1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Jia Z, Zhang Y, Cao L, Wang J, Liang H. Research hotspots and trends of immunotherapy and melanoma: A bibliometric analysis during 2014-2024. Hum Vaccin Immunother 2025; 21:2464379. [PMID: 40012099 PMCID: PMC11869780 DOI: 10.1080/21645515.2025.2464379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
Over the last decade, the increasing global prevalence of melanoma has sparked growing interest in immunotherapies, which show significant potential against this form of skin cancer. This research aims to offer a framework to guide future studies and inspire new research directions. In this study, we used the Web of Science Core Collection to collect papers on immunotherapy and melanoma published between 2014 and 2024. With Excel and visualization tools like VOSviewer, COOC 13.2, Citespace, and Bibliometrix (R-Tool of R-Studio), we analyzed the data to spot trends and new focuses in the research. Our findings indicate a substantial surge in research activity concerning immunotherapy and melanoma between 2014 and 2024. The USA and China emerged as leading contributors, engaging in extensive and close collaborative efforts with European counterparts. Furthermore, seven of the top 10 research institutions are located in the USA, with the MD Anderson Cancer Center in Texas being the most productive. In addition, the Journal of Cancer Immunotherapy is the journal with the most articles published in the field. Professor Georgina V. Long from the Melanoma Institute at the University of Sydney was one of the most productive scholars. Keyword analysis shows that immune checkpoint inhibitors, tumor microenvironment and targeted therapies are key areas of interest for the research community. This paper uses bibliometric analysis to outline research trends and key points in immunotherapy and melanoma from 2014 to 2024, which helps understand the current research and guides future research directions.
Collapse
Affiliation(s)
- Zixuan Jia
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Youao Zhang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Luyan Cao
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Majenka P, Hoffmann M, Strobel S, Rötzer I, Enk A, Hassel JC. Influence of high-fiber diet on ipilimumab-induced gastrointestinal toxicity in metastatic melanoma. Clin Nutr ESPEN 2025; 67:660-664. [PMID: 40112923 DOI: 10.1016/j.clnesp.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 antibody ipilimumab (ipi) and the anti-programmed death (PD)-1 antibody nivolumab (nivo) are routinely used to treat metastatic melanoma. One of the most frequent severe immune-related adverse events (irAEs) induced by ipi is diarrhea as a symptom of ir-colitis. Here, the composition of the gut microbiome was shown to correlate with the risk of developing colitis. Stimulated by a patient case and the knowledge that nutrition influences the gut microbiome, we performed a retrospective analysis to evaluate dietary habits and the frequency of colitis in patients with ipi ± nivo therapy. METHODS Patients with metastasized stage III or IV melanoma who were treated with ipi ± nivo and who were willing to take part in a nutritional survey and interview at least three months after the first ipi dose were included into the study. Dietary habits were investigated using the food frequency questionnaire (FFQ) and personal interviews. The calculated daily intake of calories, carbohydrates, fats, proteins, sugars, and dietary fiber was correlated with the development of ir-colitis. RESULTS 20 patients were included into this study, and all but one received ipi-nivo combination therapy. The median age was 59.5 years, and 60 % were male. 4 of 20 patients (20 %) developed ir-colitis grade 3 after two cycles in the median and were managed with at least high-dose corticosteroids. The FFQ and interview were conducted in a median of six months after treatment initiation. In general, the interviewed patients followed a typical western-pattern diet based on carbohydrates as the main, followed by fat as the second most important energy substrate. Comparing patients with and without colitis our investigation revealed that the achieved amount of recommended dietary fiber intake per total energy intake (TEI) was negatively associated with diarrhea and colitis (p = 0.061). No significant differences concerning daily intake of calories, carbohydrates, fats, proteins, and sugar were found. In addition, no significant differences were found among patients in terms of their age, gender, tobacco use, supplement intake, therapy regime, or body mass index (BMI). CONCLUSIONS This pilot study gives first hints that nutritional habits might influence treatment tolerability to ipi ± nivo therapy. A high-fiber diet might protect against ir-colitis and diarrhea in ipi-treated patients. This observation should be validated by a prospective randomized interventional trial. However, if it is possible to prevent ir-colitis by a high-fiber diet that would be of great impact on routine patient treatment.
Collapse
Affiliation(s)
- Pawel Majenka
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Hoffmann
- Department of Nutrition Therapy, National Center for Tumor Diseases, Heidelberg, Germany
| | - Sophia Strobel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Ingeborg Rötzer
- Department of Nutrition Therapy, National Center for Tumor Diseases, Heidelberg, Germany
| | - Alexander Enk
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
6
|
Shatila M, Cruz CC, Lu L, Abdul-Baki K, Baerman E, Takigawa K, Rivera AU, Lee IJA, Ngo S, Sperling G, Aleem AS, Menon R, Sullivan A, Vemulapalli V, Natha C, Gupta T, Khan A, Mittal N, Coleman G, Salim H, Wali S, Varatharajalu K, Kim KC, Reddy SA, Grivas P, Thomas AS, Wang Y. The association between metformin use, immune mediated colitis and overall survival in patients treated with checkpoint inhibitor. Eur J Cancer 2025; 221:115405. [PMID: 40239400 DOI: 10.1016/j.ejca.2025.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Metformin is frequently prescribed to treat type 2 diabetes. Its primarily regulates hepatic and colonic glucose metabolism, but recent studies have suggested an anti-inflammatory effect, especially in colitis. It has been suggested that metformin may enhance immune checkpoint inhibition (ICI) efficacy for cancer treatment. Our study aims to explore the impact of metformin on ICI efficacy and the risk for colitis. METHODS This was a single center, retrospective analysis of consecutive patients at a tertiary cancer center who received ICI between 01/2010-12/2022 and developed immune-mediated colitis (IMC). Patients were screened for colitis based on stool tests, then divided into two groups depending on metformin use prior to colitis onset. We collected data on demographic and colitis clinical information including treatments, and outcomes. RESULTS A total of 953 patients were included. The incidence of IMC was higher among metformin users (7.6 %) than non-metformin users (4.9 %; p < 0.01). There were no significant differences in colitis features and outcomes, except for longer hospital stay among metformin users (8 days vs 6 for non-metformin users; p = 0.03). Metformin use was associated with shorter overall survival vs non-metformin users among patients with IMC (p = 0.03). DISCUSSION Our study is among the first to explore the impact of metformin on IMC and overall survival. We found that metformin use may be associated with higher risk of IMC. We also found an association between metformin use and shorter overall survival among patients who developed IMC. Larger studies with risk-stratified analysis are needed to validate our findings.
Collapse
Affiliation(s)
- Malek Shatila
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States
| | - Carolina Colli Cruz
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States
| | - Linfeng Lu
- Baylor College of Medicine, Department of Internal Medicine, Houston, TX, United States
| | - Kian Abdul-Baki
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, United States
| | - Elliot Baerman
- Baylor College of Medicine, Department of Internal Medicine, Houston, TX, United States
| | - Kei Takigawa
- Baylor College of Medicine, Department of Internal Medicine, Houston, TX, United States
| | - Andres Urias Rivera
- Baylor College of Medicine, Department of Internal Medicine, Houston, TX, United States
| | - Irene Jeong-Ah Lee
- Baylor College of Medicine, Department of Internal Medicine, Houston, TX, United States
| | - Sean Ngo
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Gabriel Sperling
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, United States
| | - Abdullah Sagar Aleem
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Raakhi Menon
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, United States
| | - Andrew Sullivan
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Varun Vemulapalli
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Cristina Natha
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Tanvi Gupta
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Ayesha Khan
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, United States
| | - Nitish Mittal
- The University of Texas Health Sciences Center, Department of Internal Medicine, Houston, TX, United States
| | - Garrett Coleman
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, United States
| | - Hamza Salim
- Memorial Hermann Hospital, Department of Internal Medicine, Houston, TX, United States
| | - Sharada Wali
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States
| | - Krishnavathana Varatharajalu
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States
| | - Karen Chunguhn Kim
- Stanford University, Department of Medicine, Gastroenterology & Hepatology, San Jose, CA, United States
| | - Sunil Arani Reddy
- Stanford University, Department of Medicine, Oncology, San Jose, CA, United States
| | - Petros Grivas
- University of Washington, Department of Medicine, Division of Hematology Oncology, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Anusha Shirwaikar Thomas
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States
| | - Yinghong Wang
- The University of Texas MD Anderson Cancer Center, Department of Gastroenterology, Hepatology, and Nutrition, Houston, TX, United States.
