1
|
Van Swearingen AED, Lee MR, Rogers LW, Sibley AB, Shi P, Qin X, Goodin M, Seale K, Owzar K, Anders CK. Genomic and immune profiling of breast cancer brain metastases. Acta Neuropathol Commun 2025; 13:99. [PMID: 40355907 PMCID: PMC12070617 DOI: 10.1186/s40478-025-02001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Brain metastases (BrM) arising from breast cancer (BC) are an increasing consequence of advanced disease, with up to half of patients with metastatic HER2 + or triple negative BC experiencing central nervous system (CNS) recurrence. The genomic alterations driving CNS recurrence, along with contributions of the immune microenvironment, particularly by intrinsic subtype, remain unclear. METHODS We characterized the genomic and immune landscape of BCBrM from a cohort of 42 patients by sequencing whole-exome DNA (WES) and total RNA libraries from frozen and FFPE BrM and FFPE extracranial tumors (ECT). Analyses included PAM50 intrinsic subtypes, somatic mutations, copy number variations (CNV), pathway alterations, immune cell type deconvolution, and associations with clinical outcomes RESULTS: Intrinsic subtype calls were concordant for the majority of BrM-ECT pairs (60%). Across all BrM and ECT samples, the most common somatic gene mutation was TP53 (64%, 30/47). For patients with matched FFPE BrM-FFPE ECT, alterations tended to be conserved across tissue type, although differential somatic mutations and CNV in specific genes were observed. Several genomic pathways were differentially expressed between patient-matched BrM-ECT; MYC targets, DNA damage repair, cholesterol homeostasis, and oxidative phosphorylation were higher in BrM, while immune-related pathways were lower in BrM. Deconvolution of immune populations between BrM-ECT demonstrated activated dendritic cell populations were higher in BrM compared to ECT. Increased expression of several oncogenic preselected pathways in BrM were associated with inferior survival, including DNA damage repair, inflammatory response, and oxidative phosphorylation CONCLUSIONS: Collectively, this study illustrates that while some genomic alterations are shared between BrM and ECT, there are also unique aspects of BrM including somatic mutations, CNV, pathway alterations, and immune landscape. A deeper understanding of differences inherent to BrM will contribute to the development of BrM-tailored therapeutic strategies. Additional analyses are warranted in larger cohorts, particularly with additional matched BrM-ECT.
Collapse
Affiliation(s)
| | - Marissa R Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Layne W Rogers
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander B Sibley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael Goodin
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Katelyn Seale
- Duke Cancer Institute, Duke University Hospital, Durham, NC, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Carey K Anders
- Department of Medical Oncology, Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University, 10 Searle Center Drive, Campus Box 3881, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Zhang W, Wang S, Xing Y, Luo X, Wang R, Yu F. Bioorthogonal SERS-bioluminescence dual-modal imaging for real-time tracking of triple-negative breast cancer metastasis. Acta Biomater 2025; 197:431-443. [PMID: 40101869 DOI: 10.1016/j.actbio.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, characterized by early metastasis and a poor prognosis. Traditional imaging modalities often lack the sensitivity and molecular specificity required for the early detection of metastatic lesions. In this study, we developed a dual-modal imaging strategy that integrates surface-enhanced Raman scattering (SERS) and bioluminescence imaging probes, utilizing bioorthogonal labeling to track TNBC organ metastasis. The SERS probes were encapsulated with azide-labeled macrophage membranes to extend circulation time and enhance targeting efficiency. Additionally, bioorthogonal metabolic glycolengineering was employed to modify luciferase-labeled tumor cells (4T1-Luc) with bicyclo[6.1.0]nonyne (BCN) groups, facilitating precise binding between the probes and 4T1-Luc cells through click chemistry reactions. This dual-modal imaging approach enabled real-time monitoring of small metastatic lesions with high sensitivity, providing a non-invasive and accurate method for assessing tumor metastasis and therapeutic response in vivo. Our findings indicate that the dual-modal imaging technique, combining SERS and bioluminescence with bioorthogonal labeling, holds significant potential for advanced applications in oncology. STATEMENT OF SIGNIFICANCE: This study devised a surface-enhanced Raman scattering (SERS) and bioluminescence dual-modal imaging strategy integrated with a bioorthogonal label to address the challenge of tracking the metastasis of aggressive triple-negative breast cancer (TNBC). In contrast to conventional methods, this approach facilitated real-time, whole-body monitoring of tumor dissemination through bioluminescence. Simultaneously, it achieved the detection of micro-metastases in organs using SERS, thereby exceeding the sensitivity limitations of existing imaging techniques. Clinical validation with human samples further demonstrated its potential for non-invasive therapeutic assessment and early intervention. By bridging preclinical innovation and clinical requirements, this research offered a transformative tool for precision oncology. It is expected to attract the interest of researchers in the fields of biomedicine, nanotechnology, and cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China
| | - Sisi Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China; Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China
| | - Xianzhu Luo
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China.
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, PR China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
3
|
Dwarshuis G, Kroon LL, Brandsma D, Noske DP, Best MG, Sol N. Liquid biopsies for the monitoring of gliomas and brain metastases in adults. Acta Neuropathol 2025; 149:37. [PMID: 40285800 PMCID: PMC12033197 DOI: 10.1007/s00401-025-02880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Clinical evaluation and MR imaging are currently the cornerstone of brain tumor progression monitoring. However, this is complicated by the occurrence of treatment effects such as pseudoprogression and radionecrosis. While essential for patient management, the distinction from true progression remains a significant challenge. Moreover, MR imaging provides limited real-time insights into tumor heterogeneity, genetic divergence, and treatment resistance. Although surgical histopathological biopsies can yield additional valuable information, they are not always conclusive, invasive, and therefore, not suitable for longitudinal measurements. In the era of precision medicine, there is a critical need for minimally invasive, accurate, and cost-effective monitoring methods for both primary brain tumors and brain metastases. Liquid biopsies have emerged as a potential candidate. Various analytes, including circulating nucleic acids, extracellular vesicles, platelet RNAs, and circulating tumor cells, can be obtained from whole blood and its derivatives, as well as other body fluids such as cerebrospinal fluid. In this narrative review, we outline the potential of liquid biopsies for the management of gliomas and brain metastases in adults and emphasize their utility in monitoring disease progression and treatment response. We discuss the most studied biofluids and analytes, along with their respective advantages and downsides. Furthermore, we address key considerations for future research and biobanking to pave the way for clinical implementation.
Collapse
Affiliation(s)
- Govert Dwarshuis
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lente L Kroon
- Department of Neurology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Dieta Brandsma
- Department of Neurology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Myron G Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nik Sol
- Department of Neurology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Wang S, Guo J, Xian X, Li M, Zhang A, Liu Y, Zhang Y, Chen S, Gu G, Zhang X, Yan D, An M, Pan L, Fu B. Distinct 5-methylcytosine profiles of LncRNA in breast cancer brain metastasis. BMC Cancer 2025; 25:557. [PMID: 40148799 PMCID: PMC11951547 DOI: 10.1186/s12885-025-13948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Recent studies have identified a complex relationship between methylation patterns and the development of various cancers. Breast cancer (BC) is the second leading cause of cancer mortality among women. Approximately 5-20% of BC patients are at risk of BC brain metastases (BCBM). Although 5-methylcytosine (m5C) has been identified as an important regulatory modifier, its distribution in BCBM is not well understood. This study aimed to investigate the distribution of m5C in BCBM. MATERIALS AND METHODS Samples from BCBM (231-BR cells) and BC (MDA-MB-231 cells) groups were subjected to a comprehensive analysis of the m5C methylation in long non-coding RNA (lncRNA) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq). The expression levels of methylated genes in BC and adjacent tissues were verified through quantitative real-time polymerase chain reaction (RT-qPCR). Enrichment pathway analyses were through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to predict the potential functions of m5C in BCBM. RESULTS The MeRIP-seq analysis identified 23,934 m5C peaks in BCBM and 21,236 m5C in BC. A total of 9,480 annotated genes (BCBM) and 8,481 annotated genes (BC) were mapped. Notably, 1,819 methylation sites in lncRNA were upregulated in BCBM, whereas 2,415 methylation sites were upregulated in BC. Significant m5C hypermethylated lncRNAs included ENST00000477316, ENST00000478098 and uc002gtt.1, whereas hypomethylated lncRNAs included ENST00000600912, ENST00000493668, ENST00000544651 and ENST00000464989. These results were verified by qPCR and MeRIP-qPCR in BC and BCBM. Considering the strong association between m5C RNA methylation regulators and lncRNA, we examined the expression levels of 13 m5C RNA methylation regulators and observed significant differences between BC tissues and adjacent normal tissues. In addition, the interaction between regulators of altered expression and the differentially expressed genes in vitro was analyzed. The GO and KEGG pathways analyses revealed that genes significantly associated with m5C sites in lncRNA were linked to the BCBM signaling pathways. CONCLUSION This uncovered significant variations in the levels and distribution of m5C in BCBM compared to BC. The findings provide a new theoretical understanding of the mechanisms of BCBM.
Collapse
Affiliation(s)
- Song Wang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Xinmiao Xian
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Min Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, 252000, Shandong, P. R. China
| | - Yujiao Liu
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, P. R. China
| | - Yifei Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Shen Chen
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P. R. China
| | - Guohao Gu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Xuehua Zhang
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Dong Yan
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, Shandong, 252000, P. R. China.
| | - Li Pan
- Department of Central Laboratory, Liaocheng People's Hospital, 67 Dongchang west Road, Liaocheng, 252000, Shandong, P. R. China.
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, P. R. China.
- Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng, P. R. China.
| |
Collapse
|
5
|
Liu M, Wang C, Hu Q, Wu X, Wang Q, Wang J, Xu K, Lu X, Tian W. Single-cell sequencing revealed the necessity of macrophages in brain microenvironment remodeling by breast cancer metastasis. Transl Oncol 2025; 53:102287. [PMID: 39837060 PMCID: PMC11788856 DOI: 10.1016/j.tranon.2025.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Breast cancer is one of the most common cancers worldwide, 30-50 % of patients with advanced breast cancer develop brain metastasis, causing severe damage to their life quality. Due to the existence of the blood-brain barrier (BBB), brain lesions were recognized to be a unique microenvironment with limited infiltration of circulating immune cells and drugs. However, emerging studies reported the immunology of the brain tumor microenvironment (TME) and indicated the potential of immunotherapy against brain metastases. Therefore, it is of great value to comprehensively investigate the TME and identify the pro-tumoral mechanisms facilitating brain metastases and the crucial molecules involved in this process. In this research, we re-analyzed public data on three brain surgical specimens of breast cancer metastases and identified the immunosuppressive roles of macrophages in the metastatic TME. Then, we conducted the first single-cell RNA sequencing on a murine model of breast cancer brain metastasis. In the brain TME, immune cells showed prominent heterogeneity, especially the mononuclear phagocyte system (MPS). We identified the alteration of macrophage subclusters in the central nerve system (CNS) after breast cancer invasion and found that metastatic cancer cells re-shaped the TME cellular interactions for immune evasion and nutrition supply. Finally, this research could serve as a reference for further analysis of new therapies against brain metastatic lesions.
