Kashanchi F, Ben Mamoun C, Molestina RE. Activation of macrophages by extracellular vesicles derived from Babesia-infected red blood cells. Infect Immun 2025; 93:e0033324. [PMID: 40172538 PMCID: PMC12070731 DOI: 10.1128/iai.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Babesia microti is the primary cause of human babesiosis in North America. Despite the emergence of the disease in recent years, the pathogenesis and immune response to B. microti infection remain poorly understood. Studies in laboratory mice have shown a critical role for macrophages in the elimination of parasites and infected red blood cells (iRBCs). Importantly, the underlying mechanisms that activate macrophages are still unknown. Recent evidence identified the release of extracellular vesicles (EVs) from Babesia iRBCs. EVs are spherical particles released from cell membranes under natural or pathological conditions that have been suggested to play roles in host-pathogen interactions among diseases caused by protozoan parasites. The present study examined whether EVs released from cultured Babesia iRBCs could activate macrophages and alter cytokine secretion. An analysis of vesicle size in EV fractions from Babesia iRBCs showed diverse populations in the <100 nm size range compared to EVs from uninfected RBCs. In co-culture experiments, EVs released by B. microti iRBCs appeared to be associated with macrophage membranes and cytoplasm, indicating uptake of these vesicles in vitro. Interestingly, the incubation of macrophages with EVs isolated from Babesia iRBC culture supernatants resulted in the activation of NF-κB and modulation of pro-inflammatory cytokines. These results support a role for Babesia-derived EVs in macrophage activation and provide new insights into the mechanisms involved in the induction of the innate immune response during babesiosis.
Collapse
Affiliation(s)
- Biniam Hagos
- American Type Culture Collection, Manassas, Virginia, USA
| | - Ioana Brasov
- American Type Culture Collection, Manassas, Virginia, USA
| | | | - Sujatha Rashid
- American Type Culture Collection, Manassas, Virginia, USA
| | | | | | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
40
|
O'Reilly ML, Wulf MJ, Connors TM, Jin Y, Bearoff F, Bouyer J, Kortagere S, Bethea JR, Tom VJ. Microglial IKKβ Alters Central and Peripheral Immune Activity at Distinct Time Points After Spinal Cord Injury. Glia 2025. [PMID: 40346894 DOI: 10.1002/glia.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025]
Abstract
After high-level spinal cord injury (SCI), persistently reactive microglia drive widespread plasticity throughout the neuraxis. Plasticity in the thoracolumbar cord, a region corresponding to the spinal sympathetic reflex (SSR) circuit, contributes to the development of sympathetic dysfunction and associated immune disorders. The transcription factor NF-κB is activated after SCI, promoting a pro-inflammatory loop by driving the expression of inflammatory mediators which further activate NF-κB signaling. We hypothesize that microglial NF-κB signaling via IKKβ modulates microglial activity, impacting central and peripheral immune activity related to the SSR circuit post-SCI. We assessed the effect of deleting canonical IKKβ in CNS-resident microglia, its impact on microglial activation, polarization, central transcriptional activity, and peripheral immune activity at 1- and 4-week post-SCI (wpi). Transcriptomic analyses reveal microglial IKKβ influences immune-related pathways in the thoracolumbar cord at 1 wpi. We show that inhibition of microglial NF-κB signaling via deletion of the activator IKKβ mitigates injury-induced increases in "proinflammatory" M1 microglia in the thoracolumbar cord at 4 wpi and increases the quantity of splenocytes at 1 wpi. This study advances our understanding of how microglial IKKβ signaling shapes the neuroimmune response and a peripheral immune organ after SCI.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mariah J Wulf
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Theresa M Connors
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Bearoff
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson AL, Wolin A, Hampton D, Shrivastava NM, Turner N, Danis E, Ebmeier C, Spoelstra N, Richer J, Jedlicka P, Costello JC, Zhao R, Ford HL. EYA3 regulation of NF-κB and CCL2 suppresses cytotoxic NK cells in the premetastatic niche to promote TNBC metastasis. SCIENCE ADVANCES 2025; 11:eadt0504. [PMID: 40333987 PMCID: PMC12057687 DOI: 10.1126/sciadv.adt0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Triple-negative breast cancer cells must evade immune surveillance to metastasize to distant sites, yet this process is not well understood. The Eyes absent (EYA) family of proteins, which are crucial for embryonic development, become dysregulated in cancer, where they have been shown to mediate proliferation, migration, and invasion. Our study reveals an unusual mechanism by which EYA3 reduces the presence of cytotoxic natural killer (NK) cells in the premetastatic niche (PMN) to enhance metastasis, independent of its effects on the primary tumor. We find that EYA3 up-regulates nuclear factor κB signaling to enhance CCL2 expression, which, in contrast to previous findings, suppresses cytotoxic NK cell activation in vitro and their infiltration into the PMN in vivo. These findings uncover an unexpected role for CCL2 in inhibiting NK cell responses at the PMN and suggest that targeting EYA3 could be an effective strategy to reactivate antitumor immune responses to inhibit metastasis.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Kaiah M. Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Stephen Connor Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Annika L. Gustafson
