1
|
Liu J, Gao J, Jing R, Lin S, Zhou Y, Zhang Z, Han E, Jin F, Hou Y, Li C, Chen Y, Shen J, Ding S. Design, synthesis and biological evaluation of novel 4-(thieno[3,2-d]pyrimidin-4-yl)morpholine derivatives as potent antitumor agents. Eur J Med Chem 2025; 293:117671. [PMID: 40347792 DOI: 10.1016/j.ejmech.2025.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 05/14/2025]
Abstract
A series of 4-(thieno[3,2-d]pyrimidin-4-yl)morpholine derivatives were designed, synthesized and evaluated for their in vitro inhibitory activities against PI3Kα and antiproliferative activities against PC-3, 22RV1, MDA-MB-231 and MDA-MB-453 cancer cell lines. Inhibitory activities against PI3Kα evaluation indicated that some compounds showed excellent PI3Kα activity in vitro, and IC50 values of eight compounds (17c, 17e, 17f, 17h, 17l, 17m, 17o, 17p) were less than 100 nM. The most promising compound 17f (PI3Kα: IC50 = 0.039 μM) showed remarkable antiproliferative against PC-3, 22RV1, MDA-MB-231 and MDA-MB-453 cell lines with IC50 values of 3.48 μM, 1.06 μM, 2.21 μM and 0.93 μM, respectively. Furthermore, 17f effectively reduced p-PI3K protein expression and inhibited the activation of downstream signaling AKT and mTOR proteins in MDA-MB-453 cells. In addition, 17f induced cell apoptosis by down-regulating the expression levels of anti-apoptotic proteins Bcl-XL and Bcl-2 and up-regulating the expression of anti-apoptotic protein BAX, and in MDA-MB-453 cells. All these results indicated the potential of compound 17f to develop as potent anticancer agent.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Junfeng Gao
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Rui Jing
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Siyu Lin
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Yunpeng Zhou
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Zhicheng Zhang
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Enhui Han
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Fanqi Jin
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Chunyan Li
- Shenyang Xingqi Pharmaceutical Co., Ltd., 68 Sishui street, Hunnan District, Shenyang, 110163, PR China
| | - Ye Chen
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China.
| | - Jiwei Shen
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China.
| | - Shi Ding
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang, 110036, PR China.
| |
Collapse
|
2
|
Dou J, Xiao H, Chen Y, Han W, Zhang S, Wu D, Chen S, Ma Y, Cai Z, Luan Q, Cui L. Diesel exhaust promoted diethylnitrosamine-induced hepatocarcinogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138219. [PMID: 40220387 DOI: 10.1016/j.jhazmat.2025.138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Exposure to diesel exhaust (DE) has been linked to an increased risk of various cancers, including liver cancer. However, the underlying mechanisms driving this association remain insufficiently understood. In this study, we employed a diethylnitrosamine (DEN)-induced mouse liver tumor model and conducted a 19-week combined exposure (750 μg/m3) using a DE exposure system. Our results demonstrated that long-term DE exposure activates cancer-related genes and enhances the formation of DEN-induced liver tumors. Compared to the DEN group, mice in the DEN + diesel exhaust exposure (DEE) group exhibited lower body weight, higher tumor formation rates and more severe DNA damage. The tumor-promoting effect of DE may be associated with the upregulation of SEMA4D and the activation of the PI3K/AKT signaling pathway. Additionally, liver cells in the DEE group exhibited nuclear atypia, a characteristic feature of cancerous transformation. In vitro studies have revealed that exposure to diesel exhaust particles (DEP) promotes the proliferation of HepG2 cells and HUH7 cells by upregulating SEMA4D and activating the PI3K/AKT signaling pathway. This effect was attenuated by inhibiting either SEMA4D or PI3K. This study was the first to identify that DE exposure promotes the development of DEN-induced liver tumors in mice, with the mechanism potentially involving the SEMA4D/PI3K/AKT pathway. These findings provide novel insights into the hepatotoxic effects of DE and highlight the need for further investigation into its carcinogenic potential.
Collapse
Affiliation(s)
- Junjie Dou
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Occupational disease, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of General Practice, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Dong Wu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhengguo Cai
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qi Luan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Xue XY, He JL, Song MW, Yu ZE, Shuang-Liu, Lin MJ, Zhang CP, Bo-Ding, Hao-Wang, Ma ZH, Zhang WH, Zou YY, Qing-Yuan, Jing-Ji, Shi DH. Design, synthesis, bioactivity, X-ray crystallography, and molecular docking studies of chrysin-1,3,5-triazine derivatives as anticancer agents. Bioorg Chem 2025; 161:108486. [PMID: 40288011 DOI: 10.1016/j.bioorg.2025.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
In order to discover new effective anti-cancer drugs, fifteen derivatives of chrysin-1,3,5-triazine were designed and synthesized as potential novel anti-cancer agents. The structure of the target compounds were characterized by 1H NMR, 13C NMR, IR, and HR-MS. The purity of all compounds were detected by HPLC. The structure of compound 4a was subjected to further investigation through single crystal X-ray diffraction, and elaborate discussions were conducted on the Hirshfeld surface and two-dimensional fingerprint diagram to explore the molecular conformation, crystal packing mode and molecular interactions. The antiproliferative activity of these compounds was assessed by the MTT (methylthiazolyl tetrazolium) assay against MDA-MB-231 (breast cancer cells), HeLa (cervical cancer cells), HCCLM3 (liver cancer cells), and HCT116 (colon cancer cells). Positive controls were cisplatin and chrysin. The results show that some chrysin-1,3,5-triazine derivatives have better anti-cancer activity than cisplatin and chrysin. Chrysin-1,3,5-triazine derivatives selectively targets HeLa cervical cancer cells. Compound 4c (7-((4-(Dibutylamino)-1,3,5-triazin-2-yl)oxy)-5-hydroxy-2-phenyl-4H-chromen-4-one) exhibits the strongest antiproliferative activity against HeLa cells (IC50 = 9.86 ± 0.37 μM), superior to cisplatin and chrysin (IC50 values of 28.09 ± 0.47 μM and 29.51 ± 0.51 μM, respectively). Further studies showed that compound 4c not only inhibits the invasion, adhesion, and proliferation of HeLa cells, but also has a strong inhibitory effect on the proliferation of HeLa tumor heterotopic xenografts in vivo. Molecular docking studies suggest that compound 4c can interact with phosphatidylinositol 3-kinase(PI3K)and cysteine aspartic acid proteinase-3 (Caspase-3). Western blot results demonstrated that compound 4c inhibited PI3K expression at the protein level and promoted the degradation of Pro-caspase-3, thereby activating the caspase-3-dependent apoptotic pathway. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of these compounds suggest that they may have pharmacological characteristics and safety. Thus, compound 4c has the potential to be a highly promising candidate for cancer treatment.
Collapse
Affiliation(s)
- Xuan-Yi Xue
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Liang He
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Meng-Wei Song
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zi-En Yu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Shuang-Liu
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Meng-Jie Lin
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Chi-Peng Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Bo-Ding
- Jiangsu Henghai Pharmaceutical Research Institute Co., LTD, Lianyungang 222005, People's Republic of China
| | - Hao-Wang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Zhi-Hao Ma
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Wei-Heng Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Yang-Yang Zou
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Qing-Yuan
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China
| | - Jing-Ji
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| | - Da-Hua Shi
- School of Pharmacy, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, People's Republic of China.
| |
Collapse
|
4
|
Zheng Y, Tang H, Liu Q, Zhang Y, Zhao P, Zhang S, Wang C. Mutational analysis and protein expression of PI3K/AKT pathway in four mucinous cystadenocarcinoma of the breast. Diagn Pathol 2025; 20:68. [PMID: 40437613 PMCID: PMC12121189 DOI: 10.1186/s13000-025-01650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/14/2025] [Indexed: 06/01/2025] Open
Abstract
INTRODUCTION Primary mucinous cystadenocarcinoma of the breast (BMCA) is a rare neoplasm with few reports in the literature. Its molecular characteristics, prognosis, and treatment protocols are not well understood, and there is a lack of consensus concerning the optimal management of this condition. METHODS Four cases of clinical and pathological data were collected from 2018 to 2024. Next generation sequencing with a 654 cancer-associated gene panel was utilized to detect gene mutations. Immunohistochemistry was carried out to evaluate protein expression levels. RESULTS Firstly, we combined clinical imaging examinations and IHC to exclude the possibility of metastasis from ovarian or pancreatic origins. BMCA was composed of cystically dilated ducts lined by tall columnar mucin-containing epithelium. The morphological spectrum of MCA varied from MCA alone to MCA combined with carcinoma in situ (CIS) to MCA associated with invasive ductal carcinoma (IDC). ER/PR/HER2 and CK20 were all negative, while CK7 and GATA3 were positive by IHC in four cases. Although the prognosis of the other three patients was favorable during the follow-up periods of 13, 10, and 3 months, respectively, case 2# experienced a recurrence of the primary focus after 42 months. No lymphatic metastasis was identified in cases 1-4#. In addition, next-generation sequencing (NGS) identified 17 mutated genes and 25 mutation sites in four cases. TP53, PIK3CA, AKT, PTEN, and RB1 were the highest frequency mutated genes. Given that AKT mutations typically refer to AKT1(E17K) rather than AKT2 or AKT3, AKT protein expression was detected only in Case 2# (AKT1, E17K). PTEN protein was expressed in case 4# (corresponded to missense mutation), loss of PTEN expression were corresponding with splicing mutation in case1#. In brief, AKT and PTEN protein expression could be corresponded to gene mutation in a certain extent. However, PIK3CA protein expression was positive in Case 2# but negative in Case 1#, which did not fully accordance with the NGS-detected missense mutations. No associated germline variations were detected. Additionally, neither PDL-1 expression nor microsatellite instability-high (MSI-H) status was identified. CONCLUSION The tumorigenesis and development of BMCA may be regulated to the PI3K/AKT pathway. Consequently, a comprehensive genetic analysis of more cases could elucidate the molecular mechanisms underlying this rare tumor.
