1
|
Wu X, Yu W, Luo R, Lin J, Yang Q, Zeng S, Dai B, Wang D. Modified Shi Hui San decoction ameliorates murine experimental colitis through multiple mechanisms. Fitoterapia 2025; 182:106485. [PMID: 40112896 DOI: 10.1016/j.fitote.2025.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Modified Shi Hui San (MSHS) has shown excellent therapeutic effects on ulcerative colitis (UC) patients clinically in China. However, the exact mechanism underlying its effect remains unclear and needs to further investigation. AIMS This study aimed to investigate the therapeutic effects of modified Shi Hui San decoction (MSHSD) in murine experimental colitis and explore its underlying mechanisms. METHODS To examine the effects of MSHSD on UC, a murine model of colitis was induced using 2.5 % dextran sodium sulfate (DSS). The mice were then treated with MSHSD at the doses of 6.25 or 25 g/kg for 10 days. The progression of colitis was evaluated through clinical symptoms, histopathological analysis, evaluation of mucosal barrier integrity, biochemical assays, and analysis of the gut microbiota composition. RESULTS MSHSD administration markedly ameliorated experimental colitis in DSS-treated mice by suppressing inflammation, restoring the intestinal mucus barrier, alleviating oxidative stress, and reestablishing immunity. More importantly, it transformed the gut microbiota structure from an imbalanced state to a normal state. CONCLUSIONS These findings for the first time extend our understanding of the mechanisms, by which MSHSD ameliorates murine experimental colitis, and support the clinical use of MSHS for UC treatment.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenwen Yu
- Department of Pharmacy, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, China
| | - Ruichang Luo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Lin
- Department of Medical Experiment, Ningbo No.2 Hospital, Ningbo 315410, China
| | - Qiujie Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuchun Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binbin Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Yi C, Lu L, Li Z, Guo Q, Ou L, Wang R, Tian X. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res 2025; 15:84-101. [PMID: 38758499 DOI: 10.1007/s13346-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Collapse
Affiliation(s)
- Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Linzhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Zhaosheng Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China
| | - Longyun Ou
- The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, Hunan, China
| | - Ruoyu Wang
- Department of Infectious Diseases, Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Rd, Hunan, 410208, Changsha, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, 410208, Changsha, Hunan Province, China.
- Hunan Province University Key Laboratory of Oncology of Tradional Chinese Medicine, 410208, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ruiz-Perez D, Gimon I, Sazal M, Mathee K, Narasimhan G. Unfolding and de-confounding: biologically meaningful causal inference from longitudinal multi-omic networks using METALICA. mSystems 2024; 9:e0130323. [PMID: 39240096 PMCID: PMC11494969 DOI: 10.1128/msystems.01303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/10/2024] [Indexed: 09/07/2024] Open
Abstract
A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state of the art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery, and network inference algorithms were applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases. IMPORTANCE We have developed a suite of tools and techniques capable of inferring interactions between microbiome entities. METALICA introduces novel techniques called unrolling and de-confounding that are employed to uncover multi-omic entities considered to be confounders for some of the relationships that may be inferred using standard causal inferencing tools. To evaluate our method, we conducted tests on the inflammatory bowel disease (IBD) dataset from the iHMP longitudinal study, which we pre-processed in accordance with our previous work. From this dataset, we generated various subsets, encompassing different combinations of metagenomics, metabolomics, and metatranscriptomics datasets. Using these multi-omics datasets, we demonstrate how the unrolling process aids in the identification of putative intermediaries (genes and/or metabolites) to explain the interactions between microbes. Additionally, the de-confounding process identifies potential common causes that may give rise to spurious relationships to be inferred. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.
Collapse
Affiliation(s)
- Daniel Ruiz-Perez
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Isabella Gimon
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Musfiqur Sazal
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Kalai Mathee
- Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
5
|
Ruiz-Perez D, Gimon I, Sazal M, Mathee K, Narasimhan G. Unfolding and De-confounding: Biologically meaningful causal inference from longitudinal multi-omic networks using METALICA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571384. [PMID: 38168315 PMCID: PMC10760167 DOI: 10.1101/2023.12.12.571384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps to identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery and network inference algorithms applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.
Collapse
Affiliation(s)
- Daniel Ruiz-Perez
- Bioinformatics Research Group (BioRG), Florida International University, Miami, FL 33199, USA
| | - Isabella Gimon
- Bioinformatics Research Group (BioRG), Florida International University, Miami, FL 33199, USA
| | - Musfiqur Sazal
- Bioinformatics Research Group (BioRG), Florida International University, Miami, FL 33199, USA
| | - Kalai Mathee
- Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Deng B, Wang K, Zhang L, Qiu Z, Dong W, Wang W. Photodynamic Therapy for Inflammatory and Cancerous Diseases of the Intestines: Molecular Mechanisms and Prospects for Application. Int J Biol Sci 2023; 19:4793-4810. [PMID: 37781521 PMCID: PMC10539702 DOI: 10.7150/ijbs.87492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment that effectively targets cancer and inflammatory diseases. It has gained recognition for its efficacy, low toxicity, and potential for repeated use. Colorectal cancer (CRC) and inflammatory bowel diseases (IBD), including Crohn's disease (CD), and ulcerative colitis (UC), impose a significant burden on global intestinal health, with increasing incidence and prevalence rates. PDT shows promise as an emerging approach for gastrointestinal disease treatment, particularly IBD and CRC. Extensive preclinical research has demonstrated the safety and effectiveness of PDT for IBD and CRC, while clinical studies are currently underway. This review provides an overview of the underlying mechanisms responsible for the anti-inflammatory and anti-tumor effects of PDT, offering insights into the clinical application of PDT in IBD and CRC treatment. It is expected that this review will serve as a valuable reference for future research on PDT for CRC and IBD, contributing to advancements in the treatment of inflammatory and cancerous diseases of the intestines.