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Drake Hampton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Natasha M. Shrivastava
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Nicholas Turner
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Christopher Ebmeier
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nicole Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
42
|
Zhang J, Jiang B, Yun X, Gai C, Wang Z, Zou Y, Yang J, Song Y, Meng Q, Zhao Q, Chai X. Discovery of novel N-(5-chloro-2,4-dimethoxyphenyl)-N-heterocyclic ketone analogs as potent anti-inflammatory agents against ulcerative colitis. Bioorg Chem 2025; 161:108576. [PMID: 40373559 DOI: 10.1016/j.bioorg.2025.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/12/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
As the incidence of ulcerative colitis (UC) has increased globally, there is a great unmet clinical need for efficacious, tolerable, and economical, orally administered drugs for its treatment. To help meet this need, we investigated anti-inflammatory small-molecule drugs with a novel structure, high activity, and high selectivity for the treatment of UC. Here, we designed and synthesized a series of novel anti-inflammatory compounds based on the molecular hybridization strategy by merging fragments from anti-inflammatory drugs. Among them, compound 11a best-exhibited lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells in vitro. Anti-inflammatory mechanism studies showed that compound 11a inhibited the release of pro-inflammatory cytokines and alleviated the inflammatory process by blocking the activation of the ASK1/p38 MAPKs/NF-κB signaling pathway in LPS-stimulated RAW264.7 cells. Analysis of the in vivo biological activity showed that compound 11a significantly alleviated dextran sodium sulfate-induced ulcerative colitis in mice while demonstrating an excellent safety in acute toxicity tests. Our study provides a novel compound for the treatment of UC that is worthy of further investigation and structural optimization.
Collapse
Affiliation(s)
- Juan Zhang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Boye Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoqing Yun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghao Gai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yan Zou
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China
| | - Yan Song
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingjie Zhao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
43
|
Ivy A, Bess SN, Agrawal S, Kochar V, Stokes AL, Muldoon TJ, Nelson CE. A dual-fluorescence assay for gene delivery vehicle screening in macrophages with an inflammation-inducible reporter construct. BMC METHODS 2025; 2:8. [PMID: 40352095 PMCID: PMC12062070 DOI: 10.1186/s44330-025-00030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Background Macrophages are a promising target for therapeutics in various applications such as regenerative medicine and immunotherapy for cancer. Due to their plastic nature, macrophages can switch from a non-activated state to activated with the smallest environmental change. For macrophages to be effective in their respective applications, screening for phenotypic changes is necessary to elucidate the cell response to different delivery vehicles, vaccines, small molecules, and other stimuli. Methods We created a sensitive and dynamic high-throughput screening method for macrophages based on the activation of NF-κB. For this reporter, we placed an mRFP1 fluorescence gene under the control of an inflammatory promoter, which recruits NF-κB response elements to promote expression during the inflammatory response in macrophages. We characterized the inflammatory reporter based on key markers of an inflammatory response in macrophages including TNF-α cytokine release and immunostaining for inflammatory and non-inflammatory cell surface markers. We compared gene delivery and inflammation of several clinically relevant viral vehicles and commercially available non-viral vehicles. Statistical analysis between groups was performed with a one-way ANOVA with post-hoc Tukey's test. Results The reporter macrophages demonstrated a dynamic range after LPS stimulation with an EC50 of 0.61 ng/mL that was highly predictive of TNF-α release. Flow cytometry revealed heterogeneity between groups but confirmed population level shifts in pro-inflammatory markers. Finally, we demonstrated utility of the reporter by showing divergent effects with various leading gene delivery vehicles. Discussion This screening technique developed here provides a dynamic, high-throughput screening technique for determining inflammatory response by mouse macrophages to specific stimuli. The method presented here provides insight into the inflammatory response in mouse macrophages to different viral and non-viral gene delivery methods and provides a tool for high-throughput screening of novel vehicles. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00030-x.