Collapse
Affiliation(s)
- Maotang Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - CenZhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qin Hu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - XueChao Wu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Jing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Kun Xu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - XiaoJie Lu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| | - Wei Tian
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| |
Collapse
|
6
|
Powell AM, Watson L, Luzietti L, Prekovic S, Young LS, Varešlija D. The epigenetic landscape of brain metastasis. Oncogene 2025:10.1038/s41388-025-03315-1. [PMID: 40016470 DOI: 10.1038/s41388-025-03315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Brain metastasis represents a significant challenge in oncology, driven by complex molecular and epigenetic mechanisms that distinguish it from primary tumors. While recent research has focused on identifying genomic mutation drivers with potential clinical utility, these strategies have not pinpointed specific genetic mutations responsible for site-specific metastasis to the brain. It is now clear that successful brain colonization by metastatic cancer cells requires intricate interactions with the brain tumor ecosystem and the acquisition of specialized molecular traits that facilitate their adaptation to this highly selective environment. This is best exemplified by widespread transcriptional adaptation during brain metastasis, resulting in aberrant gene programs that promote extravasation, seeding, and colonization of the brain. Increasing evidence suggests that epigenetic mechanisms play a significant role in shaping these pro-brain metastasis traits. This review explores dysregulated chromatin patterns driven by chromatin remodeling, histone modifications, DNA/RNA methylation, and other epigenetic regulators that underpin brain metastatic seeding, initiation, and outgrowth. We provide novel insights into how these epigenetic modifications arise within both the brain metastatic tumor and the surrounding brain metastatic tumor ecosystem. Finally, we discuss how the inherent plasticity and reversibility of the epigenomic landscape in brain metastases may offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Aoibhín M Powell
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Louise Watson
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lara Luzietti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie S Young
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
7
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
8
|
Curtaz CJ, Harms J, Schmitt C, Sauer ST, Christner SA, Keßler A, Wöckel A, Meybohm P, Burek M, Feldheim J, Feldheim J. Prognostic Factors in Therapy Regimes of Breast Cancer Patients with Brain Metastases: A Retrospective Monocentric Analysis. Cancers (Basel) 2025; 17:261. [PMID: 39858042 PMCID: PMC11763549 DOI: 10.3390/cancers17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Breast cancer patients who develop brain metastases have a high mortality rate and a massive decrease in quality of life. Approximately 10-15% of all patients with breast cancer (BC) and 5-40% of all patients with metastatic BC develop brain metastasis (BM) during the course of the disease. However, there is only limited knowledge about prognostic factors in the treatment of patients with brain metastases in breast cancer (BMBC). Therefore, we retrospectively analyzed data of BMBC patients from the University Hospital of Würzburg for treatment patterns to find characteristics associated with a better or worse prognosis. These findings should help to treat the ever-increasing collective of patients with BMBC better in the future. Methods: The clinical data of 337 patients with cerebral metastatic breast cancer (date of death between 2004 and 2021) treated at the Department of Gynecology and Obstetrics of the University Hospital Würzburg were retrospectively analyzed, with a focus on patients' survival. Results: The involvement of regional lymph nodes at initial diagnosis, the immunohistochemical subtype of TNBC at the onset of BMBC, and extracranial metastases at the time of BM diagnosis (bone, liver, lung metastases) were associated with a worse prognosis. In contrast, the immunohistochemical subtype of HER2/neu, the sole occurrence of a singular BM, the local surgical removal of BMs, and radiotherapy (especially stereotactic radiotherapy) were associated with prolonged survival. The number of therapies before the diagnosis of BMs also had a prognostic influence. Conclusions: Looking back at data is crucial for pinpointing risk elements affecting survival after a BM diagnosis. In our investigation, along with established factors like immunohistologic subtype, BM count, surgical excision, stereotactic irradiation, and type of extracranial metastasis, we also found that the number of therapies before BM diagnosis and the initial lymph node status were associated with patients' survival. Potentially, these factors could be included in prospective prognostic scores for evaluating brain metastasis survival rates, thereby aiding in making appropriate treatment suggestions for impacted patients.
Collapse
Affiliation(s)
- Carolin Julia Curtaz
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Judith Harms
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Constanze Schmitt
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (S.T.S.); (S.A.C.)
| | - Sara Aniki Christner
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (S.T.S.); (S.A.C.)
| | - Almuth Keßler
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Julia Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jonas Feldheim
- Department of Neurology, University Hospital Nürnberg, Paracelsus Medical University, 90471 Nürnberg, Germany
| |
Collapse
|
9
|
Tanzhu G, Chen L, Ning J, Xue W, Wang C, Xiao G, Yang J, Zhou R. Metastatic brain tumors: from development to cutting-edge treatment. MedComm (Beijing) 2025; 6:e70020. [PMID: 39712454 PMCID: PMC11661909 DOI: 10.1002/mco2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024] Open
Abstract
Metastatic brain tumors, also called brain metastasis (BM), represent a challenging complication of advanced tumors. Tumors that commonly metastasize to the brain include lung cancer and breast cancer. In recent years, the prognosis for BM patients has improved, and significant advancements have been made in both clinical and preclinical research. This review focuses on BM originating from lung cancer and breast cancer. We briefly overview the history and epidemiology of BM, as well as the current diagnostic and treatment paradigms. Additionally, we summarize multiomics evidence on the mechanisms of tumor occurrence and development in the era of artificial intelligence and discuss the role of the tumor microenvironment. Preclinically, we introduce the establishment of BM models, detailed molecular mechanisms, and cutting-edge treatment methods. BM is primarily treated with a comprehensive approach, including local treatments such as surgery and radiotherapy. For lung cancer, targeted therapy and immunotherapy have shown efficacy, while in breast cancer, monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates are effective in BM. Multiomics approaches assist in clinical diagnosis and treatment, revealing the complex mechanisms of BM. Moreover, preclinical agents often need to cross the blood-brain barrier to achieve high intracranial concentrations, including small-molecule inhibitors, nanoparticles, and peptide drugs. Addressing BM is imperative.
Collapse
Affiliation(s)
- Guilong Tanzhu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Liu Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jiaoyang Ning
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wenxiang Xue
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunJilinChina
| | - Ce Wang
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Gang Xiao
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Yang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Rongrong Zhou
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- Xiangya Lung Cancer CenterXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
10
|
Giannoudis A, Sokol ES, Bhogal T, Ramkissoon SH, Razis ED, Bartsch R, Shaw JA, McGregor K, Clark A, Huang RSP, Palmieri C. Breast cancer brain metastases genomic profiling identifies alterations targetable by immune-checkpoint and PARP inhibitors. NPJ Precis Oncol 2024; 8:282. [PMID: 39706915 DOI: 10.1038/s41698-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases. Homologous recombination deficiency as measured by BRCA1/2 alteration prevalence and loss-of-heterozygosity and immune checkpoint inhibitor (ICI) biomarkers [Tumor mutation burden (TMB)-High, Microsatellite instability (MSI)-High, PD-L1/L2)] were significantly more prevalent in BCBM than local BC and N-CNS. High PD-L1 protein expression was observed in ER-negative/HER2-negative BCBMs (48.3% vs 50.0% in local BCs, 21.4% in N-CNS). Our data highlights that a high proportion of BCBMs are potentially amenable to treatment with targeted therapeutic agents including PARP inhibitors and ICIs.
Collapse
Affiliation(s)
- A Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - E S Sokol
- Foundation Medicine, Inc., Boston, MA, USA
| | - T Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - E D Razis
- Hygeia Hospital, 3rd Oncology Department, Marousi, Athens, Greece
| | - R Bartsch
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - K McGregor
- Foundation Medicine, Inc., Boston, MA, USA
| | | | | | - C Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
11
|
Garrone O, Ruatta F, Rea CG, Denaro N, Ghidini M, Cauchi C, Bareggi C, Galassi B, Merlano MC, Rosenfeld R. Current Evidence in the Systemic Treatment of Brain Metastases from Breast Cancer and Future Perspectives on New Drugs, Combinations and Administration Routes: A Narrative Review. Cancers (Basel) 2024; 16:4164. [PMID: 39766062 PMCID: PMC11675070 DOI: 10.3390/cancers16244164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the most frequently diagnosed neoplasm all over the world and the second leading cause of cancer death in women. Breast cancer prognosis has significantly improved in the last years due to the advent of novel therapeutic options, both in the early and in advanced stages. However, the spread of the disease to the brain, accounting for 15-30% of the metastatic diagnoses, is challenging, and its poor prognosis represents an unmet medical need, leading to deterioration of quality of life and causing morbidity and mortality. Generally, triple-negative and HER2-positive breast cancer subtypes more frequently spread to the brain or in the leptomeningeal space. Consequently, according to international guidelines, several systemic treatments can be offered as a first option in some subsets of patients. However, a multidisciplinary approach is recommended to offer the most appropriate strategy to patients. Antibody-drug conjugates such as trastuzumab deruxtecan or sacituzumab govitecan along with small molecules have led to important achievements in the treatment of brain metastases from HER2-positive and triple-negative breast cancer. In this narrative review, we will focus on the molecular features leading to the development of brain metastases and explore the risk and the prognostic factors involved in the development of brain metastases. Finally, we will review the major achievements in the treatment landscape of brain metastases from breast cancer and novel medical approaches.
Collapse
Affiliation(s)
- Ornella Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Fiorella Ruatta
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Carmen Giusy Rea
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Nerina Denaro
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Michele Ghidini
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Carolina Cauchi
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Claudia Bareggi
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Barbara Galassi
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| | - Marco C. Merlano
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy;
| | - Roberto Rosenfeld
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.); (C.G.R.); (N.D.); (M.G.); (C.C.); (C.B.); (B.G.); (R.R.)
| |
Collapse
|
12
|
Cai P, Li J, An M, Li M, Guo J, Li J, Li X, Chen S, Zhang A, Li P, Liu Y, Zhang W, Fu B. Comprehensive analysis of RNA-5-methylcytosine modification in breast cancer brain metastasis. Future Oncol 2024; 20:2993-3008. [PMID: 39345093 PMCID: PMC11572191 DOI: 10.1080/14796694.2024.2405459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Aim: To delineate the RNA-5-methylcytosine (m5C) modification of breast cancer brain metastasis (BCBM).Methods: Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) was performed to obtain RNA-m5C patterns of BCBM.Results: 1048 hypermethylation and 1866 hypomethylation m5C peaks were identified in BCBM compared with those in breast cancer. The most significant m5C hypermethylated genes included ENG, SHANK1, IGFN1, EVL and MMP9, whereas the most significant m5C hypomethylated genes included AREG, SAA2, TP53I11, KRT7 and LCN2. MeRIP-qPCR data were concordant with the corresponding MeRIP-seq results in terms of the observed m5C levels. Conjoint analysis identified 190 hyper-up genes characterized by concurrent m5C hypermethylation and up-regulation, alongside 284 hypo-down genes exhibiting both m5C hypomethylation and down-regulation.Conclusion: This study presents the first comprehensive analysis of RNA-m5C modification in BCBM.