| |
Collapse
|
7
|
Gao YQ, Tan YJ, Fang JY. Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01026-w. [PMID: 40369317 DOI: 10.1038/s41571-025-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) constitute a major breakthrough in the field of cancer therapy; their use has resulted in improved outcomes across various tumour types. However, ICIs can cause a diverse range of immune-related adverse events (irAEs) that present a considerable challenge to the efficacy and safety of these treatments. The gut microbiota has been demonstrated to have a crucial role in modulating the tumour immune microenvironment and thus influences the effectiveness of ICIs. Accumulating evidence indicates that alterations in the composition and function of the gut microbiota are also associated with an increased risk of irAEs, particularly ICI-induced colitis. Indeed, these changes in the gut microbiota can contribute to the pathogenesis of irAEs. In this Review, we first summarize the current clinical challenges posed by irAEs. We then focus on reported correlations between alterations in the gut microbiota and irAEs, especially ICI-induced colitis, and postulate mechanisms by which these microbial changes influence the occurrence of irAEs. Finally, we highlight the potential value of gut microbial changes as biomarkers for predicting irAEs and discuss gut microbial interventions that might serve as new strategies for the management of irAEs, including faecal microbiota transplantation, probiotic, prebiotic and/or postbiotic supplements, and dietary modulations.
Collapse
Affiliation(s)
- Ya-Qi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jie Tan
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Peeters E, van Genugten EAJ, Heskamp S, de Vries IJM, van Herpen C, Koenen HJPM, Kneilling M, van der Post RS, van Dop WA, Westdorp H, Aarntzen E. Exploring molecular imaging to investigate immune checkpoint inhibitor-related toxicity. J Immunother Cancer 2025; 13:e011009. [PMID: 40341021 PMCID: PMC12060888 DOI: 10.1136/jitc-2024-011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
Immune checkpoint inhibitors (ICI) boost the endogenous anticancer immunity, evoking long-lasting anticancer responses in a subset of patients with solid tumors. Simultaneously, ICI are also associated with serious toxicities, impacting treatment duration and the quality of life. The proposed processes underlying ICI-related toxicity include T-cell activation and recruitment to non-tumor tissues, involvement of other immune cells and fibroblasts and the host' microbiome composition. However, the exact mechanisms of these processes remain incompletely understood, hindering clinicians' ability to predict and identify ICI-related toxicity in the early stages of treatment. Molecular imaging may play a role as a non-invasive biomarker, providing a tool to study ICI-related toxicity. This review discusses the applications of molecular imaging to answer questions regarding the mechanisms, detection, and prediction of ICI-related toxicity. Potential targets and the current state of development of suitable imaging techniques are discussed.
Collapse
Affiliation(s)
- Eva Peeters
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Sandra Heskamp
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla van Herpen
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tubingen, Baden-Württemberg, Germany
- Department of Dermatology, University of Tübingen, Tubingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Willemijn A van Dop
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Harm Westdorp
- Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik Aarntzen
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Nuclear Medicine, Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Jia W, Deng Z, Papini MP, Cheng L, Jin N, Zhang D, Li Z, Zhang D, Zhu Y, Ding A. Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137239. [PMID: 39879773 DOI: 10.1016/j.jhazmat.2025.137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of in situ chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages. The dominant microbial clusters shifted from r-strategists to K-strategists and then back to r-strategists, indicating their higher degradation efficiency of petroleum hydrocarbons throughout the oxidation process. The changes in stability and stochastic assembly of bacterial communities during in situ chemical oxidation suggested that oxidative stress, carbon source addition and carbon source limitation as the main influential factors of bacterial community succession at the oxidation, early-recovery and late-recovery stage, respectively. Our findings highlighted the complex recovery and underlying mechanisms of groundwater bacterial communities during in situ chemical oxidation process, and provided valuable insights for effective and long-term site management after in situ chemical oxidation practices.
Collapse
Affiliation(s)
- Wenjuan Jia
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Zhimao Deng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | | | - Lirong Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Dan Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, PR China; National Engineering Research Centre for Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, PR China
| | - Zhengyan Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| | - Yi Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China.
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
10
|
Bracamonte-Baran W, Kim ST. The Current and Future of Biomarkers of Immune Related Adverse Events. Immunol Allergy Clin North Am 2025; 45:223-249. [PMID: 40287170 DOI: 10.1016/j.iac.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
With their groundbreaking clinical responses, immune checkpoint inhibitors (ICIs) have ushered in a new chapter in cancer therapeutics. However, they are often associated with life-threatening or organ-threatening autoimmune/autoinflammatory phenomena, collectively termed immune-related adverse events (irAEs). In this review, we will first describe the mechanisms of action of ICIs as well as irAEs. Next, we will review biomarkers for predicting the development of irAEs or stratifying risks.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA
| | - Sang T Kim
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Eljilany I, Garcia JR, Jamal B, Tarhini AA. Monoclonal antibodies as adjuvant therapies for resected melanoma. Expert Opin Biol Ther 2025; 25:1-14. [PMID: 40125987 DOI: 10.1080/14712598.2025.2484305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Systemic adjuvant therapy is indicated in patients with high-risk, resected melanoma to reduce recurrence risk and potentially improve survival rates. Monoclonal antibodies (mAbs) target immune checkpoints and have made significant advances as systemic adjuvant therapies. AREAS COVERED This review discusses the main clinical trials that tested adjuvant mAbs in resected high-risk melanoma, including anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death-1 (PD-1); in addition to newer immunotherapies being tested in the adjuvant setting, including anti-lymphocyte activation gene 3 (LAG-3). We also briefly discuss targeted therapies as an alternative choice. Moreover, we highlight the pros and cons of using mAbs in the adjuvant setting, the reported adverse events (AEs), and the quality of life impact. Finally, we report data related to biomarker studies tested in the context of these clinical trials. EXPERT OPINION Immune checkpoint inhibitors (ICIs) have been shown to significantly improve relapse-free survival (RFS) as adjuvant therapy for high-risk melanoma. The long-term impact on overall survival (OS) was demonstrated in two trials that tested ipilimumab as compared to placebo (EORTC18071) and interferon-α (ECOG-ACRIN E1609). Furthermore, emerging data with neoadjuvant therapy followed by surgery and adjuvant therapy utilizing ICIs have demonstrated improved outcomes in the management of locoregionally advanced disease when compared to upfront surgery followed by adjuvant therapy alone.
Collapse
Affiliation(s)
- Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julia R Garcia
- Department of Medical Oncology, Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Basmala Jamal
- Department of Health Sciences, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Ahmad A Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Sonar PV, Singh AK, Mandadi S, Sharma NK. Expanding horizons of cancer immunotherapy: hopes and hurdles. Front Oncol 2025; 15:1511560. [PMID: 40352591 PMCID: PMC12061710 DOI: 10.3389/fonc.2025.1511560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Background Tumor displays various forms of tumor heterogeneity including immune heterogeneity that allow cancer cells to survive during conventional anticancer drug interventions. Thus, there is a strong rationale for overcoming anticancer drug resistance by employing the components of immune cells. Using the immune system to target tumor cells has revolutionized treatment. Recently, significant progress has been achieved at preclinical and clinical levels to benefit cancer patients. Approach A review of literature from the past ten years across PubMed, Scopus, and Web of Science focused on immunotherapy strategies. These include immune checkpoint inhibitors (ICIs), tumor-infiltrating lymphocyte therapy, antibody-drug conjugates (ADCs), cancer vaccines, CAR T-cell therapy, and the role of the gut microbiome. Conclusion While immunotherapy outcomes have improved, particularly for tumor types such as melanoma and non-small cell lung cancer (NSCLC), challenges persist regarding predictive biomarker identification and better management. Ongoing research on modifiers of immune function like gut microbiome-derived metabolites, next-generation ADCs, and new classes of biologics is warranted. Overall, continued investigation toward optimizing synergistic immunotherapeutic combinations through strategic drug delivery systems is imperative for preclinical and clinical success in cancer patients.
