1
|
Biyani M, Isogai Y, Sharma K, Maeda S, Akashi H, Sugai Y, Nakano M, Kodera N, Biyani M, Nakajima M. High-speed atomic force microscopy and 3D modeling reveal the structural dynamics of ADAR1 complexes. Nat Commun 2025; 16:4757. [PMID: 40419486 DOI: 10.1038/s41467-025-59987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Targeting abnormal dysregulation of adenosine-to-inosine deamination by ADAR enzymes offers a promising therapeutic strategy in cancer research. However, the development of effective inhibitors is impeded by the incomplete structural information on ADAR1 complexes. In this study, we employ a combination of computational 3D modeling and high-speed atomic force microscopy to elucidate the atomic and molecular dynamics of ADAR1. Two distinct interface regions (IFx and IFy) on the surface of the deaminase domain and oligomerization structural models are identified. Single-molecule-level insights into the structural dynamics of ADAR1 reveal the oligomerization of ADAR1 monomers through the self-assembly of deaminase domains. In the presence of the substrate dsRNA, the N-terminal region, including RNA-binding domains, of ADAR1 dimer exhibits a controlled flexible conformation and promotes a stable dimeric interaction with dsRNA for RNA editing. These findings provide the basis for the development of targeted inhibitors to regulate ADAR1 activity in therapeutic applications.
Collapse
Affiliation(s)
- Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Kirti Sharma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shoei Maeda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hinako Akashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yui Sugai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Manish Biyani
- BioSeeds Corporation, Ishikawa Create Labo, Nomi City, Ishikawa, Japan.
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| | - Miki Nakajima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Pu S, Cheng T, Cheng H. Advances in RNA editing in hematopoiesis and associated malignancies. Blood 2025; 145:2424-2438. [PMID: 39869834 DOI: 10.1182/blood.2024027379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the adenosine deaminase acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs, affecting their functions. RNA editing detection is now so sophisticated that we can achieve a high level of accuracy and sensitivity to identify low-abundance edited events. Consequently, A-to-I editing has been implicated in various biological processes, including immune and stress responses, cancer progression, and stem cell fate determination. In particular, a crucial role for this process has been recently reported in hematopoietic cell development and hematologic malignancy progression. Results from genetic mouse models have demonstrated the impact of ADARs' catalytic activity on hematopoietic cells, complemented by insights from human cell studies. Meanwhile, clinical studies have implicated ADAR enzymes and RNA editing events in hematologic malignancies and highlighted their potential as prognostic indicators. In this review, we outline the regulatory mechanisms of RNA editing in both normal hematopoiesis and hematologic malignancies. We then speculate on how targeting ADAR expression and site-specific RNA substrates might serve as a therapeutic avenue for affected patients.
Collapse
Affiliation(s)
- Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Modestov A, Buzdin A, Suntsova M. Unveiling RNA Editing by ADAR and APOBEC Protein Gene Families. FRONT BIOSCI-LANDMRK 2025; 30:26298. [PMID: 40302320 DOI: 10.31083/fbl26298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
RNA editing is a crucial post-transcriptional modification that alters the transcriptome and proteome and affects many cellular processes, including splicing, microRNA specificity, stability of RNA molecules, and protein structure. Enzymes from the adenosine deaminase acting on RNA (ADAR) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) protein families mediate RNA editing and can alter a variety of non-coding and coding RNAs, including all regions of mRNA molecules, leading to tumor development and progression. This review provides novel insights into the potential use of RNA editing parameters, such as editing levels, expression of ADAR and APOBEC genes, and specifically edited genes, as biomarkers for cancer progression, distinguishing it from previous studies that focused on isolated aspects of RNA editing mechanisms. The methodological section offers clues to accelerate high-throughput analysis of RNA or DNA sequencing data for the identification of RNA editing events.
Collapse
Affiliation(s)
- Alexander Modestov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Umeda H, Shigeyasu K, Takahashi T, Moriwake K, Kondo Y, Yoshida K, Takeda S, Yano S, Matsumi Y, Kishimoto H, Fuji T, Yasui K, Yamamoto H, Takagi K, Kayano M, Michiue H, Nakamura K, Mori Y, Teraishi F, Tazawa H, Umeda Y, Kagawa S, Goel A, Fujiwara T. ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer. Mol Cancer 2025; 24:116. [PMID: 40241135 PMCID: PMC12001472 DOI: 10.1186/s12943-025-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages. METHODS The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models. RESULTS The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NFκB pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells. CONCLUSIONS This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC.
