1
|
Li K, Zeng Y, Xiong YD, Wu HC, Fang S, Qu ZY, Zhu Y, Du B, Gao ZB, Hu WB. Contrastive learning-based drug screening model for GluN1/GluN3A inhibitors. Acta Pharmacol Sin 2025. [DOI: 10.1038/s41401-025-01580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/05/2025] [Indexed: 06/09/2025]
|
2
|
Abdulaziz O, Khan FR, Alharthi NS, Alhuthali HM, Hazazi A, Alzahrani HA, Gharib AF, Alsalmi OA, Hawsawi NM, Alhazmi AY. Computational insights into overcoming resistance mechanisms in targeted therapies for advanced breast cancer: focus on EGFR and HER2 co-inhibition. J Biomol Struct Dyn 2025; 43:4215-4226. [PMID: 38234016 DOI: 10.1080/07391102.2024.2301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
In the present study, the formation of a heterodimer involving both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) has been explored as a potential therapeutic mechanism to inhibit the progression of breast cancer. Virtual screening using molecular docking resulted in the three hit compounds (ZINC08382411, ZINC08382438, and ZINC08382292) with minimum binding scores and commonly binding to both receptors. Further, MD simulation analysis of these complexes illustrated the high stability of these compounds with EGFR and HER2. RMSD showed that ZINC08382411 displayed the most stable RMSD of 2 - 3 Å when bound to both receptors, suggesting to have strong compatibility with the active site of the receptor. Hydrogen bond analysis showed that ZINC08382411 forms the maximum number of H-bonds (2 to 3) in both EGFR and HER2 bound complexes, with the highest occupancy of 62% and 79%, respectively. Binding free energy calculation showed that ZINC08382411 possesses maximum affinity towards both the receptors with ΔGbind = -129.628 and -164.063 kJ/mol, respectively. This approach recognizes the significance of EGFR and HER2 in breast cancer development and aims to disrupt their collaborative signaling, which is known to promote the antagonistic behavior of cancer cells. By focusing on this EGFR/HER2 heterodimer, the study offers a promising avenue for identifying a potential candidate (ZINC08382411) that may inhibit breast cancer cell growth and potentially improve patient outcomes. The study's findings may contribute to the ongoing efforts to advance breast cancer treatment strategies.
Collapse
Affiliation(s)
- Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Kingdom of Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science,College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Hind A Alzahrani
- Department of Basic Sciences, College of Applied of Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ohud A Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nahed M Hawsawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulfattah Y Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Belghalia E, Elbamtari F, Jawi M, Guendouzi A, Sbai A, Choukrad M, Lakhlifi T, Bouachrine M. Pyrazole-benzimidazole derivatives targeting MCF-7 breast cancer cells as potential anti-proliferative agents. 3D QSAR and In-silico investigations via molecular docking and molecular dynamics simulations. Comput Biol Med 2025; 189:109969. [PMID: 40068494 DOI: 10.1016/j.compbiomed.2025.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025]
Abstract
Breast cancer is a complicated type of cancer that mainly occurs in women and poses a global challenge due to its genetic diversity, making accurate diagnosis challenging. The accepted approaches are categorized based on cancer subtype and metastasis level. This study focuses on a predictive drug discovery strategy for compounds that may modulate interaction with HER-2 and EGFR, two important receptors in cancer treatment. We employed a 3D QSAR methodology, complemented by molecular docking, ADMET analysis, and molecular dynamics simulations, to evaluate the antiproliferative effects of pyrazole-benzimidazole derivatives on MCF-7 cells as targeted therapies. External validation confirmed the predictive accuracy of the generated models. The best CoMSIA (Comparative Molecular Similarity Indices Analysis) and CoMFA (Comparative Molecular Field Analysis) models exhibited significant Q2, R2, and RTest2 values, emphasizing the role of electrostatic and hydrophobic fields in inhibiting breast cancer cell growth. These findings provided a foundation for designing and predicting the biological effects of potent inhibitors. Additionally, ADMET analysis was conducted to evaluate the drug-likeness of the newly designed ligands, while the stability of the complexes was confirmed by molecular dynamics simulations, which validate the binding stability of the selected chemicals. MMPBSA, PCA, and FEL investigations provide further support for this assertion, reinforcing the robustness of our conclusions.