Collapse
Affiliation(s)
- Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Yang S, Hao S, Ye H, Zhang X. Global research on the crosstalk between intestinal microbiome and colorectal cancer: A visualization analysis. Front Cell Infect Microbiol 2023; 13:1083987. [PMID: 37009513 PMCID: PMC10050574 DOI: 10.3389/fcimb.2023.1083987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundIncreasing evidence has shown that the intestinal microbiome (IM) is highly linked to colorectal cancer (CRC). To investigate scientific output, identify highly cited papers, and explore research hotspots and trends in the field of IM/CRC, we conducted a bibliometric and visualized analysis.MethodsA bibliographic search regarding IM/CRC research (2012-2021) was implemented on October 17, 2022. The terms attached to IM and CRC were searched for in the titles (TI), abstracts (AB), and author keywords (AK). The main information was extracted from the Web of Science Core Collection (WoSCC). Biblioshiny from R packages and VOSviewer were used for data visualization.ResultsA total of 1725 papers related to IM/CRC were retrieved. Publications on IM/CRC have grown rapidly from 2012 to 2021. China and the United States were in the leading position for publications in this field and made the most significant contributions to IM/CRC research. Shanghai Jiao Tong University and Harvard University were the most productive institutions. The high-yield authors were Yu Jun and Fang Jing Yuan. The International Journal of Molecular Sciences published the most papers, whereas Gut had the most citations. Historical citation analysis showed the evolution of IM/CRC research. Current status and hotspots were highlighted using keyword cluster analysis. The hot topics include the effect of IM on tumorigenesis, the effect of IM on CRC treatment, the role of IM in CRC screening, the mechanisms of IM involvement in CRC, and IM modulation for CRC management. Some topics, such as chemotherapy, immunotherapy, Fusobacterium nucleatum and short-chain fatty acids could be the focus of IM/CRC research in the coming years.ConclusionThis research evaluated the global scientific output of IM/CRC research and its quantitative features, identified some significant papers, and gathered information on the status and trends of IM/CRC research, which may shape future paths for academics and practitioners.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- *Correspondence: Xuezhi Zhang, ; Hui Ye,
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
- *Correspondence: Xuezhi Zhang, ; Hui Ye,
| |
Collapse
|
8
|
Chen P, Zhang M, Zhang Y, Li J, Wan X, Lv T, Chen Y, Zhao Z, Ma Z, Zhu Z, Chen L, Li Z, Wang Z, Qiao G. Cyprinid herpesvirus 2 infection changes microbiota and metabolites in the gibel carp ( Carassius auratus gibelio) midgut. Front Cell Infect Microbiol 2023; 12:1017165. [PMID: 36817692 PMCID: PMC9933507 DOI: 10.3389/fcimb.2022.1017165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infects gibel carp (Carassius auratus gibelio) and causes severe losses. Microbiota in animal guts involves nutrition intake, development, immunity, and disease resistance. However, the relationship between gibel carp gut microbiota and CyHV-2 infection is not well known. Herein, we analyzed the gut microbiota composition and metabolite profiles in CyHV-2-infected and -uninfected fish using high-throughput sequencing and gas chromatography/mass spectrometry. Results showed that CyHV-2 infection significantly changed gut microbiota and metabolite profiles (p < 0.05). High-throughput sequencing demonstrated that the relative abundance of Aeromonas in the midgut increased dramatically while Cetobacterium decreased. Time-course analysis showed that the number of Aeromonas in the midgut of infected fish increased more than 1,000 times within 5 days post infection. Metabolome analysis illustrated that CyHV-2 infection significantly altered 24 metabolites in the midgut of gibel carp, annotating to the anomaly of digestion and metabolisms of amino acids, carbohydrates, and lipids, such as tryptophan (Trp) metabolism. The Mantel test demonstrated that gut microbiota and metabolite profiles were well related (r = 0.89). Furthermore, Trp metabolism responded to CyHV-2 infection closely was taken as one example to prove the correlation among CyHV-2 infection, metabolites and microbiota in the midgut, and host immunity. Results showed that modulating Trp metabolism could affect the relative abundance of Aeromonas in the midgut of fish, transcription of antiviral cytokines, and CyHV-2 infection. Therefore, we can conclude that CyHV-2 infection significantly perturbed the gut microbiome, disrupted its' metabolic functions, and caused the proliferation of the opportunistic pathogen Aeromonas. This study also suggests that modulation of the gut microbiome will open a therapeutic opportunity to control CyHV-2 infection in gibel carp.
Collapse
Affiliation(s)
- Peng Chen
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Mingming Zhang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yichan Zhang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Xihe Wan
- Central Key Laboratory of Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu, China
| | - Tingli Lv
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yiyue Chen
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zhigang Zhao
- Heilongjiang Provincial Key Laboratory of Cold Water Fish Germplasm Resources and Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| | - Zhihao Ma
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zhu Zhu
- Center of Fisheries technology popularization Sheyang Agricultural and Rural Bureau, Yancheng, Jiangsu, China
| | - Lihua Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Zhen Li
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zisheng Wang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| | - Guo Qiao
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| |
Collapse
|
9
|
Fang Y, Yan C, Zhao Q, Zhao B, Liao Y, Chen Y, Wang D, Tang D. The Association Between Gut Microbiota, Toll-Like Receptors, and Colorectal Cancer. Clin Med Insights Oncol 2022; 16:11795549221130549. [PMID: 36338264 PMCID: PMC9634190 DOI: 10.1177/11795549221130549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The large number of microbes found in the gut are involved in various critical biological processes in the human body and have dynamic and complex interactions with the immune system. Disruptions in the host's gut microbiota and the metabolites produced during fermentation promote the development of intestinal inflammation and colorectal cancer (CRC). Toll-like receptors (TLRs) recognize specific microbial-associated molecular patterns specific to microorganisms whose signaling is involved in maintaining intestinal homeostasis or, under certain conditions, mediating dysbiosis-associated intestinal inflammation. The signaling pathways of TLRs are described first, followed by a discussion of the interrelationship between gut microbes and TLRs, including the activation of TLRs by gut microbes and the effect of TLRs on the distribution of gut microbiota, particularly the role of microbes in colorectal carcinogenesis via TLRs. Finally, we discuss the potential roles of various TLRs in colorectal cancer.
Collapse
Affiliation(s)
- Yongkun Fang
- Department of General Surgery,
Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical
College, Yangzhou University, Yangzhou, China
| | - Cheng Yan
- Department of Clinical Medical College,
Dalian Medical University, Dalian, China
- The People’s Hospital Of QianNan,
Duyun, China
| | - Qi Zhao
- Department of Clinical Medicine,
Clinical Medical College, Yangzhou University, Yangzhou, China
- Changshu No.2 People’s Hospital,
Suzhou, China
| | - Bin Zhao
- Department of Clinical Medical College,
Dalian Medical University, Dalian, China
| | - Yiqun Liao
- Department of Clinical Medical College,
Dalian Medical University, Dalian, China
| | - Yuji Chen
- Department of Clinical Medicine,
Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery,
Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical
College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery,
Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical
College, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Chen Q, Wang Z, Shao D, Shi S. Effects of heat stress on the intestinal microorganisms in poultry and its nutritional regulations: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qingyi Chen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Huanan Agricultural University, Guangzhou, China
| | - Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Center of Effective Evaluation of Feed and Feed Additive (Poultry Institute) Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
11
|
Gao H, He Q, Xu C, Pang Z, Feng B, Chen T, Yang W, Zhou G, Wang Y, Li J, Su J, Miao Y, Zhao Y, Liao Z, Xu C, Liu Z. The Development and Validation of Anti-paratuberculosis-nocardia Polypeptide Antibody [Anti-pTNP] for the Diagnosis of Crohn's Disease. J Crohns Colitis 2022; 16:1110-1123. [PMID: 35029687 DOI: 10.1093/ecco-jcc/jjac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Non-invasive biomarkers in sera of patients with inflammatory bowel disease [IBD] are not currently available for rapidly and accurately diagnosing the disease. We aimed to investigate and validate the potential roles of anti-paratuberculosis-nocardia polypeptide antibodies [anti-pTNP] in the diagnosis of IBD. METHODS Serum samples were collected from 502 patients with diagnosed Crohn's disease [CD], 141 patients with ulcerative colitis [UC], and 109 healthy donors. The levels of anti-pTNPs and anti-Saccharomyces cerevisiae antibodies [ASCAs] were determined by enzyme-linked immunosorbent assay. The effects of each variable on the diagnosis were analysed by receiver operating characteristic [ROC] analysis. We also performed an estimate study by first developing a clinical prediction model, with external validation in CD patients from nine IBD medical centres in China. RESULTS The levels of anti-pTNPs in sera of CD patients were higher than those in UC patients and healthy donors. The positive rates of anti-pTNPs were significantly higher in ileal CD patients than in ileocolonic and colonic CD patients, and the levels of anti-pTNP IgG in perianal patients were significantly higher than those in non-perianal CD patients. Of note, anti-pTNPs and perianal diseases were important predictors for active stage of CD patients. Discriminative ability to predict active CD patients was 0.918 (95% confidence interval [CI]:0.886-0.949). CONCLUSIONS Anti-pTNP functions as a novel biological marker for diagnosing CD and can be used to assess disease severity, particularly in those with lesion locations in the terminal ileum and stricturing and perianal diseases. A validated prediction model reveals that anti-pTNPs are useful for estimating the likelihood of active CD.