Collapse
Affiliation(s)
- Yan Zheng
- Shandong Probincial Key Medical and Health Laboratory of Geriatric Gastrointestinal Tumor Pathology; Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Huaxiao Tang
- Department of Pathology, the Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Qian Liu
- Shandong Probincial Key Medical and Health Laboratory of Geriatric Gastrointestinal Tumor Pathology; Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yujie Zhang
- Shandong Probincial Key Medical and Health Laboratory of Geriatric Gastrointestinal Tumor Pathology; Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Peng Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Shukun Zhang
- Shandong Probincial Key Medical and Health Laboratory of Geriatric Gastrointestinal Tumor Pathology; Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China.
| | - Chengqin Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
5
|
Xie Z, Zhou Z, Chen S, Li Y, He X, Chen G. GLUT1 sensitizes tumor cells to EGFR-TKIs by binding with activated EGFR and regulating its downstream signaling pathways. Cell Commun Signal 2025; 23:247. [PMID: 40437580 PMCID: PMC12121033 DOI: 10.1186/s12964-025-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND We have previously demonstrated that GLUT1 can interact with phosphorylated EGFR and has an oncogenic role in lung cancer. Here, we aim to investigate their binding region and its signaling pathways. METHODS The AlphaFold 3 prediction, Co-immunoprecipitation, and Western blot were used to uncover the interaction conditions of GLUT1 and EGFR. The RNA-seq data was analyzed to evaluate the difference in signaling pathways between wild-type EGFR and activated mutated EGFR. The xenograft tumor model was established to determine the therapy effect of the combination of GLUT1 inhibitor BAY-876 and EGFR TKI Osimertinib. RESULTS We found that the interaction ability of GLUT1 and EGFR depended on the activation of EGFR. GLUT1 interacted with EGFRvIII (loss 2-7 exons) but not with EGFRvI (loss 1-16 exons), so GLUT1 interacts with EGFR in the EGFR extracellular transmembrane region. GLUT1 regulated EGFR downstream signaling pathways. GLUT1 inhibitor BAY-876 can sensitize tumor cells to EGFR TKI Osimertinib. CONCLUSIONS GLUT1 participates in tumor progression by interacting with phosphor-EGFR, suggesting that inhibition of the GLUT1-EGFR axis may be a potential therapeutic strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Zhangrong Xie
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiaoniu He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Zhou YF, Zhu YW, Wang YW, Liang XY, Jiang QY, Wu DD. Diallyl disulfide in oncotherapy: molecular mechanisms and therapeutic potentials. Apoptosis 2025:10.1007/s10495-025-02105-0. [PMID: 40375038 DOI: 10.1007/s10495-025-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 05/18/2025]
Abstract
Garlic possesses a broad spectrum of medicinal properties, such as anti-cancer, antioxidant, anti-diabetic effects, and protective effects on the heart, nervous system, and liver. Diallyl disulfide (DADS), an oil-soluble organic sulfur-containing compound in garlic, has garnered attention in recent years for its demonstrated anti-cancer efficacy in various cancer types such as leukemia, breast cancer, hepatocellular carcinoma, stomach cancer, and prostate cancer. The anticancer properties of DADS are attributed to its ability to suppress cancer cell proliferation, impede invasion and metastasis, as well as induce apoptosis, promote differentiation, and facilitate cell cycle arrest. Although many literatures have reviewed the pharmacokinetics, molecular mechanisms of anti-cancer effects and some clinical trials of DADS, the specific mechanisms and clinical-translational therapeutic potentials have not been elucidated. This comprehensive review focuses on delineating the molecular mechanisms underlying the anticancer effects of DADS, with a particular emphasis on its potential utility as a therapeutic intervention in the clinical management of cancer, and analyzes the challenges and coping strategies faced in the application of DADS as an anti-cancer drug, pointing out the directions for scientific research.
Collapse
Affiliation(s)
- Yun-Fei Zhou
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
7
|
Zwimpfer TA, Heidinger M, Coelho R, Stiegeler N, Schwab FD, Montavon C, Eller RS, Maggi N, Loesch JM, Vetter M, Lambertini M, Weber WP, Kurzeder C, Heinzelmann-Schwarz V. TP53 Mutations and Phosphatidylinositol 3-Kinase/AKT Pathway Alterations Are Key Determinants of Breast Cancer Outcome Independent of Subtype and Stage. JCO Precis Oncol 2025; 9:e2400767. [PMID: 40403210 PMCID: PMC12122097 DOI: 10.1200/po-24-00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/22/2025] [Accepted: 04/04/2025] [Indexed: 05/24/2025] Open
Abstract
PURPOSE Breast cancer (BC) is a heterogeneous disease with genetic alterations influencing prognosis and treatment response. TP53 mutations (TP53muts) are present in approximately 30% of BC, but their prognostic impact remains controversial. In addition, the phosphatidylinositol 3-kinase (PI3K)/Ak strain transforming (AKT) pathway is frequently altered and represents a promising therapeutic target for BC. Understanding the combined prognostic impact of TP53mut and PI3K/AKT pathway alterations across BC subtypes remains underexplored. METHODS This retrospective cohort study integrated clinical and genomic data from 4,265 patients with BC from the Molecular Taxonomy of Breast Cancer International Consortium (n = 2,509) and the Memorial Sloan Kettering Cancer Center (n = 1,756). Genetic profiling identified TP53mut and PI3K/AKT pathway alterations (AKT1, AKT2, AKT3, PIK3CA, PTEN, RICTOR). Survival outcomes were assessed using Kaplan-Meier survival analysis and multivariable Cox proportional hazards models. RESULTS In 3,807 patients with available gene alteration status, TP53mut was associated with younger age, higher tumor grade, advanced stage, and aggressive subtypes (P < .001). TP53mut was associated with worse survival independent of subtype, stage, age, and grade (hazard ratio [HR], 1.43 [95% CI, 1.24 to 1.66]; P < .0001). The type of TP53mut has also been found to be prognostic in BC. PI3K/AKT pathway alterations were more frequent in TP53mut tumors and independently associated with worse survival (HR, 1.18 [95% CI, 1.03 to 1.35]; P = .0173). The combined presence of TP53mut and PI3K/AKT alterations resulted in the worst survival outcomes (HR, 1.61 [95% CI, 1.32 to 1.97]; P < .0001). CONCLUSION TP53mut status is a critical prognostic factor in BC, independent of subtypes and stage, and its adverse impact is amplified by PI3K/AKT pathway alterations. These findings emphasize the integration of genetic profiling into routine clinical practice to refine treatment strategies and identify potential therapeutic targets for this high-risk population.
Collapse
Affiliation(s)
- Tibor A. Zwimpfer
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Heidinger
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nadja Stiegeler
- Department of Gynecology and Obstetrics, Bethesda Hospital Basel, Basel, Switzerland
| | - Fabienne D. Schwab
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Céline Montavon
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ruth S. Eller
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nadia Maggi
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julie M. Loesch
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marcus Vetter
- Medical Oncology, Cantonal Hospital Baselland, Medical University Clinic, Liestal, Switzerland
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genova, Genova, Italy
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Walter P. Weber
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christian Kurzeder
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Gynecological Cancer Centre, University Hospital Basel and University of Basel, Basel, Switzerland
- Breast Centre, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Buloyan S, Harutyunyan A, Gasparyan H, Sakeyan A, Shahkhatuni A, Zakirova NF, Yusubalieva G, Kirillov IM, Fedyakina IT, Solyev PN, Lipatova AV, Bogomolov MA, Prassolov VS, Lebedev TD, Ivanov AV. Piperazine-Substituted Pyranopyridines Exhibit Antiproliferative Activity and Act as Inhibitors of HBV Virion Production. Int J Mol Sci 2025; 26:3991. [PMID: 40362232 PMCID: PMC12071598 DOI: 10.3390/ijms26093991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
Advances in medicinal chemistry have led to the development of anticancer and anti-infectious drugs. However, many types of cancer and viral infections such as hepatitis B virus or SARS-CoV-2 are still treated ineffectively. Therefore, further development of effective and selective lead compounds as potential drugs is still highly demanded. In this study, we synthesized a novel series of piperazine-substituted pyranopyridines and evaluated their anticancer and antiviral properties. Antiproliferative activity was determined in a panel of various tumor cell lines as well as non-tumor hepatic HepaRG cells. Mechanisms of cytotoxicity were assessed by fluorescent microscopy techniques. Antiviral activity was analyzed towards DNA and RNA viruses in infectious cell culture systems. Several compounds showed antiproliferative activity towards various cancer cell lines at micromolar and submicromolar concentrations. Mechanisms of cytotoxicity involve the induction of apoptosis and are not mediated via ERK1/2 pathway or oxidative stress. Several compounds exhibit selective activity against hepatitis B virus by preventing the formation of virion particles. This study led to the identification of a novel class of piperazine-substituted pyranopyridines with antiproliferative activity towards a wide range of tumor cell lines as well as the non-toxic inhibitor of HBV virion production.
Collapse
Affiliation(s)
- Sona Buloyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 0019 Yerevan, Armenia; (S.B.)
| | - Arpine Harutyunyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 0019 Yerevan, Armenia; (S.B.)
| | - Hrachik Gasparyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 0019 Yerevan, Armenia; (S.B.)
| | - Anahit Sakeyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 0019 Yerevan, Armenia; (S.B.)
| | - Astghik Shahkhatuni
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 0019 Yerevan, Armenia; (S.B.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia
| | - Ilya M. Kirillov
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 123098 Moscow, Russia
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 123098 Moscow, Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail A. Bogomolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Timofey D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Wang Y, Lv H, Shen L, Chen Z. Miltirone enhances the chemosensitivity of gastric cancer cells to cisplatin by suppressing the PI3K/AKT signaling pathway. Front Pharmacol 2025; 16:1553791. [PMID: 40260390 PMCID: PMC12009761 DOI: 10.3389/fphar.2025.1553791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors with poor survival. Although cisplatin is a first-line chemotherapy drug for GC, it still has the potential to develop drug resistance and side effects. Miltirone, extracted from Chinese herb Salvia miltiorrhiza Bunge, has been reported to significantly inhibit some types of cancer. However, its effects on GC have not been studied, the possible anti-tumor effects of miltirone in combination with cisplatin in GC patients have not been explored. Materials and methods Human GC cell lines AGS, HGC27, MKN45 and MGC803 cells were treated with miltirone and cisplatin individually or combinatorially. Cell proliferation assay, flow cytometric assay, colony formation assay and Western blot were employed to evaluate the cytotoxic effects under these treatments. Wound healing and transwell assays were used to examine the effects of miltirone and/or cisplatin on GC cell migration and invasion. RNA-seq analysis was used to determine miltirone's potential target genes in AGS cells. GO analysis and molecular docking assay were used to determine the pathways affected by miltirone. Next, we examined changes in the selected pathway proteins. The in vivo animal model was verified the results of the in vitro experiments. Results Miltirone inhibited cell growth, migration, and invasion, as well as induced apoptosis in GC cells. In combinatorial treatments, miltirone synergistically enhanced cytotoxicity of cisplatin in GC cells. Moreover, the expression levels of 606 genes appeared to be significantly modulated by miltirone via RNA-seq analyses, and PI3K/AKT signaling pathway was found to refer to miltirone activity. Furthermore, miltirone together with cisplatin treatment significantly reduced the expression levels of p-PI3K, p-Akt, p-mTOR, while the total levels of PI3K and Akt remained unchanged. In addition, compared with the control group, the tumors growth was significantly suppressed in groups treated with the two agents alone or in combination, and even more so in the combination group in vivo. Discussion Miltirone inhibited the proliferation of GC cells and significantly potentiates the anticancer activities of cisplatin by downregulating the PI3K/AKT signaling pathway. Combination therapy of miltirone and cisplatin represents a novel potential treatment of gastric cancer.