Collapse
Affiliation(s)
- Peiying Cai
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Jichao Li
- Department of Clinical Laboratory, Liaocheng Women & Children Hospital, Liaocheng, P.R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Min Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Jun Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Xuan Li
- Department of Molecular Pharmacology Key Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Shen Chen
- Department of Breast & Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Peng Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Yan Liu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Wei Zhang
- Department of Breast & Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| |
Collapse
|
13
|
Zhao YY, Fan Z, Tao BR, Du ZG, Shi ZF. Density of tertiary lymphoid structures predicts clinical outcome in breast cancer brain metastasis. J Immunother Cancer 2024; 12:e009232. [PMID: 39067874 DOI: 10.1136/jitc-2024-009232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Patients with breast cancer brain metastases (BCBM) experience a rapid decline in their quality of life. Recently, tertiary lymphoid structures (TLSs), analogs of secondary lymphoid organs, have attracted extensive attention. However, the potential clinical implications of TLSs in BCBMs are poorly understood. In this study, we evaluated the density and composition of TLSs in BCBMs and described their prognostic value. METHODS Clinicopathological data were collected from 98 patients (2015-2021). TLSs were evaluated, and a TLS scoring system was constructed. Differences in progression-free survival (PFS) and overall survival (OS) between groups were calculated using the Kaplan-Meier method. Immunohistochemistry and multiplex immunofluorescence (mIF) were used to assess TLSs heterogeneity. RESULTS TLSs were identified in 47 patients with BCBM. High TLSs density indicated favorable survival (OS, p=0.003; PFS, p<0.001). TLS was positively associated with OS (p=0.0172) and PFS (p=0.0161) in the human epidermal growth factor receptor type 2-positive subtype, and with prolonged OS (p=0.0482) in the triple-negative breast cancer subtype. The mIF results showed significant differences in the percentages of T follicular helper (Tfh) cells, M2 macrophages, cytotoxic T lymphocytes, and CD8+TIM-3+ T lymphocytes between the groups of TLS scores 0-3 (cytotoxic T lymphocytes, p=0.044; Tfh, p=0.021; M2 macrophages, p=0.033; CD8+TIM-3+ T lymphocytes, p=0.018). Furthermore, novel nomograms incorporating the TLS scores and other clinicopathological predictors demonstrated prominent predictability of the 1-year, 3-year, and 5-year outcomes of BCBMs (area under the curve >0.800). CONCLUSION Our results highlight the impact of TLSs abundance on the OS and PFS of patients with BCBM. Additionally, we described the immune composition of TLSs and proposed novel nomograms to predict the prognosis of patients with BCBM.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Bao-Rui Tao
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zun-Guo Du
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
14
|
Bhattacharya K, Mahajan A, Mynalli S. Imaging Recommendations for Diagnosis, Staging, and Management of Central Nervous System Neoplasms in Adults: CNS Metastases. Cancers (Basel) 2024; 16:2667. [PMID: 39123394 PMCID: PMC11311790 DOI: 10.3390/cancers16152667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Brain metastases (BMs) are the most common central nervous system (CNS) neoplasms, with an increasing incidence that is due in part to an overall increase in primary cancers, improved neuroimaging modalities leading to increased detection, better systemic therapies, and longer patient survival. OBJECTIVE To identify cancer patients at a higher risk of developing CNS metastases and to evaluate associated prognostic factors. METHODS Review of imaging referral guidelines, response criteria, interval imaging assessment, modality of choice, as well as the association of clinical, serological, and imaging findings as per various cancer societies. RESULTS Quantitative response assessment of target and non-target brain metastases as well as an interval imaging protocol set up based on primary histological diagnosis and therapy status are discussed as per various cancer societies and imaging programs. CONCLUSION Predictive factors in the primary tumor as well as independent variables of brain metastases like size, number, and response to therapy are necessary in management. The location of CNS metastases, symptomatic disease, as well as follow up imaging findings form a skeletal plan to prognosticate the disease, keeping in mind all the available new advanced therapy options of surgery, radiation, and immunotherapy that improve patient outcome significantly.
Collapse
Affiliation(s)
- Kajari Bhattacharya
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, India; (K.B.); (S.M.)
| | - Abhishek Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, 65 Pembroke Place, Liverpool L7 8YA, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Soujanya Mynalli
- Department of Radiodiagnosis, Tata Memorial Hospital, Parel, Mumbai 400012, India; (K.B.); (S.M.)
| |
Collapse
|
15
|
Seehawer M, Li Z, Nishida J, Foidart P, Reiter AH, Rojas-Jimenez E, Goyette MA, Yan P, Raval S, Munoz Gomez M, Cejas P, Long HW, Papanastasiou M, Polyak K. Loss of Kmt2c or Kmt2d drives brain metastasis via KDM6A-dependent upregulation of MMP3. Nat Cell Biol 2024; 26:1165-1175. [PMID: 38926506 PMCID: PMC11251985 DOI: 10.1038/s41556-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
KMT2C and KMT2D, encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of Kmt2c or Kmt2d in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified Mmp3 as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with KMT2C-mutant TNBC have higher MMP3 levels. Downregulation or pharmacological inhibition of KDM6A diminished Mmp3 upregulation induced by the loss of histone-lysine N-methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of Mmp3. Taken together, we identified the KDM6A-matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC.
Collapse
Affiliation(s)
- Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Ernesto Rojas-Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marie-Anne Goyette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pengze Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shaunak Raval
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Bhogal T, Giannoudis A, Sokol E, Ali S, Palmieri C. Analysis of Breast Cancer Brain Metastases Reveals an Enrichment of Cyclin-Dependent Kinase 12 Structural Rearrangements in Human Epidermal Growth Factor Receptor 2-Positive Disease. JCO Precis Oncol 2024; 8:e2300639. [PMID: 38838276 DOI: 10.1200/po.23.00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.
Collapse
Affiliation(s)
- Talvinder Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Athina Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ethan Sokol
- Computational Discovery, Foundation Medicine, Inc, Cambridge, MA
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | - Carlo Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
17
|
Santos L, Moreira JN, Abrunhosa A, Gomes C. Brain metastasis: An insight into novel molecular targets for theranostic approaches. Crit Rev Oncol Hematol 2024; 198:104377. [PMID: 38710296 DOI: 10.1016/j.critrevonc.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.
Collapse
Affiliation(s)
- Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Antero Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal
| | - Célia Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-075, Portugal.
| |
Collapse
|
18
|
Zhou H, He X, Huang J, Zhong Y, Zhang L, Ao X, Zhao H, Hu S, Li H, Huang J, Huang H, Liang H. Single-cell sequencing reveals the immune landscape of breast cancer patients with brain metastasis. Thorac Cancer 2024; 15:702-714. [PMID: 38316626 PMCID: PMC10961220 DOI: 10.1111/1759-7714.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Breast cancer has the highest incidence rate of cancer worldwide, and brain metastases (BrM) are among the most malignant cases. While some patients have benefited from immune checkpoint inhibitors (ICIs), the complex anatomical structure of the brain and the heterogeneity of metastatic tumors have made it difficult to characterize the tumor immune microenvironment (TME) of metastatic tumors. METHODS To address this, we used single-cell RNA sequencing (scRNA-seq) to analyze immune cells in the cerebrospinal fluid (CSF) of BrM patients with breast cancer, thereby providing a comprehensive view of the immune microenvironment landscape of BrM. RESULTS Based on canonical marker genes, we identified nine cell types, and further identified their subtypes through differential expression gene (DEG) analysis. We compared the changes in cells and functions in the immune microenvironment of patients with different prognoses. Our analysis revealed a series of genes that promote tumor immune function (CCR5, LYZ, IGKC, MS4A1, etc.) and inhibit tumor immune function (SCGB2A2, CD24, etc.). CONCLUSIONS The scRNA-seq in CSF provides a noninvasive method to describe the TME of breast cancer patients and guide immunotherapy.
Collapse
Grants
- 202102080096, HL Liang, 201904010331, JQ Huang Guangzhou S&T Project
- 2023A03J0430, HL Liang Guangzhou S&T City and University United Project
- 2022A1515012376, JQ Huang Project Natural Science Foundation of Guangdong Province
- 2021KTSCX091, HL Liang, 2020KTSCX105, JQ Huang Guangdong Provincial Bureau of Education Project
- 20191A011097, HL Liang Guangzhou Health S&T Project
- 202005, HS Li Clinical Key Specialty Project of Guangzhou Medical University
Collapse
Affiliation(s)
- Huaping Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan ProvinceXiangya Hospital, Central South UniversityChangshaChina
| | - Jia Huang
- School of Health ManagementGuangzhou Medical UniversityGuangzhouChina
| | - Yumin Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Leyao Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Xiang Ao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hailin Zhao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Su Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hongsheng Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Jianqing Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
- School of Health ManagementGuangzhou Medical UniversityGuangzhouChina
| | - Hongxin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Hongling Liang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
19
|
Lu Q, Wang N, Jiang K, Zhou H, Zhang P, Zhang J, Wang S, Sun P, Xu F. Comprehensive genomic profiling to identify actionable alterations for breast cancer brain metastases in the Chinese population. ESMO Open 2024; 9:102389. [PMID: 38460250 PMCID: PMC10940923 DOI: 10.1016/j.esmoop.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/24/2023] [Accepted: 01/27/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Breast cancer brain metastasis (BCBM) is a crucial issue in the treatment of breast cancer and is associated with poor prognosis. Therefore, novel therapeutic targets are urgently needed in clinical practice. In this study, we aimed to identify potential actionable targets in brain metastases (BMs) utilising the FoundationOne® CDx (F1CDx). PATIENTS AND METHODS Formalin-fixed paraffin-embedded archived specimens including 16 primary breast tumours (PTs), 49 BCBMs and 7 extracranial metastases (ECMs) from 54 patients who underwent surgery for BCBM were tested using F1CDx. Tumour-infiltrated lymphocytes (TILs) of BMs were also tested using haematoxylin-eosin staining. RESULTS The median tumour mutational burden (TMB) and TILs in BMs were 5.0 (range 0-29) mut/Mb and 1.0% (range 0%-5.0%), respectively. High TMB (≥10 mut/Mb) was detected in four cases (8%). Genomic alterations (GAs) were detected in all samples. The top-ranked somatic mutations in BMs were TP53 (82%), PIK3CA (35%), MLL2 (22%), BRCA2 (14%) and ATM (14%) and the most prevalent copy number alterations were ERBB2 (64%), RAD21 (36%), CCND1 (32%), FGF19 (30%) and FGF3 (30%). The most prevalent GAs were relatively consistent between paired PTs and BMs. Actionable GAs were detected in 94% of all BMs. Consistent rate in actionable GAs was 38% (6/16) between paired PTs/ECMs and BMs. Compared to matched PTs/ECMs, additional actionable GAs (BRAF, FGFR1, PTEN, KIT and CCND1) were discovered in 31% (5/16) of the BMs. CONCLUSIONS TMB and TILs were relatively low in BCBMs. Comparable consistency in actionable GAs was identified between BCBMs and matched PTs/ECMs. It was, therefore, logical to carry out genomic testing for BCBMs to identify potential new therapeutic targets when BCBM specimens were available, as ∼31% of samples carried additional actionable GAs.
Collapse
Affiliation(s)
- Q Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - N Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - K Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - H Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - P Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - J Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - S Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - P Sun
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - F Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
20
|
Gonsalves D, Ciérvide R, Couñago F. Bridging the gap: Predicting brain metastasis in breast cancer. World J Clin Oncol 2024; 15:356-359. [PMID: 38455134 PMCID: PMC10915941 DOI: 10.5306/wjco.v15.i2.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Chen et al explored clinicopathological features and prognostic factors, revealing advanced tumor stage, lung metastases, HER-2 overexpression, and triple-negative status as key contributors. Recent research connects astrocytes' role in brain metastasis with signaling pathways and the impact of Trastuzumab on HER-2 tumor survival. Factors such as positive HER2 status, lack of estrogen receptor expression, and liver metastasis are identified as additional risk factors. The routine use of magnetic resonance imaging, insights into gene mutations associated with metastasis, and the role of radiotherapy, including prophylaxis possibilities, is controversial in clinical practice. Understanding these risk factors in a multidisciplinary collaboration is precise for local treatments and targeted therapies, particularly for HER2+ tumors, impacting directly on longer survival.