Collapse
Grants
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- 23K08173, 23K19539, 24K11823, 22K16489, 24K23387, 22K16533, 24K19391, 24K11930, 23K15475, 24K11848, 24K13439, 22K08775 Japan Society for the Promotion of Science
- Takeda Science Foundation
- Mochida Memorial Foundation
- LOTTEE foundation
Collapse
Affiliation(s)
- Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Toshiaki Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Moriwake
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Digestive Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yuki Matsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomokazu Fuji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kosei Takagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Kayano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Li JB, Walkley CR. Leveraging genetics to understand ADAR1-mediated RNA editing in health and disease. Nat Rev Genet 2025:10.1038/s41576-025-00830-5. [PMID: 40229561 DOI: 10.1038/s41576-025-00830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Endogenous, long double-stranded RNA (dsRNA) can resemble viral dsRNA and be recognized by cytosolic dsRNA sensors, triggering autoimmunity. Genetic studies of rare, inherited human diseases and experiments using mouse models have established the importance of adenosine-to-inosine RNA editing by the enzyme adenosine deaminase acting on RNA 1 (ADAR1) as a critical safeguard against autoinflammatory responses to cellular dsRNA. More recently, human genetic studies have revealed that dsRNA editing and sensing mechanisms are involved in common inflammatory diseases, emphasizing the broader role of dsRNA in modulating immune responses and disease pathogenesis. These findings have highlighted the therapeutic potential of targeting dsRNA editing and sensing, as exemplified by the emergence of ADAR1 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Carl R Walkley
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
6
|
Wang Z, Wu Y, Ding Z, Xiao X, Huang Y, Liu Z, Zhang Q. A novel mechanism for A-to-I RNA-edited CYP1A1 in promoting cancer progression in NSCLC. Cell Mol Biol Lett 2025; 30:40. [PMID: 40175891 PMCID: PMC11966828 DOI: 10.1186/s11658-025-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Lung cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related mortality worldwide. Similar to other solid tumors, the development of non-small cell lung cancer (NSCLC) is believed to be a multistep process involving the accumulation of genetic and epigenetic alterations. A-to-I RNA editing is a widespread posttranscriptional epigenetic modification that confers specific nucleotide changes in selected RNA transcripts and plays a critical role in the pathogenesis of many human cancers. However, the mechanisms underlying A-to-I RNA editing that act as a potential driver in the pathogenesis of NSCLC progression remain incompletely elucidated. METHODS Sanger sequencing was performed to validate the CYP1A1_I462V RNA editing event in NSCLC patients. In vitro and in vivo experiments were used to assess the effects of an ADAR1-regulated CYP1A1 and its editing on NSCLC cell growth and metastasis. The crosstalk between CYP1A1_I462V RNA editing and PI3K-AKT signaling was analyzed using RNA sequencing and molecular methods. The functional role of CYP1A1_I462V in the response to oxidative stress was verified through proteomics analysis, co-IP assay, and immunofluorescence assay. RESULTS Sanger sequencing analysis identified an increased A-to-I RNA editing ratio of CYP1A1 in NSCLC specimens. This specific RNA editing, regulated by ADAR1, resulted in gain-of-function phenotypes characterized by enhanced tumor progression and more aggressive behavior. The edited form induced the expression of heme oxygenase-1 (HO-1) via PI3K/Akt-dependent activation compared with the wild-type CYP1A1, which led to an enhanced interaction with CYP1A1, thereby promoting the translocation of abundant HO-1 into the nucleus to resist oxidant stress in NSCLC cells. CONCLUSIONS Our findings highlight that the I462V A-to-I RNA editing event of CYP1A1 drives pulmonary carcinogenesis through inhibiting oxidative stress and suggest that the CYP1A1-HO-1-PI3K/Akt axis may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Yan Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Xinru Xiao
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Yanhua Huang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Zhiguang Liu
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, the Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Tian C, Li C, Wang J, Liu Y, Gao J, Hong X, Gu F, Zhang K, Hu Y, Fan H, Liu L, Zeng Y. ADAR1 enhances tumor proliferation and radioresistance in non-small cell lung cancer by interacting with Rad18. Cell Oncol (Dordr) 2025; 48:471-485. [PMID: 39570561 PMCID: PMC11996937 DOI: 10.1007/s13402-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated. METHODS The protein expression was detected by immunohistochemistry and Western Blot, while the mRNA expression was measured by RT-qPCR. The tumor growth was evaluated by CCK8, colony formation assays, EdU assay, and in-vivo mouse model. γ-H2AX foci formation, neutral comet tailing assay, and clonogenic cell survival assay were performed to determine the DNA damage and radiosensitivity. RNA-seq was conducted to identify the main downstream effector. The interaction between ADAR1 and Rad18 was examined by immunofluorescence and co-immunoprecipitation. RESULTS We reported that ADAR1 was upregulated and correlated with poor prognosis in non-small cell lung cancer (NSCLC). In addition, we demonstrated that silencing ADAR1 significantly impaired tumor growth and improved tumor sensitivity to radiotherapy in vitro and in vivo. Mechanistically, we found that Rad18, which has been established as a versatile modulator of DNA repair, was the major downstream effector of ADAR1. ADAR1 not only regulated Rad18 mRNA expression by E2F3 but also colocalized and interacted with Rad18. Finally, our rescue experiments demonstrated that ADAR1's protumorigenic functions were partially dependent on Rad18. CONCLUSION Our results revealed the role of ADAR1 in cooperation with Rad18 in modulating oncogenesis and radioresistance in NSCLC for the first time, and suggested the therapeutic potential of targeting ADAR1 in overcoming radioresistance.
Collapse
Affiliation(s)
- Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaqi Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hu Bei, 430022, China.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Wang X, Li J, Zhu Y, Shen H, Ding J, Zeng T, Min W, Liang SQ, Huang L, Shi Z, Shen H, Huang F, Yuan K, Kuang W, Ji M, Sun C, Hou Y, Wang L, Chen W, Jiang Y, Hao H, Xiao Y, Yang P. Targeting ADAR1 with a small molecule for the treatment of prostate cancer. NATURE CANCER 2025; 6:474-492. [PMID: 39930013 DOI: 10.1038/s43018-025-00907-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/10/2025] [Indexed: 03/29/2025]
Abstract
Despite the initial response to androgen signaling therapy, most cases of prostate cancer (PCa) eventually relapse and remain incurable. The specific function of ADAR1 that governs PCa progression and specific inhibitors of ADAR are underexplored. In this study, we demonstrate that highly expressed ADAR1 is a crucial oncogenic target in PCa and develop an effective small-molecule ADAR1 inhibitor, ZYS-1, with marked antitumor efficacy and a favorable safety profile. Either genetic or pharmacological inhibition of ADAR1 dramatically suppressed PCa growth and metastasis and potentiated the antitumor immune response. Moreover, ZYS-1 can enhance the antitumor effect of immunotherapy. We also reveal that ADAR1 represses the translation of MTDH in an editing-dependent manner, which drives cell proliferation and invasion in PCa. Collectively, our findings suggest that ADAR1 is a druggable target in PCa and highlight the widespread applicability of ADAR1 inhibitors for a broad spectrum of malignancies.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongtao Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shun-Qing Liang
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhongrui Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fei Huang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuzhang Jiang
- Department of Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