Collapse
Affiliation(s)
- Yiping Wang
- Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Lv
- Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhe Chen
- Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Navarro-Traxler AJ, Ghisolfi L, Lien EC, Toker A. The glycosyltransferase ALG3 is an AKT substrate that regulates protein N-glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646556. [PMID: 40236010 PMCID: PMC11996567 DOI: 10.1101/2025.04.01.646556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The PI3K/AKT signaling pathway is frequently dysregulated in cancer and controls key cellular processes such as survival, proliferation, metabolism and growth. Protein glycosylation is essential for proper protein folding and is also often deregulated in cancer. Cancer cells depend on increased protein folding to sustain oncogene-driven proliferation rates. The N-glycosyltransferase asparagine-linked glycosylation 3 homolog (ALG3), a rate-limiting enzyme during glycan biosynthesis, catalyzes the addition of the first mannose to glycans in an alpha-1,3 linkage. Here we show that ALG3 is phosphorylated downstream of the PI3K/AKT pathway in both growth factor-stimulated cells and PI3K/AKT hyperactive cancer cells. AKT directly phosphorylates ALG3 in the amino terminal region at Ser11/Ser13. CRISPR/Cas9-mediated depletion of ALG3 leads to improper glycan formation and induction of endoplasmic reticulum stress, the unfolded protein response, and impaired cell proliferation. Phosphorylation of ALG3 at Ser11/Ser13 is required for glycosylation of cell surface receptors EGFR, HER3 and E-cadherin. These findings provide a direct link between PI3K/AKT signaling and protein glycosylation in cancer cells.
Collapse
|
11
|
Wu PS, Wong TH, Hou CW, Chu TP, Lee JW, Lou BS, Lin MH. Cold Atmospheric Plasma Jet Promotes Wound Healing Through CK2-Coordinated PI3K/AKT and MAPK Signaling Pathways. Mol Cell Proteomics 2025; 24:100962. [PMID: 40187493 PMCID: PMC12059340 DOI: 10.1016/j.mcpro.2025.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
The promising role of cold atmospheric plasma jet (CAPJ) treatment in promoting wound healing has been widely documented in therapeutic implications. However, the fact that not all subjects respond equally to CAPJ necessitates the investigation of the underlying cellular mechanisms, which have been rarely understood so far. Given that wound healing is a complex and prolonged process, post plasma-activated medium (PAM) treated keratinocytes were collected at two time points, 2 h (receiving) and 24 h (recovery), for (phospho)proteomic analysis to systematically dissect the molecular basis of CAPJ-promoted wound healing. The receiving (phospho)proteomics datasets, referred to the time point of 2 h, revealed an apparent increase in the phosphorylation of CK2 and its-mediated PI3K/AKT and MAPK signaling pathways, accompanied by a prompted downstream physiological response of cell migration. Additionally, incorporating the network analysis of predicted kinases and their direct interactors, we reiterated that CAPJ influenced cell growth and migration, thereby paving the way for its role in subsequent wound healing processes. Further determining the proteome profiles at recovery phase, which is the time point of 24 h, displayed a totally different view from the receiving proteome which had almost no change. The upregulation of ROBOs/SLITs expression and vesicle trafficking and fusion-related proteins, along with the abundant presence of 14-3-3 family proteins, indicated that the persistent effect of PAM on the wound healing process could potentially promote keratinocyte-fibroblast cross talk and stimulate extracellular matrix synthesis upon epithelialization. Consistent with proteome patterns, CAPJ-treated wound tissues indeed showed a denser and well-organized extracellular matrix architecture, implying hastened epithelialization during wound healing. Collectively, we delineated the molecular basis of CAPJ-accelerated wound healing at early and late responses, providing valuable insights for treatment selection and the development of therapeutic strategies to achieve better outcomes.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Wei Hou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan; International PhD. Program in Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan; International PhD. Program in Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei, Taiwan; High Entropy Materials Center, National Tsing Hua University, Hsinchu, Taiwan; College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
13
|
Li P, Yuan L, Jiang Y, Chen Y, Zhang M, Jiang L, Ge P. Liquiritin as a Tumor Suppressor Prevents the Development of Breast Cancer via the Epidermal Growth Factor Receptor/Mitogen-Activated Protein Kinase 8 Signaling Pathway. DNA Cell Biol 2025; 44:197-208. [PMID: 40014434 DOI: 10.1089/dna.2024.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Liquiritin, a key component extracted from Glycyrrhiza radix, exhibits a variety of physiological effects. This study investigates the role of liquiritin in the progression of breast cancer. This investigation conducted experiments using two breast cancer cell lines treated with varying concentrations of liquiritin, further validating our findings in vivo. Bioinformatics analysis was used to identify the pathways potentially regulated by liquiritin in breast cancer. The results indicated that the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase 8 (MAPK8) are potential downstream factors regulated by liquiritin in breast cancer. Our findings demonstrated that liquiritin significantly suppressed cell proliferation and induced cell cycle arrest in a dose-dependent manner. In addition, liquiritin triggered apoptosis by inhibiting the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Liquiritin also reduced mitochondrial membrane potential, leading to mitochondrial dysfunction and promoting excessive reactive oxygen species (ROS) production by suppressing the EGFR/MAPK8 signaling pathway. Furthermore, liquiritin treatment resulted in a notable decrease in tumor size in breast cancer models through inhibiting cell proliferation and promoting apoptosis. In conclusion, liquiritin serves as an effective tumor suppressor, suppressing the proliferation and cell cycle progression of breast cancer cells, while inducing apoptosis by regulating mitochondrial function and ROS generation via the EGFR/MAPK8 signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- Department of Biochemistry, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Yuan
- Department of Biochemistry, School of Medical Laboratory Sciences, Heilongjiang Nursing College, Harbin, China
| | - Ying Jiang
- Department of Biochemistry, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Chen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Manyu Zhang
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Jiang
- Department of Biochemistry, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Hsiao JH, Wen CY, Yong SB, Yii CY, Li CJ. Targeting EVA1B in breast cancer: New avenues for precision oncology. Pharmacol Res 2025; 214:107684. [PMID: 40049427 DOI: 10.1016/j.phrs.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/09/2025]
Affiliation(s)
- Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan.
| | - Chen-Yueh Wen
- Division of Urology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung 404, Taiwan; Research Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung 404, Taiwan.
| | - Chin-Yuan Yii
- Department of Internal Medicine, Landseed International Hospital, Taoyuan, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
15
|
Cao KY, Zhang D, Bai LB, Yan TM, Chen Y, Jiang YY, Jiang ZH. Targeting NUCKS1 with a fragment of tRNA Asn(GUU) of Chinese yew for the treatment of colorectal cancer. Noncoding RNA Res 2025; 11:38-47. [PMID: 39736854 PMCID: PMC11683283 DOI: 10.1016/j.ncrna.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Despite the discovery of numerous oncogenes in colorectal cancer (CRC), the development of associated drugs is limited, posing a significant challenge for CRC treatment. Identification of novel druggable targets is therefore crucial for the therapeutic development of CRC. Here, we report the first investigation on therapeutics targeting the potent oncogene NUCKS1 to suppress cancer progression. NUCKS1-orientated bioinformatics screening of NUCKS1 inhibitors from our library of tRNA fragments originated from medicinal plants identified tRF-T36, a 5' tRNA fragment of tRNAAsn(GUU) of Chinese yew (Taxus chinensis), exhibiting stronger inhibitory effects than taxol against CRC progression. Mechanistically, tRF-T36 binds directly to the 3' UTR of NUCKS1 mRNA to downregulate its expressions via RNAi pathway. High-throughput RNA sequencing indicated that the downregulated NUCKS1 induced by tRF-T36 further inhibits PI3K/Akt pathway, as verified by the significantly efficacy decrease of tRF-T36 mimic in co-treatment with 740Y-P, an agonist of PI3K/Akt pathway. Collectively, our findings emphasize the importance of NUCKS1 as a promising druggable target for CRC. Furthermore, the present study provides the first siRNA sequence, tRF-T36 mimic, as small RNA drug candidate, thereby shedding light on CRC therapeutics.
Collapse
Affiliation(s)
- Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Da Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Long-Bo Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yan Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yu-Yang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| |
Collapse
|
16
|
Chikaishi Y, Matsuoka H, Sugihara E, Takeda M, Sumitomo M, Yamada S, Inaguma G, Omura Y, Cheong Y, Kobayashi Y, Nakauchi M, Hiro J, Masumori K, Otsuka K, Nishihara H, Suda K, Saya H, Takimoto T. Mutation Analysis of TMB-High Colorectal Cancer: Insights Into Molecular Pathways and Clinical Implications. Cancer Sci 2025; 116:1082-1093. [PMID: 39822019 PMCID: PMC11967252 DOI: 10.1111/cas.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed. We here analyzed targeted sequence data linked to clinical information for CRC, focusing on tumors with a high tumor mutation burden (TMB) in order to identify the characteristics of associated mutations, their relations to clinical features, and the mechanisms of carcinogenesis in tumors lacking the major driver oncogenes. Analysis of overall mutation frequencies confirmed that APC, TP53, and KRAS mutations were the most prevalent in our cohort. Compared with other tumors, TMB-high tumors were more frequent on the right side of the colon, had lower KRAS and higher BRAF mutation frequencies as well as a higher microsatellite instability (MSI) score, and showed a greater contribution of a mutational signature associated with MSI. Ranking of variant allele frequencies to identify genes that play a role early in carcinogenesis suggested that mutations in genes related to the DNA damage response (such as ATM and POLE) and to MSI (such as MSH2 and MSH6) may precede BRAF mutations associated with activation of the serrated pathway in TMB-high tumors. Our results thus indicate that TMB-high tumors suggest that mutations of genes related to mismatch repair and the DNA damage response may contribute to activation of the serrated pathway in CRC.
Collapse
Affiliation(s)
- Yuko Chikaishi
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | | | - Eiji Sugihara
- Research Promotion Headquarters, Open Facility CenterFujita Health UniversityToyoakeJapan
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Mayu Takeda
- Faculty of Health and Medical SciencesAichi Syukutoku UniversityNagakuteAichiJapan
| | - Makoto Sumitomo
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Seiji Yamada
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Gaku Inaguma
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Yusuke Omura
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | | | | | - Masaya Nakauchi
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Junichiro Hiro
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Koji Masumori
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Koki Otsuka
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Hiroshi Nishihara
- Center for Cancer GenomicsKeio University School of MedicineTokyoJapan
| | - Koichi Suda
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
- Collaborative Laboratory for Research and Development in Advanced Surgical IntelligenceFujita Health UniversityToyoakeAichiJapan
| | - Hideyuki Saya
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Tetsuya Takimoto
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
17
|
Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:13. [PMID: 40201307 PMCID: PMC11977367 DOI: 10.20517/cdr.2024.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cancer remains a significant global health challenge, with current chemotherapeutic strategies frequently limited by the emergence of resistance. In this context, natural compounds with the potential to overcome resistance have garnered considerable attention. Among these, sesquiterpene lactones, primarily derived from plants in the Asteraceae family, stand out for their potential anticancer properties. This review specifically focuses on five key signaling pathways: PI3K/Akt/mTOR, NF-κB, Wnt/β-catenin, MAPK/ERK, and STAT3, which play central roles in the mechanisms of cancer resistance. For each of these pathways, we detail their involvement in both cancer development and the emergence of drug resistance. Additionally, we investigate how sesquiterpene lactones modulate these pathways to overcome resistance across diverse cancer types. These insights highlight the potential of sesquiterpene lactones to drive the advancement of novel therapies that can effectively combat both cancer progression and drug resistance.