Collapse
Affiliation(s)
- Daniela Gonsalves
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Raquel Ciérvide
- Department of Radiation Oncology, HM Hospitales, Madrid 28050, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
- Facultad de Medicina Salud y Deporte, Universidad Europea de Madrid, Madrid 28670, Spain
| |
Collapse
|
21
|
Robinson SD, de Boisanger J, Pearl FMG, Critchley G, Rosenfelder N, Giamas G. A brain metastasis liquid biopsy: Where are we now? Neurooncol Adv 2024; 6:vdae066. [PMID: 38770219 PMCID: PMC11102938 DOI: 10.1093/noajnl/vdae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Brain metastases remain a challenging and feared complication for patients with cancer and research in this area has lagged behind research into metastases to other organs. Due to their location and the risks associated with neurosurgical biopsies, the biology underpinning brain metastases response to treatment and evolution over time remains poorly understood. Liquid biopsies are proposed to overcome many of the limitations present with tissue biopsies, providing a better representation of tumor heterogeneity, facilitating repeated sampling, and providing a noninvasive assessment of tumor biology. Several different liquid biopsy approaches have been investigated including circulating tumor cells, circulating tumor DNA, extracellular vesicles, and tumor-educated platelets; however, these have generally been less effective in assessing brain metastases compared to metastases to other organs requiring improved techniques to investigate these approaches, studies combining different liquid biopsy approaches and/or novel liquid biopsy approaches. Through this review, we highlight the current state of the art and define key unanswered questions related to brain metastases liquid biopsies.
Collapse
Affiliation(s)
- Stephen David Robinson
- Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - James de Boisanger
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Frances M G Pearl
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Giles Critchley
- Department of Neurosurgery, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicola Rosenfelder
- Neuro-Oncology Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
22
|
Gillespie CS, Mustafa MA, Richardson GE, Alam AM, Lee KS, Hughes DM, Escriu C, Zakaria R. Genomic Alterations and the Incidence of Brain Metastases in Advanced and Metastatic NSCLC: A Systematic Review and Meta-Analysis. J Thorac Oncol 2023; 18:1703-1713. [PMID: 37392903 DOI: 10.1016/j.jtho.2023.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Brain metastases (BMs) in patients with advanced and metastatic NSCLC are linked to poor prognosis. Identifying genomic alterations associated with BM development could influence screening and determine targeted treatment. We aimed to establish prevalence and incidence in these groups, stratified by genomic alterations. METHODS A systematic review and meta-analysis compliant with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses were conducted (PROSPERO identification CRD42022315915). Articles published in MEDLINE, EMBASE, and Cochrane Library between January 2000 and May 2022 were included. Prevalence at diagnosis and incidence of new BM per year were obtained, including patients with EGFR, ALK, KRAS, and other alterations. Pooled incidence rates were calculated using random effects models. RESULTS A total of 64 unique articles were included (24,784 patients with NSCLC with prevalence data from 45 studies and 9058 patients with NSCLC having incidence data from 40 studies). Pooled BM prevalence at diagnosis was 28.6% (45 studies, 95% confidence interval [CI]: 26.1-31.0), and highest in patients that are ALK-positive (34.9%) or with RET-translocations (32.2%). With a median follow-up of 24 months, the per-year incidence of new BM was 0.13 in the wild-type group (14 studies, 95% CI: 0.11-0.16). Incidence was 0.16 in the EGFR group (16 studies, 95% CI: 0.11-0.21), 0.17 in the ALK group (five studies, 95% CI: 0.10-0.27), 0.10 in the KRAS group (four studies, 95% CI: 0.06-0.17), 0.13 in the ROS1 group (three studies, 95% CI: 0.06-0.28), and 0.12 in the RET group (two studies, 95% CI: 0.08-0.17). CONCLUSIONS Comprehensive meta-analysis indicates a higher prevalence and incidence of BM in patients with certain targetable genomic alterations. This supports brain imaging at staging and follow-up, and the need for targeted therapies with brain penetrance.
Collapse
Affiliation(s)
- Conor S Gillespie
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad A Mustafa
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - George E Richardson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Ali M Alam
- Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Keng Siang Lee
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - David M Hughes
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Carles Escriu
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom; Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
23
|
Tejada Solís S, Iglesias Lozano I, Meana Carballo L, Mollejo Villanueva M, Díez Valle R, González Sánchez J, Fernández Coello A, Al Ghanem R, García Duque S, Olivares Granados G, Plans Ahicart G, Hostalot Panisello C, Garcia Romero JC, Narros Giménez JL. Brain metastasis treatment guidelines: consensus by the Spanish Society of Neurosurgery Tumor Section. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:308-320. [PMID: 37832786 DOI: 10.1016/j.neucie.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 10/15/2023]
Abstract
Brain metastases are tumors that arise from a tumor cell originated in another organ reaching the brain through the blood. In the brain this tumor cell is capable of growing and invading neighboring tissues, such as the meninges and bone. In most patients a known tumor is present when the brain lesion is diagnosed, although it is possible that the first diagnose is the brain tumor before there is evidence of cancer elsewhere in the body. For this reason, the neurosurgeon must know the management that has shown the greatest benefit for brain metastasis patients, so treatments can be streamlined and optimized. Specifically, in this document, the following topics will be developed: selection of the cancer patient candidate for surgical resection and the role of the neurosurgeon in the multidisciplinary team, the importance of immunohistological and molecular diagnosis, surgical techniques, radiotherapy techniques, treatment updates of chemotherapy and immunotherapy and management algorithms in brain metastases. With this consensus manuscript, the tumor group of the Spanish Society of Neurosurgery (GT-SENEC) exposes the most relevant neurosurgical issues and the fundamental aspects to harmonize multidisciplinary treatment, especially with the medical specialties that are treating or will treat these patients.
Collapse
Affiliation(s)
- Sonia Tejada Solís
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | | | | | | | - Ricardo Díez Valle
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Rajab Al Ghanem
- Departamento de Neurocirugía, Hospital Universitario de Jaén, Spain
| | - Sara García Duque
- Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Farina J, Angelico G, Vecchio GM, Salvatorelli L, Magro G, Puzzo L, Palicelli A, Zanelli M, Altieri R, Certo F, Spadola S, Zizzo M, Barbagallo GMV, Caltabiano R, Broggi G. Brain Metastases from Breast Cancer Histologically Exhibit Solid Growth Pattern with at Least Focal Comedonecrosis: A Histopathologic Study on a Monocentric Series of 30 Cases. Diagnostics (Basel) 2023; 13:3141. [PMID: 37835885 PMCID: PMC10572254 DOI: 10.3390/diagnostics13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Since there are no morphological clues capable of making a pathologist suspect a possible mammary origin of a metastatic lesion without adequate clinical information, the histologic diagnosis of brain metastasis from BC is still based on the immunohistochemical expression of mammary gland markers such as GATA-3, ERs, PgRs and HER-2. The present retrospective study aimed to select purely morphological features capable of suggesting the mammary origin of a metastatic carcinoma in the brain. The following histological features were collected from a series of 30 cases of brain metastases from breast cancer: (i) a solid growth pattern; (ii) the presence of comedonecrosis; and (iii) glandular differentiation. Our results showed that most cases histologically exhibited a solid growth pattern with at least focal comedonecrosis, producing an overall morphology closely reminiscent of mammary high-grade ductal carcinoma in situ. Although the above-mentioned morphological parameters are not strictly specific to a mammary origin, they may have an important diagnostic utility for leading pathologists to suspect a possible breast primary tumor and to include GATA-3, ERs, PgRs and HER-2 in the immunohistochemical panel.
Collapse
Affiliation(s)
- Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giada Maria Vecchio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Lidia Puzzo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (J.F.); (G.A.); (G.M.V.); (L.S.); (G.M.); (L.P.); (R.C.); (G.B.)
| |
Collapse
|
25
|
Gerratana L, Davis AA, Velimirovic M, Clifton K, Hensing WL, Shah AN, Dai CS, Reduzzi C, D'Amico P, Wehbe F, Medford A, Wander SA, Gradishar WJ, Behdad A, Puglisi F, Ma CX, Bardia A, Cristofanilli M. Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): comprehensive circulating tumor DNA (ctDNA) analysis. Breast Cancer Res 2023; 25:112. [PMID: 37784176 PMCID: PMC10546685 DOI: 10.1186/s13058-023-01718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. METHODS The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. RESULTS The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. CONCLUSIONS The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Andrew A Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Velimirovic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Clifton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney L Hensing
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ami N Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles S Dai
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Carolina Reduzzi
- Weill Cornell Medicine, 420 E 70th St, LH 204, New York, NY, 10021, USA
| | - Paolo D'Amico
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Firas Wehbe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth A Wander
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Amir Behdad
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
26
|
Cho S, Joo B, Park M, Ahn SJ, Suh SH, Park YW, Ahn SS, Lee SK. A Radiomics-Based Model for Potentially More Accurate Identification of Subtypes of Breast Cancer Brain Metastases. Yonsei Med J 2023; 64:573-580. [PMID: 37634634 PMCID: PMC10462808 DOI: 10.3349/ymj.2023.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Breast cancer brain metastases (BCBM) may involve subtypes that differ from the primary breast cancer lesion. This study aimed to develop a radiomics-based model that utilizes preoperative brain MRI for multiclass classification of BCBM subtypes and to investigate whether the model offers better prediction accuracy than the assumption that primary lesions and their BCBMs would be of the same subtype (non-conversion model) in an external validation set. MATERIALS AND METHODS The training and external validation sets each comprised 51 cases (102 cases total). Four machine learning classifiers combined with three feature selection methods were trained on radiomic features and primary lesion subtypes for prediction of the following four subtypes: 1) hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)-, 2) HR+/HER2+, 3) HR-/HER2+, and 4) triple-negative. After training, the performance of the radiomics-based model was compared to that of the non-conversion model in an external validation set using accuracy and F1-macro scores. RESULTS The rate of discrepant subtypes between primary lesions and their respective BCBMs were 25.5% (n=13 of 51) in the training set and 23.5% (n=12 of 51) in the external validation set. In the external validation set, the accuracy and F1-macro score of the radiomics-based model were significantly higher than those of the non-conversion model (0.902 vs. 0.765, p=0.004; 0.861 vs. 0.699, p=0.002). CONCLUSION Our radiomics-based model represents an incremental advance in the classification of BCBM subtypes, thereby facilitating a more appropriate personalized therapy.