Collapse
Affiliation(s)
- Han Gao
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong He
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Baisui Feng
- Department of Gastroenterology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Chen
- Laboratory of Experimental Analysis, Shanxi Ruihao Biotechnology, Taiyuan, China
| | - Wu Yang
- Laboratory of Experimental Analysis, Shanxi Ruihao Biotechnology, Taiyuan, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical College, Jining, China
| | - Yufang Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing,China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ye Zhao
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Wu X, Chen H, Gao X, Gao H, He Q, Li G, Yao J, Liu Z. Natural Herbal Remedy Wumei Decoction Ameliorates Intestinal Mucosal Inflammation by Inhibiting Th1/Th17 Cell Differentiation and Maintaining Microbial Homeostasis. Inflamm Bowel Dis 2022; 28:1061-1071. [PMID: 35092428 DOI: 10.1093/ibd/izab348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Evidence has shown that the traditional Chinese herbal medicine Wumei decoction (WMD) has a protective effect on ulcerative colitis. Here, we studied the anti-inflammatory effects and potential mechanisms of WMD on chronic colitis in mice. METHODS A dextran sulfate sodium (DSS)-induced chronic colitis model and CD45RBhighCD4+ T cell transfer model were established in mice. Body weight, Disease Activity Index, and colon length were assessed, and histopathology was confirmed by hematoxylin and eosin staining. Colon tissue samples were collected to detect the frequencies of various immune cells, expression of cytokines, and tight junction-related proteins using flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. 16S ribosomal DNA sequencing was performed to distinguish differential microbiota of fecal samples. RESULTS Severe chronic colitis was observed in mice after DSS exposure and in Rag1-/- mice reconstituted with CD45RBhighCD4+ T cells, as manifested by weight loss, hematochezia, and shortening and thickening of the colon, which were reversed by WMD treatment. WMD markedly suppressed intestinal mucosal CD4+ T cell differentiation and the secretion of proinflammatory cytokines (eg, tumor necrosis factor α, interleukin-1β, interferon γ, and IL-17A) by flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Moreover, WMD promoted the expression of occludin, zonula occludens-1, and E-cadherin, thereby maintaining the epithelial barrier function. Additionally, 16S ribosomal DNA sequencing revealed that WMD regulated the dysbiosis of gut microbiota in CD45RBhighCD4+ T cell-reconstituted Rag1-/- mice, evidenced by an increase of Allobaculum and Bacteroides and a decrease of Ileibacterium. CONCLUSIONS WMD ameliorates chronic colitis in mice induced by DSS or reconstituted with CD45RBhighCD4+ T cells through suppressing Th1/Th17 cell differentiation and the secretion of proinflammatory cytokines, maintaining epithelial barrier function, and improving the dysbiosis.
Collapse
Affiliation(s)
- Xiaohan Wu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huimin Chen
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong He
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
13
|
Liu Y, Huang W, Wang J, Ma J, Zhang M, Lu X, Liu J, Kou Y. Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Front Immunol 2021; 12:693479. [PMID: 34386004 PMCID: PMC8353228 DOI: 10.3389/fimmu.2021.693479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease, a common inflammatory disease, is considered a hazardous factor that contributes to the development of diseases of the digestive system as well as other systems. The bridge between periodontitis and systemic diseases is believed to be periodontal pathogens. The intestine, as part of the lower gastrointestinal tract, has a close connection with the oral cavity. Within the intestine, the intestinal barrier acts as a multifunctional system including microbial, mucous, physical and immune barrier. The intestinal barrier forms the body's first line of defense against external pathogens; its breakdown can lead to pathological changes in the gut and other organs or systems. Reports in the literature have described how oral periodontal pathogens and pathobiont-reactive immune cells can transmigrate to the intestinal mucosa, causing the destruction of intestinal barrier homeostasis. Such findings might lead to novel ideas for investigating the relationship between periodontal disease and other systemic diseases. This review summarizes studies on the effects of periodontal pathogens on the intestinal barrier, which might contribute to understanding the link between periodontitis and gastrointestinal diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxuan Huang
- School of Stomatology, Shenyang Medical College, Shenyang, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
14
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Mohseni AH, Taghinezhad-S S, Fu X. Gut microbiota-derived metabolites and colorectal cancer: New insights and updates. Microb Pathog 2020; 149:104569. [DOI: 10.1016/j.micpath.2020.104569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
|
17
|
Yang JY, Jie Z, Mathews A, Zhou X, Li Y, Gu M, Xie X, Ko CJ, Cheng X, Qi Y, Estrella JS, Wang J, Sun SC. Intestinal Epithelial TBK1 Prevents Differentiation of T-helper 17 Cells and Tumorigenesis in Mice. Gastroenterology 2020; 159:1793-1806. [PMID: 32745468 PMCID: PMC7680348 DOI: 10.1053/j.gastro.2020.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells (IECs) regulate intestinal immune cells, particularly development of T-helper 17 (Th17) cells. Deregulation of this process leads to intestinal inflammation and tumorigenesis, via unknown mechanisms. TANK-binding kinase 1 (TBK1) is expressed by IECs and cells in the innate immune system. We studied the functions of TBK1 in the intestinal immune response and tumorigenesis in mice. METHODS We performed studies of wild-type mice, mice with conditional disruption of Tbk1 (Tbk1IEC-KO), Tbk1IEC-KO mice crossed with ApcMin/+ mice, and Mt-/- mice crossed with ApcMin/+ mice. Some mice were given intraperitoneal injections of a neutralizing antibody against interleukin 17 (IL17) or IL1β. Intestine tissues were collected from mice and analyzed by histology, for numbers of adenomas and Th17 cells, and expression of inflammatory cytokines by real-time PCR. IECs were isolated from wild-type and Tbk1IEC-KO mice, stimulated with lipopolysaccharide, co-cultured for with bone marrow-derived macrophages, and analyzed by RNA sequencing and biochemical analyses. RESULTS Compared to ApcMin/+Tbk1WT mice, ApcMin/+Tbk1IEC-KO mice had significant increases in number and size of intestinal polyps, and significantly more Th17 cells in lamina propria. Administration of an antibody against IL17 reduced the number of intestinal polyps in ApcMin/+Tbk1IEC-KO mice to that observed in ApcMin/+Tbk1WT mice. In culture, TBK1-deficient IECs promoted expression of IL1β by macrophages, which induced differentiation of naïve CD4+ T cells into Th17 cells. RNA sequencing analysis revealed that the TBK1-deficient IECs had increased expression of metallothionein 1 (MT1), an immune regulator that promotes intestinal inflammation. Intestine tissues from ApcMin/+Mt-/- mice had significant fewer Th17 cells than ApcMin/+Mt+/+ mice, and a significantly lower number of polyps. Analyses of colorectal tumors in the Cancer Genome Atlas found colorectal tumors with high levels of MT1 and IL17 mRNAs to be associated with reduced survival times of patients. CONCLUSIONS Expression of TBK1 by IECs suppresses expression of MT1 and prevents expression of IL1β by macrophages and differentiation of Th17 cells, to prevent inflammation and tumorigenesis. Strategies to block this pathway might be developed for colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA;,Department of Biological Sciences, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Amber Mathews
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jeannelyn S. Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
18
|
Chen Q, Sun X, Luo X, Wang J, Hu J, Feng Y. PIK3R3 inhibits cell senescence through p53/p21 signaling. Cell Death Dis 2020; 11:798. [PMID: 32973127 PMCID: PMC7519147 DOI: 10.1038/s41419-020-02921-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Cellular senescence is a stress response of human cells that removes potentially harmful cells by initiating cell cycle arrest. Inducing senescence of tumor cells may be an effective tumor-inhibiting strategy. In this study we found that PIK3R3 could inhibit the cell senescence of colorectal cancer cells and promote cell proliferation through the p53/p21 signal pathway. PIK3R3 could bind to p53 and inhibit the binding of p53 to the p21 gene promoter region, and thus affecting the transcriptional activity of p21 gene. Our study has provided new evidence of the role of PIK3R3 in p53 regulation and inhibition of PIK3R3 may be one of the potential targets of tumor therapy.