10
|
Tamizkar KH, Jantsch MF. RNA editing in disease: mechanisms and therapeutic potential. RNA (NEW YORK, N.Y.) 2025; 31:359-368. [PMID: 39746751 PMCID: PMC11874977 DOI: 10.1261/rna.080331.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Adenosine to inosine conversion by adenosine deaminases acting on RNA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Sesen J, Martinez T, Busatto S, Poluben L, Nassour H, Stone C, Ashok K, Moses MA, Smith ER, Ghalali A. AZIN1 level is increased in medulloblastoma and correlates with c-Myc activity and tumor phenotype. J Exp Clin Cancer Res 2025; 44:56. [PMID: 39962590 PMCID: PMC11831846 DOI: 10.1186/s13046-025-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AZIN1 is a cell cycle regulator that is upregulated in a variety of cancers. AZIN1 overexpression can induce a more aggressive tumor phenotype via increased binding and resultant inhibition of antizyme. Antizyme is a protein that normally functions as an anti-tumor regulator that facilitates the deactivation of several growth-promoting proteins including c-Myc. MYC plays a critical role in medulloblastoma pathogenesis. Its amplification serves as a defining characteristic of group 3 medulloblastomas, associated with the most aggressive clinical course, greater frequency of metastases, and shorter survival times. METHODS Medulloblastoma tissues (68 TMA, and 45 fresh tissues, and 31 controls) were stained (fluorescence and immunohistochemical) for AZIN1. Western blotting and ELISA were used to detect the AZIN1 level. Phenotypically aggressive cellular features were measured by increased invasion, colony formation and proliferation. CRISPR-Cas9-mediated AZIN1 knocked-out cells were orthotopically implanted in the cerebellum of nude mice (n = 8/group) with a stereotactic frame. Tumor growth was monitored using the In Vivo Imaging System (IVIS). RESULTS Here, we investigated the role of AZIN1 expression in medulloblastoma. We found that overexpression of AZIN1 in medulloblastoma cells induces phenotypically aggressive features. Conducting in vivo studies we found that knocking-out AZIN1 in tumors corresponds with reduced tumor progression and prolonged survival. Clinical specimens are revealing that AZIN1 is highly expressed and directly correlates with MYC amplification status in patients. CONCLUSION These data implicate AZIN1 as a putative regulator of medulloblastoma pathogenesis and suggest that it may have clinical application as both a biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Nassour
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Deng Z, Jin X, Liu B, Zhen H, Wang X. Unveiling the prognostic significance of RNA editing-related genes in colon cancer: evidence from bioinformatics and experiment. Eur J Med Res 2025; 30:94. [PMID: 39940052 PMCID: PMC11823094 DOI: 10.1186/s40001-025-02335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND RNA editing is recognized as a crucial factor in cancer biology. Its potential application in predicting the prognosis of colon adenocarcinoma (COAD) remains unexplored. METHODS RNA editing data of COAD patients were downloaded from the Synapse database. LASSO regression was used to construct the risk model and verified by the receiver operating characteristic (ROC) curve. GO and KEGG enrichment analyses were performed to delineate the biological significance of the differentially expressed genes. Finally, differential analysis and immunohistochemistry were used to verify the expression of adenosine deaminase 1 (ADAR1). RESULTS We evaluated a total of 4079 RNA editing sites in 514 COAD patients from Synapse database. A prognostic signature was constructed based on five genes were significantly associated with the prognosis of COAD patients including GNL3L, NUP43, MAGT1, EMP2, and ARSD. Univariate and multivariate Cox regression analysis revealed that RNA editing-related genes (RERGs)-related signature was an independent risk factor for COAD. Moreover, Experimental evidence shows that ADAR1 is highly expressed in colon adenocarcinoma and silencing ADAR1 can inhibit cancer cell proliferation. CONCLUSION We established a prognostic model based on five RERGs with strong predictive value. This model not only serves as a foundation for a novel prognostic tool but also facilitates the identification of potential drug candidates for treating COAD.
Collapse
Affiliation(s)
- Zhengcong Deng
- Hubei Third People's Hospital, Wuhan, 430033, Hubei, China
- Wuhan Donghu New Technology Development Zone Disease Prevention and Control Center, Wuhan, 430200, Hubei, China
| | - Xueqin Jin
- Hubei Third People's Hospital, Wuhan, 430033, Hubei, China
| | - Bingxue Liu
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Hongyan Zhen
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xiang Wang
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China.
- Wuhan University of Arts and Science, Wuhan, 430345, Hubei, China.
| |
Collapse
|
13
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
14
|
Zhu T, Chu Y, Niu G, Pan R, Chen M, Cheng Y, Zhang Y, Li Z, Jiang S, Hao L, Zou D, Xu T, Zhang Z. Editome Disease Knowledgebase v2.0: an updated resource of editome-disease associations through literature curation and integrative analysis. BIOINFORMATICS ADVANCES 2025; 5:vbaf012. [PMID: 39968378 PMCID: PMC11835235 DOI: 10.1093/bioadv/vbaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Motivation Editome Disease Knowledgebase (EDK) is a curated resource of knowledge between RNA editome and human diseases. Since its first release in 2018, a number of studies have discovered previously uncharacterized editome-disease associations and generated an abundance of RNA editing datasets. Thus, it is desirable to make significant updates for EDK by incorporating more editome-disease associations as well as their related editing profiles. Results Here, we present EDK v2.0, an updated version of editome-disease associations based on both literature curation and integrative analysis. EDK v2.0 incorporates a curated collection of 1097 editome-disease associations involving 115 diseases from 321 publications. Meanwhile, based on a standardized pipeline, EDK v2.0 provides RNA editing profiles from 48 datasets covering 2536 samples across 55 diseases. Through differential analysis on RNA editing, it further identifies a total of 7190 differential edited genes and 86 242 differential editing sites (DESs), leading to 266 339 DES-disease associations. Moreover, a curated list of 28 160 cis-RNA editing QTL associations, 458 187 DES-RNA binding protein associations, and 21 DES-RNA secondary structure associations are annotated and added to EDK v2.0. Additionally, it is equipped with a series of user-friendly tools to facilitate RNA editing online analysis. Availability and implementation https://ngdc.cncb.ac.cn/edk/.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chu
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyi Niu
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Pan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Cheng
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Zou
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianyi Xu
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Sun L, Hu P, Yang H, Ren J, Hu R, Wu S, Wang Y, Du Y, Zheng J, Wang F, Gao H, Yan J, Yuan YF, Guan XY, Xiao J, Li Y. ADARp110 promotes hepatocellular carcinoma progression via stabilization of CD24 mRNA. Proc Natl Acad Sci U S A 2025; 122:e2409724122. [PMID: 39808660 PMCID: PMC11761664 DOI: 10.1073/pnas.2409724122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific Adarp110 knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC. It creates an immunosuppressive microenvironment by inhibiting total immune cells, particularly cytotoxic GZMB+CD8+ T cells infiltration, while augmenting Treg cells, MDSCs, and exhausted CD8+ T cells ratios. Mechanistically, ADARp110 interacts with SNRPD3 and RNPS1 to stabilize CD24 mRNA by inhibiting STAU1-mediated mRNA decay. CD24 protects HCC cells from two indispensable mechanisms: macrophage phagocytosis and oxidative stress. Genetic knockdown or monoclonal antibody treatment of CD24 inhibits ADARp110-overexpressing tumor growth. Our findings unveil different mechanisms for ADARp110 modulation of tumor immune microenvironment and identify CD24 as a promising therapeutic target for HCCs.