Collapse
Affiliation(s)
- Priyanka Vijay Sonar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Anuj Kumar Singh
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Ichnos Glenmark Innovation, Glenmark Pharmaceuticals Limited, Navi Mumbai, Maharashtra, India
| | - Sravan Mandadi
- Ichnos Glenmark Innovation, Glenmark Pharmaceuticals Limited, Navi Mumbai, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
13
|
Imani S, Farghadani R, Roozitalab G, Maghsoudloo M, Emadi M, Moradi A, Abedi B, Jabbarzadeh Kaboli P. Reprogramming the breast tumor immune microenvironment: cold-to-hot transition for enhanced immunotherapy. J Exp Clin Cancer Res 2025; 44:131. [PMID: 40281554 PMCID: PMC12032666 DOI: 10.1186/s13046-025-03394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
This review discusses reprogramming the breast tumor immune microenvironment from an immunosuppressive cold state to an immunologically active hot state. A complex interplay is revealed, in which the accumulation of metabolic byproducts-such as lactate, reactive oxygen species (ROS), and ammonia-is shown to impair T-cell function and promote tumor immune escape. It is demonstrated that the tumor microenvironment (TME) is dominated by immunosuppressive cytokines, including interleukin-10 (IL-10), transforming growth factorβ (TGFβ), and IL-35. Notably, IL-35 is produced by regulatory T cells and breast cancer cells. The conversion of conventional T cells into IL-35-producing induced regulatory T cells, along with the inhibition of pro-inflammatory cytokine secretion, contributes to the suppression of anti-tumor immunity. It is further demonstrated that key immune checkpoint molecules-such as PD-1, PDL1, CTLA-4, TIM-3, LAG-3, and TIGIT-are upregulated within the TME, leading to Tcell exhaustion and diminished immune responses. The blockade of these checkpoints is shown to restore T-cell functionality and is proposed as a strategy to convert cold tumors into hot ones with robust effector cell infiltration. The therapeutic potential of chimeric antigen receptor (CAR)T cell therapy is also explored, and targeting specific tumor-associated antigens, such as glycoproteins and receptor tyrosine kinases, is highlighted. It is suggested that CART cell efficacy can be enhanced by combining these cells with immune checkpoint inhibitors and other immunomodulatory agents, thereby overcoming the barriers imposed by the immunosuppressive TME. Moreover, the role of the microbiome in regulating estrogen metabolism and systemic inflammation is reviewed. Alterations in the gut microbiota are shown to affect the TME, and microbiome-based interventions are proposed as an additional means to facilitate the cold-to-hot transition. It is concluded that by targeting the metabolic and immunological pathways that underpin immune suppression-through combination strategies involving checkpoint blockade, CART cell therapies, and microbiome modulation-the conversion of the breast TME from cold to hot can be achieved. This reprogramming is anticipated to enhance immune cell infiltration and function, thereby improving the overall efficacy of immunotherapies and leading to better clinical outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Moradi
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Parham Jabbarzadeh Kaboli
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, 02-091, Poland.
| |
Collapse
|
14
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
15
|
Zaher A, Moura Nascimento Santos MJ, Elsaygh H, Peterson SJ, Colli Cruz C, Thomas AS, Wang Y. Management of refractory checkpoint inhibitor-induced colitis. Expert Opin Drug Saf 2025:1-10. [PMID: 40251944 DOI: 10.1080/14740338.2025.2496431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION This review discusses the epidemiology, pathophysiology, and factors associated with refractory immune-mediated diarrhea and colitis (r-IMDC), emphasizing tailored treatment strategies. AREAS COVERED The current literature on r-IMDC was reviewed using PubMed (2015-2025), focusing on clinical trials, meta-analyses, and case reports relevant to its management. EXPERT OPINION Effectively managing r-IMDC is crucial for balancing toxicities and antitumor response. Available second and third-line management options for r-IMDC cases must be carefully evaluated. Future perspectives include development of standardized protocols beyond second-line therapies and predictive biomarkers to enable personalized treatment.
Collapse
Affiliation(s)
- Anas Zaher
- Department of Internal Medicine, New York Presbyterian - Brooklyn Methodist/Weill Cornell Medicine, Brooklyn, NY, USA
| | | | - Hassan Elsaygh
- Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Stephen J Peterson
- Department of Internal Medicine, New York Presbyterian - Brooklyn Methodist/Weill Cornell Medicine, Brooklyn, NY, USA
| | - Carolina Colli Cruz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
17
|
De Perna ML, Rigamonti E, Zannoni R, Espeli V, Moschovitis G. Immune Checkpoint Inhibitors and Cardiovascular Adverse Events. ESC Heart Fail 2025. [PMID: 40205958 DOI: 10.1002/ehf2.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
In the last years, we assisted to a tremendous increase in therapeutic options for the management of cancers, with immunotherapy at the forefront of this innovation. Immune checkpoint inhibitors (ICIs) have been developed to enhance the activity of the immune system against cancer cells (1) and the number of approvals for ICIs has rapidly increased. ICIs have also been associated with disinhibited cytotoxic T cells that damage healthy tissue in multiple organs, causing immune-related adverse events (AEs). Cardiovascular AEs (CVAe) are increasingly reported: myocarditis, Takotsubo syndrome, pericarditis and pericardial effusion, worsening of atherosclerosis, acute coronary syndromes, non-inflammatory heart failure, and ischaemic stroke. They are classified into five grades, based on presenting symptoms, level of cardiac biomarkers, and imaging. Even though myocarditis occurs more frequently than previously thought, clinically relevant myocarditis is a rare irAE compared to other irAE (0.5-1.2%). The clinical manifestations range from mild symptoms such as to chest pain, heart failure, and cardiogenic shock. The prognosis is severe, with mortality rates ranging from 25% to 50%. It is frequently associated with the concomitant use of combination of checkpoint inhibitors. The treatment strategies are tripartite: (i) holding ICI to prevent further toxicity, (ii) immunosuppression to alleviate inflammatory changes, and (iii) supportive therapy to address cardiac complications. Glucocorticoids represent the first-line treatment. In hemodynamically unstable patients, treatment with high-dose steroids should be initiated (intravenous methylprednisolone 1000 or 1250 mg oral methylprednisolone during 4 days). ICI-associated pericarditis can be accompanied by no/mild pericardial effusion up to cardiac tamponade. The treatment is made of nonsteroidal anti-inflammatory drugs and colchicine, corticosteroids if needed, and pericardiocentesis for the large effusions. ICIs could be continued for Grade 1 pericarditis, while temporary suspension of ICI is warranted for more severe cases. There is significant potential for accelerated atherosclerosis with ICIs as a long-term effect, but atherosclerosis-related CVAEs are not frequent, especially during treatment; increasing evidence associates ICIs with progression of atherosclerosis and increased atherosclerotic cardiovascular disease. ICIs can lead to arrhythmias: atrial fibrillation, supraventricular and ventricular tachycardias. Non-inflammatory heart failure syndrome have been observed in ICI-treated patients. Immune checkpoint inhibitors seem to be involved in the development of right ventricular dysfunction and pulmonary arterial hypertension. It is of the outmost importance to improve the collaboration among the different medical figures, such as cardiologists, oncologists, endocrinologists, and immunologists, both in clinical practice and in basic science research, to better recognize these adverse events, to understand their pathophysiological mechanisms, and to improve the overall survival and quality of life of the affected patients.
Collapse
Affiliation(s)
- Maria Luisa De Perna
- Istituto Cardiocentro Ticino, Department of Cardiology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Elia Rigamonti
- Istituto Cardiocentro Ticino, Department of Cardiology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Raffaele Zannoni
- Service de Médicine Interne générale, Département de médecine interne, Hopitaux Universitaires de Genève (HUG), rue Gabrielle-Perret-Gentil 4, Genève, Switzerland
| | - Vittoria Espeli
- Department of Oncology, Ente Ospedaliero Cantonale, Istituto Oncologico della Svizzera Italiana, Lugano, Switzerland
| | - Giorgio Moschovitis
- Istituto Cardiocentro Ticino, Department of Cardiology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
18
|
Esmaeli B, Ogden T, Nichols M, Lu T, Matthew Debnam J, Dimitriou F, McQuade J, Glitza Oliva IC. Rate of response to immune checkpoint inhibitor therapy in patients with conjunctival melanoma. Melanoma Res 2025; 35:130-144. [PMID: 39656585 PMCID: PMC11894759 DOI: 10.1097/cmr.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Our primary objective was to estimate the overall response rate to immune checkpoint inhibitors (ICIs) in patients with locally advanced, multiply recurrent, or metastatic conjunctival melanoma treated with ICIs. A retrospective review of all consecutive conjunctival melanoma patients who were treated with ICI between October 2017 and January 2024 was carried out. The study included 16 patients with a median age of 66 years. The indications for ICI were locally extensive conjunctival melanoma in the eye/orbital area without nodal or distant metastasis in 10 patients, local recurrence of conjunctival melanoma and simultaneous nodal or distant metastasis in four patients, and metastatic conjunctival melanoma without local recurrence in two patients. Five patients received PD-1 inhibitor monotherapy with nivolumab or pembrolizumab; the other 11 received ipilimumab (CTLA-4 inhibitor) and nivolumab for several cycles and were then continued on nivolumab monotherapy ( n = 6) or not given additional ICI therapy ( n = 3). The number of cycles of ICI ranged from 2 to 25 (median, 13). Eight patients achieved a complete response. Six patients had progressive disease. The overall rate of objective response to ICI therapy was 63% (10 of 16), and for the subset of patients with local disease only, the objective response rate was 70% (7 of 10). In 14 patients (88%), orbital exenteration or additional extensive surgery was avoided; two patients had progression despite ICI and eventually needed an orbital exenteration. Future studies should aim to correlate biomarker data with response to ICI therapy in patients with conjunctival melanoma.