Collapse
Affiliation(s)
- Qianzhi Chen
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuling Sun
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuelai Luo
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Wang
- Department of Immunology, Basic of Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbo Hu
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yongdong Feng
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Gomes SD, Oliveira CS, Azevedo-Silva J, Casanova MR, Barreto J, Pereira H, Chaves SR, Rodrigues LR, Casal M, Côrte-Real M, Baltazar F, Preto A. The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications. Curr Med Chem 2020; 27:4087-4108. [PMID: 29848266 DOI: 10.2174/0929867325666180530102050] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/22/2017] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
Colorectal Cancer (CRC) is a major cause of cancer-related death worldwide. CRC increased risk has been associated with alterations in the intestinal microbiota, with decreased production of Short Chain Fatty Acids (SCFAs). SCFAs produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch. While colonocytes use the three major SCFAs, namely acetate, propionate and butyrate, as energy sources, transformed CRC cells primarily undergo aerobic glycolysis. Compared to normal colonocytes, CRC cells exhibit increased sensitivity to SCFAs, thus indicating they play an important role in cell homeostasis. Manipulation of SCFA levels in the intestine, through changes in microbiota, has therefore emerged as a potential preventive/therapeutic strategy for CRC. Interest in understanding SCFAs mechanism of action in CRC cells has increased in the last years. Several SCFA transporters like SMCT-1, MCT-1 and aquaporins have been identified as the main transmembrane transporters in intestinal cells. Recently, it was shown that acetate promotes plasma membrane re-localization of MCT-1 and triggers changes in the glucose metabolism. SCFAs induce apoptotic cell death in CRC cells, and further mechanisms have been discovered, including the involvement of lysosomal membrane permeabilization, associated with mitochondria dysfunction and degradation. In this review, we will discuss the current knowledge on the transport of SCFAs by CRC cells and their effects on CRC metabolism and survival. The impact of increasing SCFA production by manipulation of colon microbiota on the prevention/therapy of CRC will also be addressed.
Collapse
Affiliation(s)
- Sara Daniela Gomes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal,ICVS - Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Cláudia Suellen Oliveira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - João Azevedo-Silva
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marta R Casanova
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Judite Barreto
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena Pereira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Margarida Casal
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- ICVS - Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Preto
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
West KA, Kanu C, Maric T, McDonald JAK, Nicholson JK, Li JV, Johnson MR, Holmes E, Savvidou MD. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020; 69:1452-1459. [PMID: 31964751 PMCID: PMC7398482 DOI: 10.1136/gutjnl-2019-319620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.
Collapse
Affiliation(s)
- Kiana Ashley West
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Chidimma Kanu
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tanya Maric
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julie Anne Kathryn McDonald
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mark R Johnson
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Makrina D Savvidou
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
21
|
Zhang D, Wang Y, Shen S, Hou Y, Chen Y, Wang T. The mycobiota of the human body: a spark can start a prairie fire. Gut Microbes 2020; 11:655-679. [PMID: 32150513 PMCID: PMC7524315 DOI: 10.1080/19490976.2020.1731287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycobiota are inseparable from human health, shaking up the unique position held by bacteria among microorganisms. What is surprising is that this seemingly small species can trigger huge changes in the human body. Dysbiosis and invasion of mycobiota are confirmed to cause disease in different parts of the body. Meanwhile, our body also produces corresponding immune changes upon mycobiota infection. Several recent studies have made a connection between intestinal mycobiota and the human immune system. In this review, we focus on questions related to mycobiota, starting with an introduction of select species, then we summarize the typical diseases caused by mycobiota in different parts of the human body. Moreover, we constructed a framework for the human anti-fungal immune system based on genetics and immunology. Finally, the progression of fungal detection methods is also reviewed.
Collapse
Affiliation(s)
- Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing, China,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,CONTACT Tingting Wang The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School of Nanjing University, Nanjing210093, China
| |
Collapse
|
22
|
Lin Z, Wu H, Fu Y, Dai S. Application of Herbaceous Medications for Inflammatory Bowel Disease as a Complementary and Alternative Therapy. Inflamm Bowel Dis 2019; 25:1886-1895. [PMID: 31504527 DOI: 10.1093/ibd/izz190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Conventional medicine for the treatment of IBD is prevailingly composed of sulfadiazine, 5-aminosalicylic acid, glucocorticoid, and immunosuppressants, which have the merits of alleviating intestine inflammation, but long-term use of these drugs may cause toxic side effects; additionally, these drugs may be expensive. In the pursuit of novel and more economic therapies, patients may increasingly look at complementary and alternative medicine (CAM). Recently, CAM is increasingly favored by the general public on account of its safety, low toxicity, and effectiveness. As a branch of CAM, herbal plants and their extracts have a significant effect on the treatment of IBD. Treatment of IBD with herbaceous plants has been reported, but specific mechanisms and effects have not yet been elaborated. METHODS English abstracts were identified in PubMed and Science Direct by multiple search terms, such as "herbal," "CAM," "IBD," "ulcerative colitis," "abdominal pain," and so on. Full-length articles were selected for review. RESULTS Herbaceous plants and their extracts have been shown to be effective against IBD in many studies, and herbaceous plants may be effective in treating symptoms such as abdominal pain, diarrhea, mucus, and bloody stools. CONCLUSIONS Herbal medications could be used as a complementary and alternative treatment for IBD, but they require more rigorous scientific testing.
Collapse
Affiliation(s)
- Zili Lin
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyi Wu
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiming Fu
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixue Dai
- Department of Gastroenterology, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang L, Chen C, Xu J, Zhang H, Shi C, Li Z, Fang H, Lin C, Tang D, Wang D. The role of microbiota in the development of colorectal cancer. Int J Cancer 2019; 145:2032-2041. [PMID: 30474116 PMCID: PMC6899977 DOI: 10.1002/ijc.32017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is the third largest cancer in worldwide and has been proven to be closely related to the intestinal microbiota. Many reports and clinical studies have shown that intestinal microbial behavior may lead to pathological changes in the host intestines. The changes can be divided into epigenetic changes and carcinogenic changes at the gene level, which ultimately promote the production and development of colorectal cancer. This article reviews the pathways of microbial signaling in the intestinal epithelial barrier, the role of microbiota in inflammatory colorectal tumors, and typical microbial carcinogenesis. Finally, by gaining a deeper understanding of the intestinal microbiota, we hope to achieve the goal of treating colorectal cancer using current microbiota technologies, such as fecal microbiological transplantation.