Collapse
Affiliation(s)
- Seonghyeon Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Terceiro LEL, Ikeogu NM, Lima MF, Edechi CA, Nickel BE, Fischer G, Leygue E, McManus KJ, Myal Y. Navigating the Blood-Brain Barrier: Challenges and Therapeutic Strategies in Breast Cancer Brain Metastases. Int J Mol Sci 2023; 24:12034. [PMID: 37569410 PMCID: PMC10418424 DOI: 10.3390/ijms241512034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Matheus F. Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Chidalu A. Edechi
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Barbara E. Nickel
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Gabor Fischer
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Yvonne Myal
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
28
|
Otani R, Sadato D, Yamada R, Yajima H, Kawamura S, Shimizu S, Tanaka S, Takayanagi S, Takami H, Yamaguchi T. CHD5 gene variant predicts leptomeningeal metastasis after surgical resection of brain metastases of breast cancer. J Neurooncol 2023; 163:657-662. [PMID: 37440096 DOI: 10.1007/s11060-023-04381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Leptomeningeal metastasis (LM) is a complication of surgery for brain metastasis and is a risk factor of poor prognosis. The risk of LM is particularly high after surgery for a breast cancer metastasis to the brain. If the risk of LM after surgical resection for a brain metastasis were predictable, appropriate adjuvant therapy could be administered to individual patients to improve their prognosis. The present study aimed to reveal the genetic characteristics of brain metastases as means of predicting LM in breast cancer patients. METHODS Ten patients with brain metastases of breast cancer presented LM after surgical resection were analyzed by whole-exome sequencing. RESULTS A chromodomain-helicase-DNA-binding protein 5 (CHD5) gene alteration was detected in nine cases (90%), including a nonsynonymous variant in four cases and copy number deletion in five cases. CHD5 protein expression was lost in nine cases and had decreased in one case. The frequency of CHD5 gene alteration in brain metastases with LM was significantly higher than in primary breast cancer (2.3%) or in brain metastases of breast cancer (0%) (p < 0.0001). CONCLUSIONS These results suggested that the CHD5 gene alteration was associated with LM after surgical resection of breast cancer brain metastases. Searching for the gene alteration might predict the LM risk after surgical resection.
Collapse
Affiliation(s)
- Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan.
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Ryoji Yamada
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Hirohisa Yajima
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Shinji Kawamura
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Sakura Shimizu
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| |
Collapse
|
29
|
Wang H, Liu Q, Zhang M, Zhang J, Ran R, Ma Y, Yang J, Wang F, He S, Zhao X, Wang L, Zhang L, Dong D, Yang J. Real-world data of pyrotinib-based therapy for patients with brain metastases of HER2-positive advanced breast cancer: a single-center retrospective analysis and molecular portraits. Front Oncol 2023; 13:1105474. [PMID: 37397372 PMCID: PMC10313114 DOI: 10.3389/fonc.2023.1105474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Pyrotinib is a novel irreversible pan-HER tyrosine kinase inhibitor (TKI). However, real-world data of pyrotinib-containing therapy in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) and developing brain metastases (BMs) are limited, and the genomic profile of this subpopulation is almost undefined. Methods and materials Patients with BM of HER2-positive MBC (n = 35) treated with pyrotinib-containing therapy were enrolled in this analysis. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and toxicity profiles were evaluated. Hazard ratios (HRs) and 95% confidence intervals (CIs) for disease progression were estimated using the Cox proportional hazards models. Targeted next-generation sequencing of 618 cancer-relevant genes was performed on plasma and primary breast tumors from patients with BM and without BM. Results The median PFS time was 8.00 (95% CI, 5.98-10.017) months, and the median OS time was 23 (95% CI, 10.412-35.588) months. The ORR was 45.7%, and the DCR was 74.3%. In the Cox multivariate analysis, prior exposure to brain radiotherapy (HR = 3.268), received pyrotinib as third- or higher-line treatment (HR = 4.949), subtentorial brain metastasis (HR = 6.222), and both supratentorial and subtentorial brain metastases (HR = 5.863) were independently associated with increased risk of progression. The frequent grade 3-4 adverse event was increased direct bilirubin (14.3%), and two patients suffered from grade 3-4 diarrhea. In the exploratory genomic analysis, altered frequencies of FGFR3, CD276, CDC73, and EPHX1 were higher in the BM group. The consistency of mutated profiles of plasma and primary lesion in the BM group was significantly lower (30.4% vs. 65.5%; p = 0.0038). Conclusions Pyrotinib-containing therapy shows favorable effectiveness and tolerable safety in patients with BM of HER2-positive MBC, particularly in a population that is brain radiotherapy-naïve, received pyrotinib as first- or second-line treatment, and developed supratentorial brain metastasis. In the exploratory genomic analysis, patients with BM showed distinct genomic features from patients without BM.
Collapse
Affiliation(s)
- Hui Wang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiaoyan Liu
- Department of Oncology, Xi’an Ninth Hospital, Xi’an, China
| | - Mi Zhang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Juan Zhang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ran Ran
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Ma
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shujuan He
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoai Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Le Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingxiao Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danfeng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
30
|
Morikawa A, Li J, Ulintz P, Cheng X, Apfel A, Robinson D, Hopkins A, Kumar-Sinha C, Wu YM, Serhan H, Verbal K, Thomas D, Hayes DF, Chinnaiyan AM, Baladandayuthapani V, Heth J, Soellner MB, Merajver SD, Merrill N. Optimizing Precision Medicine for Breast Cancer Brain Metastases with Functional Drug Response Assessment. CANCER RESEARCH COMMUNICATIONS 2023; 3:1093-1103. [PMID: 37377606 PMCID: PMC10284082 DOI: 10.1158/2767-9764.crc-22-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
The development of novel therapies for brain metastases is an unmet need. Brain metastases may have unique molecular features that could be explored as therapeutic targets. A better understanding of the drug sensitivity of live cells coupled to molecular analyses will lead to a rational prioritization of therapeutic candidates. We evaluated the molecular profiles of 12 breast cancer brain metastases (BCBM) and matched primary breast tumors to identify potential therapeutic targets. We established six novel patient-derived xenograft (PDX) from BCBM from patients undergoing clinically indicated surgical resection of BCBM and used the PDXs as a drug screening platform to interrogate potential molecular targets. Many of the alterations were conserved in brain metastases compared with the matched primary. We observed differential expressions in the immune-related and metabolism pathways. The PDXs from BCBM captured the potentially targetable molecular alterations in the source brain metastases tumor. The alterations in the PI3K pathway were the most predictive for drug efficacy in the PDXs. The PDXs were also treated with a panel of over 350 drugs and demonstrated high sensitivity to histone deacetylase and proteasome inhibitors. Our study revealed significant differences between the paired BCBM and primary breast tumors with the pathways involved in metabolisms and immune functions. While molecular targeted drug therapy based on genomic profiling of tumors is currently evaluated in clinical trials for patients with brain metastases, a functional precision medicine strategy may complement such an approach by expanding potential therapeutic options, even for BCBM without known targetable molecular alterations. Significance Examining genomic alterations and differentially expressed pathways in brain metastases may inform future therapeutic strategies. This study supports genomically-guided therapy for BCBM and further investigation into incorporating real-time functional evaluation will increase confidence in efficacy estimations during drug development and predictive biomarker assessment for BCBM.
Collapse
Affiliation(s)
- Aki Morikawa
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jinju Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Peter Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xu Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Athena Apfel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dan Robinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Yi-Mi Wu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Habib Serhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kait Verbal
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel F. Hayes
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Jason Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | | | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nathan Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Vázquez-Romo R, Millan-Catalan O, Ruíz-García E, Martínez-Gutiérrez AD, Alvarado-Miranda A, Campos-Parra AD, López-Camarillo C, Jacobo-Herrera N, López-Urrutia E, Guardado-Estrada M, Cantú de León D, Pérez-Plasencia C. Pathogenic variant profile in DNA damage response genes correlates with metastatic breast cancer progression-free survival in a Mexican-mestizo population. Front Oncol 2023; 13:1146008. [PMID: 37182128 PMCID: PMC10174330 DOI: 10.3389/fonc.2023.1146008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Metastatic breast cancer causes the most breast cancer-related deaths around the world, especially in countries where breast cancer is detected late into its development. Genetic testing for cancer susceptibility started with the BRCA 1 and 2 genes. Still, recent research has shown that variations in other members of the DNA damage response (DDR) are also associated with elevated cancer risk, opening new opportunities for enhanced genetic testing strategies. METHODS We sequenced BRCA1/2 and twelve other DDR genes from a Mexican-mestizo population of 40 metastatic breast cancer patients through semiconductor sequencing. RESULTS Overall, we found 22 variants -9 of them reported for the first time- and a strikingly high proportion of variations in ARID1A. The presence of at least one variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with worse progression-free survival and overall survival in our patient cohort. DISCUSSION Our results reflected the unique characteristics of the Mexican-mestizo population as the proportion of variants we found differed from that of other global populations. Based on these findings, we suggest routine screening for variants in ARID1A along with BRCA1/2 in breast cancer patients from the Mexican-mestizo population.
Collapse
Affiliation(s)
- Rafael Vázquez-Romo
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional y Departamento de Tumores Gastrointestinales, Instituto Nacional de Cancerología, CDMX, Mexico
| | | | - Alberto Alvarado-Miranda
- Departamento de Cirugía de Tumores Mamarios, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Alma D. Campos-Parra
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Cantú de León
- Dirección de Investigación, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, FES-IZTACALA, UNAM, Tlalnepantla, Mexico
| |
Collapse
|
32
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
33
|
Kim MJ, Kim HJ, Kang D, Ahn HK, Shin SY, Park S, Cho J, Park YH. Preliminary Attainability Assessment of Real-World Data for Answering Major Clinical Research Questions in Breast Cancer Brain Metastasis: Framework Development and Validation Study. J Med Internet Res 2023; 25:e43359. [PMID: 36951923 PMCID: PMC10131620 DOI: 10.2196/43359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In recent decades, real-world evidence (RWE) in oncology has rapidly gained traction for its potential to answer clinical questions that cannot be directly addressed by randomized clinical trials. Integrating real-world data (RWD) into clinical research promises to contribute to more sustainable research designs, including extension, augmentation, enrichment, and pragmatic designs. Nevertheless, clinical research using RWD is still limited because of concerns regarding the shortage of best practices for extracting, harmonizing, and analyzing RWD. In particular, pragmatic screening methods to determine whether the content of a data source is sufficient to answer the research questions before conducting the research with RWD have not yet been established. OBJECTIVE We examined the PAR (Preliminary Attainability Assessment of Real-World Data) framework and assessed its utility in breast cancer brain metastasis (BCBM), which has an unmet medical need for data attainability screening at the preliminary step of observational studies that use RWD. METHODS The PAR framework was proposed to assess data attainability from a particular data source during the early research process. The PAR framework has four sequential stages, starting with clinical question clarification: (1) operational definition of variables, (2) data matching (structural/semantic), (3) data screening and extraction, and (4) data attainability diagramming. We identified 5 clinical questions to be used for PAR framework evaluation through interviews and validated them with a survey of breast cancer experts. We used the Samsung Medical Center Breast Cancer Registry, a hospital-based real-time registry implemented in March 2021, leveraging the institution's anonymized and deidentified clinical data warehouse platform. The number of breast cancer patients in the registry was 45,129; it covered the period from June 1995 to December 2021. The registry consists of 24 base data marts that represent disease-specific breast cancer characteristics and care pathways. The outcomes included screening results of the clinical questions via the PAR framework and a procedural diagram of data attainability for each research question. RESULTS Data attainability was tested for study feasibility according to the PAR framework with 5 clinical questions for BCBM. We obtained data sets that were sufficient to conduct studies with 4 of 5 clinical questions. The research questions stratified into 3 types when we developed data fields for clearly defined research variables. In the first, only 1 question could be answered using direct data variables. In the second, the other 3 questions required surrogate definitions that combined data variables. In the third, the question turned out to be not feasible for conducting further analysis. CONCLUSIONS The adoption of the PAR framework was associated with more efficient preliminary clinical research using RWD from BCBM. Furthermore, this framework helped accelerate RWE generation through clinical research by enhancing transparency and reproducibility and lowering the entry barrier for clinical researchers.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyo Jung Kim
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Center for Research Resource Standardization, Research Institution for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Danbee Kang
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hee Kyung Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Soo-Yong Shin
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Center for Research Resource Standardization, Research Institution for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seri Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Juhee Cho
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Epidemiology and Medicine, The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yeon Hee Park
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Nguyen TT, Hamdan D, Angeli E, Feugeas JP, Le QV, Pamoukdjian F, Bousquet G. Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15061728. [PMID: 36980614 PMCID: PMC10046845 DOI: 10.3390/cancers15061728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
Breast cancer brain metastases are a challenging daily practice, and the biological link between gene mutations and metastatic spread to the brain remains to be determined. Here, we performed a meta-analysis on genomic data obtained from primary tumors, extracerebral metastases and brain metastases, to identify gene alterations associated with metastatic processes in the brain. Articles with relevant findings were selected using Medline via PubMed, from January 1999 up to February 2022. A critical review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement (PRISMA). Fifty-seven publications were selected for this meta-analysis, including 37,218 patients in all, 11,906 primary tumor samples, 5541 extracerebral metastasis samples, and 1485 brain metastasis samples. We report the overall and sub-group prevalence of gene mutations, including comparisons between primary tumors, extracerebral metastases and brain metastases. In particular, we identified six genes with a higher mutation prevalence in brain metastases than in extracerebral metastases, with a potential role in metastatic processes in the brain: ESR1, ERBB2, EGFR, PTEN, BRCA2 and NOTCH1. We discuss here the therapeutic implications. Our results underline the added value of obtaining biopsies from brain metastases to fully explore their biology, in order to develop personalized treatments.