Collapse
Affiliation(s)
- Chi Teng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Jia-Wen Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guo-Qing Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| |
Collapse
|
18
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
19
|
Herzog TJ, Liao JB, Finkelstein K, Willmott L, Duan W, Moroney JW, Buscema J, Campbell-Simms K, Yue Y, Zweizig S, Liu J, Wang X, Zang RY, Yin R, O'Malley DM, Wu L. An open-label randomized active-controlled phase II clinical study to assess the efficacy and safety of afuresertib plus paclitaxel versus paclitaxel in patients with platinum-resistant ovarian cancer (PROFECTA-II/GOG-3044). Gynecol Oncol 2025; 194:145-152. [PMID: 40221173 DOI: 10.1016/j.ygyno.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVES To evaluate the efficacy and safety/tolerability of paclitaxel with and without the AKT inhibitor afuresertib in patients with platinum-resistant ovarian cancer (PROC). METHODS This phase II open-label randomized trial (NCT04374630) enrolled 150 PROC patients to evaluate progression-free survival (PFS) as the primary endpoint, with secondary endpoints including overall survival (OS), objective response rate, and duration of response. Eligible patients received 1-5 prior chemotherapies (≤1 post-PROC therapy). Biomarker analysis assessed PI3K/AKT/PTEN alterations, BRCA1/2-mutations, and phospho-AKT levels. Patients with prior AKT or mTOR inhibitor use were excluded. Randomization was stratified by country and prior use of bevacizumab and platinum-based treatment lines. RESULTS In the intent-to-treat population, no statistically significant difference was observed in PFS between afuresertib+paclitaxel (A + P) vs. paclitaxel (Pac) alone (median PFS 4.3mos [95 % CI, 3.58-5.62] vs 4.1mos [95 % CI 2.63-5.36]. PFS HR 0.7 (95 % CI, 0.50-1.10; P = 0.139). No statistically significant difference in median OS was observed either (11.2mos with A + P, 95 % CI, 8.38-13.77) vs. 13.1mos in Pac arm (95 % CI, 7.75-18) and HR = 1.2 (95 % CI, 0.77-1.81). In AKT mutation biomarker+ (IHC > 1) patients, the median PFS of A + P vs. Pac was 5.4mos vs. 2.9mos (HR = 0.4; 95 % CI, 0.12-1.00). Treatment-emergent adverse events (TEAEs) were consistent with AKT inhibitors, with serious TEAEs in 34.3 % (A + P) vs. 25.5 % (Pac), including diarrhea and gastrointestinal perforations. CONCLUSIONS The addition of afuresertib to paclitaxel did not significantly improve PFS/OS in patients with PROC. However, exploratory biomarker findings suggest potential efficacy in phospho-AKT positive patients, warranting further investigation. The safety/tolerability profile of A + P was consistent with prior AKT-inhibitor studies.
Collapse
Affiliation(s)
- Thomas J Herzog
- University of Cincinnati, University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| | | | | | | | - Wei Duan
- Beijing Obstetrics & Gynecology Hospital, Capital Medical University, Beijing, China
| | - John W Moroney
- University of Chicago, The Pritzker School of Medicine, Chicago, IL, USA
| | | | | | - Yong Yue
- Laekna Limited, Hong Kong, China
| | - Susan Zweizig
- University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Juan Liu
- Laekna Limited, Hong Kong, China
| | | | - Rong-Yu Zang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rutie Yin
- West China Second University Hospital, Sichuan University; Chengdu City, Sichuan Province, China
| | - David M O'Malley
- The Ohio State University & the James Comprehensive Cancer Center, Columbus, OH, USA
| | - Lingying Wu
- Cancer Hospital at the Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Lu C, Yu D, Wang X, Li J, Zhang Y, Wang C, Jia Q, Tan J, Zheng W, Sun H, Meng Z. Selective Therapeutic Potential of a H2O2-Inducible DNA Interstrand Cross-linker in Anaplastic Thyroid Carcinoma. Endocrinology 2025; 166:bqaf029. [PMID: 39950985 DOI: 10.1210/endocr/bqaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Indexed: 03/15/2025]
Abstract
We aimed to investigate hydrogen peroxide-inducible DNA interstrand cross-link (HP-ICL) as a targeted therapy for anaplastic thyroid cancer (ATC) due to its higher H2O2 content than normal cells. In vitro analysis included fluorescence microscopy for H2O2 levels and exposure of ATC cells to various HP-ICL concentrations followed by assessment of cell viability, apoptosis, cell cycle, and DNA damage using methyl thiazolyl tetrazolium (MTT), flow cytometry, and a γH2AX assay. Protein levels related to apoptosis and the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway were measured by Western blotting. An ATC xenograft mouse model was used to evaluate the HP-ICL's in vivo effects. ATC cells had higher H2O2 levels than normal thyroid cells. HP-ICL treatment caused a dose-dependent decrease in cell viability and an increase in apoptosis, with a slight G2/M phase arrest. A 30 µM HP-ICL treatment doubled γH2AX foci. Bcl-2 levels decreased, while Bax, cleaved-Caspase 3, and PARP increased in a dose-dependent manner. It also inhibited p-PI3K, p-AKT, and p-mTOR. In vivo, the HP-ICL significantly inhibited tumor growth while maintaining body weight and without causing organ damage or altering thyroid hormone levels. Additionally, tumor sections exhibited increased TUNEL staining, decreased Ki67 expression, and reduced levels of p-PI3K, p-AKT, and p-mTOR. The HP-ICL significantly inhibited ATC both in vitro and in vivo, suggesting its potential as an effective therapy for ATC.
Collapse
Affiliation(s)
- Chenghui Lu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xufu Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Jiao Li
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Yingying Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Congcong Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Wei Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| |
Collapse
|
21
|
Versari I, Salucci S, Bavelloni A, Battistelli M, Traversari M, Wang A, Sampaolesi M, Faenza I. The Emerging Role and Clinical Significance of PI3K-Akt-mTOR in Rhabdomyosarcoma. Biomolecules 2025; 15:334. [PMID: 40149870 PMCID: PMC11940244 DOI: 10.3390/biom15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma primarily affecting children and young adults. This disease is more prevalent in children under 15, with two main types: embryonal Rhabdomyosarcoma (eRMS), which has a better prognosis, and alveolar Rhabdomyosarcoma (aRMS), which is more aggressive and associated with specific genetic alterations. The PI3K-Akt-mTOR pathway is often hyperactivated in RMS, contributing to cell proliferation, survival, and resistance to therapies. The presence of phosphorylated components of this pathway correlates with poor survival outcomes. Here, we discuss various therapeutic approaches targeting the PI3K-Akt-mTOR pathway. These include the use of specific inhibitors (e.g., PI3K inhibitors, Akt inhibitors) and combination therapies that may enhance treatment efficacy. Dietary supplements like curcumin and repurposed drugs such as chloroquine are also mentioned for their potential to induce apoptosis in RMS cells. We also emphasize the need for innovative strategies to improve survival rates, which have remained stagnant over the years. Targeting super-enhancers and transcription factors associated with RMS may provide new therapeutic avenues. Overall, this review underscores the critical role of the PI3K-Akt-mTOR pathway in RMS and the potential for targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| | - Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Mirko Traversari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Ashley Wang
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (A.W.); (M.S.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (A.W.); (M.S.)
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (I.V.); (S.S.)
| |
Collapse
|
22
|
Alizadeh H, Kerachian S, Jabbari K, Soltani BM. Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential. Eur J Pharmacol 2025; 988:177220. [PMID: 39716566 DOI: 10.1016/j.ejphar.2024.177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds. Additionally, we examined the role of phosphatidic acid (PA) and its synthesizing enzymes, phospholipase D (PLD) and lysophosphatidic acid acyltransferase (LPAAT), in the regulation of mTORC1 activity. Given the involvement of mTORC1 in chemoresistance, we evaluated the potential of mTOR inhibitors as a therapeutic strategy to overcome platinum resistance. Finally, we discuss combination therapies targeting the mTOR pathway alongside conventional chemotherapy to improve treatment outcomes. This review highlights the potential of targeting mTORC1 and related pathways to improve therapeutic strategies for chemoresistant cancers.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Sana Kerachian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
23
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
24
|
Inson I, Chutoe C, Kanjanapipak J, Lertsuwan K. Cannabinoid Receptor Type 2 Agonist, GW405833, Reduced the Impacts of MDA-MB-231 Breast Cancer Cells on Bone Cells. Cancer Med 2025; 14:e70709. [PMID: 39980332 PMCID: PMC11842928 DOI: 10.1002/cam4.70709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
AIM Breast cancer frequently metastasizes to bones. The interaction between breast cancer cells and bone cells results in osteolytic lesions by disrupting the balance between osteoblast-mediated bone production and osteoclast-mediated bone resorption. This study aims to investigate the effects of the cannabinoid receptor type 2 (CB2) agonist, GW405833, on interactions between breast cancer cells and osteoblasts as well as its impact on breast cancer-induced osteoclastogenesis. MATERIALS & METHODS MDA-MB-231, UMR-106, RAW 264.7 cells were used to represent breast cancer cells, osteoblast-like cells and macrophage-osteoclast precursor cells, respectively. Cell viability was evaluated by MTT assay, and breast cancer cell invasion was assessed by Transwell invasion assay. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to evaluate osteoclastogenesis. RESULTS Our results demonstrated that GW405833 disrupted MDA-MB-231-induced UMR-106 cell death and promoted UMR-106 cell viability. The underlying mechanism of these effects was determined in this study. GW405833 reduced AKT phosphorylation in MDA-MB-231 cells without affecting mTOR protein expression or its phosphorylation. Conversely, in UMR-106 cells, GW405833 induced AKT and mTOR phosphorylated protein. Furthermore, the mTOR inhibitor reversed the GW405833-induced recovery of UMR-106 cell viability under MDA-MB-231-derived conditioned media (CM) exposure. These findings underscore the critical role of the AKT/mTOR pathway in mediating GW405833's inhibitory effects on cancer-bone interactions. Additionally, GW405833 suppressed osteoblast-enhanced breast cancer cell invasion and the expression of invasion-related proteins in both cell types, along with reducing osteoclastogenic factors induced by MDA-MB-231 CM in UMR-106 cells and suppressing MDA-MB-231 CM-enhanced osteoclastogenesis in RAW 264.7 cells. CONCLUSION This study highlights the therapeutic potential of cannabinoid receptor agonist for treating breast cancer bone metastasis and bone-related complications.