Collapse
Affiliation(s)
- Etibaria Belghalia
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Farid Elbamtari
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Motasim Jawi
- Department of Basic Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco.
| | - M'barek Choukrad
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| |
Collapse
|
4
|
Huang Y, Wang XY, Huang JY, Huang ZW. Incorporation of human β-defensin-1 into immunoliposomes to facilitate targeted autophagy therapy of colon carcinoma. World J Clin Oncol 2025; 16:101098. [PMID: 40130061 PMCID: PMC11866080 DOI: 10.5306/wjco.v16.i3.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Based on the discovery that human β-defensin-1 (hBD-1) triggers autophagy in colon cancer cells and inhibits proliferation, we proposed the consideration of its druggability. As a protein, its stability, targetability and bioavailability must be improved. Compared with the traditional medicinal chemistry technology, nanotechnology is more economical for increasing the druggability of hBD-1 and can be readily scaled up. Here, we propose an immunoliposome system containing hBD-1 to improve its stability and bioavailability. To enhance its targetability, anti-epidermal growth factor receptor (EGFR) antibodies were conjugated to the liposomal bilayer to produce immunoliposomes that can target EGFR, which is highly expressed in colon cancer cells. Although more studies are needed to support clinical trials and large-scale manufacturing, these immunoliposomes have great potential as therapeutics. Thus, immunoliposomes are suitable nanovesicles to improve the druggability of hBD-1; however, additional basic and translational research of these systems is warranted.
Collapse
Affiliation(s)
- Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Xi-Ye Wang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Jia-Yue Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| | - Zheng-Wei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong Province, China
| |
Collapse
|
5
|
Parmar M, Das A, Vala DP, Bhalodiya SS, Patel CD, Balachandran S, Kandukuri NK, Kashyap S, Khan AN, González-Bakker A, Arumugam MK, Padrón JM, Nandi A, Banerjee S, Patel HM. QSAR, Antimicrobial, and Antiproliferative Study of ( R/ S)-2-Thioxo-3,4-dihydropyrimidine-5-carboxanilides. ACS OMEGA 2025; 10:7013-7026. [PMID: 40028097 PMCID: PMC11866182 DOI: 10.1021/acsomega.4c09899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Owing to the significant contribution of three-dimensional (3D) field-based QSAR toward hit optimization and accurately predicting the activities of small molecules, herein, the 3D-QSAR, in vitro antimicrobial, molecular docking, and pharmacophore modeling studies of all the isolated (R/S)-2-thioxo-DHPM-5-carboxanilides exhibiting antimicrobial activity were carried out. The screening process was performed using 46 compounds, and the best-scoring model with the top statistical values was considered for bacterial and fungal targets Bacillus subtilis and Candida albicans. As a result of 3D-QSAR analysis, compound 4v-(S)- and 4v-(R)-isomers were found to be more potent compared to the standard drugs tetracycline and fluconazole, respectively. Furthermore, the enantiomerically pure isomers 4q, 4d', 4n, 4f', 4v, 4q', 4c, and 4p' were found to be more potent than tetracycline and fluconazole to inhibit the bacterial and fungal growth against B. subtilis, Salinivibrio proteolyticus, C. albicans, and Aspergillus niger, respectively. Molecular docking analysis shows that with the glide score of -10.261 kcal/mol, 4v-(R)-isomer was found to be more potent against the fungal target C. albicans and may target the 14-α demethylase than fluconazole. Furthermore, all compounds' antiproliferative activity results showed that 4o' exhibited GI50 values between 8.8 and 34 μM against six solid tumor cell lines. Following the greater potential of 4o' toward the HeLa cell line, its kinetics study and live cell imaging were carried out. These outcomes highlight the acceptance and safety as well as the potential of compounds as effective antiproliferative and antifungal agents.
Collapse
Affiliation(s)
- Mehul
P. Parmar
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Anwesha Das
- Department
of Pharmacy, Sanaka Educational Trust Group
of Institutions (SETGOI), Malandighi, Durgapur, West Bengal 713212, India
| | - Disha P. Vala
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Savan S. Bhalodiya
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Chirag D. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Shana Balachandran
- Cancer
Biology Lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Nagesh Kumar Kandukuri
- YMC
Application Lab, Plot
No. 78/A/6, Phase VI, Industrial Park Jeedimetla,
Gajularamaram Village, Quthbullapur, Medchal, Hyderabad, Telangana 500055, India
| | - Shreya Kashyap
- Division
of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K.
| | - Adam N. Khan
- BioLab,
Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez
2, La Laguna 38206, Spain
| | - Aday González-Bakker
- BioLab,
Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez
2, La Laguna 38206, Spain
| | - Madan Kumar Arumugam
- Cancer
Biology Lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - José M. Padrón
- BioLab,
Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez
2, La Laguna 38206, Spain
| | - Arijit Nandi
- Department
of Pharmacy, Sanaka Educational Trust Group
of Institutions (SETGOI), Malandighi, Durgapur, West Bengal 713212, India
- Institute
for Molecular Bioscience, The University
of Queensland, 306 Carmody RoadSt Lucia Qld, Brisbane 4072, Australia
| | - Sourav Banerjee
- Division
of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K.