Collapse
Affiliation(s)
- Liangzhan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen518067, China
- Peking University Shenzhen Graduate School, Peking University, Shenzhen518055, China
| | - Pengchao Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Oncology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang441000, China
| | - Hui Yang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jun Ren
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Rong Hu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Shasha Wu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanchen Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Yuyang Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingyi Zheng
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| | - Fenfen Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Han Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jingsong Yan
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou510060, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong999077, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong999077, China
| | - Jia Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Zhuhai519000, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen518000, China
| |
Collapse
|
16
|
D’Addabbo P, Cohen-Fultheim R, Twersky I, Fonzino A, Silvestris DA, Prakash A, Mazzacuva PL, Vizcaino JA, Green A, Sweeney B, Yates A, Lussi Y, Luo J, Martin MJ, Eisenberg E, Levanon EY, Pesole G, Picardi E. REDIportal: toward an integrated view of the A-to-I editing. Nucleic Acids Res 2025; 53:D233-D242. [PMID: 39588754 PMCID: PMC11701558 DOI: 10.1093/nar/gkae1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs, relevant for the immune-related roles of editing, as well as an extended catalog of recoding events. Finally, we report a reliability score per site calculated using a deep learning model trained using a huge collection of positive and negative instances. REDIportal is available at http://srv00.recas.ba.infn.it/atlas/.
Collapse
Affiliation(s)
- Pietro D’Addabbo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Roni Cohen-Fultheim
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Itamar Twersky
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Adriano Fonzino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Domenico Alessandro Silvestris
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Pietro Luca Mazzacuva
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Andrew Green
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Blake Sweeney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Andy Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Yvonne Lussi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Jie Luo
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Eli Eisenberg
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 699781, Israel
| | - Erez Y Levanon
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
17
|
Takahashi T, Shigeyasu K, Kondo Y, Takeda S, Umeda H, Moriwake K, Kayano M, Sakurai Y, Nakamura S, Takahashi M, Nitta K, Yoshida K, Matsumi Y, Michiue H, Yamamoto H, Kishimoto H, Teraishi F, Shoji R, Kanaya N, Kashima H, Kakiuchi Y, Kuroda S, Kagawa S, Fujiwara T. Predictive marker for response to trifluridine/tipiracil plus bevacizumab in metastatic colorectal cancer patients. BMC Cancer 2025; 25:1. [PMID: 39748254 PMCID: PMC11694457 DOI: 10.1186/s12885-024-13370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Trifluridine/tipiracil (FTD/TPI) is one of the options for late-line treatment of colorectal cancer (CRC). However, the specific patient populations that would particularly benefit from it remain unclear. This study attempted to identify predictive markers of chemotherapy efficacy with trifluridine/tipiracil (FTD/TPI), focusing on the RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) expression and neutrophil-lymphocyte ratio (NLR). METHODS To assess the effectiveness of FTD/TPI in CRC patients, we retrospectively analyzed 72 CRC patients at Okayama University Hospital from 2014 to 2022. RESULTS Adding bevacizumab to FTD/TPI resulted in a more prolonged progression-free survival (PFS), consistent with the SUNLIGHT study findings (p = 0.0028). Among the participants, those with a high NLR had a shorter PFS (p = 0.0395). Moreover, high ADAR1 expression was associated with longer PFS (p = 0.0151). In multivariate analysis, low ADAR1 (HR = 3.43, p = 0.01) and absence of bevacizumab (HR = 4.25, p = 0.01) were identified as factors shortening PFS. The high ADAR1 group demonstrated fewer cases of progressive disease and a higher proportion of stable disease than the low ADAR1 group (p = 0.0288). Low NLR and high ADAR1 were predictive markers of prolonged PFS in the bevacizumab-treated group (p = 0.0036). CONCLUSION Low NLR and high ADAR1 were predictive markers for a positive response to the FTD/TPI plus bevacizumab regimen associated with prolonged PFS. The FTD/TPI plus bevacizumab regimen should be proactively implemented in the low NLR and high ADAR1 subgroups.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazuya Moriwake
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masashi Kayano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yuya Sakurai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masafumi Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kaori Nitta
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yuki Matsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Ryohei Shoji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
18
|
Rehwinkel J, Mehdipour P. ADAR1: from basic mechanisms to inhibitors. Trends Cell Biol 2025; 35:59-73. [PMID: 39030076 PMCID: PMC11718369 DOI: 10.1016/j.tcb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) converts adenosine to inosine in double-stranded RNA (dsRNA) molecules, a process known as A-to-I editing. ADAR1 deficiency in humans and mice results in profound inflammatory diseases characterised by the spontaneous induction of innate immunity. In cells lacking ADAR1, unedited RNAs activate RNA sensors. These include melanoma differentiation-associated gene 5 (MDA5) that induces the expression of cytokines, particularly type I interferons (IFNs), protein kinase R (PKR), oligoadenylate synthase (OAS), and Z-DNA/RNA binding protein 1 (ZBP1). Immunogenic RNAs 'defused' by ADAR1 may include transcripts from repetitive elements and other long duplex RNAs. Here, we review these recent fundamental discoveries and discuss implications for human diseases. Some tumours depend on ADAR1 to escape immune surveillance, opening the possibility of unleashing anticancer therapies with ADAR1 inhibitors.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Parinaz Mehdipour
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
19
|