Collapse
Affiliation(s)
- Ingon Inson
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Chartinun Chutoe
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | | | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center of Calcium and Bone Research (COCAB), Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
25
|
Verhees F, Demers I, Legemaate D, Jacobs R, Hoeben A, Kremer B, Speel EJ. Exploring the antiproliferative effect of PI3K/Akt/mTOR pathway and CDK4/6 inhibitors in human papillomavirus‑positive and ‑negative head and neck squamous cell carcinoma cell lines. Int J Oncol 2025; 66:13. [PMID: 39791215 PMCID: PMC11753768 DOI: 10.3892/ijo.2025.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025] Open
Abstract
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in PI3KCA, loss of PTEN or activation of receptor tyrosine kinases. In HPV‑negative tumors, CDKN2A (encoding p16 protein) inactivation or CCND1 (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines. Inhibitor efficacy was assessed in vitro using MTT assay and western blotting analysis. Cell cycle analysis was performed using flow cytometry and apoptosis was assessed using annexin V staining. Metabolic changes in terms of glycolysis and oxidative metabolism were measured by Seahorse XF96 extracellular Flux analysis. The results of the present study showed that both HPV‑positive and ‑negative HNSCC cell lines were sensitive to PI3Ki. In general, PI3Ki decreased PI3K/Akt/mTOR pathway activity, resulting in apoptosis, and decreased oxidative and glycolytic metabolism. The CDKi were particularly effective in blocking HPV‑negative cell line viability, showing decreased retinoblastoma expression and G1‑phase cell cycle arrest, whereas apoptosis was not induced. Thus, PI3Ki and CDKi efficiently inhibited their respective pathways and HNSCC cell viability in vitro, with the latter occurring only in HPV‑negative cell lines. Whereas PI3Ki induced apoptosis and attenuated cellular metabolism, CDKi led to cell cycle arrest. Further research should be performed to elucidate whether (a combination of) these inhibitors may be effective therapeutic agents for patients with HNSCC.
Collapse
Affiliation(s)
- Femke Verhees
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Imke Demers
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Dion Legemaate
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Robin Jacobs
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ernst-Jan Speel
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| |
Collapse
|
26
|
Mousavikia SN, Darvish L, Firouzjaei AA, Toossi MTB, Azimian H. PI3K/AKT/mTOR Targeting in Colorectal Cancer Radiotherapy: A Systematic Review. J Gastrointest Cancer 2025; 56:52. [PMID: 39849185 DOI: 10.1007/s12029-024-01160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Radioresistance is a major challenge in the treatment of patients with colorectal cancer (CRC) and impairs the efficacy of radiotherapy. The PI3K/AKT/mTOR signaling pathway plays a critical role in CRC and contributes to the development of radioresistance. Accordingly, targeting this signaling pathway may be a promising strategy to improve oncotherapy. METHODS We performed a systematic search of Scopus, PubMed, Web of Science, Embase, and Medline databases. We included articles that investigated the effects of PI3K/AKT/mTOR pathway inhibitors on improving the efficacy of radiotherapy. RESULT Of the 32 articles included in our review, 27 were preclinical studies and 5 were clinical trials. We examined the effects of various signaling pathway inhibitors in combination with radiotherapy. While the efficacy of these therapies when used alone is limited, their combination is associated with reduced survival, induction of apoptosis, and cell cycle arrest, which may increase radiosensitivity. Despite the limited number of studies, this combination therapy has shown favorable treatment outcomes in patients with CRC. CONCLUSION PI3K/AKT/mTOR is a critical signaling pathway for cancer cell survival. By inhibiting this pathway, we can increase the efficacy of radiotherapy. These results provide valuable insights for the further development of research and clinical practice in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - A A Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Molefi T, Mabonga L, Hull R, Sebitloane M, Dlamini Z. From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer. Cancers (Basel) 2025; 17:320. [PMID: 39858102 PMCID: PMC11763595 DOI: 10.3390/cancers17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Endometrial cancer (EC), a prevalent gynecological malignancy, presents significant challenges due to its genetic complexity and heterogeneity. The genomic landscape of EC is underpinned by genetic alterations, such as mutations in PTEN, PIK3CA, and ARID1A, and chromosomal abnormalities. The identification of molecular subtypes-POLE ultramutated, microsatellite instability (MSI), copy number low, and copy number high-illustrates the diverse genetic profiles within EC and underscores the need for subtype-specific therapeutic strategies. The integration of multi-omics technologies such as single-cell genomics and spatial transcriptomics has revolutionized our understanding and approach to studying EC and offers a holistic perspective that enhances the ability to identify novel biomarkers and therapeutic targets. The translation of these multi-omics findings into personalized medicine and precision oncology is increasingly feasible in clinical practice. Targeted therapies such as PI3K/AKT/mTOR inhibitors have demonstrated the potential for improved treatment efficacy tailored to specific genetic alterations. Despite these advancements, challenges persist in terms of variability in patient responses, the integration of genomic data into clinical workflows, and ethical considerations. This review explores the genomic underpinnings of EC, from genes to clinical practice. It highlights the ongoing need for multidisciplinary research and collaboration to address the complexities of EC and improve diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| |
Collapse
|
28
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
29
|
Tan C, Zhou H, Xiong Q, Xian X, Liu Q, Zhang Z, Xu J, Yao H. Cromolyn sodium reduces LPS-induced pulmonary fibrosis by inhibiting the EMT process enhanced by MC-derived IL-13. Respir Res 2025; 26:3. [PMID: 39762844 PMCID: PMC11706190 DOI: 10.1186/s12931-024-03045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate. The underlying mechanism of ARDS-related pulmonary fibrosis remains unclear. METHODS To evaluate the role of mast cell in sepsis-induced pulmonary fibrosis and elucidate its molecular mechanism. We investigated the level of mast cell and epithelial-mesenchymal transition(EMT) in LPS-induced mouse model and cellular model. We also explored the influence of cromolyn sodium and mast cell knockout on pulmonary fibrosis. Additionally, we explored the effect of MC-derived IL-13 on the EMT and illustrated the relationship between mast cell and pulmonary fibrosis. RESULTS Mast cell was up-regulated in the lung tissues of the pulmonary fibrotic mouse model compared to control groups. Cromolyn sodium and mast cell knockout decreased the expression of EMT-related protein and IL-13, alleviated the symptoms of pulmonary fibrosis in vivo and in vitro. The PI3K/AKT/mTOR signaling was activated in fibrotic lung tissue, whereas Cromolyn sodium and mast cell knockout inhibited this pathway. CONCLUSION The expression level of mast cell is increased in fibrotic lungs. Cromolyn sodium intervention and mast cell knockout alleviate the symptoms of pulmonary fibrosis probably via the PI3K/AKT/mTOR signaling pathway. Therefore, mast cell inhibition is a potential therapeutic target for sepsis-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China
| | - Hang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiangfei Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiyuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Zexin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China.
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
30
|
Zhao X, Yang L, Pan J, Zeng Z, Zhang T, Yang Y, Zhang J, Chen T, Xiao Z, Pan W. CXCL8 modulates M0 macrophage proliferation and polarization to influence tumor progression in cervical cancer. Sci Rep 2025; 15:790. [PMID: 39755693 PMCID: PMC11700176 DOI: 10.1038/s41598-024-81726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME. A nine-gene prognostic model constructed from immune gene signatures highlighted CXCL8 as a key regulator of M0 macrophage behavior. Functional experiments demonstrated that CXCL8 knockdown in M0 macrophages inhibited their proliferation, shifted polarization toward an M1-dominant phenotype, and reduced tumor-promoting M2 polarization. Co-culture experiments with CXCL8-deficient M0 macrophages further revealed a suppression of HeLa cell proliferation, migration, and invasion. These findings position M0 macrophages as central regulators within the TME and suggest that targeting pathways like CXCL8 could provide novel therapeutic strategies for improving outcomes in CESC patients.
Collapse
Affiliation(s)
- Xiyan Zhao
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Li Yang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Medical Laboratory science, Guizhou Medical University, Guizhou, Guiyang, 550004, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Jingjing Zhang
- Affiliated Children's Hospital, Nanjing Medical University School of Pediatrics, Nanjing, Jiangsu, 210008, China
| | - Tengxiang Chen
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
| | - Ziwen Xiao
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
| |
Collapse
|
31
|
Shakoori A, Azarian M, Hosseinpour Aghaei M, Maddahi M, Aghazadeh K, Tabari A, Farmani S, Azani A, Moghadam Fard A, Mokhtari Z, Derakhshan A, Idani A, Lotfi M, Zohourian Shahzadi S, Siahbani S, Motamedi S, Saffarzadeh N. Evaluation of Methylation and Changes in the Transcriptomics and Proteomics of the GRHL3, PHLDA3, and in Patients with Head and Neck Squamous Cell Carcinoma. Indian J Otolaryngol Head Neck Surg 2025; 77:13-21. [PMID: 40070988 PMCID: PMC11890821 DOI: 10.1007/s12070-024-05057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 03/14/2025] Open
Abstract
Introduction Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy in the world. High mortality and severe complications are critical features of head and neck cancer. Changes in intracellular signaling pathways are a general tumor formation and progression mechanism. Due to the objectivity that the PI3K pathway plays a critical role in HNSCC. the negative regulators involved in this pathway such as GRHL3, PHLDA3, which have been reported to reduce their expression in malignancies, can achieve significant results in the detection, prognosis, and targeted treatment of HNSCC if changes in transcriptome, proteome, and methylation levels of these genes are observed. Method 45 fresh head and neck cancer cells and 45 control samples were collected. Protein expression was also studied using Western blot. Additionally, promoter methylation was investigated using the qMSP method to observe changes in the regulatory regions. Results The results indicate a significant decrease in GRHL3 expression and a significant increase in PHLDA3 expression. Notably, these expression changes were not confirmed at the protein level. Additionally, methylation analysis revealed hypermethylation of the promoter region in GRHL3 and hypomethylation in PHLDA3. Conclusion This study is the first to examine the genes GRHL3 and PHLDA3 at the transcriptome, proteome, and promoter methylation levels. Based on the results, we hope that further studies will confirm the potential of GRHL3 and PHLDA3 as prognostic biomarkers. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-024-05057-0.