Collapse
Affiliation(s)
- Zhujiang Dai
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Jingqiu Zhang
- Department of General SurgeryInstitute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Qi Wu
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Juan Chen
- Department of GastroenterologyClinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Jun Liu
- Department of GastroenterologyClinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Lu Wang
- Department of GastroenterologyClinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Chaowu Chen
- Department of GastroenterologyClinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Jiaming Xu
- Department of General SurgeryInstitute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Hongpeng Zhang
- Department of General SurgeryInstitute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Chunfeng Shi
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Zhen Li
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Huiwen Fang
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Chaobiao Lin
- Clinical Medical CollegeYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Dong Tang
- Department of General SurgeryInstitute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| | - Daorong Wang
- Department of General SurgeryInstitute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's HospitalYangzhouChina
| |
Collapse
|
24
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
25
|
Yi Q, Wang J, Song Y, Guo Z, Lei S, Yang X, Li L, Gao C, Zhou Z. Ascl2 facilitates IL-10 production in Th17 cells to restrain their pathogenicity in inflammatory bowel disease. Biochem Biophys Res Commun 2019; 510:435-441. [DOI: 10.1016/j.bbrc.2019.01.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
|
26
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
27
|
Anti-TNF- α Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm 2018; 2018:3021863. [PMID: 30595666 PMCID: PMC6282128 DOI: 10.1155/2018/3021863] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Neutrophils have been found to play an important role in the pathogenesis of inflammatory bowel disease (IBD), and anti-TNF-α mAb (i.e., infliximab) therapy is demonstrated to be effective in the induction of clinical remission and mucosal healing in these patients. However, how anti-TNF-α mAb regulates the functions of neutrophils is still unknown. Herein, we found that anti-TNF-α therapy significantly downregulated infiltration of neutrophils in inflamed mucosa of IBD patients. Importantly, anti-TNF-α mAb could inhibit neutrophils to produce proinflammatory mediators, such as ROS, calprotectin, IL-8, IL-6, and TNF-α. These data indicate that TNF-α plays a critical role in the induction of mucosal inflammatory response, and that blockade of TNF-α modulates intestinal homeostasis through balancing immune responses of neutrophils.
Collapse
|
28
|
Xiao N, Liu F, Zhou G, Sun M, Ai F, Liu Z. Food-specific IgGs Are Highly Increased in the Sera of Patients with Inflammatory Bowel Disease and Are Clinically Relevant to the Pathogenesis. Intern Med 2018; 57:2787-2798. [PMID: 29780153 PMCID: PMC6207831 DOI: 10.2169/internalmedicine.9377-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective Dietary antigens are common luminal antigens in the gastrointestinal tract and have been considered to contribute to the pathogenesis of inflammatory bowel disease (IBD). We analyzed the levels of food-specific IgGs against a variety of dietary antigens, explored the clinical relevance of food allergy to the pathogenesis of IBD, and investigated whether or not infliximab (IFX) treatment could regulate the immune responses induced by dietary antigens. Methods A total of 301 IBD patients, including 201 patients with Crohn's disease (CD) and 100 patients with ulcerative colitis (UC), were recruited, and their serum food-specific IgGs against 14 food antigens were detected by a semi-quantitative enzyme linked immunosorbent assay (ELISA). Total serum IgG and IgE levels were measured by immunonephelometry and fluorescent enzyme immunoassay, respectively. Simultaneously, the relevant medical records and clinical data were collected for further analyses. Results Food-specific IgGs against egg, milk, wheat, corn, rice, tomato, codfish, and soybean antigens were found to be significantly increased in the sera of CD patients compared with UC patients and healthy controls (p<0.01). The levels of total serum IgG and IgE were also significantly higher in CD patients than in healthy controls (p<0.01). The titers of corn- and tomato-specific IgGs were found to be significantly correlated with total serum IgG in CD patients (p<0.05), while the titers of egg-, milk-, and wheat-specific IgGs were correlated with total serum IgE (p<0.05). Interestingly, IFX therapy was able to down-regulate the food-specific IgG-mediated immune response markedly in active CD patients. Conclusion Food-specific IgGs against egg, milk, wheat, corn, rice, tomato, codfish, and soybean are highly increased in the sera of CD patients. IFX treatment was able to down-regulate the levels of food-specific IgGs by suppressing intestinal inflammation and promoting mucosal healing. Therefore, food-specific IgGs may serve as an important approach in the diagnosis and management of food allergy in IBD.
Collapse
Affiliation(s)
- Nanping Xiao
- Department of Gastroenterology, The Shanghai Tenth Clinical Medicine College of Nanjing Medical University, China
- Department of Gastroenterology, Sichuan Guangyuan First People's Hospital, China
| | - Fenghua Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, China
| | - Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, China
| | - Fengfu Ai
- Department of Internal Medicine, The Second People's Hospital of Linchuan district, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth Clinical Medicine College of Nanjing Medical University, China
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, China
| |
Collapse
|
29
|
de J.R. De-Paula V, Forlenza AS, Forlenza OV. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer’s disease. Pharmacol Res 2018; 136:29-34. [DOI: 10.1016/j.phrs.2018.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
30
|
Jiang H, Dong L, Gong F, Gu Y, Zhang H, Fan D, Sun Z. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. Int J Mol Med 2018; 42:368-380. [PMID: 29693170 PMCID: PMC5979867 DOI: 10.3892/ijmm.2018.3631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory genes serve a crucial role in the pathogenesis of inflammation-associated tumors. However, as recent studies have mainly focused on the effects of single inflammatory genes on colorectal cancer (CRC), but not on the global interactions between genes, the underlying mechanisms between inflammatory genes and CRC remain unclear. In the current study, two inflammation-associated networks were constructed based on inflammatory genes, differentially expressed genes (DEGs) in CRC vs. normal samples, and protein-protein interactions (PPIs). These networks included an inflammation-related neighbor network (IRNN) and an inflammation-related DEG network (IRDN). Notably, the results indicated that the inflammatory genes served as important CRC-associated genes in the IRNN. Certain inflammatory genes were more likely to be network hubs and exhibited higher betweenness centralities, indicating that these inflammatory hub genes had central roles in the communication between genes in the IRNN. By contrast, in the IRDN, functional enrichment analysis revealed that genes were enriched in numerous cancer-associated functions and pathways. Subsequently, 14 genes in a module were identified in the IRDN as the potential biomarkers associated with disease-free survival (DFS) in CRC patients in the GSE24550 dataset, the prognosis of which was further validated using three independent datasets (GSE24549, GSE34551 and GSE103479). All 14 genes (including BCAR1, CRK, FYN, GRB2, LCP2, PIK3R1, PLCG1, PTK2, PTPN11, PTPN6, SHC1, SOS1, SRC and SYK) in this module were inflammatory genes, emphasizing the critical role of inflammation in CRC. In conclusion, these findings based on integrated inflammation-associated networks provided a novel insight that may help elucidate the inflammation-mediated mechanisms involved in CRC.
Collapse
Affiliation(s)
- Hao Jiang
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li Dong
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Fangyan Gong
- Clinical Laboratory, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yuping Gu
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Henghun Zhang
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Dong Fan
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhiguo Sun
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
31
|
She R, Li TT, Luo D, Li JB, Yin LY, Li H, Liu YM, Li XZ, Yan QG. Changes in the Intestinal Microbiota of Gibel Carp (Carassius gibelio) Associated with Cyprinid herpesvirus 2 (CyHV-2) Infection. Curr Microbiol 2017; 74:1130-1136. [PMID: 28748273 DOI: 10.1007/s00284-017-1294-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Gut microbiota are integral to the host, and have received increased attention in recent years. However, information regarding the intestinal microbiota of many aquaculture animals is insufficient; elucidating the dynamics of the intestinal microbiota can be beneficial for nutrition, immunity, and disease control. In this study, we used 16S rRNA sequencing to observe changes in the intestinal microbiota of gibel carp (Carassius auratus gibelio) associated with cyprinid herpesvirus 2 (CyHV-2) infection. Our results indicate that the diversity of the intestinal microbiota was strongly reduced, and the composition was dramatically altered following CyHV-2 infection. The most dominant species in healthy fish were Cetobacterium, Rhodobacter, and Crenothrix; meanwhile, Cetobacterium, Plesiomonas, Bacteroides, and Flavobacterium were the most abundant species in sick fish. Plesiomonas was highly abundant in infected samples, and could be used as a microbial biomarker for CyHV-2 infection. Chemical properties of the aquaculture water were significantly correlated with the microbial community structure; however, it is difficult to determine whether these changes are a cause or consequence of infection. However, it may be possible to use probiotics or prebiotics to restore the richness of the host intestinal microbiota in infected animals to maintain host health.