Collapse
Affiliation(s)
- Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tyler Ogden
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Matthew Nichols
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Tracy Lu
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J. Matthew Debnam
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florentia Dimitriou
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C. Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Chalif J, Goldstein N, Mehra Y, Spakowicz D, Chambers LM. The Role of the Microbiome in Cancer Therapies: Current Evidence and Future Directions. Hematol Oncol Clin North Am 2025; 39:269-294. [PMID: 39856008 DOI: 10.1016/j.hoc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The microbiome is essential for maintaining human health and is also a key factor in the development and progression of various diseases, including cancer. Growing evidence has highlighted the microbiome's significant impact on cancer development, progression, and treatment outcomes. As research continues to unfold, the microbiome and its modulation stand out as a promising frontier in cancer research and therapy. This review highlights current literature on the interplay between various cancer treatment modalities and human microbiotas, focusing on how the microbiome may affect treatment efficacy and toxicity and its potential as a therapeutic target to enhance future outcomes.
Collapse
Affiliation(s)
- Julia Chalif
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Naomi Goldstein
- Division of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA
| | - Yogita Mehra
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dan Spakowicz
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Laura M Chambers
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
20
|
Canzian J, Conforti F, Jacobs F, Benvenuti C, Gaudio M, Gerosa R, De Sanctis R, Zambelli A. Sex-Related Differences in Immunotherapy Toxicities: Insights into Dimorphic Responses. Cancers (Basel) 2025; 17:1054. [PMID: 40227458 PMCID: PMC11987764 DOI: 10.3390/cancers17071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Significant sex-based differences exist in the immune system and antitumor immune responses, potentially leading to variations in both the efficacy and toxicity of anticancer immunotherapies. Women generally mount stronger innate and adaptive immune responses than men, which can result in more severe immune-related adverse events (irAEs) during treatments with immune checkpoint inhibitors (ICIs). However, the importance of sex dimorphism in the safety of cancer immunotherapy remains underexplored in clinical oncology, despite its profound implications for treatment outcomes. Our review highlights the critical influence of biological sex on pharmacokinetics, pharmacodynamics, and immune responses, shaping ICI efficacy and the prevalence, type, and severity of irAEs. Integrating sex as a critical variable in cancer treatment and clinical trial design is essential for personalizing therapeutic strategies, bridging existing knowledge gaps, and enhancing survival rates and quality of life for patients across genders.
Collapse
Affiliation(s)
- Jacopo Canzian
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Fabio Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, 24125 Bergamo, Italy;
| | - Flavia Jacobs
- Division of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Riccardo Gerosa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (J.C.); (C.B.); (M.G.); (R.G.)
- Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Rita De Sanctis
- Oncology Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Alberto Zambelli
- Oncology Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
21
|
Vogrig A, Dentoni M, Florean I, Cellante G, Domenis R, Iacono D, Pelizzari G, Rossi S, Damato V, Fabris M, Valente M. Prediction, prevention, and precision treatment of immune checkpoint inhibitor neurological toxicity using autoantibodies, cytokines, and microbiota. Front Immunol 2025; 16:1548897. [PMID: 40181971 PMCID: PMC11966491 DOI: 10.3389/fimmu.2025.1548897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized oncology, significantly improving survival across multiple cancer types. ICIs, such as anti-PD-1 (e.g. nivolumab, pembrolizumab), anti-PD-L1 (e.g. atezolizumab, avelumab), and anti-CTLA-4 (e.g. ipilimumab), enhance T cell-mediated anti-tumor responses but can also trigger immune-related adverse events (irAEs). Neurological irAEs (n-irAEs), affecting 1-3% of patients, predominantly involve the peripheral nervous system; less commonly, n-irAEs can present as central nervous system disorders. Although irAEs suggest a possible correlation with treatment efficacy, their mechanisms remain unclear, with hypotheses ranging from antigen mimicry to cytokine dysregulation and microbiome alterations. Identifying patients at risk for n-irAEs and predicting their outcome through biomarkers would be highly desirable. For example, patients with high-risk onconeural antibodies (such as anti-Hu or Ma2), and elevated neurofilament light chain (NfL) levels often respond poorly to irAE treatment. However, interpreting neuronal antibody tests in the diagnosis of n-irAEs requires caution: positive results must align with the clinical context, as some cancer patients (e.g., SCLC) may have asymptomatic low antibody levels, and false positive results are common without tissue-based confirmation. Also, the use of biomarkers (e.g. IL-6) may lead to more targeted treatments of irAEs, minimizing adverse effects without compromising the anti-tumor efficacy of ICIs. This review provides a comprehensive overview of the latest findings on n-irAEs associated with ICIs, with a focus on their prediction, prevention, as well as precision treatment using autoantibodies, cytokines, and microbiota. The most interesting data concern neuronal antibodies, which we explore in their pathogenic roles and as biomarkers of neurotoxicity. Most of the available data on cytokines, both regarding their role as diagnostic and prognostic biomarkers and their role in supporting therapeutic decisions for toxicities, refer to non-neurological toxicities. However, in our review, we mention the potential role of CXCL10 and CXCL13 as biomarkers of n-irAEs and describe the current evidence, as well as the need for further studies, on the use of cytokines in guiding selection of second-line therapies for n-irAEs. Finally, no specific microbiome-related microbial signature has been proven to be linked to n-irAEs specifically, leading to the need of more future research on the topic.
Collapse
Affiliation(s)
- Alberto Vogrig
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Marta Dentoni
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Irene Florean
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giulia Cellante
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Rossana Domenis
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Donatella Iacono
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giacomo Pelizzari
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Simone Rossi
- IRCCS - Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Damato
- Department of Neurosciences, Drugs and Child Health, University of Florence, Firenze, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Department of Laboratory Medicine, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Mariarosaria Valente
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
22
|
Sun J, Song S, Liu J, Chen F, Li X, Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. NPJ Biofilms Microbiomes 2025; 11:43. [PMID: 40069181 PMCID: PMC11897378 DOI: 10.1038/s41522-025-00678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
In order to decipher the relationship between gut microbiota imbalance and cancer, this paper reviewed the role of intestinal microbiota in anticancer therapy and related mechanisms, discussed the current research status of gut microbiota as a biomarker of cancer, and finally summarized the reasonable means of regulating gut microbiota to assist cancer therapy. Overall, our study reveals that the gut microbiota can serve as a potential target for improving cancer management.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyan Song
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahua Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Giesler S, Riemer R, Lowinus T, Zeiser R. Immune-mediated colitis after immune checkpoint inhibitor therapy. Trends Mol Med 2025; 31:265-280. [PMID: 39477757 DOI: 10.1016/j.molmed.2024.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 03/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have led to improved outcome in patients with various types of cancer. Due to inhibition of physiological anti-inflammatory mechanisms, patients treated with ICIs may develop autoimmune inflammation of the colon, associated with morbidity, decreased quality of life (QoL), and mortality. In this review, we summarize clinical and pathophysiological aspects of immune-mediated colitis (ImC), highlighting novel treatment options. In the colon, ICIs trigger resident and circulating T cell activation and infiltration of myeloid cells. In addition, the gut microbiota critically contribute to intestinal immune dysregulation and loss of barrier function, thereby propagating local and systemic inflammation. Currently available therapies for ImC include corticosteroids, antitumor necrosis factor-α (TNF-α)- and anti-integrin α4β7 antibodies. Given that systemic immunosuppression might impair antitumor immune responses, novel therapeutic approaches are urgently needed.