Collapse
Affiliation(s)
- Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Bioanalytical Ecotoxicology, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Keyvan Aghazadeh
- Head and Neck Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Tabari
- Department of Otolaryngology-Head and Neck Surgery, Otorhinolaryngology Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Farmani
- Genetics Group, Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Alireza Azani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Mokhtari
- Otorhinolaryngology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Lotfi
- Mashhad Branch Islamic Azad University, Mashhad, Iran
| | | | - Sarah Siahbani
- Molecular Pathology and Cytogenetic Ward, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Motamedi
- School of Public Health, Loma Linda University, Loma Linda, CA USA
| | - Negin Saffarzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Genia Medical Genetics Laboratory, Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Llorent-Martínez EJ, Yagi S, Zengin G, Cetiz MV, Uba AI, Yuksekdag O, Akgul BH, Yildiztugay E, Koyuncu I. Characterization of the chemical profiles and biological activities of Thesium bertramii Azn. Extracts using a combination of in vitro, in silico, and network pharmacology methods. Fitoterapia 2025; 180:106329. [PMID: 39638077 DOI: 10.1016/j.fitote.2024.106329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The genus Thesium, family Santalaceae, comprises about 350 species, and, although many of them are used as functional food and in traditional medicine, there are limited studies evaluating their pharmacological potential. The present study was designed to evaluate the chemical profile, antioxidant, and enzyme inhibition potential of aerial parts and roots of T. bertramii Azn. Extracts were rich in phenolics: MeOH and aqueous extracts of the aerial parts showed the highest total phenolic and flavonoid contents and the best antioxidant activity in most assays. Ethyl acetate extracts of both organs exerted comparable anti-butyrylcholinesterase activity, while their methanol extracts displayed comparable anti-tyrosinase activity. The highest acetylcholinesterase inhibitory activity was recorded from the root's ethyl acetate extract, while that of the aerial parts revealed the best α-amylase and α-glucosidase inhibitory activity. Chemically, the aerial parts were dominated by quercetin derivatives, feruloylquinic acids, caffeoylquinic acids, and elenolic acid glucoside. Roots showed a lower diversity of compounds with elenolic acid, quercetin glycoside, and kaempferol glycoside as major compounds. Additionally, network pharmacology analyses (KEGG and STRING) identified critical molecular pathways and hub genes, including IL6, TNF, BCL-2, and JUN, indicating the multi-target potential of T. bertramii in cancer and cardiovascular diseases. In conclusion, this study assessed the chemical and biological properties of T. bertramii for the first time, and the obtained results indicated the potential of this species as a valuable source of bioactive molecules for the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan; Université de Lorraine, INRAE, LAE, F-54000 Nancy, France
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Mehmet Veysi Cetiz
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey; Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| | | | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, 63290, Turkey
| |
Collapse
|
33
|
Lin L, Zhu C, Yan B, Yu P, Yang L, Huang W, Chen J. Gyosaponin ameliorates sevoflurane anesthesia-induced cognitive dysfunction and neuronal apoptosis in rats through modulation of the PI3K/AKT/mTOR pathway. Clinics (Sao Paulo) 2024; 80:100560. [PMID: 39708584 PMCID: PMC11913799 DOI: 10.1016/j.clinsp.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Sevoflurane (Sev) is an inhalational anesthetic for surgical procedures where it can trigger cognitive dysfunction and neuronal apoptosis. Gyosaponin (GpS) was studied for its effects on brain morphology and cognitive behaviors in Sev-anesthetized rats. METHODS Male Sprague-Dawley rats were induced by 3 % Sev anesthesia, and 25 mg/kg and 100 mg/kg GpS were injected into the rats by tail vein. The in vitro model of Sev anesthesia was constructed by treating primary rat hippocampal neurons with 4.1 % Sev in the presence of GpS (5, 10, and 20 μM). The neuroprotective effects of GpS against Sev-induced cognitive deficits in rats were evaluated using the open field and Morris water maze tests. The apoptosis of hippocampal neurons was observed using HE staining and TUNEL assay. Apoptosis-related proteins and proteins related to the PI3K/Akt/mTOR pathway were determined via Western blot. Also, pro-inflammatory factors were measured via ELISA. RESULTS GpS diminished the Sev-triggered apoptosis in neurons and Cleaved caspase-3, BAX, TNF-α, IL-6, lessened oxidative stress damage, and stimulated the PI3K/Akt/mTOR pathway. GpS therapy markedly enhanced learning and memory abilities in rats suffering from Sev-related cognitive impairments. CONCLUSION GpS ameliorates Sev-induced neurotoxicity and cognitive dysfunction by modulating the PI3K/Akt/mTOR pathway and alleviating neuronal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Lijuan Lin
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Chenhui Zhu
- Department of Urology, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Bing Yan
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Pinxian Yu
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Liu Yang
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Wei Huang
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Junren Chen
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China.
| |
Collapse
|
34
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Zhang BT, Leung PC, Wong CK, Wang DJ. The Immunomodulatory Effects of Vitamin D on COVID-19 Induced Glioblastoma Recurrence via the PI3K-AKT Signaling Pathway. Int J Mol Sci 2024; 25:12952. [PMID: 39684661 DOI: 10.3390/ijms252312952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Glioma is a highly invasive brain cancer that is difficult to treat due to its complex molecular characteristics and poor prognosis. The COVID-19 pandemic has introduced additional clinical challenges for cancer patients, especially those with glioma. This study explored the molecular interactions between glioma and COVID-19 using integrated bioinformatics methods, including enrichment analysis, survival analysis, and molecular docking, focusing on the PI3K-Akt signaling pathway and the immunomodulatory role of vitamin D. From gene expression data of glioma and COVID-19, 203 common differentially expressed genes were identified, and six prognostic key genes-MYBL2, RBM6, VEPH1, AHNAK2, GNG10, and DUSP14-were further determined. After intersecting with vitamin D targets five prognostic key genes were determined-MYBL2, RBM6, VEPH1, AHNAK2 and GNG10. These genes play significant roles in the PI3K-Akt pathway and potentially interact with vitamin D. Molecular docking and single-cell RNA sequencing analyses suggest that vitamin D may improve the prognosis of glioma patients infected with COVID-19 by regulating these key genes and the PI3K-Akt pathway. The findings reveal molecular links between glioma and COVID-19, thereby providing new insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bi-Tian Zhang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dong-Jie Wang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
37
|
Chen B, Wang L, Li X, Ren C, Gao C, Ding W, Wang H. FTO Facilitates Cervical Cancer Malignancy Through Inducing m6A-Demethylation of PIK3R3 mRNA. Cancer Med 2024; 13:e70507. [PMID: 39692250 DOI: 10.1002/cam4.70507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The incidence rate and mortality of cervical cancer rank the fourth in the global female cancer. N6-methyladenosine (m6A) always plays an important role in tumor progression, and fat mass and obesity-associated gene (FTO) works as the m6A demethylase. AIMS Our study aimed to narrate the biological function and potential mechanisms for FTO in cervical cancer malignancy. MATERIALS & METHODS We analyzed potential clinical value of FTO in cervical cancer patients. The relative protein levels of FTO in cervical cancerous tissue and paracancerous tissue were verified by IHC. After changing the FTO expression level by lentivirus transfection, the proliferation and metastasis ability of cervical cancer cells were detected both in vitro and in vivo. Further, Merip-seq and Merip-qPCR are used to profile m6A transcriptome-wide. Finally, western blot were performed to identify the regulatory mechanism. RESULTS Based on TCGA-CESC cohort and GEO dataset, FTO expression levels in HPV-positive cancer patients were significantly higher than those in HPV-negative cancer patients and could predict advanced FIGO stage. The protein level of FTO in cervical cancerous tissue was higher than that in paracancerous tissue. Functional assays indicated that FTO promoted the proliferation, migration and invasion of cervical cancer cells both in vitro and in vivo. The Merip-seq and Merip-qPCR evoked that relative PIK3R3 m6A level was significantly increased after FTO knockdown, which effected the activation of FoxO pathway. After knocking down FTO, upregulation of PIK3R3 can restore the malignancy of cervical cancer. CONCLUSION All in all, these data suggest a vital role for FTO in occurrence and development of cervical cancer.
Collapse
Affiliation(s)
- Bingxin Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ci Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Nahar TAK, Bantounou MA, Savin I, Chohan N, Kumar NS, Ghose A, McEwan IJ. Efficacy and Safety of Combination AKT and Androgen Receptor Signaling Inhibition in Metastatic Castration-Resistant Prostate Cancer: Systematic Review and Meta-Analysis. Clin Genitourin Cancer 2024; 22:102244. [PMID: 39549658 DOI: 10.1016/j.clgc.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis with current treatment options including chemotherapy and androgen receptor signaling inhibitor (ARSI) medications. Poly-ADP ribose polymerase (PARP) inhibitors alone and in combination with ARSI has recently been incorporated in management for mCRPC deficient in BRCA1/2 genes. However, downregulating androgen-receptor signaling using ARSIs can upregulate the PI3K/AKT/mTOR pathway, promoting tumor cell survival. This creates a rationale for co-targeting both these pathways. This systematic review aimed to investigate AKT inhibitors and ARSI combination therapy. METHODS EMBASE, MEDLINE, and Scopus were searched from database inception to July 2023. Primary outcomes included objective response rate (ORR), prostate-specific antigen (PSA) response rate, adverse events (AEs), overall survival (OS), and radiographic progression-free survival (rPFS). Quality was assessed using the risk of bias tool (ROB2) and certainty of evidence with GRADE. RESULTS Six clinical trials with 3 Phase I, 1 Phase II, 1 Phase III were included with 771 patients and a median age ranging from 67 years to 70 years. The pooled ORR was 30% (n = 5 studies, 95% CI, 3%-84%) and PSA response rate was 43% (n = 5 studies, 95% CI, 15%-77%). The median duration of rPFS ranged from 8.2 to 19.2 months in the intervention compared with 6.4 to 16.6 months in the placebo group. A 16% reduction in radiographic progression or death was reported in patients receiving dual therapy compared with those receiving placebo. This reduction was greater by PTEN-loss status, ranging from 23% to 61%. The median OS ranged from 15.6 to 18.9 months. No significant difference was reported in survival relative to placebo. 98.8% (767/776) of patients experienced AEs of any grade, with GRADE ≥3 AEs occurring in 65.9% (512/776) of patients. The most common AE and GRADE ≥3 AEs were diarrhoea (pooled prevalence = 70%, 95% CI, 57%-81%), and hyperglycaemia (pooled prevalence = 12%, 95% CI, 6%-20%), respectively. CONCLUSION Combined therapy reduced the risk of rPFS, with the response higher in PTEN-loss subgroup, with a modest but not significant increase in OS. Our AE estimates showed consistency with other studies. AEs of any grade were common with the majority experiencing at least 1 AE. (PROSPERO Registration Number: CRD420202352583).