Zhang Y, Li L, Mendoza JJ, Wang D, Yan Q, Shi L, Gong Z, Zeng Z, Chen P, Xiong W. Advances in A-to-I RNA editing in cancer. Mol Cancer 2024; 23:280. [PMID: 39731127 DOI: 10.1186/s12943-024-02194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA). With advancements in RNA sequencing technologies, the role of A-to-I modification in cancer has garnered increasing attention. Research indicates that the levels and specific sites of A-to-I editing are significantly altered in many malignant tumors, correlating closely with tumor progression. This editing occurs in both coding and noncoding regions of RNA, influencing signaling pathways involved in cancer development. These modifications can either promote or suppress cancer progression through several mechanisms, including inducing non-synonymous amino acid mutations, altering the immunogenicity of dsRNAs, modulating mRNA interactions with microRNAs (miRNAs), and affecting the splicing of circular RNAs (circRNAs) as well as the function of long non-coding RNAs (lncRNAs). A comprehensive understanding of A-to-I RNA editing is crucial for advancing the diagnosis, treatment, and prognosis of human cancers. This review explores the regulatory mechanisms of A-to-I editing in cancers and examines their potential clinical applications. It also summarizes current research, identifies future directions, and highlights potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Juana Jessica Mendoza
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- Furong Laboratory, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| |
Collapse
|
20
|
Adamczak D, Fornalik M, Małkiewicz A, Pestka J, Pławski A, Jagodziński PP, Słowikowski BK. ADAR1 expression in different cancer cell lines and its change under heat shock. J Appl Genet 2024:10.1007/s13353-024-00926-4. [PMID: 39641903 DOI: 10.1007/s13353-024-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) plays an essential role in the development of malignancies by modifying the expression of different oncogenes. ADAR1 presents three distinct activities: adenosine-to-inosine RNA editing, modulating IFN pathways, and response to cellular stress factors. Following stressors such as heat shock, ADAR1p110 isoform relocates from the nucleus to the cytoplasm, where it suppresses RNA degradation which leads to the arrest of apoptosis and cell survival. In this study, we assessed the expression of ADAR1 across different cancer cell lines. We revealed that the presence of ADAR1 varies between cells of different origins and that a high transcript level does not reflect protein abundance. Additionally, we subjected cells to a heat shock in order to evaluate how cellular stress factors affect the expression of ADAR1. Our results indicate that ADAR1 transcript and protein levels are relatively stable and do not change under heat shock in examined cell lines. This research lays a groundwork for future directions on ADAR1-related studies suggesting in which types of cancer ADAR1 may be a promising target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Dominika Adamczak
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Michał Fornalik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Anna Małkiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Julia Pestka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
21
|
Vesely C, Jantsch MF. Editing specificity of ADAR isoforms. Methods Enzymol 2024; 710:77-98. [PMID: 39870452 DOI: 10.1016/bs.mie.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals. The distinct isoforms of ADARs and their specific roles determine the complexity of A-to-I RNA editing, its regulation and the versatility of these enzymes. Understanding the different isoform-specific functions and targets will provide a deeper understanding of the diverse biological processes influenced by ADARs, either through ADAR editing of dsRNAs or the interaction with RNAs and proteins. The detailed identification and assigning of isoform-specific targets is a crucial step towards our understanding of functional differences amongst ADAR isoforms and will help us to understand their individual implications for health and disease. This chapter delves into unique characteristics and functional implications of ADAR isoforms. We describe the ectopic overexpression in editing free cells and the use of RNA immunoprecipitation coupled with sequencing to determine isoform-specific interactions with RNAs and their editing sites. Additionally, we discuss new challenges in editing detection by different ADARs in the context of other modifications and provide ideas for potentially better methods to determine the "true editome".
Collapse
Affiliation(s)
- Cornelia Vesely
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| | - Michael F Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| |
Collapse
|
22
|
He D, Niu C, Bai R, Chen N, Cui J. ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer. Mol Carcinog 2024; 63:2401-2413. [PMID: 39239920 DOI: 10.1002/mc.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Niu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilan Bai
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Eisenberg E. Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes. Methods Enzymol 2024; 710:241-265. [PMID: 39870448 DOI: 10.1016/bs.mie.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data. In this chapter we review some of the main computational approaches currently used, describe potential hurdles, challenges and pitfalls, and discuss possible ways to mitigate them.
Collapse
Affiliation(s)
- Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Yan J, Ai C, Chen Q, Wang Q, Zhu Y, Li M, Chen K, He M, Shen M, Chen L, Zhang R, Zheng C, Liao W, Bin J, Lin H, Ma S, Tan N, Liao Y. CircMap4k2 reactivated by aneurysm plication alleviates residual cardiac remodeling after SVR by enhancing cardiomyocyte proliferation in post-MI mice. J Adv Res 2024; 65:227-238. [PMID: 38043608 PMCID: PMC11518968 DOI: 10.1016/j.jare.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Surgical ventricular reconstruction (SVR) is an alternative therapeutic approach in patients with refractory heart failure (HF), but residual remodeling after SVR limits the improvement of HF. Recently, we reported that SVR may act as an environmental cue to reactivate endogenous proliferation of cardiomyocytes; however, it is unclear whether enhancing endogenous cardiomyocyte regeneration further improves HF after SVR. OBJECTIVES We aimed to explore whether circular RNAs (circRNAs) would involved in SVR and their mechanisms. METHODS Male C57BL/6 mice were subjected to myocardial infarction (MI) or sham surgery. Four weeks later, MI mice with a large ventricular aneurysm underwent SVR or a second open-chest operation only. Echocardiography and histological analysis were used to evaluate heart function, cardiac remodeling, and myocardial regeneration. Sequencing of circular RNAs, RNA immunoprecipitation, RNA pulldown, and luciferase reporter assay were used to explore the underlying mechanisms. RESULTS SVR markedly attenuated cardiac remodeling and induced cardiomyocyte regeneration, as evidenced by positive staining of Ki-67, phospho-histone H3 (pH3), and Aurora B in the plication zone, but significant residual remodeling still existed in comparison with the sham group. Sequencing results showed that SVR altered the expression profile of cardiac circRNAs, and circMap4k2 was identified as the most upregulated one. After characterizing circMap4k2, we noted that overexpression of circMap4k2 significantly promoted proliferation of cardiomyocytes in cultured neonatal rat cardiomyocytes and silencing of circMap4k2 significantly inhibited it; similar results were obtained in SVR-treated MI mice but not in MI mice without SVR treatment. Residual cardiac remodeling after SVR was further attenuated by circMap4k2 overexpression. CircMap4k2 bound with miR-106a-3p and inhibited cardiomyocyte proliferation by targeting a downstream effector of the antizyme inhibitor 1 (Azin1) gene. CONCLUSIONS CircMap4k2 acts as an environmental cue and targets the miR-106a-3p/Azin1 pathway to increase cardiac regeneration in the plication zone and attenuate residual remodeling after SVR.