Collapse
Affiliation(s)
- Thuy Thi Nguyen
- National Cancer Hospital, Ha Noi 100000, Vietnam
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Department of Pediatrics, Hanoi Medical University, Ha Noi 100000, Vietnam
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
| | - Diaddin Hamdan
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Hôpital La Porte Verte, 78000 Versailles, France
| | - Eurydice Angeli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service d’Oncologie Médicale, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
| | - Jean-Paul Feugeas
- INSERM U1098, 25030 Besançon, France
- Laboratoire de Biochimie Hôpital Jean Minjoz, Université de Franche-Comté, 25000 Besançon, France
- Correspondence: (J.-P.F.); (G.B.)
| | - Quang Van Le
- National Cancer Hospital, Ha Noi 100000, Vietnam
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
| | - Frédéric Pamoukdjian
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service de Médecine Gériatrique, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
| | - Guilhem Bousquet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Université Paris Cité, UMR_S942 MASCOT, 75006 Paris, France (F.P.)
- Institut Galilée, Université Sorbonne Paris Nord, 93439 Villetaneuse, France
- Service d’Oncologie Médicale, Hôpital Avicenne, Assistance Publique Hôpitaux de Paris, 93000 Bobigny, France
- Correspondence: (J.-P.F.); (G.B.)
| |
Collapse
|
35
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
36
|
Wessels PH, Boelens MC, Monkhorst K, Sonke GS, van den Broek D, Brandsma D. A review on genetic alterations in CNS metastases related to breast cancer treatment. Is there a role for liquid biopsies in CSF? J Neurooncol 2023; 162:1-13. [PMID: 36820955 DOI: 10.1007/s11060-023-04261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Acquired mutations or altered gene expression patterns in brain metastases (BM) and/or leptomeningeal metastases (LM) of breast cancer may play a role in therapy-resistance and offer new molecular targets and treatment options. Despite expanding knowledge of genetic alterations in breast cancer and their metastases, clinical applications for patients with central nervous system (CNS) metastases are currently limited. An emerging tool are DNA-techniques that may detect genetic alterations of the CNS metastases in the cerebrospinal fluid (CSF). In this review we discuss genetic studies in breast cancer and CNS metastases and the role of liquid biopsies in CSF.
Collapse
Affiliation(s)
- Peter H Wessels
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands. .,Department of Neurology, St. Antonius Hospital, Utrecht, Nieuwegein, The Netherlands.
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Wu Z, Wang J, You F, Li X, Xiao C. The role of irreversible pan-HER tyrosine kinase inhibitors in the treatment of HER2-Positive metastatic breast cancer. Front Pharmacol 2023; 14:1142087. [PMID: 36937848 PMCID: PMC10018043 DOI: 10.3389/fphar.2023.1142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) is the leading cause of cancer death in women. For patients with HER2-positive MBC, after the failure of multiple lines of treatment, there is no optimal line of therapy. A series of clinical trials confirmed that treatment with irreversible pan-HER tyrosine kinase inhibitors (TKIs) in combination with chemotherapy significantly improves patients' survival outcomes. This review focuses on the pathogenesis of HER2-positive breast cancer, current standard treatments, mechanisms of approved irreversible TKIs, and key clinical trials. The available findings suggest that irreversible pan-HER TKIs, such as pyrotinib and neratinib, in combination with chemotherapy, represent a beneficial salvage therapy for patients with HER2-positive MBC with manageable toxicity. However, further studies are needed to assess the efficacy and safety of this combination therapy.
Collapse
Affiliation(s)
| | | | | | - Xueke Li
- *Correspondence: Xueke Li, ; Chong Xiao,
| | - Chong Xiao
- *Correspondence: Xueke Li, ; Chong Xiao,
| |
Collapse
|
38
|
Pala L, Bagnardi V, Tettamanzi F, Barberis M, Mazzarol G, Casali C, De Pas T, Pennacchioli E, Coppola S, Baldini F, Cocorocchio E, Ferrucci P, Patane' D, Saponara M, Queirolo P, Conforti F. Genetic Alterations of Melanoma Brain Metastases: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2023; 27:5-13. [PMID: 36401787 DOI: 10.1007/s40291-022-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Data on molecular alterations harbored by melanoma brain metastases (MBMs) are limited, and this has hampered the development of more effective therapeutic strategies. We conducted a systematic review and meta-analysis of all the studies reporting DNA sequencing data of MBMs, in order to identify recurrently mutated genes and molecular pathways significantly enriched for genetic alterations. METHODS We searched PubMed, Embase and Scopus for articles published from the inception of each database to June 30, 2021. We included in the analysis all the studies that reported individual patient data on DNA sequencing of MBMs, assessing single nucleotide variants (SNVs) and/or gene copy number variations (CNVs) in at least five tumor samples. Meta-analysis was performed for genes evaluated for SNVs and/or CNVs in at least two studies. Pooled proportions of samples with SNVs and/or CNVs was calculated by applying random-effect models based on the DerSimonian-Laird method. Gene-set enrichment analysis (GSEA) was performed to identify molecular pathways significantly enriched for mutated genes. RESULTS Ten studies fulfilled the inclusion criteria and were included in the analysis, for a total of 531 samples of MBMs evaluated. Twenty-seven genes were found recurrently mutated with a meta-analytic rate of SNVs higher than 5%. GSEA conducted on the list of these 27 recurrently mutated genes revealed vascular endothelial growth factor-activated receptor activity and transmembrane receptor protein tyrosine kinase activity to be among the top 10 gene ontology (GO) molecular functions significantly enriched for mutated genes, while regulation of apoptosis and cell proliferation were among the top 10 significantly enriched GO biological processes. Notably, a high meta-analytic rate of SNVs was found in several actionable cancer-associated genes, such as all the vascular endothelial growth factor (VEGF) receptor isoforms (i.e., Flt1 and Flt2 genes, for both SNV rate: 0.22, 95% CI 0.04-0.49; KDR gene, SNV rate: 0.1, 95% CI 0.05-0.16). Finally, two tumor suppressor genes were characterized by a high meta-analytic rate of CNVs: CDKN2A/B (CNV rate: 0.59, 95% CI 0.23-0.90) and PTEN (CNV rate: 0.31, 95% CI 0.02-0.95). CONCLUSION MBMs harbored actionable molecular alterations that could be exploited as therapeutic targets to improve the poor prognosis of patients.
Collapse
Affiliation(s)
- Laura Pala
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy. .,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy.
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | | | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cecilia Casali
- Department of Neurological Surgery, IRCCS Foundation Neurological Institute "Carlo Besta", Milan, Italy
| | - Tommaso De Pas
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| | - Elisabetta Pennacchioli
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Sara Coppola
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Federica Baldini
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Emilia Cocorocchio
- Division of Medical Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Pierfrancesco Ferrucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Damiano Patane'
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Maristella Saponara
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Paola Queirolo
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Fabio Conforti
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| |
Collapse
|
39
|
Sun H, Xu J, Dai S, Ma Y, Sun T. Breast cancer brain metastasis: Current evidence and future directions. Cancer Med 2023; 12:1007-1024. [PMID: 35822637 PMCID: PMC9883555 DOI: 10.1002/cam4.5021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common cancer in women and the second leading cause of cancer-related deaths after lung cancer. Metastasis of the central nervous system is a terrible event for breast cancer patients, affecting their survival and quality of life. Compared with hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer patients, brain metastases are more likely to affect patients with triple-negative breast cancer and human epidermal growth factor receptor 2-positive breast cancer. The treatment of breast cancer has improved greatly in the last two decades. However, brain metastases from breast cancer remain the leading cause of morbidity and mortality. Patients with breast cancer brain metastasis have been in an inferior position due to the lack of clinical research in this field, and they are often explicitly excluded from almost all clinical trials. The occurrence and progression of brain metastases will result in severe cognitive impairment and adverse physical consequences, so we must have a good understanding of the molecular mechanisms of breast cancer brain metastasis. In this article, we have retrieved the latest literature of molecules and pathways associated with breast cancer brain metastasis, summarized common therapy strategies, and discussed the prospects and clinical implications of targeting the molecules involved.