Collapse
Affiliation(s)
- Rong She
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
- Inspection Center, Tongwei Co. Ltd., Chengdu, 610041, China
| | - Tong-Tong Li
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, CAS, Sichuan, 610041, China
| | - Dan Luo
- Inspection Center, Tongwei Co. Ltd., Chengdu, 610041, China
| | - Jia-Bao Li
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, CAS, Sichuan, 610041, China
| | - Liu-Yi Yin
- Inspection Center, Tongwei Co. Ltd., Chengdu, 610041, China
| | - Huan Li
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, CAS, Sichuan, 610041, China
| | - Yao-Min Liu
- Inspection Center, Tongwei Co. Ltd., Chengdu, 610041, China
| | - Xiang-Zhen Li
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, CAS, Sichuan, 610041, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
32
|
Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis 2017; 18:495-503. [PMID: 28857501 DOI: 10.1111/1751-2980.12540] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), comprising of ulcerative colitis and Crohn's disease, are inflammatory disorders of the gastrointestinal tract characterized by chronically relapsing mucosal inflammation. Neutrophils, as the effector cells of acute inflammation, have long been reported to play a role in the maintenance of intestinal homeostasis and pathogenesis of IBD. At the early stage of mucosal inflammation in patients with IBD, neutrophils flood into intestinal mucosa, phagocytose pathogenic microbes, and promote mucosal healing and resolution of inflammation. However, large numbers of neutrophils infiltrating in the inflamed mucosa and accumulating in the epithelia cause damage of mucosal architecture, compromised epithelial barrier and production of inflammatory mediators. In this review we discuss the critical roles of neutrophils in modulating innate and adaptive immune responses in intestinal mucosa, and, importantly, clarify the potential roles of neutrophils related to their production of inflammatory mediators, transenthothelial and transepithelial migration into intestinal mucosa, and the underlying mechanisms in regulating mucosal inflammation of IBD. Moreover, we also describe a new subset of neutrophils (i.e., CD177+ neutrophils) and illustrate its protective role in modulating intestinal mucosal immune responses in IBD.
Collapse
Affiliation(s)
- Guang Xi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhan Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
33
|
Horak P, Kucerova P, Cervinkova M. Potential markers for early diagnostics of Colorectal cancer and Inflammatory bowel disease in humans : intestinal microorganisms and immune system (teammates or rivals). CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
34
|
Li Q, Wang D, Hao S, Han X, Xia Y, Li X, Chen Y, Tanaka M, Qiu CH. CD169 Expressing Macrophage, a Key Subset in Mesenteric Lymph Nodes Promotes Mucosal Inflammation in Dextran Sulfate Sodium-Induced Colitis. Front Immunol 2017; 8:669. [PMID: 28694804 PMCID: PMC5483437 DOI: 10.3389/fimmu.2017.00669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis is a relapsing-remitting illness. Patients with long-standing extensive colitis are easy to develop colorectal cancer (CRC). The increasing incidence of IBD and a substantial increase in the risk of CRC make the necessity to pay more attention on the regulation of inflammation especially by specific macrophages subset. The present study reported that a key subset of sinus macrophage expressing CD169 in mesenteric lymph nodes (mLNs) played an essential role in promoting mucosal inflammation. The results revealed that the subset expressing CD169 in mLNs increased significantly during the dextran sulfate sodium (DSS)-induced colitis. The colitic symptoms were alleviated in CD169-diphtheria toxin receptor (DTR) mice at least partially due to the deletion of CD169+ macrophages in mLNs. In addition, the levels of inflammatory cytokines as well as the percentage of Th17 cells in mLNs from CD169-DTR mice were much lower than those from WT mice with DSS-induced colitis. Further experiment in vitro demonstrated that the supernatant from whole cells of mLNs or colon tissues could promote the production of inflammatory factors by mLN cells or colon tissues from CD169-DTR mice. These results could be explained by the cell sorting result that CD11b+CD169+ macrophages expressed higher level of inflammatory factors directly. All these data indicated that CD169+ sinus macrophage in mLNs played an essential role on regulating mucosal inflammation.
Collapse
Affiliation(s)
- Qiuting Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Dan Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shengyu Hao
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiaolei Han
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yuan Xia
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiangzhi Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yaoxing Chen
- Laboratory of Veterinary Anatomy, College of Animal Medicine and Agricultural University, Beijing, China
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Chun-Hong Qiu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
35
|
de Oliveira GA, Cheng RYS, Ridnour LA, Basudhar D, Somasundaram V, McVicar DW, Monteiro HP, Wink DA. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid Redox Signal 2017; 26:1059-1077. [PMID: 27494631 PMCID: PMC5488308 DOI: 10.1089/ars.2016.6850] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.
Collapse
Affiliation(s)
- Graciele Almeida de Oliveira
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Robert Y S Cheng
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Lisa A Ridnour
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Debashree Basudhar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Veena Somasundaram
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Daniel W McVicar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Hugo Pequeno Monteiro
- 2 Laboratório de Sinalização Celular, Universidade Federal de São Paulo , São Paulo, Brazil
| | - David A Wink
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| |
Collapse
|
36
|
Sun M, He C, Wu W, Zhou G, Liu F, Cong Y, Liu Z. Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease. Clin Exp Immunol 2016; 187:428-440. [PMID: 27921309 DOI: 10.1111/cei.12896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023] Open
Abstract
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor-1α (HIF-1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC-derived HIF-1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF-1α and IL-33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)-33 were correlated positively with that of HIF-1α. A HIF-1α-interacting element was identified in the promoter region of IL-33, indicating that HIF-1α activity regulates IL-33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF-1α-dependent IL-33 expression in IEC. Our data thus demonstrate that HIF-1α-dependent IL-33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.
Collapse
Affiliation(s)
- M Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - W Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - G Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Z Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
37
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
38
|
Abstract
AIM: To determine serum levels of S100A12 in patients with ulcerative colitis (UC) and to explore its potential role in the diagnosis of UC and evaluation of disease development.
METHODS: Serum samples were collected from 66 patients with active UC (A-UC), 24 patients with UC in remission (R-UC) and 20 healthy controls. S100A12 levels were determined by ELISA. The role of S100A12 in the diagnosis and evaluation of disease development was then investigated.
RESULTS: The levels of serum S100A12 were significantly higher in patients with A-UC (725.6 pg/mL ± 239.6 pg/mL) compared with R-UC patients (311.2 pg/mL ± 87.5 pg/mL) and healthy controls (218.6 pg/mL ± 76.8 pg/mL) (P < 0.001). S100A12 was found to be markedly increased in severe UC patients compared with mild and moderate UC patients (P < 0.05). S100A12 was positively correlated with serum C-reactive protein (CRP) in UC patients. Moreover, S100A12 was found to be markedly decreased in UC patients after receiving effective treatment compared with that before treatment (P< 0.05).