Collapse
Affiliation(s)
- Junyu Yan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenzhi Ai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhan Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Affiliated Sixth Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Liu Q, Huang C, Chen S, Zhu Y, Huang X, Zhao G, Xu Q, Shi Y, Li W, Wang R, Yin X. ADAR1 promotes cisplatin resistance in intrahepatic cholangiocarcinoma by regulating BRCA2 expression through A-to-I editing manner. Cell Prolif 2024; 57:e13659. [PMID: 38773866 PMCID: PMC11471395 DOI: 10.1111/cpr.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chen‐Song Huang
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Siyun Chen
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhouChina
| | - Ying‐Qin Zhu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xi‐Tai Huang
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Guang‐Yin Zhao
- Department of Animal Experiment Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qiong‐Cong Xu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yin‐Hao Shi
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ruizhi Wang
- Department of Laboratory Medicine, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Yu Yin
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
26
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
27
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
28
|
Heruye SH, Myslinski J, Zeng C, Zollman A, Makino S, Nanamatsu A, Mir Q, Janga SC, Doud EH, Eadon MT, Maier B, Hamada M, Tran TM, Dagher PC, Hato T. Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing. J Clin Invest 2024; 134:e180117. [PMID: 38954486 PMCID: PMC11364396 DOI: 10.1172/jci180117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.
Collapse
Affiliation(s)
- Segewkal Hawaze Heruye
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Amy Zollman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shinichi Makino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Azuma Nanamatsu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Quoseena Mir
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- AIST–Waseda University Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tuan M. Tran
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Pierre C. Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
30
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
31
|
Gan WL, Ren X, Ng VHE, Ng L, Song Y, Tano V, Han J, An O, Xie J, Ng BYL, Tay DJT, Tang SJ, Shen H, Khare S, Chong KHC, Young DY, Wu B, DasGupta R, Chen L. Hepatocyte-macrophage crosstalk via the PGRN-EGFR axis modulates ADAR1-mediated immunity in the liver. Cell Rep 2024; 43:114400. [PMID: 38935501 DOI: 10.1016/j.celrep.2024.114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.
Collapse
Affiliation(s)
- Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vincent Tano
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jinghe Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
| | - Bryan Y L Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Khare
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Kelvin Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Dan Yock Young
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, Genome, #02-01, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
Chen J, Zhang CH, Tao T, Zhang X, Lin Y, Wang FB, Liu HF, Liu J. A-to-I RNA co-editing predicts clinical outcomes and is associated with immune cells infiltration in hepatocellular carcinoma. Commun Biol 2024; 7:838. [PMID: 38982182 PMCID: PMC11233613 DOI: 10.1038/s42003-024-06520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Aberrant RNA editing has emerged as a pivotal factor in the pathogenesis of hepatocellular carcinoma (HCC), but the impact of RNA co-editing within HCC remains underexplored. We used a multi-step algorithm to construct an RNA co-editing network in HCC, and found that HCC-related RNA editings are predominantly centralized within the network. Furthermore, five pairs of risk RNA co-editing events were significantly correlated with the overall survival in HCC. Based on presence of risk RNA co-editings resulted in the categorization of HCC patients into high-risk and low-risk groups. Disparities in immune cell infiltrations were observed between the two groups, with the high-risk group exhibiting a greater abundance of exhausted T cells. Additionally, seven genes associated with risk RNA co-editing pairs were identified, whose expression effectively differentiates HCC tumor samples from normal ones. Our research offers an innovative perspective on the etiology and potential therapeutics for HCC.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Hui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tao Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fang-Bin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui-Fang Liu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
33
|
Tang AD, Felton C, Hrabeta-Robinson E, Volden R, Vollmers C, Brooks AN. Detecting haplotype-specific transcript variation in long reads with FLAIR2. Genome Biol 2024; 25:173. [PMID: 38956576 PMCID: PMC11218413 DOI: 10.1186/s13059-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme that mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung adenocarcinoma cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, the use of short-read RNA-seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. RESULTS We employ long-read sequencing technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We develop a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generate nanopore data with high sequence accuracy from H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We apply our workflow to identify key inosine isoform associations to help clarify the prominence of ADAR in tumorigenesis. CONCLUSIONS Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.
Collapse
Affiliation(s)
- Alison D Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Colette Felton
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Roger Volden
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA.