Collapse
Affiliation(s)
- Sophie Giesler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Colli Cruz C, Moura Nascimento Santos MJ, Wali S, Varatharajalu K, Thomas A, Wang Y. Gastrointestinal toxicities associated with immune checkpoint inhibitors therapy: risks and management. Immunotherapy 2025; 17:293-303. [PMID: 40055892 PMCID: PMC12013428 DOI: 10.1080/1750743x.2025.2473305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment by boosting the immune system's ability to target tumors. However, they can also cause serious side effects, particularly in the digestive system. These include immune-related diarrhea, inflammation of the intestines and, less commonly, inflammation of the stomach or esophagus. This review underscores the importance of early detection, accurate diagnosis, and timely treatment to improve patient outcomes. It also highlights the need for further research to develop strategies to reduce gastrointestinal toxicities and enhance the overall effectiveness of ICIs in cancer therapy.
Collapse
Affiliation(s)
- Carolina Colli Cruz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sharada Wali
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishnavathana Varatharajalu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anusha Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
26
|
Chandrasekaran P, Krausz M, Han Y, Mitsuiki N, Gabrysch A, Nöltner C, Proietti M, Heller T, Grou C, Calderon V, Subramanian P, Jones DR, Siu Y, Deming C, Conlan S, Holland SM, Segre JA, Uzel G, Grimbacher B, Falcone EL. The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency. MICROBIOME 2025; 13:51. [PMID: 39934899 PMCID: PMC11817180 DOI: 10.1186/s40168-025-02028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity. RESULTS The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus. CONCLUSIONS Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD, USA
| | - Máté Krausz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Yu Han
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
| | - Christina Nöltner
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany
- Clinic Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Caroline Grou
- Bioinformatics Core, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Virginie Calderon
- Bioinformatics Core, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch (BCBB), Office of Cyber Infrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Drew R Jones
- Metabolomics Laboratory, New York University Langone, New York, NY, USA
| | - Yik Siu
- Metabolomics Laboratory, New York University Langone, New York, NY, USA
| | - Clayton Deming
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sean Conlan
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Julia A Segre
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- RESIST - Cluster of Excellence, Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| | - Emilia Liana Falcone
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
27
|
Shi L, Duan Y, Fang N, Zhang N, Yan S, Wang K, Hou T, Wang Z, Jiang X, Gao Q, Zhang S, Li Y, Zhang Y, Gong Y. Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate. Europace 2025; 27:euaf018. [PMID: 39821305 PMCID: PMC11795659 DOI: 10.1093/europace/euaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. METHOD Utilizing 16S rRNA gene sequencing, faecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms. RESULT We found that ibrutinib administration pre-disposes rats to AF. Interestingly, ibrutinib-associated microbial transplantation conferred increased susceptibility to AF in rats. Notably, ibrutinib induced a significantly decrease in the abundance of Lactobacillus gasseri (L. gasseri), and oral supplementation of L. gasseri or its metabolite, butyrate (BA), effectively prevented rats from ibrutinib-induced AF. Mechanistically, BA inhibits the generation of reactive oxygen species, thereby ameliorating atrial structural remodelling. Furthermore, we demonstrated that ibrutinib inhibited the growth of L. gasseri by disrupting the intestinal barrier integrity. CONCLUSION Collectively, our findings provide compelling experimental evidence supporting the potential efficacy of targeting gut microbes in preventing ibrutinib-associated AF, opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Ling Shi
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Yu Duan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Ning Fang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Ning Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Sen Yan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Kunna Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Te Hou
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Zhiqi Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Xiaohui Jiang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Qianhui Gao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Yun Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
| | - Yongtai Gong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin 150001, China
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China
- Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin Medical University, Harbin 150081, China
- Heilongjiang Academy of Medical Science, Institute of Metabolic Disease, Harbin, China
| |
Collapse
|
28
|
Verheijden RJ, van Eijs MJM, Paganelli FL, Viveen MC, Rogers MRC, Top J, May AM, van de Wijgert JHHM, Suijkerbuijk KPM. Gut microbiome and immune checkpoint inhibitor toxicity. Eur J Cancer 2025; 216:115221. [PMID: 39793444 DOI: 10.1016/j.ejca.2025.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Multiple studies have suggested that gut microbiome may influence immune checkpoint inhibitor (ICI) efficacy, but its association with immune-related adverse events (irAEs) is less well studied. In this prospective cohort study, we assessed whether gut microbiome composition at start, or changes during ICI, are associated with severe irAEs. METHODS Stool samples of cancer patients treated with anti-PD-1 ± anti-CTLA-4 were analyzed using 16S rRNA gene sequencing and metagenomic shotgun sequencing. Differences in alpha and beta diversity between patients with and without severe irAE were assessed, as well as differential relative abundance (RA) of taxa, MetaCyc pathways, and seven prespecified literature-based bacterial groups including pathobionts and Ruminococcaceae. FINDINGS We analyzed 497 samples of 195 patients before and soon after starting ICI, at severe irAE onset and after starting immunosuppression. Mean RA of the pathobionts group was significantly higher in patients who developed a severe irAE (8.2 %) compared to those who did not (4.8 %; odds ratio 1.40; 95 %CI 1.07-1.87) at baseline, and also early during ICI treatment and at severe irAE onset. A significantly stronger decrease in RA of Ruminococcaceae after starting ICI was observed in patients who developed a severe irAE compared to those who did not. RAs of Ruminococcaceae, the genus Ruminococcus, and the species R. bromii and R. callidus were significantly lower at severe irAE onset compared to other time points. INTERPRETATION Gut microbiome dysbiosis signaled by higher RA of pathobionts and decrease in RA of Ruminococcaceae may predispose to severe irAEs.
Collapse
Affiliation(s)
- Rik J Verheijden
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands; Department of Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands; Winclove Probiotics, Amsterdam, 1033JS, the Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Anne M May
- Department of Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Janneke H H M van de Wijgert
- Department of Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, PO box 85500, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
29
|
Triantafyllou E, Gudd CLC, Possamai LA. Immune-mediated liver injury from checkpoint inhibitors: mechanisms, clinical characteristics and management. Nat Rev Gastroenterol Hepatol 2025; 22:112-126. [PMID: 39663461 DOI: 10.1038/s41575-024-01019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Immunotherapy has changed the treatment landscape for patients with cancer in the past decade. Immune checkpoint inhibitor (ICI)-based therapies have proven effective in a range of malignancies, including liver and gastrointestinal cancers, but they can cause diverse off-target organ toxicities. With the increasingly wider application of these drugs, immune-mediated liver injury from ICIs has become a commonly encountered challenge in clinical hepatology and gastroenterology. In this Review, we discuss the evidence from human and animal studies on the immunological mechanisms of immune-mediated liver injury from ICIs and summarize its clinical features and practical considerations for its management.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - Cathrin L C Gudd
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lucia A Possamai
- Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
30
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2025; 68:381-396. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
32
|
Shang J, Del Valle DM, Britton GJ, Mead K, Rajpal U, Chen-Liaw A, Mogno I, Li Z, Menon R, Gonzalez-Kozlova E, Elkrief A, Peled JU, Gonsalves TR, Shah NJ, Postow M, Colombel JF, Gnjatic S, Faleck DM, Faith JJ. Baseline colitogenicity and acute perturbations of gut microbiota in immunotherapy-related colitis. J Exp Med 2025; 222:e20232079. [PMID: 39666007 PMCID: PMC11636624 DOI: 10.1084/jem.20232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy-related colitis (irC) frequently emerges as an immune-related adverse event during immune checkpoint inhibitor therapy and is presumably influenced by the gut microbiota. We longitudinally studied microbiomes from 38 ICI-treated cancer patients. We compared 13 ICI-treated subjects who developed irC against 25 ICI-treated subjects who remained irC-free, along with a validation cohort. Leveraging a preclinical mouse model, predisease stools from irC subjects induced greater colitigenicity upon transfer to mice. The microbiota during the first 10 days of irC closely resembled inflammatory bowel disease microbiomes, with reduced diversity, increased Proteobacteria and Veillonella, and decreased Faecalibacterium, which normalized before irC remission. These findings highlight the irC gut microbiota as functionally distinct but phylogenetically similar to non-irC and healthy microbiomes, with the exception of an acute, transient disruption early in irC. We underscore the significance of longitudinal microbiome profiling in developing clinical avenues to detect, monitor, and mitigate irC in ICI therapy cancer patients.