CONCLUSION: S100A12 is markedly increased in the sera of UC patients. It can be used to diagnose the disease and predict the disease progression, suggesting that S100A12 is a useful marker for the prediction of UC.
Collapse
|
39
|
Wu W, Liu HP, Chen F, Liu H, Cao AT, Yao S, Sun M, Evans-Marin HL, Zhao Y, Zhao Q, Duck LW, Elson CO, Liu Z, Cong Y. Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-β production. Eur J Immunol 2016; 46:1162-7. [PMID: 26840377 DOI: 10.1002/eji.201546160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022]
Abstract
It has been shown that while commensal bacteria promote Th1, Th17 and Treg cells in lamina propria (LP) in steady-state conditions, they suppress mucosal Th2 cells. However, it is still unclear whether there are specific commensal organisms down-regulating Th2 responses, and the mechanism involved. Here we demonstrate that commensal A4 bacteria, a member of the Lachnospiraceae family, which produce an immunodominant microbiota CBir1 antigen, inhibits LP Th2-cell development. When transferred into the intestines of RAG(-/-) mice, CBir1-specific T cells developed predominately towards Th1 cells and Th17 cells, but to a lesser extent into Th2 cells. The addition of A4 bacterial lysates to CD4(+) T-cell cultures inhibited production of IL-4. A4 bacteria stimulated dendritic cell production of TGF-β, and blockade of TGF-β abrogated A4 bacteria inhibition of Th2-cell development in vitro and in vivo. Collectively, our data show that A4 bacteria inhibit Th2-cell differentiation by inducing dendritic cell production of TGF-β.
Collapse
Affiliation(s)
- Wei Wu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hou-Pu Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Han Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Gastroenterology, The Qilu Hospital, Shandong University, Shandong, China
| | - Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mingming Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Heather L Evans-Marin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ye Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L Wayne Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
40
|
Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Sci Rep 2015; 5:16344. [PMID: 26572590 PMCID: PMC4648093 DOI: 10.1038/srep16344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022] Open
Abstract
Divalent metal-ion transporter 1 (DMT1) has been found to play an important role in the iron metabolism and hemogenesis. However, little is known about the potential role of DMT1 in the pathogenesis of anemia from patients with inflammatory bowel disease (IBD). Herein, we investigated expression of DMT1 in the intestinal mucosa by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry, and found that DMT1 was significantly decreased in the inflamed mucosa of active IBD patients compared with that in those patients at remission stage and healthy controls. To further study the mechanism, we cultured HCT 116 cell line in vitro. Expression of DMT1 in HCT116 was demonstrated to be markedly decreased under stimulation with TNF for 24 and 48 h, while JNK inhibitor (JNK-IN-7) could significantly reverse the decrease. Interestingly, anti-TNF therapy successfully improved anemia in clinical responsive Crohn’s disease patients, and DMT1 was found to be markedly up-regulated in intestinal mucosa. Taken together, our studies demonstrate that decreased expression of DMT1 in intestinal mucosa leads to compromised absorption and transportation of iron and that blockade of TNF could rescue anemia and promote DMT1 expression in gut mucosa. This work provides a therapeutic approach in the management of anemia in IBD.
Collapse
|
41
|
Wu W, He C, Liu C, Cao AT, Xue X, Evans-Marin HL, Sun M, Fang L, Yao S, Pinchuk IV, Powell DW, Liu Z, Cong Y. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut 2015; 64:1755-64. [PMID: 25281418 DOI: 10.1136/gutjnl-2014-307980] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although both innate and adaptive responses to microbiota have been implicated in the pathogenesis of IBD, it is still largely unknown how they are regulated during intestinal inflammation. In this report, we investigated the role of microRNA (miR)-10a, a small, non-coding RNA, in the regulation of innate and adaptive responses to microbiota in IBD. METHODS miR-10a expression was analysed in the inflamed mucosa of IBD patients treated with or without antitumour necrosis factor (anti-TNF) monoclonal antibodies (mAb) (infliximab) by qRT-PCR. Human monocyte-derived dendritic cells (DC) and IBD CD4+ T cells were transfected with miR-10a precursor to define their effect on the function of DC and CD4+ T cells. RESULTS The expression of miR-10a was markedly decreased, while NOD2 and interleukin (IL)-12/IL-23p40 were significantly increased, in the inflamed mucosa of IBD patients compared with those in healthy controls. Commensal bacteria, TNF and interferon-γ inhibited human DC miR-10a expression in vitro. Anti-TNF mAb treatment significantly promoted miR-10a expression, whereas it markedly inhibited NOD2 and IL-12/IL-23p40 in the inflamed mucosa. We further identified NOD2, in addition to IL-12/IL-23p40, as a target of miR-10a. The ectopic expression of the miR-10a precursor inhibited IL-12/IL-23p40 and NOD2 in DC. Moreover, miR-10a was found to markedly suppress IBD T helper (Th)1 and Th17 cell responses. CONCLUSIONS Our data indicate that miR-10a is decreased in the inflamed mucosa of IBD and downregulates mucosal inflammatory response through inhibition of IL-12/IL-23p40 and NOD2 expression, and blockade of Th1/Th17 cell immune responses. Thus, miR-10a could play a role in the pathogenesis and progression of IBD.
Collapse
Affiliation(s)
- Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Changqin Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Anthony T Cao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaochang Xue
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Heather L Evans-Marin
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Suxia Yao
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Irina V Pinchuk
- Department of Medicine, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Don W Powell
- Department of Medicine, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
42
|
Sun M, He C, Cong Y, Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 2015; 8:969-978. [PMID: 26080708 PMCID: PMC4540654 DOI: 10.1038/mi.2015.49] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023]
Abstract
The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- M Sun
- Department of Gastroenterology, Institute for Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, Institute for Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Z Liu
- Department of Gastroenterology, Institute for Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Serum Levels of Lipopolysaccharide and 1,3-β-D-Glucan Refer to the Severity in Patients with Crohn's Disease. Mediators Inflamm 2015; 2015:843089. [PMID: 26106258 PMCID: PMC4464677 DOI: 10.1155/2015/843089] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
Objectives. Interactions between the host and gut microbial community contribute to the pathogenesis of Crohn's disease (CD). In this study, we aimed to detect lipopolysaccharide (LPS) and 1,3-β-D-glucan (BG) in the sera of CD patients and clarify the potential role in the diagnosis and therapeutic approaches. Materials and Methods. Serum samples were collected from 46 patients with active CD (A-CD), 22 CD patients at remission stage (R-CD), and 20 healthy controls, and the levels of LPS, BG, and TNF in sera were determined by ELISA. Moreover, sixteen patients with A-CD received anti-TNF monoclonal antibody therapy (infliximab, IFX) at a dose of 5 mg/kg body weight at weeks 0, 2, and 6, and the levels of LPS and BG were also tested at week 12 after the first intravenous infusion. Results. Serum levels of LPS and BG were found to be markedly increased in A-CD patients compared with R-CD patients and healthy controls (P < 0.05). They were also observed to be positively correlated with CDAI, ESR, and SES-CD, respectively (P < 0.05). Furthermore, the levels of TNF in sera had a significant correlation with LPS and BG, respectively. The concentrations of LPS and BG were demonstrated to be significantly downregulated in the sera of A-CD patients 12 weeks after IFX treatment (P < 0.05), suggesting that blockade of TNF could inhibit bacterial endotoxin absorption, partially through improving intestinal mucosal barrier. Conclusions. Serum levels of LPS and BG are significantly increased in A-CD patients and positively correlated with the severity of the disease. Blockade of intestinal mucosal inflammation with IFX could reduce the levels of LPS and BG in sera. Therefore, this study has shed some light on measurement of serum LPS and BG in the diagnosis and treatment of CD patients.