| |
Collapse
|
34
|
Chen C, Bundschuh R. A-to-I Editing Is Subtype-Specific in Non-Hodgkin Lymphomas. Genes (Basel) 2024; 15:864. [PMID: 39062643 PMCID: PMC11276283 DOI: 10.3390/genes15070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a complex and heterogeneous disease, in which a number of genetic and epigenetic changes occur in tumor onset and progression. Recent studies indicate that changes at the RNA level are also involved in tumorigenesis, such as adenosine-to-inosine (A-to-I) RNA editing. Here, we systematically investigate transcriptome-wide A-to-I editing events in a large number of samples from Non-Hodgkin lymphomas (NHLs). Using a computational pipeline that determines significant differences in editing level between NHL and normal samples at known A-to-I editing sites, we identify a number of differentially edited editing sites between NHL subtypes and normal samples. Most of the differentially edited sites are located in non-coding regions, and many such sites show a strong correlation between gene expression level and editing efficiency, indicating that RNA editing might have direct consequences for the cancer cell's aberrant gene regulation status in these cases. Moreover, we establish a strong link between RNA editing and NHL by demonstrating that NHL and normal samples and even NHL subtypes can be distinguished based on genome-wide RNA editing profiles alone. Our study establishes a strong link between RNA editing, cancer and aberrant gene regulation in NHL.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
36
|
Zawisza-Álvarez M, Peñuela-Melero J, Vegas E, Reverter F, Garcia-Fernàndez J, Herrera-Úbeda C. Exploring functional conservation in silico: a new machine learning approach to RNA-editing. Brief Bioinform 2024; 25:bbae332. [PMID: 38980372 PMCID: PMC11232462 DOI: 10.1093/bib/bbae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jesús Peñuela-Melero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Esteban Vegas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Ferran Reverter
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Herrera-Úbeda
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
37
|
Zhu Z, Lu J. Development and assessment of an RNA editing-based risk model for the prognosis of cervical cancer patients. Medicine (Baltimore) 2024; 103:e38116. [PMID: 38728474 PMCID: PMC11081546 DOI: 10.1097/md.0000000000038116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Biostatistics, School of Public Health, Nanjing Medical University 101 Longmian Avenue, Nanjing, P.R. China
| | - Jing Lu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
39
|
Yang M, Jiang J, Ren R, Gao N, He J, Zhang Y. Role of ADAR1 on Proliferation and Differentiation in Porcine Preadipocytes. Animals (Basel) 2024; 14:1201. [PMID: 38672349 PMCID: PMC11047480 DOI: 10.3390/ani14081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ruimin Ren
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.Y.); (J.J.); (R.R.); (N.G.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha 410128, China
| |
Collapse
|
40
|
Mendoza HG, Beal PA. Structural and functional effects of inosine modification in mRNA. RNA (NEW YORK, N.Y.) 2024; 30:512-520. [PMID: 38531652 PMCID: PMC11019749 DOI: 10.1261/rna.079977.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.
Collapse
Affiliation(s)
- Herra G Mendoza
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
41
|
Yin Q, Qu Z, Mathew R, Zeng L, Du Z, Xue Y, Liu D, Zheng X. Epitranscriptomic orchestrations: Unveiling the regulatory paradigm of m6A, A-to-I editing, and m5C in breast cancer via long noncoding RNAs and microRNAs. Cell Biochem Funct 2024; 42:e3996. [PMID: 38561942 DOI: 10.1002/cbf.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Qu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Regina Mathew
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhe Du
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Dechun Liu
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
42
|
Szabo B, Mandl TC, Woldrich B, Diensthuber G, Martin D, Jantsch MF, Licht K. RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024; 34:231-242. [PMID: 38471738 PMCID: PMC10984384 DOI: 10.1101/gr.277686.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.
Collapse
Affiliation(s)
- Brigitta Szabo
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Therese C Mandl
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Woldrich
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gregor Diensthuber
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - David Martin
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
43
|
Lu Q, Zhou W, Fan L, Ding T, Wang W, Zhang X. Tumor neoantigens derived from RNA editing events show significant clinical relevance in melanoma patients treated with immunotherapy. Anticancer Drugs 2024; 35:305-314. [PMID: 38170793 DOI: 10.1097/cad.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study aimed to investigate the clinical significance of RNA editing (RE) and RNA editing derived (RED-) neoantigens in melanoma patients treated with immunotherapy. Vardict and VEP were used to identify the somatic mutations. RE events were identified by Reditools2 and filtered by the custom pipeline. miRTar2GO was implemented to predict the RE whether located in miRNA targets within the 3' UTR region. NetMHCpan and NetCTLpan were used to identify and characterize RED-neoantigens. In total, 7116 RE events were identified, most of which were A-to-I events. Using our custom pipeline, 631 RED-neoantigens were identified that show a significantly greater peptide-MHC affinity, and facilitate epitope processing and presentation than wild-type peptides. The OS of the patients with high RED-neoantigens burden was significantly longer ( P = 0.035), and a significantly higher RED-neoantigens burden was observed in responders ( P = 0.048). The area under the curve of the RED-neoantigen was 0.831 of OS. Then, we validated the reliability of RED-neoantigens in predicting the prognosis in an independent cohort and found that patients with high RED-neoantigens exhibited a longer OS ( P = 0.008). To our knowledge, this is the first study to systematically assess the clinical relevance of RED-neoantigens in melanoma patients treated with immunotherapy.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Gastrointestinal Surgery, Changzhou First People's Hospital, Changzhou, Jiangsu
| | - Wenhao Zhou
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Ligang Fan
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou
| | - Tian Ding
- Department of Clinical Medicine, Medical School, Nantong University
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Xiaodong Zhang
- Department of Medical Oncology, Tumor Hospital Affiliated To Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
44
|
Luna Santamaría M, Andersson D, Parris TZ, Helou K, Österlund T, Ståhlberg A. Digital RNA sequencing using unique molecular identifiers enables ultrasensitive RNA mutation analysis. Commun Biol 2024; 7:249. [PMID: 38429519 PMCID: PMC10907754 DOI: 10.1038/s42003-024-05955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Mutation analysis is typically performed at the DNA level since most technical approaches are developed for DNA analysis. However, some applications, like transcriptional mutagenesis, RNA editing and gene expression analysis, require RNA analysis. Here, we combine reverse transcription and digital DNA sequencing to enable low error digital RNA sequencing. We evaluate yield, reproducibility, dynamic range and error correction rate for seven different reverse transcription conditions using multiplexed assays. The yield, reproducibility and error rate vary substantially between the specific conditions, where the yield differs 9.9-fold between the best and worst performing condition. Next, we show that error rates similar to DNA sequencing can be achieved for RNA using appropriate reverse transcription conditions, enabling detection of mutant allele frequencies <0.1% at RNA level. We also detect mutations at both DNA and RNA levels in tumor tissue using a breast cancer panel. Finally, we demonstrate that digital RNA sequencing can be applied to liquid biopsies, analyzing cell-free gene transcripts. In conclusion, we demonstrate that digital RNA sequencing is suitable for ultrasensitive RNA mutation analysis, enabling several basic research and clinical applications.