Collapse
Affiliation(s)
- Tulika A K Nahar
- School of Medicine Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Maria Anna Bantounou
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - Nakul Chohan
- Lancaster Medical School, Lancaster University, Lancaster, UK; National Medical Research Association, UK
| | - Niraj S Kumar
- National Medical Research Association, UK; Leicester Medical School, College of Life Sciences, University of Leicester, Leicester, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK; Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK; Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, UK; Immuno Oncology Clinical Network, UK; Health Systems and Treatment Optimisation Network, European Cancer Organisation, Belgium.
| | - Ian J McEwan
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
39
|
Wu Y, Ren L, Mao C, Shen Z, Zhu W, Su Z, Lin X, Lin X. Small hepatitis B virus surface antigen (SHBs) induces dyslipidemia by suppressing apolipoprotein-AII expression through ER stress-mediated modulation of HNF4α and C/EBPγ. J Virol 2024; 98:e0123924. [PMID: 39470210 PMCID: PMC11575332 DOI: 10.1128/jvi.01239-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Persistent infection with hepatitis B virus (HBV) often leads to disruptions in lipid metabolism. Apolipoprotein AII (apoAII) plays a crucial role in lipid metabolism and is implicated in various metabolic disorders. However, whether HBV could regulate apoAII and contribute to HBV-related dyslipidemia and the underlying mechanism remain unclear. This study revealed significant reductions in apoAII expression in HBV-expressing cell lines, the serum, and liver tissues of HBV-transgenic mice. The impact of HBV on apoAII is related to small hepatitis B virus surface antigen (SHBs). Overexpression of SHBs decreased apoAII levels in SHBs-expressing hepatoma cells, transgenic mice, and the serum of HBV-infected patients, whereas suppression of SHBs increased apoAII expression. Mechanistic investigations demonstrated that SHBs repressed the apoAII promoter activity through a HNF4α- and C/EBPγ-dependent manner; SHBs simultaneously upregulated C/EBPγ and downregulated HNF4α by inhibiting the PI3K/AKT signaling pathway through activating endoplasmic reticulum (ER) stress. Serum lipid profile assessments revealed notable decreases in high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG) in SHBs-transgenic mice compared to control mice. However, concurrent overexpression of apoAII in these mice effectively counteracted these reductions in lipid levels. In HBV patients, SHBs levels were negatively correlated with serum levels of HDL-C, LDL-C, TC, and TG, whereas apoAII levels positively correlated with lipid content. This study underscores that SHBs contributes to dyslipidemia by suppressing the PI3K/AKT pathway via inducing ER stress, leading to altered expression of HNF4α and C/EBPγ, and subsequently reducing apoAII expression.IMPORTANCEThe significance of this study lies in its comprehensive examination of how the hepatitis B virus (HBV), specifically through its small hepatitis B virus surface antigen (SHBs), impacts lipid metabolism-a key aspect often disrupted by chronic HBV infection. By elucidating the role of SHBs in regulating apolipoprotein AII (apoAII), a critical player in lipid processes and associated metabolic disorders, this research provides insights into the molecular pathways contributing to HBV-related dyslipidemia. Discovering that SHBs downregulates apoAII through mechanisms involving the repression of the apoAII promoter via HNF4α and C/EBPγ, and the modulation of the PI3K/AKT signaling pathway via endoplasmic reticulum (ER) stress, adds critical knowledge to HBV pathogenesis. The research also shows an inverse correlation between SHBs expression and key lipid markers in HBV-infected individuals, suggesting that apoAII overexpression could counteract the lipid-altering effects of SHBs, offering new avenues for understanding and managing the metabolic implications of HBV infection.
Collapse
Affiliation(s)
- Yunli Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lan Ren
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Chenglei Mao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiqing Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wenyu Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhijun Su
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
40
|
Liu J, Wei L, Miao Q, Zhan S, Chen P, Liu W, Cao L, Wang D, Liu H, Yin J, Song Y, Ye M, Lv T. MDM2 drives resistance to Osimertinib by contextually disrupting FBW7-mediated destruction of MCL-1 protein in EGFR mutant NSCLC. J Exp Clin Cancer Res 2024; 43:302. [PMID: 39543744 PMCID: PMC11566350 DOI: 10.1186/s13046-024-03220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Overcoming resistance to Osimertinib in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) is clinically challenging because the underlying mechanisms are not fully understood. The murine double minute 2 (MDM2) has been extensively described as a tumor promotor in various malignancies, mainly through a negative regulatory machinery on the p53 tumor suppressor. However, the significance of MDM2 on the sensitivity to Osimertinib has not been described. METHODS Osimertinib resistant cells were generated by standard dose escalation strategy and individual resistant clones were isolated for MDM2 testing. The MDM2 and its mutant constructs (ΔPBD, ΔRING, C464A) were introduced into PC-9, HCC827 and H1975 cells and evaluated for the sensitivity to Osimertinib by MTT assay, colony formation, EdU assay and TUNEL assay. MDM2 expression in resistant cells was manipulated by pharmacological and molecular approaches, respectively. Proteins that were implicated in PI3K/Akt, MAPK/Erk and apoptosis signaling were measured by Western blot analysis. Candidate proteins that interacted with MDM2 were captured by immunoprecipitation and probed with indicated antibodies. RESULTS In comparison with parental PC-9 cells, the PC-9 OR resistant cells expressed high level of MDM2. Ectopic expression of MDM2 in PC-9, HCC827 and H1975 sensitive cells generated an Osimertinib resistant phenotype, regardless of p53 status. MDM2 promoted resistance to Osimertinib through a PI3K/Akt and MAPK/Erk-independent machinery, in contrast, MDM2 selectively stabilized MCL-1 protein to arrest Osimertinib-induced cancer cell apoptosis. Mechanistically, MDM2 acted as a E3 ligase to ubiquitinate FBW7, a well-established E3 ligase for MCL-1, at Lys412 residue, which resulted in FBW7 destruction and MCL-1 stabilization. Targeting MDM2 to augment MCL-1 protein breakdown overcame resistance to Osimertinib in vitro and in vivo. Finally, the clinical relevance of MDM2-FBW7-MCL-1 regulatory axis was validated in mouse xenograft tumor model and in NSCLC specimen. CONCLUSION Overexpression of MDM2 is a novel resistant mechanism to Osimertinib in EGFR mutant NSCLC. MDM2 utilizes its E3 ligase activity to provoke FBW7 destruction and sequentially leads to MCL-1 stabilization. Cancer cells with aberrant MDM2 state are refractory to apoptosis induction and elicit a resistant phenotype to Osimertinib. Therefore, targeting MDM2 would be a feasible approach to overcome resistance to Osimertinib in EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingyun Wei
- Department of Thoracic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Miao
- The guidance center for Military Psychology of PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, China
| | - Sutong Zhan
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Peilin Chen
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Wei Liu
- Liaoning Kanghui Biotechnology Co., Ltd, Shenyang, 110 167, China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, CA 94404, China
| | - Dong Wang
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China.
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
41
|
Zhang H, Qi HZ, Li YJ, Shi XY, Hu ML, Chen XL, Li Y. Identification of novel inhibitors targeting PI3Kα via ensemble-based virtual screening method, biological evaluation and molecular dynamics simulation. J Comput Aided Mol Des 2024; 38:37. [PMID: 39528618 DOI: 10.1007/s10822-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
PIK3CA gene encoding PI3K p110α is one of the most frequently mutated and overexpressed in majority of human cancers. Development of potent and selective novel inhibitors targeting PI3Kα was considered as the most promising approaches for cancer treatment. In this investigation, a virtual screening platform for PI3Kα inhibitors was established by employing machine learning methods, pharmacophore modeling, and molecular docking approaches. 28 potential PI3Kα inhibitors with different scaffolds were selected from the databases with 295,024 compounds. Among the 28 hits, hit15 exhibited the best inhibitory effect against PI3Kα with IC50 value less than 1.0 µM. The molecular dynamics simulation indicated that hit15 could stably bind to the active site of PI3Kα, interact with some residues by hydrophobic, electrostatic and hydrogen bonding interactions, and finally induced PI3Kα active pocket substantial conformation changes. Stable H-bond interactions were formed between hit15 and residues of Lys776, Asp810 and Asp933. The binding free energy of PI3Kα-hit15 was - 65.3 kJ/mol. The free energy decomposition indicated that key residues of Asp805, Ile848 and Ile932 contributed stronger energies to the binding free energy. The above results indicated that hit15 with novel scaffold was a potent PI3Kα inhibitor and considered as a promising candidate for further drug development to treat various cancers with PI3Kα over activated.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Ya-Juan Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiu-Yun Shi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiang-Long Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Yuan Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
42
|
Chen L, Xing J, Lv J, Si S, Wang H, Yu W. Corynoxine suppresses lung adenocarcinoma proliferation and metastasis via inhibiting PI3K/AKT pathway and suppressing Cyclooxygenase-2 expression. Hereditas 2024; 161:41. [PMID: 39511658 PMCID: PMC11542349 DOI: 10.1186/s41065-024-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common lung cancer subtype, and the prognosis of affected patients is generally poor. The traditional Chinese medicine Uncaria rhychophaylla has been reported to exhibit anti-lung cancer properties. Accordingly, the main bioactive ingredient in Uncaria rhychophaylla, Corynoxine, may hold great value as a treatment for lung cancer. METHODS The impact of Corynoxine on the viability of LUAD cells was assessed using the Cell Counting Kit-8 (CCK-8) assay. Apoptosis in A549 cells was evaluated via flow cytometry. Migration and invasion capabilities were determined through wound healing and Transwell assays, respectively. The key pathways targeted by Corynoxine in LUAD were identified using a network pharmacology approach. Additionally, Western immunoblotting, quantitative real-time PCR (qRT-PCR), and ELISA assays were conducted to validate the underlying mechanisms. The in vivo anti-tumor efficacy of Corynoxine was assessed in xenograft nude mice. RESULTS In this study, Corynoxine treatment was found to markedly suppress in vitro LUAD cell proliferative, migratory, and invasive activity. It additionally downregulated Vimentin and promoted E-cadherin upregulation consistent with the disruption of epithelial-mesenchymal transition (EMT) induction while also accelerating apoptotic death. Furthermore, network pharmacology analysis revealed that the PI3K/AKT pathway is a potential target of Corynoxine in LUAD. In vitro assays demonstrated that treatment with Corynoxine resulted in the suppression of PI3K/AKT signaling and a consequent drop in cyclooxygenase-2 (COX-2) expression. These findings were further confirmed in vivo in mice harboring A549 tumor xenografts in which Corynoxine was able to interfere with the PI3K/AKT/COX-2 signaling axis. CONCLUSION This study elucidated the potential effects of Corynoxine in suppressing proliferation and metastasis in LUAD, along with investigating the underlying mechanisms. These data highlight the promise of Corynoxine as a novel therapeutic tool for the treatment of individuals diagnosed with LUAD.
Collapse
Affiliation(s)
- Liping Chen
- Department of Central Laboratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Jing Xing
- Department of Central Laboratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiapei Lv
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Sainv Si
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huaying Wang
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wanjun Yu
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
43
|
Almeida-Nunes DL, Silva JPN, Nunes M, Silva PMA, Silvestre R, Dinis-Oliveira RJ, Bousbaa H, Ricardo S. Metformin Impairs Linsitinib Anti-Tumor Effect on Ovarian Cancer Cell Lines. Int J Mol Sci 2024; 25:11935. [PMID: 39596005 PMCID: PMC11594113 DOI: 10.3390/ijms252211935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Ovarian cancer (OC) remains one of the leading causes of cancer-related mortality among women. Targeting the insulin-like growth factor 1 (IGF-1) signaling pathway has emerged as a promising therapeutic strategy. Linsitinib, an IGF-1 receptor (IGF-1R) inhibitor, has shown potential in disrupting this pathway. Additionally, metformin, commonly used in the treatment of type 2 diabetes, has been studied for its anti-cancer properties due to its ability to inhibit metabolic pathways that intersect with IGF-1 signaling, making it a candidate for combination therapy in cancer treatments. This study explores the anti-cancer effects of linsitinib and metformin on OVCAR3 cells by the suppression of the IGF-1 signaling pathway by siRNA-mediated IGF-1 gene silencing. The goal is to evaluate their efficacy as therapeutic agents and to emphasize the critical role of this pathway in OC cell proliferation. Cellular viability was evaluated by resazurin-based assay, and apoptosis was assessed by flux cytometry. The results of this study indicate that the combination of linsitinib and metformin exhibits an antagonistic effect (obtained by SynergyFinder 2.0 Software), reducing their anti-neoplastic efficacy in OC cell lines. Statistical analyses were performed using ordinary one-way or two-way ANOVA, followed by Tukey's or Šídák's multiple comparison tests. While linsitinib shows promise as a therapeutic option for OC, further research is needed to identify agents that could synergize with it to enhance its therapeutic efficacy, like the combination with standard chemotherapy in OC (carboplatin and paclitaxel).