Collapse
Affiliation(s)
- Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Marie Del Valle
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K.R. Mead
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvija Rajpal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Tina Ruth Gonsalves
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M. Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
34
|
Yu Z, Wang Q, Wang Z, Liu S, Xia T, Duan C, Liu Y, Ding X, Chen S, Yu T, You R, Chen M, Huang P. Lachnoclostridium intestinal flora is associated with immunotherapy efficacy in nasopharyngeal carcinoma. Head Neck 2025; 47:269-281. [PMID: 39135356 DOI: 10.1002/hed.27917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Effective biomarkers for assessing anti-PD-1/PD-L1 therapy efficacy in patients with nasopharyngeal carcinoma (NPC) are still lacking. The human gut microbiota has been shown to influence clinical response to anti-PD-1/PD-L1 therapy in many cancers. However, the relationship between the gut microbiota and the efficacy of immunotherapy in patients with nasopharyngeal carcinoma has not been determined. METHODS We conducted a prospective study in which fecal and blood samples from patients with NPC were subjected to 16S rDNA sequencing and survival analysis. To investigate potential differences in the gut microbiome between these groups and to identify potential biomarkers indicative of immunotherapy efficacy, patients were categorized into two groups according to their clinical response to immunotherapy, the responder group (R group) and the non-responder group (NR group). Progression-free survival (PFS) between these subgroups was analyzed using Kaplan-Meier survival analysis with the log-rank test. Additionally, we performed univariate and multivariate analyses to evaluate prognostic factors. Finally, we carried out non-targeted metabolomics to examine the metabolic effects associated with the identified microbiome. RESULTS Our 16S rDNA sequencing results showed that the abundance of Lachnoclostridium was higher in the NR group than in the R group (p = 0.003), and alpha diversity analysis showed that the abundance of microbiota in the NR group was higher than that in the R group (p = 0.050). Patients with a lower abundance of Lachnoclostridium had better PFS (p = 0.048). Univariate (p = 0.017) and multivariate analysis (p = 0.040) showed that Lachnoclostridium was a predictor of PFS. Non-targeted metabolomics analysis revealed that Lachnoclostridium affects the efficacy of immunotherapy through the usnic acid. CONCLUSIONS High abundance of Lachnoclostridium predicts poor prognosis in patients with NPC receiving immunotherapy.
Collapse
Affiliation(s)
- Zikun Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zimeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihan Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chongyang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Youping Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xi Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui You
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Mingyuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Nasopharyngeal Cancer Prevention Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Peiyu Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
35
|
Wang S, Wang H. Treatment of immune checkpoint inhibitor-related colitis: a narrative review. Transl Cancer Res 2024; 13:7002-7014. [PMID: 39816545 PMCID: PMC11729759 DOI: 10.21037/tcr-24-2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Background and Objective Cancer is one of the most difficult diseases facing modern medicine, and increasing amounts of research and clinical treatments are being applied to the treatment of cancer. Immunotherapy, particularly immune checkpoint inhibitor (ICI) therapy, has revolutionized the treatment and overall survival of patients with several different types of cancer. Approximately one-third of patients treated with ICIs may experience immune-related adverse events (irAEs). Immune checkpoint inhibitor-associated colitis (ICIC) is the most common irAE with an incidence of approximately 8-10%, ICIC usually presents as watery or bloody diarrhea, and if the symptoms are severe, ICI treatment must be interrupted or even terminated. This review summarizes the epidemiology, pathogenesis, clinical characteristics, and therapies of ICIC, focusing on the use of biologics, in order to propose treatment options in different situations to control immune checkpoint inhibitor-related colitis as soon as possible. Methods To find relevant articles for this narrative review paper, a combination of keywords such as immune checkpoint inhibitor-related colitis, corticosteroids, biologics were searched for in PubMed databases. Key Content and Findings The pathogenesis of ICIC is complex and primarily involves antitumor effects and indirect damage to colonic tissues, as well as the activation of specific proinflammatory pathways. Corticosteroids (CSs) are the first line of treatment for ICIC, but steroid-refractory or steroid-resistant cases often occur. Patients with irAE colitis respond favorably to biologics, and patients with CS-resistant/refractory enterocolitis can benefit from the early use of biologics. Conclusions Biologics are currently recommended for the treatment of ICIC but are usually used as a supplement after the failure of first-line CS therapy. Patients with irAE colitis respond favorably to biologics, and patients with CS-resistant/refractory enterocolitis can benefit from the early use of biologics. Biologics (alone or in combination with CS) should be considered as an early therapy option for high-risk patients rather than just an escalation after a failure to respond to CS.
Collapse
Affiliation(s)
- Shiyang Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Morikawa R, Nitta K, Yasuda S, Kano Y, Noji R, Aoyama S, Sato S, Ikeda S, Okamoto R, Nagata M, Mori T, Suenaga M. Identification of risk factors for gastrointestinal immune-related adverse events associated with immune check point inhibitors. Expert Opin Drug Saf 2024:1-8. [PMID: 39688366 DOI: 10.1080/14740338.2024.2443955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Gastrointestinal (GI) toxicities are among the most common and potentially severe immune-related adverse events (irAEs), and data on risk factors remain limited. This study aimed to identify risk factors for GI-irAEs in patients treated with ICIs. RESEARCH DESIGN AND METHODS We conducted a retrospective analysis of patients with any type of malignant tumor who received ICIs between January 2020 and January 2022. GI-irAEs were defined as the onset of diarrhea during the observation period. Univariate analysis was employed to explore associations between GI-irAEs and patient characteristics. RESULTS Of the 485 patients screened, 361 were eligible for analysis. GI-irAEs occurred in 29 patients (8.03%). Patients with GI cancer demonstrated shorter event-free survival (EFS) compared to those with non-GI cancer (2.33, 95% CI: 1.03-4.95; p = 0.0275). Additionally, ≥ grade 2 GI-irAEs were observed in 14 patients (3.88%). Patients with GU cancer had a significantly higher incidence of GI-irAEs (odds ratio: 3.26, 95%CI 1.21-8.71, p = 0.0497) and exhibited shorter EFS (hazard ratio: 3.07, 95%CI: 1.05-8.96; p = 0.0273) compared to those with non-GU cancer. CONCLUSION Our findings suggest that GI cancer may be a risk factor for developing GI-irAEs, while GU cancer may predispose patients to ≥ grade 2 GI-irAEs.
Collapse
Affiliation(s)
- Ryo Morikawa
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kentaro Nitta
- Department of Pharmacy, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuntaro Yasuda
- Department of Pharmacy, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rika Noji
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoru Aoyama
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shingo Sato
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sadakatsu Ikeda
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masashi Nagata
- Department of Pharmacy, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiko Mori
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mitsukuni Suenaga
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
37
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024; 25:829-845. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
De Jaeghere EA, Hamerlinck H, Tuyaerts S, Lippens L, Van Nuffel AMT, Baiden-Amissah R, Vuylsteke P, Henry S, Trinh XB, van Dam PA, Aspeslagh S, De Caluwé A, Naert E, Lambrechts D, Hendrix A, De Wever O, Van de Vijver KK, Amant F, Vandecasteele K, Verhasselt B, Denys HG. Associations of the gut microbiome with outcomes in cervical and endometrial cancer patients treated with pembrolizumab: Insights from the phase II PRIMMO trial. Gynecol Oncol 2024; 191:275-286. [PMID: 39515198 DOI: 10.1016/j.ygyno.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The phase II PRIMMO trial investigated a pembrolizumab-based regimen in patients with recurrent and/or metastatic cervical (CC) or endometrial (EC) carcinoma who had at least one prior line of systemic therapy. Here, exploratory studies of the gut microbiome (GM) are presented. METHODS The microbial composition of 77 longitudinal fecal samples obtained from 35 patients (CC, n = 15; EC, n = 20) was characterized using 16S rRNA gene sequencing. Analyses included assessment of alpha (Shannon index) and beta diversity (weighted UniFrac), unbiased hierarchical clustering, and linear discriminant analysis effect size. Correlative studies with demographics, disease characteristics, safety, efficacy, and immune monitoring data were performed. RESULTS Significant enrichment in multiple bacterial taxa was associated with the occurrence or resistance to severe treatment-related adverse events (overall or gastrointestinal toxicity specifically). Consistent differences in GM taxonomic composition before pembrolizumab initiation were observed between patients with favorable efficacy (e.g., enriched with Blautia genus) and those with poor efficacy (e.g., enriched with Enterobacteriaceae family and its higher-level taxa up to the phylum level, as well as Clostridium genus and its Clostridiaceae family). Two naturally occurring GM clusters with distinct bacterial compositions were identified. These clusters showed a more than four-fold differential risk for death (hazard ratio, 4.4 [95 % confidence interval, 1.9 to 10.3], P < 0.001) and were associated with interesting (but non-significant) trends in peripheral immune monitoring data. CONCLUSION Although exploratory, this study offers initial insights into the intricate interplay between the GM and clinical outcomes in patients with CC and EC treated with a pembrolizumab-based regimen. TRIAL REGISTRATION ClinicalTrials.gov (identifier NCT03192059) and EudraCT Registry (number 2016-001569-97).