Collapse
Affiliation(s)
- Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Varun Kochar
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Abbey L. Stokes
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| |
Collapse
|
44
|
Potdar MB, Bhamare RP, Agrawal YO, Belgamwar AV. Crosstalk Between Signaling Stroke Cascade and Therapeutic Receptors PPAR-γ, ROCK, CB1R, and CB2R: From Mechanism to Therapies. Transl Stroke Res 2025:10.1007/s12975-025-01352-2. [PMID: 40338418 DOI: 10.1007/s12975-025-01352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
Stroke remains a leading cause of disability and mortality worldwide, primarily due to the complex and multifaceted nature of its pathophysiology. This review aims to provide a comprehensive and mechanistic understanding of the crosstalk between key signaling pathways activated during stroke and the therapeutic potential of specific receptors: PPAR-γ, ROCK, CB1R, and CB2R. We delve into the intricate signaling cascades that occur post-stroke, including excitotoxicity, oxidative stress, and inflammation, highlighting the pivotal molecular players involved. PPAR-γ, known for its neuroprotective and anti-inflammatory properties, emerges as a critical modulator in stroke therapy. ROCK, a central component in the Rho/ROCK pathway, is implicated in vascular and neuronal damage, making its inhibition a promising therapeutic strategy. The roles of CB1R and CB2R within the endocannabinoid system are explored, with a focus on their dualistic nature in neuroprotection and neurotoxicity. The review further examines the interconnectivity of these receptors within the stroke signaling network, proposing that their synergistic modulation could enhance therapeutic outcomes. Current therapeutic approaches, including pharmacological and multi-target strategies, are critically evaluated, addressing the challenges in translating mechanistic insights into clinical practice. Additionally, the identification and utilization of biomarkers for stroke diagnosis and therapy monitoring are discussed, offering a glimpse into future prospects. Emerging therapies, novel drug developments, and personalized medicine approaches are presented as potential game-changers in stroke treatment.
Collapse
Affiliation(s)
- Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Rohit P Bhamare
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India.
| |
Collapse
|
45
|
Jin Y, Zhang H. Comprehensive bioinformatics analysis uncover molecular pathways shared between osteoarthritis and atherosclerosis. BMC Musculoskelet Disord 2025; 26:449. [PMID: 40335993 PMCID: PMC12057041 DOI: 10.1186/s12891-025-08563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND There is growing evidence of an association between osteoarthritis (OA) and atherosclerosis (AS). However, their mechanisms are not yet fully understood. The aim of this study was to investigate the common genetic and molecular mechanisms underlying the common pathogenesis of OA and AS. METHODOLOGY Gene expression profiles of OA (GSE51588) and AS (GSE100927) were obtained from the Gene Expression Omnibus (GEO) database. After identifying shared differentially expressed genes (DEGs) and hub genes, we performed multifaceted bioinformatics analyses, including functional annotation, co-expression analysis, TF-mRNA and ceRNA regulatory network construction, pharmacogenetic prediction, and receiver operator characteristic (ROC) curve assessment. In addition, the immune infiltration of OA and AS was analyzed and compared based on the ssGSEA algorithm, and the correlation between hub genes and infiltrating immune cells was evaluated in OA and AS, respectively. RESULT A total of 48 up-regulated and 43 down-regulated public DEGs were screened between GSE51588 and GSE100927, and functional enrichment analysis emphasized the important role of immune and inflammatory pathways in OA and AS. After protein-protein interaction (PPI) network construction, a total of 9 hub genes (CCR5, IFIT2, MMP1, CXCL9, RSAD2, IFIH1, TNF, IFIT3, and TBX21) were identified as key genes. Targeting the key genes we identified several molecular drug candidates against OA combined with AS related. Additionally diagnostic efficacy assessment using 9 central genes showed great diagnostic value (area under the curve from 0.710 to 0.973). Immune infiltration study also revealed coordinated changes in immune cell profiles in OA and AS diseases. CONCLUSION After a series of bioinformatics analysis and validation, CCR5, IFIT2, MMP1, CXCL9, RSAD2, IFIH1, TNF, IFIT3 and TBX21 were identified as common hub genes for the development of OA and AS. This study provides a new perspective on the common molecular mechanisms between OA and AS, and offers new insights into the potential pathogenesis of OA combined with AS and the direction of treatment.