Collapse
|
44
|
Infliximab preferentially induces clinical remission and mucosal healing in short course Crohn's disease with luminal lesions through balancing abnormal immune response in gut mucosa. Mediators Inflamm 2015; 2015:793764. [PMID: 25873771 PMCID: PMC4383520 DOI: 10.1155/2015/793764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/10/2014] [Indexed: 01/25/2023] Open
Abstract
This study was undertaken to evaluate the efficacy of infliximab (IFX) in treatment of Crohn's disease (CD) patients. 106 CD patients were undergoing treatment with IFX from five hospitals in Shanghai, China. Clinical remission to IFX induction therapy was defined as Crohn's disease activity index (CDAI) < 150. Clinical response was assessed by a decrease in CDAI ≥ 70, and the failure as a CDAI was not significantly changed or increased. Ten weeks after therapy, 61 (57.5%) patients achieved clinical remission, 17 (16.0%) had clinical response, and the remaining 28 (26.4%) were failed. In remission group, significant changes were observed in CDAI, the Simple Endoscopic Score for Crohn's Disease (SES-CD), and serum indexes. Patients with short disease duration (22.2 ± 23.2 months) and luminal lesions showed better effects compared to those with long disease duration (71.0 ± 58.2 months) or stricturing and penetrating lesions. IFX markedly downregulated Th1/Th17-mediated immune response but promoted IL-25 production in intestinal mucosa from remission group. No serious adverse events occurred to terminate treatment. Taken together, our studies demonstrated that IFX is efficacious and safe in inducing clinical remission, promoting mucosal healing, and downregulating Th1/Th17-mediated immune response in short course CD patients with luminal lesions.
Collapse
|
45
|
Liu HP, Cao AT, Feng T, Li Q, Zhang W, Yao S, Dann SM, Elson CO, Cong Y. TGF-β converts Th1 cells into Th17 cells through stimulation of Runx1 expression. Eur J Immunol 2015; 45:1010-8. [PMID: 25605286 DOI: 10.1002/eji.201444726] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 12/10/2014] [Accepted: 01/20/2015] [Indexed: 01/29/2023]
Abstract
Differentiated CD4(+) T cells preserve plasticity under various conditions. However, the stability of Th1 cells is unclear, as is whether Th1 cells can convert into Th17 cells and thereby contribute to the generation of IFN-γ(+) IL-17(+) CD4(+) T cells, the number of which correlates with severity of colitis. We investigated whether IFN-γ(+) Th1 cells can convert into Th17 cells under intestinal inflammation and the mechanisms involved. IFN-γ(Thy1.1+) Th1 cells were generated by culturing naïve CD4(+) T cells from IFN-γ(Thy1.1) CBir1 TCR-Tg reporter mice, whose TCR is specific for an immunodominant microbiota antigen, CBir1 flagellin, under Th1 polarizing conditions. IFN-γ(Thy1.1+) Th1 cells induced colitis in Rag(-/-) mice after adoptive transfer and converted into IL-17(+) Th17, but not Foxp3(+) Treg cells in the inflamed intestines. TGF-β and IL-6, but not IL-1β and IL-23, regulated Th1 conversion into Th17 cells. TGF-β induction of transcriptional factor Runx1 is crucial for the conversion, since silencing Runx1 by siRNA inhibited Th1 conversion into Th17 cells. Furthermore, TGF-β enhanced histone H3K9 acetylation but inhibited H3K9 trimethylation of Runx1- and ROR-γt-binding sites on il-17 or rorc gene in Th1 cells. We conclude that Th1 cells convert into Th17 cells under inflammatory conditions in intestines, which is possibly mediated by TGF-β induction of Runx1.
Collapse
Affiliation(s)
- Hou-Pu Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aragón F, Perdigón G, LeBlanc ADMD. Modification in the diet can induce beneficial effects against breast cancer. World J Clin Oncol 2014; 5:455-464. [PMID: 25114859 PMCID: PMC4127615 DOI: 10.5306/wjco.v5.i3.455] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
The population tends to consume foods that in addition to their nutritional values can offer some benefits to their health. There are many epidemiological evidences and research studies in animal models suggesting that diet plays an important role in breast cancer prevention or progression. This review summarized some of the relevant researches about nutrition and cancer during the last years, especially in breast cancer. The analysis of probiotics and fermented products containing lactic acid bacteria in cancer prevention and/or treatment was especially discussed. It was observed that a balance of fatty acids similar to those of traditional Mediterranean diet, the consumption of fruits and vegetables, dietary fiber intake, vitamin supplementation are, along with the intake of probiotic products, the most extensively studied by the negative association to breast cancer risk. The consumption of probiotics and fermented products containing lactic acid bacteria was associated to reduce breast cancer risk in some epidemiological studies. The use of animal models showed the modulation of the host’s immune response as one of the important effects associated to the benefices observed with most probiotics. However; future assays in human are very important before the medical community can accept the addition of probiotic or fermented milks containing lactic acid bacteria as supplements for cancer patients.
Collapse
|
47
|
Qiu H, Sun X, Sun M, He C, Li Z, Liu Z. Serum bacterial toxins are related to the progression of inflammatory bowel disease. Scand J Gastroenterol 2014; 49:826-33. [PMID: 24853095 DOI: 10.3109/00365521.2014.919018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is an autoimmune disease. Disorder of intestinal microbes is thought to play a critical role in the pathogenesis of IBD. Detection of bacterial toxins could become a new approach to judge the situation of this disease. MATERIALS AND METHODS Serum samples were collected from 142 IBD patients and 40 healthy donors as well as 15 CD patients with anti-tumor necrosis factor (TNF) monoclonal antibody (infliximab [IFX]). Enzyme-linked immunosorbent assay kits for Clostridium difficile, Escherichia coli O157, salmonella, and Staphylococcus aureus were used to analyze these bacterial toxins in sera. RESULTS The positive rates of bacterial toxins from C. difficile, E. coli O157, salmonella, and S. aureus in the IBD patients were found in low incidences and associated with disease duration, colonic involvement, and treatment with prednisone and immunomodulators. The active CD and UC patients had significant higher positive rates of these bacterial toxins than those in remission or healthy controls. Blockage of TNF with IFX in CD patients resulted in significant decreases of the levels of toxins of C. difficile, E. coli O157, salmonella, and S. aureus in sera. CONCLUSIONS Some bacterial toxins are present in the sera of active IBD patients, and patients with long disease duration, colonic involvement, or treatment with prednisone and immunomodulators are more susceptible to bacterial infection. Inhibition of inflammation with IFX would reduce the bacterial toxins via improvement of intestinal inflammation. Detecting bacteria-derived toxins in sera can be used to predict the progression of IBD.
Collapse
Affiliation(s)
- Huajing Qiu
- Department of Gastroenterology, the Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Digestive cancers, such as colorectal cancer, gastric cancer and liver cancer, remain major threats to human health in coming decades and their epidemiology is under dynamic changes. Recent advances in genotyping and sequencing technologies together with other molecular and cellular biology techniques have led to a clearer delineation of the pathogenic mechanisms underlying genetic and environmental factors that contribute to digestive cancers. Such expansion of knowledge continues to fuel the development of novel biomarkers and therapeutics. In this special issue of Seminars in Cancer Biology, hot topics in basic and translational research of digestive cancers will be reviewed.
Collapse
|