Collapse
Affiliation(s)
- Emiel A De Jaeghere
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | - Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Sandra Tuyaerts
- Gynaecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute, Leuven, Belgium; Department of Medical Oncology, University Hospital Brussels, Brussels, Belgium; Laboratory for Medical and Molecular Oncology (LMMO), VUB, Brussels, Belgium.
| | - Lien Lippens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | | | - Regina Baiden-Amissah
- Gynaecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute, Leuven, Belgium.
| | - Peter Vuylsteke
- Department of Hemato-Oncology, Centre Hospitalier Universitaire Université Catholique de Louvain Namur (Sainte-Elisabeth), Namur, Belgium.
| | - Stéphanie Henry
- Department of Hemato-Oncology, Centre Hospitalier Universitaire Université Catholique de Louvain Namur (Sainte-Elisabeth), Namur, Belgium.
| | - Xuan Bich Trinh
- Department of Gynecologic Oncology and Senology, University Hospital Antwerp, Edegem, Belgium; Multidisciplinary Oncologic Centre Antwerp (MOCA), University Hospital Antwerp, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Edegem, Belgium.
| | - Peter A van Dam
- Department of Gynecologic Oncology and Senology, University Hospital Antwerp, Edegem, Belgium; Multidisciplinary Oncologic Centre Antwerp (MOCA), University Hospital Antwerp, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Edegem, Belgium.
| | - Sandrine Aspeslagh
- Department of Medical Oncology, University Hospital Brussels, Brussels, Belgium.
| | - Alex De Caluwé
- Department of Radiation Oncology, Jules Bordet Institute, Brussels, Belgium; Department of Radiation Oncology, General Hospital Sint-Maarten, Mechelen, Belgium.
| | - Eline Naert
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | | | - An Hendrix
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
| | - Koen K Van de Vijver
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium; Center for Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute and Amsterdam Medical Center, Amsterdam, the Netherlands.
| | - Frédéric Amant
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium; Center for Gynecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute and Amsterdam Medical Center, Amsterdam, the Netherlands; Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium.
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium.
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Hannelore G Denys
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
39
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
40
|
Simunic M, McGraw K, Pavletic SZ, Rashidi A. Intestinal microbiome and myelodysplastic syndromes: Current state of knowledge and perspectives for future. Semin Hematol 2024; 61:442-448. [PMID: 39551677 PMCID: PMC11646173 DOI: 10.1053/j.seminhematol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
The intestinal microbiome has been mechanistically linked with health and many disease processes. Cancer is no exception. Both in solid tumors and hematologic malignancies, there is increasing evidence supporting the involvement of the intestinal microbiome in tumor development, disease progression, response to treatment, and treatment toxicity. Consistent with microbiome mediation of the immune system and the potent effect of the immune system on cancer, the most compelling evidence has been obtained in the setting of cancer immunotherapy. Here, we review the current state of knowledge about microbiome effects in myelodysplastic syndromes, identify gaps and challenges in related research, and provide insights for future work.
Collapse
Affiliation(s)
- Marin Simunic
- Immune Deficiency Cellular Therapy Program (ID-CTP), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Hematology, Clinic for Internal Medicine, Clinical Hospital Center, Split, Croatia
| | - Kathy McGraw
- Immune Deficiency Cellular Therapy Program (ID-CTP), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Z Pavletic
- Immune Deficiency Cellular Therapy Program (ID-CTP), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
41
|
Yue L, Geng F, Jin J, Li W, Liu B, Du M, Gao X, Lü J, Pan X. Lactobacillus reuteri Assists Engineered Bacteria That Target Tumors to Release PD-L1nb to Mitigate the Adverse Effects of Breast Cancer Immunotherapy. Biotechnol J 2024; 19:e202400428. [PMID: 39711089 DOI: 10.1002/biot.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects. REP selectively targets tumors and periodically releases PD-L1nb within tumors via a quorum-sensing lysis system. Administration of 108 colony-forming units (CFU) of REP led to a substantial 52% reduction in tumor growth, achieved through the sustained release of PD-L1nb. Importantly, there were no detectable lesions in other organs, with the exception of mild intestinal damage. Further, we explored the potential of a combined treatment using Lactobacillus reuteri (LR) and REP to alleviate intestinal inflammation. LR modulates the expression of inflammatory markers IL-1β, IL-6, and IL-10 through the JNK pathway, reducing intestinal inflammation without compromising REP's antitumor efficacy. Consequently, we formulated a dual strategy employing an engineered strain and probiotics to reduce the adverse effects of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Lijun Yue
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Feng Geng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayi Jin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Maoru Du
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
42
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Xu S, Kong J, Dai Y, Li H. Prevotellaceae Modulates Colorectal Cancer Immune Microenvironment to Assist Anti-PD-L1 Immunotherapy. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:909-921. [PMID: 39641253 PMCID: PMC11639609 DOI: 10.5152/tjg.2024.23683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/28/2024] [Indexed: 12/07/2024]
Abstract
Background/Aims Colorectal cancer (CRC) stands as the third most prevalent cancer on a global scale. In recent years, immunotherapy, such as anti-PD-L1 treatment, has demonstrated promising therapeutic outcomes in CRC. However, studies have suggested that intestinal microbiota may influence the efficacy of anti-PD-L1 immunotherapy. This study aimed to investigate the linkage between intestinal bacteria and anti-PD-L1 therapy. Materials and Methods Bioinformatics analysis was employed to study the correlation between the intestinal microbiota of CRC patients and immune infiltration. The study delved into the relationship between Prevotellaceae and immune-related genes in CRC. Mouse experiments were conducted to validate the association between Prevotellaceae abundance and the efficacy of anti-PD-L1 tumor treatment. Prevotellaceae abundance in mouse feces was assayed by 16S sequencing. Flow cytometry was utilized to assay immune cell infiltration in patient tumor tissues, while western blot and quantitative polymerase chain reaction (qPCR) assays measured IFN-γ, IL-2, and PD-L1 levels in tumor tissues. Results The high immune cell infiltration group demonstrated reduced tumor purity when compared with the group displaying low immune cell infiltration. Substantial variances were discerned in the Stromal Score, Immune Score, ESTIMATE Score, and Tumor Purity among the 3 distinct subtypes. The community evenness in the gut microbiota of CRC patients from cluster 2 and cluster 3 subtypes displayed significant differences. Members of the Prevotellaceae family were significantly enriched in the gut microbiota of cluster 3 subtype patients. In vivo experiments ascertained the supportive role of Prevotellaceae in anti-PD-L1 immunotherapy. Conclusion The facilitating effect of Prevotellaceae on anti-PD-L1 treatment was demonstrated in CRC. The findings suggest that elevating Prevotellaceae abundance may offer a new direction for assisting in CRC immunotherapy and provide a foundation for devising more effective CRC immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yang Dai
- Department of General Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hengping Li
- Department of General Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
44
|
Podder V, Ranjan T, Margolin K, Maharaj A, Ahluwalia MS. Evaluating the Safety of Immune Checkpoint Inhibitors and Combination Therapies in the Management of Brain Metastases: A Comprehensive Review. Cancers (Basel) 2024; 16:3929. [PMID: 39682118 DOI: 10.3390/cancers16233929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Brain metastases (BM) are a frequent and severe complication in patients with lung cancer, breast cancer, and melanoma. Immune checkpoint inhibitors (ICIs) have become a crucial treatment option for BM, whether used alone or in combination with chemotherapy and stereotactic radiosurgery (SRS). However, ICIs are associated with immune-related adverse events (irAEs) that can affect multiple organ systems, complicating their use in BM patients. This review examines the mechanisms of irAEs and their effects on different organs and evaluates the safety of ICIs across various treatment strategies for BM. Our analysis indicates that ICIs significantly improve survival and disease control in BM patients, but their use increases the risk of irAEs, including dermatologic, gastrointestinal, endocrine, pulmonary, and neurologic toxicities. Neurotoxic events, particularly treatment-associated brain necrosis (TABN) and encephalitis, are more common in BM patients. While the overall incidence of irAEs is similar between patients with and without BM, the neurotoxicity risk is higher in the BM population. Combining ICIs with chemotherapy and SRS enhances efficacy but also heightens the risk of adverse events across organ systems. ICIs offer substantial benefits for BM patients but require careful management to mitigate the risks of irAEs. Close patient monitoring, individualized treatment protocols, and prompt intervention are essential for optimizing the outcomes. Future research should focus on refining combination strategies and improving the management of irAEs, particularly neurotoxicity, to maximize therapeutic benefits for BM patients.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Kim Margolin