Collapse
Affiliation(s)
- Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Sahlgrenska Center for Cancer Research, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Sahlgrenska Center for Cancer Research, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden.
| |
Collapse
|
45
|
Sadeq S, Chitcharoen S, Al-Hashimi S, Rattanaburi S, Casement J, Werner A. Significant Variations in Double-Stranded RNA Levels in Cultured Skin Cells. Cells 2024; 13:226. [PMID: 38334619 PMCID: PMC10854852 DOI: 10.3390/cells13030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous double-stranded RNA has emerged as a potent stimulator of innate immunity. Under physiological conditions, endogenous dsRNA is maintained in the cell nucleus or the mitochondria; however, if protective mechanisms are breached, it leaches into the cytoplasm and triggers immune signaling pathways. Ectopic activation of innate immune pathways is associated with various diseases and senescence and can trigger apoptosis. Hereby, the level of cytoplasmic dsRNA is crucial. We have enriched dsRNA from two melanoma cell lines and primary dermal fibroblasts, including a competing probe, and analyzed the dsRNA transcriptome using RNA sequencing. There was a striking difference in read counts between the cell lines and the primary cells, and the effect was confirmed by northern blotting and immunocytochemistry. Both mitochondria (10-20%) and nuclear transcription (80-90%) contributed significantly to the dsRNA transcriptome. The mitochondrial contribution was lower in the cancer cells compared to fibroblasts. The expression of different transposable element families was comparable, suggesting a general up-regulation of transposable element expression rather than stimulation of a specific sub-family. Sequencing of the input control revealed minor differences in dsRNA processing pathways with an upregulation of oligoadenylate synthase and RNP125 that negatively regulates the dsRNA sensors RIG1 and MDA5. Moreover, RT-qPCR, Western blotting, and immunocytochemistry confirmed the relatively minor adaptations to the hugely different dsRNA levels. As a consequence, these transformed cell lines are potentially less tolerant to interventions that increase the formation of endogenous dsRNA.
Collapse
Affiliation(s)
- Shaymaa Sadeq
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- Fallujah College of Medicine, University of Fallujah, Al-Fallujah 31002, Iraq
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Surar Al-Hashimi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
- College of Medicine, University of Misan, Al-Sader Teaching Hospital, Amarah 62001, Iraq
| | - Somruthai Rattanaburi
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John Casement
- Bioinformatics Support Unit, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andreas Werner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.)
| |
Collapse
|
46
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
47
|
Feng Q, Wang H, Shao Y, Xu X. Antizyme inhibitor family: biological and translational research implications. Cell Commun Signal 2024; 22:11. [PMID: 38169396 PMCID: PMC10762828 DOI: 10.1186/s12964-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Metabolism of polyamines is of critical importance to physiological processes. Ornithine decarboxylase (ODC) antizyme inhibitors (AZINs) are capable of interacting with antizymes (AZs), thereby releasing ODC from ODC-AZs complex, and promote polyamine biosynthesis. AZINs regulate reproduction, embryonic development, fibrogenesis and tumorigenesis through polyamine and other signaling pathways. Dysregulation of AZINs has involved in multiple human diseases, especially malignant tumors. Adenosine-to-inosine (A-to-I) RNA editing is the most common type of post-transcriptional nucleotide modification in humans. Additionally, the high frequencies of RNA-edited AZIN1 in human cancers correlates with increase of cancer cell proliferation, enhancement of cancer cell stemness, and promotion of tumor angiogenesis. In this review, we summarize the current knowledge on the various contribution of AZINs related with potential cancer promotion, cancer stemness, microenvironment and RNA modification, especially underlying molecular mechanisms, and furthermore explored its promising implication for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiaohui Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Huijie Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Youcheng Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| |
Collapse
|
48
|
Luo J, Gong L, Yang Y, Zhang Y, Liu Q, Bai L, Fang X, Zhang B, Huang J, Liu M, Liu B, Tang Y, Wong CN, Huang J, Liu S, Li S, Ding T, Man K, Lee VHF, Li Y, Ma S, Guan XY. Enhanced mitophagy driven by ADAR1-GLI1 editing supports the self-renewal of cancer stem cells in HCC. Hepatology 2024; 79:61-78. [PMID: 36683360 DOI: 10.1097/hep.0000000000000299] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating β-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qin Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lu Bai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaona Fang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shanshan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Tao Ding
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 PMCID: PMC11520539 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
GWAK SEUNGHEE, LEE JUHYUN, OH EUNJI, LEE DOHYUN, HAN WONSHIK, KIM JONGMIN, KIM KYONGTAI. Vaccinia-related kinase 2 variants differentially affect breast cancer growth by regulating kinase activity. Oncol Res 2023; 32:421-432. [PMID: 38186576 PMCID: PMC10765118 DOI: 10.32604/or.2023.031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 01/09/2024] Open
Abstract
Genetic information is transcribed from genomic DNA to mRNA, which is then translated into three-dimensional proteins. mRNAs can undergo various post-transcriptional modifications, including RNA editing that alters mRNA sequences, ultimately affecting protein function. In this study, RNA editing was identified at the 499th base (c.499) of human vaccinia-related kinase 2 (VRK2). This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine (with adenine base) to valine (with guanine base). Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2, which leads to an increase in tumor cell proliferation. Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein (dysbindin) and results in reducing its stability. Herein, we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valine-containing VRK2. Dysbindin interacts with cyclin D and thereby regulates its expression and function. The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression, resulting in increased tumor growth and reduction in survival rates. It has also been observed that in patient samples, VRK2 level was elevated in breast cancer tissue compared to normal breast tissue. Additionally, the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue. Therefore, it is concluded that VRK2, especially dependent on the 167th variant amino acid, can be one of the indexes of tumor progression and proliferation.
Collapse
Affiliation(s)
- SEUNG-HEE GWAK
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - JUHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - EUNJI OH
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - DOHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- R&D Center, NovMetaPharma Co., Ltd., Pohang, 37668, Korea
| | - WONSHIK HAN
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - JONGMIN KIM
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - KYONG-TAI KIM
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, 37554, Korea
| |
Collapse
|