Collapse
Affiliation(s)
- Yingchao Jin
- Department of orthopaedics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hua Zhang
- Department of orthopaedics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
46
|
Kim JH, Kim S, Piao S, Kim M, Kim DW, Jeon BH, Oh SH, Kim CS. Non-Thermal Plasma Attenuates TNF-α-Induced Endothelial Inflammation via ROS Modulation and NF-κB Inhibition. Int J Mol Sci 2025; 26:4449. [PMID: 40362689 PMCID: PMC12073020 DOI: 10.3390/ijms26094449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Non-thermal plasma (NTP) has emerged as a promising therapeutic tool due to its anti-inflammatory properties; however, its molecular effects on vascular endothelial inflammation remain unclear. This study investigated the effects of NTP on tumor necrosis factor-alpha (TNF-α)-induced inflammation in human umbilical vein endothelial cells (HUVECs). NTP treatment significantly reduced intracellular reactive oxygen species (ROS) levels and downregulated the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are key markers of endothelial activation. In addition, NTP suppressed mRNA expression of pro-inflammatory cytokines, including TNF-α, interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Mechanistically, NTP inhibited the nuclear translocation of phosphorylated NF-κB p65, indicating attenuation of NF-κB signaling. These results demonstrate that NTP modulates inflammatory responses in endothelial cells by attenuating ROS generation and suppressing NF-κB-mediated signaling. Our findings suggest that NTP may serve as a potential therapeutic strategy for treating vascular inflammation and related pathologies.
Collapse
Affiliation(s)
- Joo-Hak Kim
- Department of Plastic and Reconstructive Surgery, Sejong Chungnam National University Hospital, Sejong 30099, Republic of Korea;
| | - Seonhee Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (S.K.); (S.P.); (M.K.); (B.H.J.)
| | - Shuyu Piao
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (S.K.); (S.P.); (M.K.); (B.H.J.)
| | - Minsoo Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (S.K.); (S.P.); (M.K.); (B.H.J.)
| | - Dae-Woong Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials (KIMM), Daejeon 34134, Republic of Korea;
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (S.K.); (S.P.); (M.K.); (B.H.J.)
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Chungnam National University Hospital, Daejeon 34134, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (S.K.); (S.P.); (M.K.); (B.H.J.)