Collapse
Affiliation(s)
- Hongna Sun
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Junnan Xu
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Shuang Dai
- Department of Medical Oncology, Lung cancer center, West China HospitalSichuan UniversityChengduChina
| | - Yiwen Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
40
|
Hintelmann K, Petersen C, Borgmann K. Radiotherapeutic Strategies to Overcome Resistance of Breast Cancer Brain Metastases by Considering Immunogenic Aspects of Cancer Stem Cells. Cancers (Basel) 2022; 15:211. [PMID: 36612206 PMCID: PMC9818478 DOI: 10.3390/cancers15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most diagnosed cancer in women, and symptomatic brain metastases (BCBMs) occur in 15-20% of metastatic breast cancer cases. Despite technological advances in radiation therapy (RT), the prognosis of patients is limited. This has been attributed to radioresistant breast cancer stem cells (BCSCs), among other factors. The aim of this review article is to summarize the evidence of cancer-stem-cell-mediated radioresistance in brain metastases of breast cancer from radiobiologic and radiation oncologic perspectives to allow for the better interpretability of preclinical and clinical evidence and to facilitate its translation into new therapeutic strategies. To this end, the etiology of brain metastasis in breast cancer, its radiotherapeutic treatment options, resistance mechanisms in BCSCs, and effects of molecularly targeted therapies in combination with radiotherapy involving immune checkpoint inhibitors are described and classified. This is considered in the context of the central nervous system (CNS) as a particular metastatic niche involving the blood-brain barrier and the CNS immune system. The compilation of this existing knowledge serves to identify possible synergistic effects between systemic molecularly targeted therapies and ionizing radiation (IR) by considering both BCSCs' relevant resistance mechanisms and effects on normal tissue of the CNS.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Pérez Reyes DJ, Lardoeyt Ferrer R, Robaina Castellanos MS. Contribution of genetic factors in the occurrence of breast cancer in cuban women. DATA AND METADATA 2022; 1:75. [DOI: 10.56294/dm202275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction: breast cancer is a disease of multifactorial etiology, where genetic factors and environmental factors are involved, in Cuba it constitutes the second cause of mortality in women "however" it is not known what the risk of a woman is developing it attributable to genetic predisposition, limiting an effective genetic counseling. Objective: to identify the preferential clustering of breast cancer in relatives of cases with respect to the population and to analyze the genetic contribution in people with breast cancer attended at the National Institute of Oncology and Radiobiology (INOR). Methods: we conducted an analytical study of cases and nested neighborhood controls in a dynamic cohort. The sample consisted of 66 cases and 132 controls. The genetic contribution was studied through the tools of genetic epidemiology. Results: there was a preferential clustering of this disease in families that, in the population, genetic factors defined the familial prevalence of breast cancer in the relatives of the cases and there was an increasing tendency to suffer the disease as the proportion of genes to be shared increases. Conclusion: the preferential aggregation of breast cancer is identified and the contribution of genetic factors in the appearance of this disease in women attended at INOR is analyzed, showing that a person has three times more risk of suffering breast cancer attributable to the history of this disease in second-degree relatives
Collapse
|
42
|
Giannoudis A, Varešlija D, Sharma V, Zakaria R, Platt-Higgins A, Rudland P, Jenkinson M, Young L, Palmieri C. Characterisation of the immune microenvironment of primary breast cancer and brain metastasis reveals depleted T-cell response associated to ARG2 expression. ESMO Open 2022; 7:100636. [PMID: 36423363 PMCID: PMC9808462 DOI: 10.1016/j.esmoop.2022.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibition is an established treatment in programmed death-ligand 1 (PD-L1)-positive metastatic triple-negative (TN) breast cancer (BC). However, the immune landscape of breast cancer brain metastasis (BCBM) remains poorly defined. MATERIALS AND METHODS The tumour-infiltrating lymphocytes (TILs) and the messenger RNA (mRNA) levels of 770 immune-related genes (NanoString™, nCounter™ Immuno-oncology IO360) were assessed in primary BCs and BCBMs. The prognostic role of ARG2 transcripts and protein expression in primary BCs and its association with outcome was determined. RESULTS There was a significant reduction of TILs in the BCBMs in comparison to primary BCs. 11.5% of BCs presented a high immune infiltrate (hot), 46.2% were altered (immunosuppressed/excluded) and 34.6% were cold (no/low immune infiltrate). 3.8% of BCBMs were hot, 23.1% altered and 73.1% cold. One hundred and twelve immune-related genes including PD-L1 and CTLA4 were decreased in BCBM compared to the primary BCs (false discovery rate <0.01, log2 fold-change >1.5). These genes are involved in matrix remodelling and metastasis, cytokine-chemokine signalling, lymphoid compartment, antigen presentation and immune cell adhesion and migration. Immuno-modulators such as PD-L1 (CD274), CTLA4, TIGIT and CD276 (B7H3) were decreased in BCBMs. However, PD-L1 and CTLA4 expression was significantly higher in TN BCBMs (P = 0.01), with CTLA4 expression also high in human epidermal growth factor receptor 2-positive (P < 0.01) compared to estrogen receptor-positive BCBMs. ARG2 was one of four genes up-regulated in BCBMs. High ARG2 mRNA expression in primary BCs was associated with worse distant metastasis-free survival (P = 0.038), while ARG2 protein expression was associated with worse breast-brain metastasis-free (P = 0.027) and overall survival (P = 0.019). High transcript levels of ARG2 correlated to low levels of cytotoxic and T cells in both BC and BCBM (P < 0.01). CONCLUSION This study highlights the immunological differences between primary BCs and BCBMs and the potential importance of ARG2 expression in T-cell depletion and clinical outcome.
Collapse
Affiliation(s)
- A. Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - D. Varešlija
- The School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - V. Sharma
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Pathology, Royal Liverpool University Hospital NHS Trust, Liverpool, UK
| | - R. Zakaria
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - A. Platt-Higgins
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - P.S. Rudland
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - M.D. Jenkinson
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - L.S. Young
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - C. Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK,Correspondence to: Prof. Carlo Palmieri, University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK. Tel: +44 151 7949813 @cancermedic
| |
Collapse
|
43
|
Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis. Cancer Gene Ther 2022; 29:1578-1589. [PMID: 35474355 DOI: 10.1038/s41417-022-00473-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/26/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
Triple-negative breast cancer (TNBC) has a high degree of malignancy, lack of effective diagnosis and treatment, and poor prognosis. Bioinformatics methods are used to screen the hub genes and signal pathways involved in the progress of TNBC to provide reliable biomarkers for the diagnosis and treatment of TNBC. Download the raw data of four TNBC-related datasets from the Gene Expression Omnibus (GEO) database and use them for bioinformatics analysis. GEO2R tool was used to analyze and identify differentially expressed (DE) mRNAs. DAVID database was used to carry out gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome Pathways (KEGG) signal pathway enrichment analysis for DE mRNAs. STRING database and Cytoscape were used to build DE mRNAs protein-protein interaction (PPI) network diagram and visualize PPI network, respectively. Through cytoHubba, cBioPortal database, Kaplan-Meier mapper database, Gene Expression Profiling Interactive Analysis (GEPIA) Database, UALCAN Database, The Cancer Genome Atlas (TCGA) database, Tumor Immunity Estimation Resource identify hub genes. Perform qRT-PCR, Human Protein Atlas analysis, mutation analysis, survival analysis, clinical-pathological characteristics, and infiltrating immune cell analysis. 22 DE mRNAs were identified from the four datasets, including 16 upregulated DE mRNAs and six downregulated DE mRNAs. Enrichment analysis of the KEGG showed that DE mRNAs were principally enriched in pathways in cancer, mismatch repair, cell cycle, platinum drug resistance, breast cancer. Six hub genes were screened based on the PPI network diagram of DE mRNAs. Survival analysis found that TOP2A, CCNA2, PCNA, MSH2, CDK6 are related to the prognosis of TNBC. In addition, mutations, clinical indicators, and immune infiltration analysis show that these five hub genes play an important role in the progress of TNBC and immune monitoring. Compared with MCF-10A, MCF-7, and SKBR-3 cells, TOP2A, PCNA, MSH2, and CDK6 were significantly upregulated in MDA-MB-321 cells. Compared with normal, luminal, and Her-2 positive tissues, CCNA2, MSH2, and CDK6 were significantly upregulated in TNBC. Through comparative analysis of GEO datasets related to colorectal cancer and lung adenocarcinoma, it was determined that these five hub genes were unique differentially expressed genes of TNBC. At last, the hub genes related to the progression, prognosis, and immunity of TNBC have been successfully screened. They are indeed specific to TNBC as prognostic features. They can be used as potential markers for the prognosis of TNBC and provide potential therapeutic targets.
Collapse
|
44
|
Lorusso G, Wyss CB, Kuonen F, Vannini N, Billottet C, Duffey N, Pineau R, Lan Q, Wirapati P, Barras D, Tancredi A, Lyck R, Lehr HA, Engelhardt B, Delorenzi M, Bikfalvi A, Rüegg C. Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation. Sci Transl Med 2022; 14:eaax8933. [PMID: 36070364 DOI: 10.1126/scitranslmed.aax8933] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Christof B Wyss
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - François Kuonen
- Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research (LICR), Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Epalinges 1066, Switzerland
| | | | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Raphael Pineau
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Qiang Lan
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Alessandro Tancredi
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Hans-Anton Lehr
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Andreas Bikfalvi
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
45
|
Liu Y, Gan Y, AiErken N, Chen W, Zhang S, Ouyang J, Zeng L, Tang D. Combining Organoid Models with Next-Generation Sequencing to Reveal Tumor Heterogeneity and Predict Therapeutic Response in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9390912. [PMID: 36046364 PMCID: PMC9423951 DOI: 10.1155/2022/9390912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer (BC) is a common subtype of BC with a relatively good prognosis. However, recurrence and death from ER+ BC occur because of tumor heterogeneity. This study aimed to explore tumor heterogeneity using next-generation sequencing (NGS) and tumor-organoid models to promote BC precise therapy. We collected needle biopsy, surgical excision, and cerebrospinal fluid (CSF) samples to establish tumor organoids. We found that the histological characteristics of organoids were consistent with original lesions and recapitulated their heterogenicity. In addition, the NGS results showed that PIK3CA and TP53 genes had detrimental mutations. BAP1, RET, AXIN2, and PPP2R2A genes had mutations with unknown function. The score for homologous recombination deficiency (HRD) of genome was 56, indicating that the tumor was likely sensitive to PARPi. The mutant-allele tumor heterogeneity (MATH) value of the tumor genome was 68.03, indicating high tumor heterogeneity. At last, we performed a drug screening on organoids. The toxicity of different drugs toward BC organoids originated from needle biopsy and surgical excision was tested, respectively. The IC50 values in the needle biopsy groups were paclitaxel 2.83 μM, carboplatin 61.47 μM, neratinib 0.8 μM, lapatinib >100 μM; in the surgical excision groups: trastuzumab >100 μM, docetaxel 0.036 μM, tamoxifen 20.54 μM, olaparib 5.478 μM, BYL719 < 0.1 μM. The toxicity data showed that the BC organoids could show dynamic characteristics of tumor progression and reflect the heterogeneity of BC. Our study demonstrates that the combined use of tumor organoids and NGS is a potential way to test tumor heterogeneity and predict drug response in ER + BC, which contributes to the development of personalized therapy.