| | - Hitendra M. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| |
Collapse
|
6
|
Mahnashi MH, Nahari M, Almasoudi H, Alhasaniah A, Elgazwi S, Abou-Salim MA. Novel NO-TZDs and trimethoxychalcone-based DHPMs: design, synthesis, and biological evaluation as potential VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2358934. [PMID: 38904116 PMCID: PMC467104 DOI: 10.1080/14756366.2024.2358934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/19/2024] [Indexed: 06/22/2024] Open
Abstract
Novel series of nitric oxide-releasing thiazolidine-2,4-diones (NO-TZD-3a-d,5,6) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (CDHPM-10a-g) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and CDHPM-10a-g emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, CDHPM-10e and CDHPM-10f demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds CDHPM-10a,b,d-f showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid CDHPM-10e displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI50 of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds CDHPM-10a-g were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog CDHPM-10e revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC50 value of 0.11 µM. Also, CDHPM-10e could effectively induce Sub-G1-phase arrest and prompt apoptosis via caspase and p53-dependent mechanisms. Furthermore, CDHPM-10e revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that CDHPM-10e overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that CDHPM-10e met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Sara Elgazwi
- Department of Chemistry, University of Derna, Derna, Libya
| | - Mahrous A. Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
7
|
Aloui M, El fadili M, Mujwar S, Er-rahmani S, Abuelizz HA, Er-rajy M, Zarougui S, Elhallaoui M. Design of novel potent selective survivin inhibitors using 2D-QSAR modeling, molecular docking, molecular dynamics, and ADMET properties of new MX-106 hydroxyquinoline scaffold derivatives. Heliyon 2024; 10:e38383. [PMID: 39397921 PMCID: PMC11467593 DOI: 10.1016/j.heliyon.2024.e38383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Given the critical role of survivin (BIRC5) in tumor cell regulation, developing novel inhibitors represents a promising approach for cancer therapy. This study details the design of innovative survivin inhibitors based on the hydroxyquinoline scaffold of our previously reported lead compound, MX-106. Our study identified nine compounds whose inhibitory activity is expected to be superior to that of the most active molecule in the series. These compounds demonstrated potent suppression of MDA-MB-435 breast cancer cell proliferation in vitro and exhibited enhanced metabolic stability compared to the series' most active member. To evaluate these derivatives as potential survivin inhibitors, we employed a multi-faceted approach combining 2D-QSAR methods, molecular docking, molecular dynamics, and ADMET property assessment. Our molecular modeling studies led to the design of nine novel compounds (Pred1-Pred9) predicted to exhibit potent survivin inhibitory activity based on MLR models. To assess their suitability as drug candidates, we recommend a thorough evaluation of their ADMET properties. These compounds hold promise as innovative anticancer agents targeting survivin, similar to the established MX-106.
Collapse
Affiliation(s)
- Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sara Er-rahmani
- Dipartimento di Chimica, Università di Torino, 10125, Torino, Italy
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Al-Wahaibi L, Elshamsy AM, Ali TFS, Youssif BGM, Bräse S, Abdel-Aziz M, El-Koussi NA. Design and Synthesis of New Dihydropyrimidine Derivatives with a Cytotoxic Effect as Dual EGFR/VEGFR-2 Inhibitors. ACS OMEGA 2024; 9:34358-34369. [PMID: 39157105 PMCID: PMC11325413 DOI: 10.1021/acsomega.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 08/20/2024]
Abstract
We developed and synthesized tetrahydropyrimidine derivatives as possible cytotoxic agents to inhibit EGFR and VEGFR-2 in the present study. Our study completely assesses the cytotoxic efficiency of pyrimidine-based derivatives 4-15 against various cancer cell lines, revealing derivatives 12 and 15 for their remarkable activity with GI50 values of 37 and 35 nM, respectively, when compared to the reference erlotinib (33 nM). In vitro enzyme assays showed that target compounds, particularly 12, 14, and 15, effectively inhibited EGFR and VEGFR-2. In vitro enzyme testing revealed that compound 15 was the most promising, with IC50 values of 84 and 3.50 nM for EGFR and VEGFR-2, respectively. Additionally, an in vitro assessment of the novel targets' apoptotic potential revealed that both pro-apoptotic and antiapoptotic behaviors were promising, indicating that the apoptotic induction pathway is a strongly proposed action method for the newly developed targets. Finally, molecular docking experiments are elaborately discussed to corroborate the exact binding interactions of the most active hybrids 12 and 15 with the EGFR and VEGFR-2 active sites.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali M. Elshamsy
- Pharmceutical
Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61517, Egypt
| | - Taha F. S. Ali
- Medicinal
Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Bahaa G. M. Youssif
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute
of Biological and Chemical Systems, IBCS-FMS,
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Medicinal
Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nawal A. El-Koussi
- Pharmceutical
Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61517, Egypt
- Department
of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
9
|
Parmar MP, Vala DP, Bhalodiya SS, Upadhyay DB, Patel CD, Patel SG, Gandholi SR, Shaik AH, Miller AD, Nogales J, Banerjee S, Padrón JM, Amri N, Kandukuri NK, Patel HM. A green bio-organic catalyst (taurine) promoted one-pot synthesis of ( R/ S)-2-thioxo-3,4-dihydropyrimidine(TDHPM)-5-carboxanilides: chiral investigations using circular dichroism and validation by computational approaches. RSC Adv 2024; 14:9300-9313. [PMID: 38505382 PMCID: PMC10949965 DOI: 10.1039/d4ra01391c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Owing to the massive importance of dihydropyrimidine (DHPMs) scaffolds in the pharmaceutical industry and other areas, we developed an effective and sustainable one-pot reaction protocol for the synthesis of (R/S)-2-thioxo-DHPM-5-carboxanilides via the Biginelli-type cyclo-condensation reaction of aryl aldehydes, thiourea and various acetoacetanilide derivatives in ethanol at 100 °C. In this protocol, taurine was used as a green and reusable bio-organic catalyst. Twenty-three novel derivatives of (R/S)-TDHPM-5-carboxanilides and their structures were confirmed by various spectroscopy techniques. The aforementioned compounds were synthesized via the formation of one asymmetric centre, one new C-C bond, and two new C-N bonds in the final product. All the newly synthesized compounds were obtained in their racemic form with up to 99% yield. In addition, the separation of the racemic mixture of all the newly synthesized compounds was carried out by chiral HPLC (Prep LC), which provided up to 99.99% purity. The absolute configuration of all the enantiomerically pure isomers was determined using a circular dichroism study and validated by a computational approach. With up to 99% yield of 4d, this one-pot synthetic approach can also be useful for large-scale industrial production. One of the separated isomers (4R)-(+)-4S developed as a single crystal, and it was found that this crystal structure was orthorhombic.
Collapse
Affiliation(s)
- Mehul P Parmar
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Disha P Vala
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Savan S Bhalodiya
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Dipti B Upadhyay
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Chirag D Patel
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Subham G Patel
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| | - Srinivasa R Gandholi
- YMC Application Lab Plot No. 78/A/6, Phase VI, Industrial Park Jeedimetla, Gajularamaram Village, Quthbullapur, Medchal Hyderabad-500055 Telangana India
| | - Althaf H Shaik
- YMC Application Lab Plot No. 78/A/6, Phase VI, Industrial Park Jeedimetla, Gajularamaram Village, Quthbullapur, Medchal Hyderabad-500055 Telangana India
| | - Amy Dunne Miller
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee Dundee UK
| | - Joaquina Nogales
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee Dundee UK
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee Dundee UK
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna Avda. Astrofísico Francisco Sánchez 2 38206 La Laguna Spain
| | - Nasser Amri
- Department of Chemistry, College of Science, Jazan University P.O. Box 2097 Jazan 45142 Saudi Arabia
| | - Nagesh Kumar Kandukuri
- YMC Application Lab Plot No. 78/A/6, Phase VI, Industrial Park Jeedimetla, Gajularamaram Village, Quthbullapur, Medchal Hyderabad-500055 Telangana India
| | - Hitendra M Patel
- P. G. Department of Chemistry, Sardar Patel University Near University Circle, Vallabh Vidyanagar 388120 Gujarat India
| |
Collapse
|
10
|
Fadaly WAA, Nemr MTM, Zidan TH, Mohamed FEA, Abdelhakeem MM, Abu Jayab NN, Omar HA, Abdellatif KRA. New 1,2,3-triazole/1,2,4-triazole hybrids linked to oxime moiety as nitric oxide donor selective COX-2, aromatase, B-RAF V600E and EGFR inhibitors celecoxib analogs: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis and molecular modeling study. J Enzyme Inhib Med Chem 2023; 38:2290461. [PMID: 38061801 PMCID: PMC11003496 DOI: 10.1080/14756366.2023.2290461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 μM compared to tamoxifen (IC50 = 27.9 μM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 μM compared to sorafenib (IC50 = 3.5 μM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 μM compared to 5-FU with IC50 = 4.8 μM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 μM compared to 5-FU with IC50 = 6 μM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 μM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 μM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 μM).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|