| |
Collapse
|
47
|
Saputra F, Pramata AD, Soegianto A, Hu SY. Polystyrene nanoplastics cause developmental abnormalities, oxidative damage and immune toxicity in early zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110216. [PMID: 40339675 DOI: 10.1016/j.cbpc.2025.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Aquatic organisms are increasingly affected by polystyrene nanoplastics (PSNPs), which have the potential to disrupt development, induce oxidative stress, and impair immune function. This study examined the effects of PSNPs on zebrafish (Danio rerio) embryos exposed to 0.01, 0.1, 1, and 10 μg/mL from 2 to 120 h post-fertilization (hpf). The findings indicated that developmental abnormalities occurred in a dose-dependent manner, including delayed hatching, decreased survival rates, reduced body length, smaller eye diameter, and enlarged yolk sac area. PSNPs accumulated in the chorion and yolk sac as early as 6 hpf and were detected in vital tissues, such as the eyes, heart, yolk sac, liver, pancreas, intestine, neuromasts, and tail, immediately after hatching. By 120 hpf, PSNPs significantly reduced swimming distance and velocity. Exposure to PSNPs induced oxidative damage evidenced by altered expression of antioxidant-related genes (CAT1, GPX1A, SOD1, NRF2, KEAP1, HSP70, MT), disrupting cellular homeostasis and causing structural and organ defects. Immune toxicity was marked by dysregulated expression of immune-related genes (IL-1β, IL-6, NF-κB, TNF-α, C3B, TLR-1, TLR-3, TLR-4), indicating inflammation and innate immune activation triggered by oxidative damage. This study highlights the interconnected impacts of developmental abnormalities, oxidative damage, and immune toxicity caused by PSNPs exposure, highlighting the systemic impacts of nanoplastics contamination in aquatic environments.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Department of Biology, Faculty Sciences and Technology, Universitas Airlangga, Campus C, Surabaya 60115, Indonesia; Mathematics and Natural Sciences Doctoral Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Azzah Dyah Pramata
- Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60116, Indonesia.
| | - Agoes Soegianto
- Department of Biology, Faculty Sciences and Technology, Universitas Airlangga, Campus C, Surabaya 60115, Indonesia.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan.
| |
Collapse
|
48
|
Ishihara T, Tsugawa H, Iwanami S, Chang JC, Minoda A, Arita M. Transcriptomic and lipidomic analysis of aging-associated inflammatory signature in mouse liver. Inflamm Regen 2025; 45:13. [PMID: 40319315 PMCID: PMC12049063 DOI: 10.1186/s41232-025-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Aging-associated dysbiosis leads to chronic inflammation and the development of a range of aging-related diseases. The gut microbiota crosstalks with the host by providing lipid metabolites and modulating metabolic functions. However, the precise mechanism by which the gut microbiota regulates aging is unknown. The objective of this study was to examine the impact of the gut microbiota on the transcriptome and lipidome associated with aging in mouse liver. METHODS RNA-sequencing was conducted on the livers of young and aged male and female-specific pathogen-free (SPF) and germ-free (GF) mice to comprehensively analyze transcriptomic alterations with aging. We also reanalyzed our previously reported results on aging-associated changes in the hepatic lipidome to investigate the gut microbiota-dependent hepatic lipidome signatures associated with aging. RESULTS In contrast to the findings in male mice, the changes in hepatic transcriptome associated with aging were attenuated in female GF mice compared with those in SPF mice. In particular, the gene sets associated with inflammatory signatures (i.e., inflammation and tissue remodeling) were found to be suppressed in female GF mice. The ChIP-Atlas database predicted that transcription factors associated with sex differences may be involved in the gene signature of aged female GF mice. Significant differences in the lipid profile were observed between aged SPF and GF female mice, including in bile acids, sterol sulfates, lysophospholipids, oxidized triacylglycerols, vitamin D, and phytoceramides. Moreover, notable alterations were identified in the quality of phospholipids and sphingolipids. Integrated transcriptomic and lipidomic analysis identified candidate enzymes responsible for the change of lipid profiles in aged female mice. CONCLUSIONS The findings of this study offer new insights into the molecular mechanisms through which the gut microbiota regulates aging-related phenotypes such as inflammation in the liver, possibly through modulating lipid metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan.
| | - Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Seigo Iwanami
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Jen-Chien Chang
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
49
|
Han J, Du J, Li X, Zhou Q, Zeng J, Lin JT, Zhou W, Cai J, Ye Y, Yang B, Wang J, Zhou X, Lian R, Yang Y, Zhu X, Guan H, Liu L, Cai J, Wu J, Li Y, Li M, Tian H. The Glycosyltransferase XYLT1 Activates NF-κB Signaling to Promote Metastasis of Early-Stage Lung Adenocarcinoma. Cancer Res 2025; 85:1628-1643. [PMID: 39992715 DOI: 10.1158/0008-5472.can-24-1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/05/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Early-stage lung adenocarcinoma generally has a favorable prognosis. However, more than 30% of early-stage lung adenocarcinoma cases relapse within 5 years of initial treatment, even after complete removal of the primary tumor. Identification of the factors contributing to early-stage lung adenocarcinoma metastasis is needed to develop effective prevention and treatment strategies. In this study, we found upregulation of xylosyltransferase 1 (XYLT1), a glycosyltransferase that initiates the biosynthesis of sulfated glycosaminoglycan (sGAG) chains, in metastatic recurrent lesions of early-stage lung adenocarcinoma, which correlated with poor prognosis. In vitro and in vivo experiments showed that XYLT1 promoted lung adenocarcinoma cell survival and metastasis by activating the NF-κB pathway. Mechanistically, XYLT1 interacted with IκBα and facilitated the biosynthesis of sGAG-conjugated IκBα, which enhanced the interaction between IκBα and IKKs to promote the proteasomal degradation of IκBα. These results illustrate that proteoglycan modification-mediated activation of NF-κB signaling is a driver of early-stage lung adenocarcinoma metastasis, providing a possibility for the detection and intervention of early lung adenocarcinoma metastasis. Significance: XYLT1 promotes metastatic recurrence of early-stage lung adenocarcinoma by facilitating sulfated glycosaminoglycan conjugation and proteasomal degradation of IκBα to activate NF-κB, providing potential biomarker and treatment strategies for lung cancer metastasis.
Collapse
Affiliation(s)
- Jian Han
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangmeng Li
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingbo Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenle Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayi Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bosui Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsheng Wang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Liu
- Department of Laboratory Medicine, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yun Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mengfeng Li
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Manurung MD, Heieis GA, König M, Azimi S, Ndao M, Veldhuizen T, Hoving D, Hoekstra PT, Kruize YCM, Wammes LJ, Menafra R, Cisse M, Mboup S, Dieye A, Kloet S, Tahapary DL, Supali T, Wuhrer M, Hokke CH, Everts B, Mahfouz A, Jochems SP, Yazdanbakhsh M, Mbow M. Systems analysis unravels a common rural-urban gradient in immunological profile, function, and metabolic dependencies. SCIENCE ADVANCES 2025; 11:eadu0419. [PMID: 40305616 PMCID: PMC12042899 DOI: 10.1126/sciadv.adu0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Urbanization affects environmental exposures and lifestyle, shaping immune system variation and influencing disease susceptibility and vaccine responses. Here, we present systems analysis of immune profiles across the rural-urban gradient, comparing rural and urban Senegalese with urban Dutch individuals. By integrating single-cell phenotyping, metabolic profiling, and functional analysis, we reveal a trajectory of immune remodeling along the gradient. This includes enrichment of proinflammatory CD11c+ B cells associated with altered IgG Fc glycosylation, adaptive NK cells with reduced responsiveness to accessory cytokines, and CD161+CD4+T cells with enhanced cytokine production in rural settings. Metabolic perturbation studies demonstrated distinct dependencies on glycolysis, pentose phosphate pathway, and fatty acid synthesis for cellular cytokine responses across populations. We validate core rural-urban immune signatures in an independent Indonesian cohort, suggesting shared immunological adaptations to urbanization across ancestries and geographical areas. Our findings provide insights into rural-urban immune function in understudied populations.
Collapse
Affiliation(s)
- Mikhael D. Manurung
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Graham A. Heieis
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Shohreh Azimi
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Malick Ndao
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Tom Veldhuizen
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Dennis Hoving
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Pytsje T. Hoekstra
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne C. M. Kruize
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Linda J. Wammes
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Marouba Cisse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Souleymane Mboup
- Institute of Health Research, Epidemiological Surveillance, and Training, Dakar, Senegal
| | - Alioune Dieye
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Susan Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dicky L. Tahapary
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Simon P. Jochems
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Moustapha Mbow
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| |
Collapse
|