Collapse
Affiliation(s)
- Yuhong Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Yixiang Gan
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - NiJiati AiErken
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Wei Chen
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Shiwei Zhang
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan 518107, China
| | - Leli Zeng
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Di Tang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| |
Collapse
|
46
|
Tsai C, Nguyen B, Luthra A, Chou JF, Feder L, Tang LH, Strong VE, Molena D, Jones DR, Coit DG, Ilson DH, Ku GY, Cowzer D, Cadley J, Capanu M, Schultz N, Beal K, Moss NS, Janjigian YY, Maron SB. Outcomes and Molecular Features of Brain Metastasis in Gastroesophageal Adenocarcinoma. JAMA Netw Open 2022; 5:e2228083. [PMID: 36001319 PMCID: PMC9403772 DOI: 10.1001/jamanetworkopen.2022.28083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Brain metastasis (BrM) in gastroesophageal adenocarcinoma (GEA) is a rare and poorly understood phenomenon associated with poor prognosis. OBJECTIVES To examine the clinical and genomic features of patients with BrM from GEA and evaluate factors associated with survival. DESIGN, SETTING, AND PARTICIPANTS In this single-institution retrospective cohort study, 68 patients with BrM from GEA diagnosed between January 1, 2008, and December 31, 2020, were identified via review of billing codes and imaging reports from the electronic medical record with follow-up through November 3, 2021. Genomic data were derived from the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets clinical sequencing platform. EXPOSURES Treatment with BrM resection and/or radiotherapy. MAIN OUTCOMES AND MEASURES Overall survival after BrM diagnosis. RESULTS Sixty-eight patients (median age at diagnosis, 57.4 years [IQR, 49.8-66.4 years]; 59 [86.8%] male; 55 [85.9%] White) participated in the study. A total of 57 (83.8%) had primary tumors in the distal esophagus or gastroesophageal junction. Median time from initial diagnosis to BrM diagnosis was 16.9 months (IQR, 8.5-27.7 months). Median survival from BrM diagnosis was 8.7 months (95% CI, 5.5-11.5 months). Overall survival was 35% (95% CI, 25%-48%) at 1 year and 24% (95% CI, 16%-37%) at 2 years. In a multivariable analysis, an Eastern Cooperative Oncology Group performance status of 2 or greater (hazard ratio [HR], 4.66; 95% CI, 1.47-14.70; P = .009) and lack of surgical or radiotherapeutic intervention (HR, 7.71; 95% CI, 2.01-29.60; P = .003) were associated with increased risk of all-cause mortality, whereas 3 or more extracranial sites of disease (HR, 1.85; 95% CI, 0.64-5.29; P = .25) and 4 or more BrMs (HR, 2.15; 95% CI, 0.93-4.98; P = .07) were not statistically significant. A total of 31 patients (45.6%) had ERBB2 (formerly HER2 or HER2/neu)-positive tumors, and alterations in ERBB2 were enriched in BrM relative to primary tumors (8 [47.1%] vs 7 [20.6%], P = .05), as were alterations in PTPRT (7 [41.2%] vs 4 [11.8%], P = .03). CONCLUSIONS AND RELEVANCE This study suggests that that a notable proportion of patients with BrM from GEA achieve survival exceeding 1 and 2 years from BrM diagnosis, a more favorable prognosis than previously reported. Good performance status and treatment with combination surgery and radiotherapy were associated with the best outcomes. ERBB2 positivity and amplification as well as PTPRT alterations were enriched in BrM tissue compared with primary tumors; therefore, further study should be pursued to identify whether these variables represent genomic risk factors for BrM development.
Collapse
Affiliation(s)
- Charlton Tsai
- Department of Medicine, New York Presbyterian/Weill Cornell Medicine, New York, New York
| | - Bastien Nguyen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anisha Luthra
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F. Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Feder
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura H. Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vivian E. Strong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Molena
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David R. Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel G. Coit
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David H. Ilson
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey Y. Ku
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren Cowzer
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Cadley
- Department of Digital Informatics and Technology Solutions, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S. Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y. Janjigian
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven B. Maron
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
47
|
Wang Y, Xu H, Han Y, Wu Y, Wang J. Comparative Efficacy of Tyrosine Kinase Inhibitors and Antibody–Drug Conjugates in HER2-Positive Metastatic Breast Cancer Patients with Brain Metastases: A Systematic Review and Network Meta-Analysis. Cancers (Basel) 2022; 14:cancers14143372. [PMID: 35884431 PMCID: PMC9321046 DOI: 10.3390/cancers14143372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Comparisons between the efficacy of tyrosine kinase inhibitors (TKIs) and antibody–drug conjugates (ADCs) in treating HER2-positive breast cancer brain metastasis (BCBM) patients have not previously been conducted. We performed a systematic review and Bayesian-based network meta-analysis to pool the estimates of progression-free survival, overall survival, and incidence of central nervous system (CNS) disease progression. The current study indicated that both T-DXd and T-DM1 presented better efficacy than TKIs regarding survival outcomes. Treatments containing neratinib or T-DM1 tended to rank the best in reducing the recurrent rate of CNS. Our study provides more evidence for the clinical decision making for patients with HER2-positive BCBM. More high-quality studies with standardized entry criteria and comparable CNS-related endpoints are warranted in the future. Abstract HER2-positive breast cancer brain metastasis (BCBM) is an important clinical problem. A systematic review and network meta-analysis were conducted to compare the efficacy of tyrosine kinase inhibitors (TKIs) and antibody–drug conjugates (ADCs), two categories of emerging agents in this field. We implemented a comprehensive literature search of PubMed, Embase, the Cochrane Library, ClinicalTrials.gov, and abstracts of oncology conferences. A network meta-analysis following Bayesian approaches was performed. Pooled hazard ratios (HRs) and odds ratios (ORs) with credible intervals (CrIs) were calculated to estimate progression-free survival (PFS), overall survival (OS), and the incidence of central nervous system (CNS) disease progression. Sixteen studies were included. Pairwise comparisons of PFS showed salient divergency between T-DXd and the physician’s choice of treatment (HR 0.17; 95% CrI 0.03–0.82) or afatinib (HR 0.14; 95% CrI 0.02–1.00). T-DXd and T-DM1 ranked first regarding PFS and OS, respectively, followed by TKI-containing regimens. The incidence of CNS disease progression was analyzed separately according to baseline BCBM status, among which neratinib-containing regimens were most likely to rank the best. In conclusion, ADCs including T-DXd and T-DM1 showed better efficacy than TKIs in the survival outcomes for HER2-positive BCBM patients. Treatments based on neratinib or T-DM1 revealed favorable results in reducing the recurrent rate of CNS.
Collapse
|
48
|
Luo X, Xie H, Yang Y, Zhang C, Zhang Y, Li Y, Yang Q, Wang D, Luo Y, Mai Z, Xie C, Yin S. Radiomic Signatures for Predicting Receptor Status in Breast Cancer Brain Metastases. Front Oncol 2022; 12:878388. [PMID: 35734585 PMCID: PMC9207517 DOI: 10.3389/fonc.2022.878388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds A significant proportion of breast cancer patients showed receptor discordance between primary cancers and breast cancer brain metastases (BCBM), which significantly affected therapeutic decision-making. But it was not always feasible to obtain BCBM tissues. The aim of the present study was to analyze the receptor status of primary breast cancer and matched brain metastases and establish radiomic signatures to predict the receptor status of BCBM. Methods The receptor status of 80 matched primary breast cancers and resected brain metastases were retrospectively analyzed. Radiomic features were extracted using preoperative brain MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, T2 fluid-attenuated inversion recovery, and combinations of these sequences) collected from 68 patients (45 and 23 for training and test sets, respectively) with BCBM excision. Using least absolute shrinkage selection operator and logistic regression model, the machine learning-based radiomic signatures were constructed to predict the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status of BCBM. Results Discordance between the primary cancer and BCBM was found in 51.3% of patients, with 27.5%, 27.5%, and 5.0% discordance for ER, PR, and HER2, respectively. Loss of receptor expression was more common (33.8%) than gain (18.8%). The radiomic signatures built using combination sequences had the best performance in the training and test sets. The combination model yielded AUCs of 0.89, 0.88, and 0.87, classification sensitivities of 71.4%, 90%, and 87.5%, specificities of 81.2%, 76.9%, and 71.4%, and accuracies of 78.3%, 82.6%, and 82.6% for ER, PR, and HER2, respectively, in the test set. Conclusions Receptor conversion in BCBM was common, and radiomic signatures show potential for noninvasively predicting BCBM receptor status.
Collapse
Affiliation(s)
- Xiao Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yadi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yijun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yue Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiuxia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yingwei Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhijun Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuanmiao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaohan Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
49
|
The Combined Clinical Diagnosis of TNF-α, TSH, and p185 Protein in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4885378. [PMID: 35783155 PMCID: PMC9242784 DOI: 10.1155/2022/4885378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Objective To study the concentrations of tumor necrosis factor (TNF-α), thyroid-stimulating hormone (TSH), and c-erbB-2 oncogene protein product P185 in different pathological stages of breast cancer and to analyze their combined clinical diagnosis of breast cancer significance. Methods 67 breast cancer patients who were treated in our hospital from January 2018 to September 2020 were set as the breast cancer group and were divided into stages I, II, III, and IV according to clinicopathology. In addition, 55 patients with benign breasts who were admitted to the hospital at the same time were selected as the benign breast group, and 60 healthy people in our hospital during the same period were selected as the healthy group. The differences between serum TNF-α, TSH, and p185 protein positive rate in 3 groups and the levels of TNF-α and TSH and p185 protein positive rate in patients with different pathological characteristics were compared and analyzed, and the differences between the combined detection and the single detection were analyzed. Results Compared with the benign breast group and the healthy group, the serum levels of TNF-α (44.61 ± 12.54 versus 29.75 ± 10.19 versus 56.87 ± 15.36 versus 102.37 ± 15.36), TSH (0.98 ± 0.13 versus 0.94 ± 0.17 versus 1.17 ± 0.24 versus 1.22 ± 0.15) and p185 protein positive rate were higher in the I-II and III-IV groups, and the difference was statistically significant (P < 0.05). TNF-α detection sensitivity was 44.74%, specificity was 62.06%, which was higher than p185 sensitivity of 31.01%, specificity of 49.78%, higher than TSH sensitivity of 27.51%, specificity of 39.77%. At the same time, the sensitivity and specificity of combined detection of TNF-α, TSH, and p185 protein were 67.35% and 70.41%, which were significantly higher than the sensitivity and specificity of single detection, and the difference was statistically significant (P < 0.05). Conclusion TNF-α, TSH, and p185 protein are expected to be used as auxiliary basis for diagnosis in the future. But in general, the serum indexes in this study had low sensitivity and specificity for the diagnosis of breast cancer, which limited their diagnostic function in clinical use.
Collapse
|
50
|
Limon D, Shachar E, Wolf I, Adar L, Peleg Hasson S, Ferro L, Safra T. Brain metastases in patients with ovarian cancer. Acta Oncol 2022; 61:757-763. [PMID: 35485453 DOI: 10.1080/0284186x.2022.2066985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Brain metastasis (BM) are uncommon among women with epithelial ovarian cancer (EOC). The frequency, risk factors and clinical repercussions of BM in these patients are not well described. METHODS We retrospectively evaluated EOC patients treated at our center from 2002 to 2020 and assessed their clinical parameters, risk for BM development and association with overall survival (OS). This cohort has a known high frequency of BRCA mutation carriers (BRCAm) due to women of Ashkenazi Jewish descent. RESULTS Among 1035 EOC patients, 29 (2.8%) were diagnosed with BM. The prevalence of BRCA mutations was more common among women with BM (56.5% vs. 34.3%, p = 0.033). The BM rate in patients with BRCAm was higher than the BM rate in those with wildtype BRCA (BRCAw; 5.1% vs. 2.1%, OR = 2.6; 95% CI: 1.2-5.4, p = 0.013). Median time from diagnosis to BM and from disease recurrence to BM was longer among patients with BRCAm. Median OS was not significantly different among patients with BM versus those without BM (59.4 vs. 73.4 months, p = 0.243). After BM diagnosis, median OS was not statistically significantly different between patients with BRCAm and those with BRCAw (20.6 vs. 12.3 months, p = 0.441). Treatment with poly (ADP-ribose) polymerase inhibitors and bevacizumab had no impact on subsequent development of BM. CONCLUSIONS BM are rare among EOC patients. However, the risk is three-fold higher among patients with BRCAm. BM do not significantly alter OS among EOC patients. The higher rate of BM in patients with BRCAm may be related to longer OS in this subpopulation.
Collapse
Affiliation(s)
- Dror Limon
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliya Shachar
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lyri Adar
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shira Peleg Hasson
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leora Ferro
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Safra
- Oncology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|