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | - Arun Maharaj
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | | |
Collapse
|
45
|
Shatila M, Zhang HC, Shirwaikar Thomas A, Machado AP, Naz S, Mittal N, Catinis C, Varatharajalu K, Colli Cruz C, Lu E, Wu D, Brahmer JR, Carbonnel F, Hanauer SB, Lashner B, Schneider B, Thompson JA, Obeid M, Farris DP, Wang Y. Systematic review of immune checkpoint inhibitor-related gastrointestinal, hepatobiliary, and pancreatic adverse events. J Immunother Cancer 2024; 12:e009742. [PMID: 39542654 PMCID: PMC11575294 DOI: 10.1136/jitc-2024-009742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Gastrointestinal immune-related adverse events (GI irAEs) are common manifestations of immune checkpoint inhibitor (ICI) toxicity. We present a comprehensive systematic review of the incidence, management, and clinical course of irAEs across the entire GI system, including the luminal GI tract, liver, and pancreas. MEDLINE, Embase, Web of Science Core Collection, and Cochrane Library were used to conduct this review. All studies pertaining to GI irAEs were included. Both abstracts and full manuscripts were eligible if they included human subjects and were written in the English language. Articles not available in English, animal studies, or research not specific to GI toxicity of immunotherapy were excluded. We excluded certain article types depending on whether stronger evidence was available in the literature for a specific toxicity, for example, if prospective studies were available on a topic, retrospective studies and case reports were excluded. We extracted a final 166 articles for our review and followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for data reporting. Risk of bias tools were not used to evaluate the extracted studies given the narrative nature of this manuscript, but each study was critically appraised by the manuscript writer. We detail the incidence, presentation, evaluation, management, and outcomes of the various GI toxicities that may arise with ICI therapy. Specifically, we discuss the characteristics of upper GI toxicity (esophagitis and gastroenteritis), lower GI toxicity (colitis), hepatobiliary inflammation, pancreatitis, and rarer forms of GI toxicity. We hope this review serves as a useful and accessible clinical tool that helps physicians familiarize themselves with the nuances of gastrointestinal/hepatic/pancreatic ICI toxicity diagnosis and management.
Collapse
Affiliation(s)
- Malek Shatila
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Chi Zhang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Antonio Pizuorno Machado
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sidra Naz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitish Mittal
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christine Catinis
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Krishnavathana Varatharajalu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Colli Cruz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Lu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Deanna Wu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julie R Brahmer
- Department of Thoracic Medical Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Franck Carbonnel
- Department of Gastroenterology, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stephen B Hanauer
- Department of Gastroenterology, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Bret Lashner
- Center for Inflammatory Bowel Disease, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bryan Schneider
- Department of Thoracic Medical Oncology, University of Michigan, Ann Arbor, Michigan, UK
| | - John A Thompson
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Michel Obeid
- Department of Medicine, Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David P Farris
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
46
|
Lo JW, Schroeder JH, Roberts LB, Mohamed R, Cozzetto D, Beattie G, Omer OS, Ross EM, Heuts F, Jowett GM, Read E, Madgwick M, Neves JF, Korcsmaros T, Jenner RG, Walker LSK, Powell N, Lord GM. CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner. Nat Commun 2024; 15:9520. [PMID: 39496592 PMCID: PMC11535242 DOI: 10.1038/s41467-024-51719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2024] [Indexed: 11/06/2024] Open
Abstract
The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors, particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease and immune checkpoint colitis. Here, we show that CTLA-4 is expressed by innate lymphoid cells and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 in multiple in vivo models of colitis demonstrates that this pathway plays a key role in intestinal homeostasis. Lastly, we have found that this observation is conserved in human IBD. We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.
Collapse
Affiliation(s)
- Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rami Mohamed
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Matthew Madgwick
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Richard G Jenner
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
47
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
48
|
Adhikari NP, Adhikari S, Rijal KR. Community composition and co-occurrence of free-living and particle-attached bacteria in the source region of the Ganges and Brahmaputra Rivers. Int Microbiol 2024:10.1007/s10123-024-00607-6. [PMID: 39400629 DOI: 10.1007/s10123-024-00607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Bacteria have two trophic lifestyles in aquatic ecosystems, i.e., free-living (FL) and particle-attached (PA), with different but essential ecological roles. However, relevant knowledge is still dearth in the upstream source region of the Himalayan Rivers. Thus, we emphasized a comparative study on community composition, co-occurrence, and geographic distribution of the FL and PA bacteria and the effect of environmental factors in the source region of the Ganges and Brahmaputra Rivers. PA bacteria relative to FL harbored a significantly higher local diversity, richness, and evenness. A significantly higher abundance of Betaproteobacteria, Verrucomicrobiota, and Planctomycetota in PA trophic lifestyle and Gammaproteobacteria and Actinomycetota in FL tropic lifestyle and indicator OTUs belonging to related taxa were observed. The spatial variation of the FL and PA bacterial communities was most significantly impacted by dispersal limitation as a discrete factor. Among the environmental parameters, the total nitrogen (TN) was found to be a significant (P < 0.001) driver of the variation in PA communities. Meanwhile, particulate organic carbon (POC) and TN considerably explained the variation of FL communities. A significant correlation (P < 0.001) of TN with dominant bacterial taxa (Pseudomonadota, Actinomycetota, and Verrucomicrobiota) and FL and PA indicator OTUs associated with these taxa further confirmed nitrogen as the limiting nutrient in the source region of the Ganges and Brahmaputra Rivers. The co-occurrence network topological characteristics showed that the PA network was more stable than the FL network, which was more complicated and unstable. Thus, it can be speculated that FL communities relative to PA are more vulnerable to shifting upon disturbances.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Subash Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Kathmandu, Nepal
| |
Collapse
|
49
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
50
|
Pasoto SG, Franco AS, Silva CA, Bonfa E. Sicca syndrome/Sjögren's disease associated with cancer immunotherapy: a narrative review on clinical presentation, biomarkers, and management. Expert Rev Clin Immunol 2024; 20:1149-1167. [PMID: 38903050 DOI: 10.1080/1744666x.2024.2370327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Almost one-quarter of immune checkpoint inhibitor (ICI) recipients experience sicca syndrome, while Sjögren's disease (SjD) is estimated at 0.3-2.5%, possibly underreported. AREAS COVERED This narrative review (Medline/Embase until January/31/2024) addresses the pathophysiology, incidence, demographic/clinical features, biomarkers, labial salivary gland biopsy (LSGB), fulfillment of the idiopathic SjD (iSjD) classificatory criteria, differential diagnosis, and management of sicca syndrome/SjD associated with ICIs. EXPERT OPINION SjD associated with ICIs is underdiagnosed, since studies that performed the mandatory SjD investigation identified that 40-60% of patients with sicca syndrome associated with ICIs meet the iSjD classificatory criteria. LSGB played a fundamental role in recognizing these cases, as most of them had negative anti-Ro/SS-A antibody. Despite the finding of focal lymphocytic sialoadenitis in LSGB samples mimicking iSjD, immunohistochemical analysis provided novel evidence of a distinct pattern for sicca syndrome/SjD associated with ICIs compared to iSjD. The former has scarcity of B lymphocytes, which are a hallmark of iSjD. Additionally, patients with sicca syndrome/SjD associated with ICIs have demographical/clinical/serological and treatment response dissimilarities compared to iSjD. Dryness symptoms are more acute in the former than in iSjD, with predominance of xerostomia over xerophthalmia, and partial/complete response to glucocorticoids. Dryness symptoms in ICI-treated patients warrant prompt SjD investigation.
Collapse
Affiliation(s)
- Sandra Gofinet Pasoto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - André Silva Franco
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Eloisa Bonfa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| |
Collapse
|