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Patrícia M. A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine from University of Porto (FMUP), 4050-319 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| | - Sara Ricardo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (D.L.A.-N.); (P.M.A.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (H.B.)
| |
Collapse
|
44
|
Lian S, Du Z, Chen Q, Xia Y, Miao X, Yu W, Sun Q, Feng C. From lab to clinic: The discovery and optimization journey of PI3K inhibitors. Eur J Med Chem 2024; 277:116786. [PMID: 39180946 DOI: 10.1016/j.ejmech.2024.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
PI3K inhibitors have emerged as promising therapeutic agents due to their critical role in various cellular processes, particularly in cancer, where the PI3K pathway is frequently dysregulated. This review explores the evolutionary path of PI3K inhibitors from laboratory discovery to clinical application. The journey begins with early laboratory investigations into PI3K signaling and inhibitor development, highlighting fundamental discoveries that laid the foundation for subsequent advancements. Optimization strategies, including medicinal chemistry approaches and structural modifications, are scrutinized for their contributions to enhancing inhibitor potency, selectivity, and pharmacokinetic properties. The translation from preclinical studies to clinical trials is examined, emphasizing pivotal trials that evaluated efficacy and safety profiles. Challenges encountered during clinical development are critically assessed. Finally, the review discusses ongoing research directions and prospects for PI3K inhibitors, underscoring these agents' continuous evolution and therapeutic potential.
Collapse
Affiliation(s)
- Siyu Lian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenhua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinxin Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Chong Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
45
|
Hata A, Katakami N, Takase N, Kibata K, Yamanaka Y, Tamiya M, Mori M, Kijima T, Morita S, Sakai K, Nishio K. Afatinib plus bevacizumab combination after osimertinib resistance in advanced EGFR-mutant non-small cell lung cancer: Phase II ABCD-study. Lung Cancer 2024; 197:107988. [PMID: 39393258 DOI: 10.1016/j.lungcan.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Many clinical studies showed a synergy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) and vascular endothelial growth factor inhibitors. We hypothesized afatinib plus bevacizumab exerts clinical potency after developing various osimertinib resistant mechanisms. METHODS EGFR-mutant non-small cell lung cancer patients were enrolled after osimertinib resistance. Afatinib at 30-40 mg/day and bevacizumab at 15 mg/kg tri-weekly were administered until progression. Plasma/histologic rebiopsied samples after osimertinib failure were analyzed to examine resistant mechanisms: gene alterations/copy-number gain using cancer personalized profiling by deep sequencing. RESULTS Between January 2018 and October 2020, 28 patients were enrolled. Response and disease control rates were 17.9 % and 78.6 %, respectively. Median duration of response was 9.0 (range, 4.2-22.3) months. Median progression-free and overall survivals were 2.7 and 9.3 months, respectively. Twenty-eight (100 %) plasma and/or 21 (75 %) histologic rebiopsies identified: 17 (61 %) TP53; 15 (54 %) T790M; 9 (32 %) uncommon EGFR; 9 (32 %) MET; 6 (21 %) C797S; 3 (11 %) BRAF; 2 (7 %) HER2; 2 (7 %) KRAS; and 2 (7 %) PI3K mutations. One (17 %) of 6 C797S patients showed complete response. Three (33 %) of 9 uncommon EGFR-mutated patients achieved radiographic response. Neither 15 T790M-positive nor 6 EGFR downstream signaling mutations: BRAF; KRAS; or PI3K-positive patients responded, but 5 (38 %) of 13 T790M-negative patients responded. Adverse events ≥ grade 3 and incidence ≥ 5 % were: hypertension (29 %); proteinuria (7 %); and diarrhea (7 %). There were neither treatment-related death nor interstitial lung disease. CONCLUSIONS Selected population could obtain clinical benefit from afatinib plus bevacizumab, based on rebiopsy results after osimertinib resistance.
Collapse
Affiliation(s)
- Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Japan.
| | | | - Naoto Takase
- Department of Medical Oncology, Takarazuka City Hospital, Japan
| | - Kayoko Kibata
- Department of Respiratory Medicine, First Department of Internal Medicine, Kansai Medical University, Japan
| | - Yuta Yamanaka
- Department of Respiratory Medicine, First Department of Internal Medicine, Kansai Medical University, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University, Faculty of Medicine, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University, Faculty of Medicine, Japan
| |
Collapse
|
46
|
Al-Hawary SIS, Altalbawy FMA, Jasim SA, Jyothi S R, Jamal A, Naiyer MM, Mahajan S, Kalra H, Jawad MA, Zwamel AH. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis. Cell Biol Int 2024; 48:1601-1611. [PMID: 39164963 DOI: 10.1002/cbin.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah, Saudi Arabia
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed M Naiyer
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shriya Mahajan
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Hitesh Kalra
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, India
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
47
|
Fan Y, He Y, Sun L, Liu T, Shen Y. Mesonephric adenocarcinoma of the uterine cervix with a prominent spindle cell component. Oncol Lett 2024; 28:508. [PMID: 39233819 PMCID: PMC11369853 DOI: 10.3892/ol.2024.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Mesonephric adenocarcinomas (MAs) with spindle cell components are rare malignant cervical tumours. In the present study, a retrospective analysis of these tumours was performed. Clinicopathological data were gathered from electronic surgical pathology records, and both immunohistochemistry and targeted next-generation sequencing (NGS) were performed. The present study included three postmenopausal female patients diagnosed with primary uterine cervical MA with prominent spindle cell components, aged 51-60 years. All patients underwent hysterectomy with bilateral salpingo-oophorectomy and pelvic lymph node dissection. There were no recurrences or deaths after surgery. NGS analysis identified KRAS mutations in 2 cases and a PIK3-catalytic subunit α (PIK3CA) mutation in another. Spindle cell components may indicate MAs at an advanced stage. Spindle cell components in MAs are diagnostic pitfalls, and the use of immunohistochemical panels and molecular detection cases with overlapping morphological features is recommended. While KRAS mutations are the most common types of mutations in MAs with spindle cell components, the present study demonstrates that PIK3CA mutations can also occur independently in cases without KRAS mutations.
Collapse
Affiliation(s)
- Yingying Fan
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Ying He
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Liang Sun
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Tianmin Liu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Yangmei Shen
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| |
Collapse
|
48
|
Kandimalla R, Moholkar DN, Samanta SK, Tyagi N, Aqil F, Gupta R. Oncogene Downregulation by Mahanine Suppresses Drug-Sensitive and Drug-Resistant Lung Cancer and Inhibits Orthotopic Tumor Progression. Cancers (Basel) 2024; 16:3572. [PMID: 39518013 PMCID: PMC11545155 DOI: 10.3390/cancers16213572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain largely unexplored. The present study aimed to investigate MH's effect on drug-sensitive and drug-resistant NSCLC and its potential mechanism of action. Methods: We isolated MH from M. koenigii leaves and the purity (99%) was confirmed by HPLC, LC-MS and NMR. The antiproliferative activity of MH was determined using MTT and colony formation assays against drug-sensitive (A549 and H1299) and Taxol-resistant lung cancer cells (A549-TR). Western blot analysis was performed to determine MH's effects on various molecular targets. Anti-tumor activity of MH was determined against lung tumors developed in female NOD Scid mice injected with A549-Fluc bioluminescent cells (1.5 × 106) intrathoracically. Results: MH dose-dependently reduced the proliferation of all lung cancer cells (A549, H1299 and A549-TR), with IC50 values of 7.5, 5, and 10 µM, respectively. Mechanistically, MH arrested cell growth in the G0/G1 and G2/M phases of the cell cycle by inhibiting cyclin-dependent kinase 4/6 (CDK4/6) and cell division control 2 (CDC2) and induced apoptosis through the downregulation of B-cell leukemia/lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL). The apoptotic induction capacity of MH can also be attributed to its ability to inhibit pro-oncogenic markers, including mesenchymal-epithelial transition factor receptor (MET), phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), survivin, rat sarcoma viral oncogene (RAS), myelocytomatosis oncogene (cMYC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels. In vivo, MH (25 mg/kg b. wt.) significantly (p < 0.001) inhibited the growth of A549 lung cancer orthotopic xenografts in NOD Scid mice by 70%. Conclusions: Our study provides new mechanistic insights into MH's therapeutic potential against NSCLC.
Collapse
Affiliation(s)
- Raghuram Kandimalla
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Disha N. Moholkar
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | - Neha Tyagi
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh Gupta
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
49
|
Deng Z, Qing Q, Huang B. A bibliometric analysis of the application of the PI3K-AKT-mTOR signaling pathway in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7255-7272. [PMID: 38709265 DOI: 10.1007/s00210-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
PI3K-AKT-mTOR plays as important role in the growth, metabolism, proliferation, and migration of cancer cells, and in apoptosis, autophagy, inflammation, and angiogenesis in cancer. In this study, the aim was to comprehensively review the current research landscape regarding the PI3K-AKT-mTOR pathway in cancer, using bibliometrics to analyze research hotspots, and provide ideas for future research directions. Literature published on the topic between January 2006 and May 2023 was retrieved from the Web of Science core database, and key information and a visualization map were analyzed using CiteSpace and VOSviewer. A total of 5800 articles from 95 countries/regions were collected, including from China and the USA. The number of publications on the topic increased year on year. The major research institution was the University of Texas MD Anderson Cancer Center. Oncotarget and Clinical Cancer Research were the most prevalent journals in the field. Of 26,621 authors, R Kurzrock published the most articles, and J Engelman was cited most frequently. "A549 cell," "first line treatment," "first in human phase I," and "inhibitor" were the keywords of emerging research hotspots. Inhibitors of the PI3K-AKT-mTOR pathway and their use in clinical therapeutic strategies for cancer were the main topics in the field, and future research should also focus on PI3K-AKT-mTOR pathway inhibitors. This study is the first to comprehensively summarize trends and development s in research into the PI3K-AKT-mTOR pathway in cancer. The information that was obtained clarified recent research frontiers and directions, providing references for scholars of cancer management.
Collapse
Affiliation(s)
- Zhengzheng Deng
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Qiancheng Qing
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
50
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|